Pattern Databases

Robert Holte
Computing Science Dept.
University of Alberta

November 4, 2004
T

4

What is a Pattern Database ?

» PDB = a heuristic stored as a lookup table
+ Invented by Culberson and Schaeffer (1994)

+ created by “abstracting” the state space

+ Key properties:
— guaranteed to be a lower bound
— guaranteed to be “consistent”
— the bigger the better (as a general rule)

Success Story #1

Joe Culberson & Jonathan Schaeffer (1994).
— 15-puzzle (10% states).
— 2 hand-crafted patterns (“fringe” (FR) and “corner” (CO))
— Each PDB contains >500 million entries

— Used symmetries to compress and enhance the use of
the PDBs

— Used in conjunction with Manhattan Distance (MD)

Reduction in size of search tree:
— MD = 346 * max(MD,FR)
— MD = 437 * max(MD,CO)
— MD = 1038 * max(MD, dovetail(FR,CO)) + tricks! b

Success Story #2

Rich Korf (1997)
— Rubik’s Cube (10 states).
— 3 hand-crafted patterns, all used together (max)
— Each PDB contains over 42 million entries
— took 1 hour to build all the PDBs
Results:
— First time random instances had been solved optimally
— Hardest (solution length 18) took 17 days

— Best known MD-like heuristic would have taken a
century

Example: 8-puzzle

1912
31415
6171]8

181,440 states

Domain=blank 1 234567 8

“Patterns”
created by domain abstraction

1912
31415
6171]8

original state —— corresponding pattern

This abstraction
produces

Domain = blank 1 2
Abstract = blank # 8

[OS)
o
=N
m o
N
B oo

9 patterns

Pattern Space

< goal pattemn |

Pattern Database

e gk R M B B

Distance to goal 0 1 1 2 2 2

e W

Distance to goal 3 3 4

Calculating h(s) Domain Abstraction

. : - 1[4
Given a state in the original problem =
6(7(2 112
Compute the corresponding pattern
617]|8 617]|8

Look up the abstract distance-to-goal 2

Domain=blank 1 2 3 4 5
R

Abstract =blank 00 B U

67
67

o oo

Fundamental Questions 8-puzzle: A* vs. PDB size

100000

How to invent effective heuristics ?

Create a simplified version of your problem. e
Use the exact distances in the simplified version

as heuristic estimates in the original.

! In

How to use memory to speed up search ?

nodes expanded (A*)

Precompute all distances-to-goal in the simplified
version of the problem and store them in a
lookup table (pattern database). °

100 100D 10000 100000

pattern database size (# of abstract states) ury

Automatic Creation of
Domain Abstractions

» Easy to enumerate all possible domain
abstractions

Domain=blank 1 2 3456 7 8
Abstract=blank 1® B 0 BEE O §

» They form a lattice, e.g.

Domain=blank 1 23456 7 8
Abstract=blank 0O B 0 OB O O

is “more abstract” than the domain abstraction
above

Efficiency

Time for the preprocessing to create a PDB
is usually negligible compared to the time
to solve one problem-instance with no
heuristic.

Memory is the limiting factor.

Making the Best Use of Memory

» Compress an individual Pattern Database
— Lossless compression
— Lossy compression must maintain admissibility
— Allows you to
+ use a PDB bigger than will fit in memory
+ use multiple PDBs instead of just one

» Merge two PDBs into one the same size
— Culberson & Schaeffer’s dovetailing
— Jonathan’s new idea

Compression Results

» 16-disk 4-peg TOH, PDB based on 14 disks
— No compression: 256Megs memory, 14.3 secs
— lossless compression: 256k memory, 23.8 secs
— Lossy compression: 96Megs, 15.9 secs

» 15-puzzle, additive PDB triple (7-7-1)
— No compression: 537Megs memory, 0.069 secs
— Lossy compression, two PDB triples
537Megs memory, 0.021 secs

Max’ing Multiple Heuristics

« Given heuristics h1 and h2 define
h(s) = max (h1(s), h2(s))

» Preserves key properties:
— lower bound
— consistency

Question

Given a fixed amount of memory, M,
which gives the best heuristic ?

— 1 pattern database (PDB) of size M
— max’ing 2 PDBs of size M/2

— max’ing 3 PDBs of size M/3

— etc.

1 large pattern database

\4

INRRNRRERNNRRNARERANEEN
!

h(s)

2 half-size pattern databases

S

%%
*

hy(s) hy(s)

Many small pattern databases

Rubik’s Cube

PDB Size n | Nodes Generated
13,305,600 | 8 2,654,689
17,740,800 | 6 2,639,969
26,611,200 | 4 3,096,919
53,222,400 | 2 5,329,829
106,444,800 | 1 61,465,541

max
T g
Summary Rubik’s Cube CPU Time
State Space Bestn Ratio
(3x3)-puzzle 10 3.85 #PDBs | Nodes Ratio Time Ratio
9-pancake 10 8.59 8 23.15 12.09
(8,4)-Topspin (3 ops) 9 3.76 6 23.28 14.31
(8,4)-Topspin (8ops) | 9 20.89 4 19.85 13.43
(3x4)-puzzle 21+ 185.5 2 11.53 9.87
Rubik’s Cube 6 23.28 1 1.00 1.00
15-puzzle (additive) 5 2.38
24-puzzle (additive) 8 1.6 to 25.1

#nodes generated using one PDB of size M

RATIO =
O = o generated using n PDBs of size M/n| 4

time/node is 1.67x higher using six PDBs

Techniques for
Reducing the Overhead of
Multiple PDB lookup

Early Stopping

IDA* depth bound =7

g(s)=3

= Stop doing PDB lookups as
soon as h > 4 is found.

|Might result in extra IDA* iterations

PDB,(s) =5 = next bound is 8
PDB,(s) =7 = next boundis 10

Consistency-based Bounding

PDB, (A)
PDB,(A)

1
7

Because of consistency:
PDB,(B) <2
PDB,(B) = 6

= No need to consult PDB;

Experimental Results

» 15-puzzle, five additive PDBs (7-7-1)
— Naive: 0.15 secs
— Early Stopping: 0.10 secs

* Rubik’s Cube, six non-additive PDBs
— Naive: 27.125 secs
— Early Stopping: 8.955 secs
— Early Stopping and Bounding: 8.836 secs

Why Does Max’ing
Speed Up Search ?

Static Distribution
of Heuristic Values

RNEIERRERER max of 5 small PDBs.
o
i
Ses06 | | i
g |
; [
.
1 large PDB. "‘
2.38x nodes generated / \
]
0 4/"/’

Runtime Distribution
of Heuristic Values

le+07
max-of-five(7-7-1) heuristic
87 heuristic -
8e+06 |-
4 Gevo6 |-
F 4e+06 | i
2e+06 |-) i
/ i\
L\
50 7

Saving Space

« If h1 and h2 are stored as pattern
databases, max(h1(s),h2(s)) requires
twice as much space as just one of them.

» How can we get the benefits of max
without using any extra space ?
— “dovetail” two PDBs
— use smaller PDBs to define max

Dovetailing

» Given 2 PDBs for a state space construct
a hybrid containing some entries from
each of them, so that the total number of
entries is the same as in one of the
originals.

» The hope: almost as good as max, but
only half the memory.

Dovetailing based on the blank

»

Any “colouring” is possible

Dovetailing — selection rule

+ Dovetailing requires a rule that maps each
state, s, to one of the PDBs. Use that PDB
to compute h(s).

+ Any rule will work, but they won’t all give
the same performance.

« Intuitively, strict alternation between PDBs
expected to be almost as good as max.

Dovetailing compared to Max’ing

MaxSpeodup

Experimental Results

» Culberson & Schaeffer 1994:

— Dovetailing two PDBs reduced #nodes
generated by a factor of 1.5 compared to
using either PDB alone

» Holte & Newton (unpublished):

— Dovetailing halved #nodes generated on
average

Example of Max Failing
Depth Bound ht h2 max(h1,h2)
8 19 17 10
9 36 16
10 59 78 43
11 110 53
12 142 188 96
13 269 124
14 440 530 314
15 801 400
16 1,045 1,348 816
17 1,994 949
18 2,679 3,622 2,056
19 5,480 2,435
20 1,197 1,839 820
TOTAL 5,581 | 16,312 8,132

How to generalize
Dovetailing
fo any abstractions of any
space

10

Multiple Lookups in One
Pattern Database

Example

215 1] 2
6|1]s8 m 3l4]s
3 4 7 6 7 8
state goal
Domain=blank 1 23456 7 8
Abstract=blank 1 0 0 00 00D

Standard PDB lookup

|

abstract state abstract goal

Second lookup, same PDB

)

abstract state abstract goal

11

Relevance ?

Why is this lookup
1 1

o)

relevant to the original state ?
2|5
1]8
3l4]7

Two Key Properties

(1) Distances are Symmetric
1 1

<=

(2) Distances are tile-independent
2 2

<xam

Experimental Results

» 16-disk, 4-peg TOH, PDB of 14 disks
— Normal: 72.61 secs
— Only the second lookup: 3.31 secs
— Both lookups: 1.61 secs

» 15-puzzle, additive PDB (8-7)
— Normal: 0.034 secs
— Only the second lookup: 0.076 secs
— Both lookups: 0.022 secs

Additive Pattern Databases

12

Adding instead of Max’ing

+ Under some circumstances it is possible
to add the values from two PDBs instead
of just max’ing them and still have an
admissible heuristic.

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

1 3
» This is advantageous because [MD(s)=2+1+2=5]
h,(s) + hy(s) = max(hy(s), hy(s)) 2 3 1 2
goal state s
M.D. as Additive PDBs (1) In General...

if x=1
blank otherwise

1 PDB,[@y(s)] = 2

MD(S) = PDB1[q)1(S)]
+ PDB,[((s) |

@, (x)= { X

@,(goal) @i(s)

+ PDB;[Qy(s)]

Partition the tiles in groups, G;, G,, ... G,

X if xeG,
blank otherwise

@i(x)= {

13

Korf & Felner’s Method

Partition the tiles in groups, G;, G, ..

X if xeG;
@i(X)= {blank if x=blank
| otherwise

Moves of cost zero

B,

What'’s the Difference ?

the blank cannot
reach this position

without disturbing
tile 1 or tile 2.

Hierarchical Search

On-demand distance calculation

 To build a PDB you must calculate all
abstract distances-to-goal.

+ Only a tiny fraction of them are needed
to solve any individual problem.

« If you only intend to use the PDB to
solve a few problems, calculate PDB
entries only as you need them.

Hierarchical Search

14

Calculate Distance by
Searching at the Abstract Level

Replace this line:
h(s) = PDB[¢(s)]
by
h(s) = search(¢(s), {(goal))

= =

(recursive) call to a search algorithm to compute
abstract distance to goal for state s

Hierarchical Search

Abstract space, (o((+(S))

Abstract space, (4(S)

Original space, S

= =

15-puzzle Results (1)

» Felner’s 7-7-1 additive PDB:
— takes 80 minutes to build (4,800 secs)
— Solves problems in 0.058 secs (on average)

 Felner’s 8-7 additive PDB
— Takes 7 hours to build (25,200 secs)
— Solves problems in 0.028 secs

15-puzzle Results (2)

Hierarchical IDA*, 1 Gigabyte limit

— Using the same abstraction for all problems,
solving takes 242 secs (on average), or 207
secs if the cache is not cleared between
problems

— Max’ing over Corner & Fringe abstractions,
solving takes 150 secs (on average)

— Using a customized abstraction for each
problem, solving takes 74 secs (on average)

15

Thesis topics abound !

General Dovetailing

A Partial-Order on
Domain Abstractions

+ Easy to enumerate all possible domain
abstractions

Domain=blank 1 234567 8
Abstract=blank CE 8 0 B E O ®

+ and to define a partial-order on them, e.g.

Domain=blank 1 2 3456 7 8
Abstract=blank B8 B B BB B B

is “more abstract” than the domain abstraction
above.

Lattice of domain abstractions

[OOood]

16

The “LCA” of 2 Abstractions

Domain=blank 1 234567 8
Abstract=blank EE B 0 O ® O 0O

L

Domain = blank 1 2
Abstract =blank U B

345678
EO0EECRE

blank 1 2345678
blank tom o om o @

LCA = least-abstract common abstraction

General Dovetailing

Given PDB, and PDB, defined by ¢, and ¢,
Find a common abstraction ¢ of ¢, and ¢,

Because it is a common abstraction there
exist @, and g, such that @, ¢; =@, 9, =@
For every pattern, p, defined by g, set
SELECTIp] = ¢, or ¢,

Keep every entry (p,,h) from PDB, for which
SELECT[w(py)]=i-

Given state s, lookup SELECT[g(s)](s)

17

