
1

1

11. Evaluation

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Heuristic Evaluation Function

 Most of the magic in a single-agent searcher
is in the evaluation function

 To obtain an optimal answer, we need an
admissible lower bound

 Search tree size is strongly tied to the quality
of the evaluation function
 Unlike Alpha-beta where the evaluation function

influenced the quality of the answer, but not really
the size of the search

9/9/02 3

Issues

 How do we obtain an admissible
evaluation function?

 How do we improve the quality of the
evaluation function?

 What happens with a non-admissible
heuristic?

9/9/02 4

Admissible Evaluations

 Consider a relaxed version of the
application

 Eliminate a rule to simplify the
calculation of the heuristic distance

 An exact solution to a relaxed problem
is usually a good heuristic for the
original problem

2

9/9/02 5

Example

 Consider Manhattan Distance for path-
finding

 Original problem
 Move man to goal subject to obstacles

 Relaxed problem
 Move man to goal assuming no obstacles

9/9/02 6

Methodology

 Define the problem formally

 Remove one of the restrictions

 Evaluate whether the resulting problem
is “easy” to evaluate and whether the
results are worthwhile

 Could be automated, although this is an
ongoing research topic

9/9/02 7

Multiple Heuristics

 There may be multiple good heuristics,
each of which performs better in
different circumstances

 Given N admissible heuristics, could
compose a new, more powerful
heuristic:

H = MAX(h1, h2, h3, … hN)

9/9/02 8

Heuristic Evaluation

 Right now, best way is to do this by
hand; automated techniques are still in
their infancy

 Apply application-dependent knowledge
to decide on a heuristic(s)

3

9/9/02 9

Pattern Database [1]

 Endgame databases are a perfect lower
bound for a (small) subset of positions

 Pattern databases computer lower
bounds for subsets (patterns) of a state

 Using extra data, can improve the lower
bound estimate

9/9/02 10

Pattern Databases

 Define a subset of the state

 Enumerate all possibilities for that
subset and pre-compute optimal
distances to solving that relaxed
problem

 The larger the subset the more effective
the heuristic

9/9/02 11

Using a Pattern Database

7 12 15
3

11 13
B 14

B 3
7
11

12 13 14 15

Pre-compute the minimum number of moves
to achieve a subset of the goal state.

9/9/02 12

Using a Pattern Database

 Many real-world problems have
symmetries that can be exploited

 15-puzzle symmetry
 reflect horizontally and vertically

 reflect along all four axis

 use the maximum of all lower bounds

4

9/9/02 13

15-puzzle: H0

 Simplest heuristic evaluation function

 Value = 0 if a goal node

 Value = 1 if not a goal node

151068

241214

351311

791

H = 1

9/9/02 14

15-puzzle: H1

 Count the number of misplaced tiles

 Assumes cost of placing a misplaced
tile is 1

H = 12

151068

241214

351311

791

9/9/02 15

15-puzzle: H2

 Manhattan Distance

 Count number of horizontal and vertical
moves to place each tile

H = 28

Search = 540,860 nodes 151068

241214

351311

791

9/9/02 16

15-puzzle: H3

 Add in linear conflicts

 Two tiles in a row/column that have to
swap positions (3 and 7)

H = 30

151068

241214

351311

791

5

9/9/02 17

15-puzzle: H4

 Pattern databases

 Use the pattern database shown earlier

151068

241214

351311

791
H = 38

Search (F) = 5,303 nodes
Search(C) = 2,367 nodes

9/9/02 18

Experiments (1)

 Standard set of 100 test positions
 Korf, 1985

 A* quickly runs out of memory (512 MB)
 can only solve the “easy” problems

 Must use iterative deepening to reduce
storage needs

9/9/02 19

Experiments (2)

 IDA*
 linear storage in search depth (0 MB)

 Transposition table
 218 entries, 20 bytes per entry (5 MB)

 Endgame database
 all positions <= 22 moves of the goal (120 MB)

 Pattern database
 all subsets of 8 tiles (500 MB)

9/9/02 20

Experiments (3)

 IDA*

 + TT

 + DB

 + TT + DB

 + PDB

 + TT+DB+PDB

1707-fold improvement!

36,302,808,031 100.00
13,662,973,000 37.64
19,419,742,608 53.49

8,869,627,254 24.43
34,987,894 0.10
21,261,747 0.06

6

9/9/02 21

Lessons Learned

 Eliminate unnecessary work

 Any improvements to a state’s
evaluation will pay enormous benefits in
the search
 space/time tradeoffs

 e.g. linear conflicts: a subset of pattern
databases but without the storage and run-
time costs

9/9/02 22

Space/Time

 Korf has a hypothesis that there is a
linear relationship between execution
time and storage used
 Extreme cases: 0 storage and complete

storage

 In between, roughly doubling your storage
can be used to reduce the tree by roughly
a factor of two

9/9/02 23

Non-admissible Heuristics

 Admissible heuristics guarantee
optimality

 Non-admissible heuristics are OK as
long as you do not mind the possibility
of non-optimal solutions

9/9/02 24

WIDA*

 Multiple the h value by a small constant
> 1.0

 This has the effect of concentrating
search on paths where the h value is
small

 For many applications, this results in
(near)-optimal solutions, but with a
much improved execution time

7

9/9/02 25

References

[1] J. Culberson and J. Schaeffer.
“Pattern Databases”, Computational
Intelligence, vol. 14, no. 4, pp. 318-334,
1998.

