
1

1

10. Single-agent Search

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Moving On…

 Two-player adversary search is nice,
but not all interesting problems can be
mapped to games

 Large class of optimization problems
that all have the same search properties

 Find the best search value from the
perspective of a single player

 Single-agent search

9/9/02 3

Applications

 Pathfinding

 Dynamic programming

 Job shop scheduling

 DNA sequence alignment

 Scheduling

 Planning

 Constraint satisfaction

 …

9/9/02 4

Why Alpha-Beta First?

 Many of the performance
enhancements we saw in alpha-beta
translate to single-agent search

 Most originated with alpha-beta, and
were adopted by other classes of
search algorithms

2

9/9/02 5

Application: Pathfinding

 Consider a sample application
 Find a minimal cost path from a start

node to a goal node
 Can move one square horizontally or

vertically, each with a cost of one
 Can be generalized to include diagonals
 Can be generalized to include variable

costs

9/9/02 6

Application

START

GOAL

9/9/02 7

Solution 1

 Trivial solution

 Explore outward from the start node
until reaching the goal node

 Can use iterative deepening to
guarantee minimal cost path
 Try paths of length 1, then 2, etc.

9/9/02 8

START
1

3

1

21

23

2

3

2

4

44

4

3

5

5

5

5

7

6

6

6

6

7 7

77

Solution 1

0

GOAL

3

9/9/02 9

Solution 1

 Note that more than one path can lead
to a node
 Some of these paths are non-optimal

 Note that cycles are possible

 Observation: we need to eliminate
duplicate states!

9/9/02 10

Solution 2

 Trivial observation that searching to
depth 1 is a waste of time since we are
obviously more than 1 away from the
goal

 Add to the search an evaluation
function that estimates the distance to
the goal

 What is a simple estimator of distance?

9/9/02 11

Solution 2

 For pathfinding, a good estimate of distance
to go is the Manhattan distance
 Number of horizontal and vertical moves to the

goal node

 Cost of reaching a node is now two parts:
 Distance already traveled
 Estimate of distance to go

 If the cost of a node exceeds the iterative
deepening threshold, then stop searching that
path

9/9/02 12

Manhattan Distance

START

GOAL

1 + 4 =5

4

9/9/02 13

Pathfinding

START

GOAL

1 + 4 = 5

1 + 4 = 5

2 + 3 = 5

2 + 3 = 5

3 + 2 = 5

2 + 5 = 71 + 6 = 7

3 + 4 = 7

4 + 3 = 7

5 + 2 = 7

4 + 3 = 7

5 + 2 = 7

6 + 1 = 77 + 0 = 7

0 + 5 = 5
9/9/02 14

IDA*

 Iterative deepening A*
 The cost of a node is (using A* terms)

 f = g + h
 g = cost incurred to get to this node
 h = heuristic estimate of getting to goal

 Iterative deepening iterates on a threshold
 Search a node as long as f <= threshold
 Either find a solution (done), or fail, in which case

the threshold is increased and a new search started

9/9/02 15

IDA* (1)

threshold = Eval(s);

done = false;

while(not done) {

done = IDA*(s, 0, threshold);

if(done == false) threshold++;

}

9/9/02 16

IDA* (2)
IDA*(state s, int g, threshold t) {

h = Eval(s);

if(h == 0) return(true);

f = g + h;
if(f > threshold) return(false);

for(i = 1; i <= numchildren; i++) {

done = IDA*(s.child[i], g + cost(child[i]), t);

if(done == true) return(true);

}

return(false);
}

5

9/9/02 17

IDA* Comments

 Automatically builds a variable-depth search
 Provably bad lines are cutoff as soon as possible
 When the cutoff occurs depends on the quality of

the evaluation function

 Storage requirements are trivial; just the
recursion stack

 Iteration i+1 repeats all the work of iteration i!
 For some domains you can do better than

iterate by 1
 Use the mimimum f-value seen at a leaf node

during an iteration as the next threshold
9/9/02 18

IDA* Tree

 Depth-first search

 Root’s value = T

 Search nodes <= T

 Search nodes <= T+1

 Repeat until solution

v <= T

v <= T+1

v <= T+2

9/9/02 19

IDA* Comments

 Is IDA* guaranteed to produce an
optimal answer?

 Yes!
 But only if…
 The evaluation function has to be

admissible:
 It must always be a lower bound on the

true solution length

9/9/02 20

Manhattan Distance

 Computes a direct path from a node to
the goal

 Ignores all obstacles, which can only
lengthen the path

 Therefore it is an admissible heuristic

6

9/9/02 21

Monotonicity

 Most admissible heuristics also have
the monotonicity property

 The f values never decrease along a
path if monotonicity holds

 If you have a non-monotonic heuristic,
one can always modify the search to
make the heuristic monotonic…
 How?

9/9/02 22

Examining h

 Simplified cost of a search

 Uniform branching factor b

 Search depth d

 Ignore all other enhancements

 No heuristic: bd

 Average heuristic value is h: bd-h

 The quality of the heuristic has an enormous
impact on the search efficiency

9/9/02 23

Examining h

 What does it mean to iterate?

 If the first iteration finds an answer, then
h had no error

 If a second iteration is required, then
there is an error of 1 in h

 The number of iterations indicates the
degree of error in h

9/9/02 24

Eliminating Redundant Nodes

 Need to eliminate duplicate nodes

 Trivial optimization for many domains is
to disallow move reversals

 For more sophisticated detection of
redundant nodes, we can use a
transposition table

7

9/9/02 25

Transposition Table

 Store the t and g values in the table, and only
search a transpositon node with the smallest
g, and only once for the current t

 Use table only to indicate which nodes not to
search

 No need to store values, since the search
stops when a solution is found

 All other TT issues (table size, hashing, table
entry replacement) remain the same as for
two-player games

9/9/02 26

Sliding Tile Puzzle

Sam Lloyd’s
creation was the
Rubik’s Cube of
the 1800s.

9/9/02 27

Experiments

 Korf problem set of 100 positions

 Search 36700

 Search - move reversals 100

 Search + TT (256K) 37

9/9/02 28

A*

 Single-agent search began in the 1960s
with the A* algorithm [2]

 This algorithm dominated AI search for
two decades, but has competition now
from IDA*

 Why teach IDA* first? Easy to explain
once you’ve seen Alpha-Beta

8

9/9/02 29

A*

 Each iteration of IDA* re-searches the
tree over again beginning at the root

 All that overhead can be eliminated…

 … by keeping track of the search
frontier, and only expanding nodes on
the frontier

 A* is a best-first search algorithm

9/9/02 30

Search Frontier

START
1

3

1

21

23

2

3

2

4

44

4

3

5

5

5

5

7

6

6

6

6

7 7

77

0

GOAL

9/9/02 31

A* Data Structure

 OpenList
 List of nodes in the tree that are not yet

fully considered

 Ordered from best to worst f value

 ClosedList
 Nodes that have been fully expanded

 No longer on any optimal path

9/9/02 32

A* Algorithm (1)

 Take best (first) node from OpenList
 Check for solution

 Expand all the children

 Move node to the ClosedList

 As far as we know, done with this node

9

9/9/02 33

A* Algorithm (2)

 Expanding a child
 Check if seen before Open/ClosedList

 If the node has been seen before with the same or better
g value, then reject

 Add to OpenList for consideration

 In effect the lists act as a cache of previously
seen results

 NOTE: the algorithm requires all nodes to be
in these lists, unlike a TT

9/9/02 34

A* (1)
A*(state s) {

s.g = 0; s.h = Eval(s); s.f = s.g + s.h; s.parent = null;
done = false;
push s on OpenList
while(OpenList != empty && done == false) {

pop s from head of OpenList
if(s is a goal node) { done = true; break; }
foreach(i = i; i <= Children(s); i++) {

Consider(s, s.child[i]);
}
add s to ClosedList

}
return(done);

}

9/9/02 35

A* (2)
Consider(state from, state to) {

newg = from.g + Cost(from, to);
if((to is in OpenList or ClosedList) and
 (to.g <= newg)) return;
to.g = newg; to.h = Eval(to);
to.f = to.g + to.h; to.parent = from;
if(to is in ClosedList) remove to from ClosedList
if(to is not in OpenList) insert to in OpenList sorted

by f-value
}

9/9/02 36

Example

START

GOAL

A C D E FB

1

5

4

3

6

2

10

9/9/02 37

Example

 Step 1: Initialize
 (C1, 0 + 5 = 5, null)
 ()

 Step 2: Expand C1
 (C2, 1 + 4 = 5, C1) (D1, 1 + 4 = 5, C1)

(B1, 1 + 6 = 7, C1)
 (C1, 0 + 5 = 5, null)

9/9/02 38

Example

 Step 3: Expand C2
 (C3, 2 + 3 = 5, C2) (D1, 1 + 4 = 5, C1)

(D2, 2 + 3 = 5, C2) (B1, 1 + 6 = 7, C1)

 (C1, 0 + 5 = 5, null) (C2, 1 + 4 = 5, C1)

 Why isn’t C1 added to the OpenList?

 C1 is found in the ClosedList with a lower
g value

9/9/02 39

Example

 Step 4: Expand C3
 (D3, 3 + 2 = 5, C3) (D1, 1 + 4 = 5, C1)

(D2, 2 + 3 = 5, C2) (B1, 1 + 6 = 7, C1)
(B3, 3 + 4 = 7, C3)

 (C1, 0 + 5 = 5, null) (C2, 1 + 4 = 5, C1)
(C3, 2 + 3 = 5, C2)

9/9/02 40

Sorting Open List

 Sort by increasing f value, but what
about ties?

 Break ties based on g value
 Larger g values mean more accurate

information and less heuristic
approximation

11

9/9/02 41

A*

 Does not have the iterative overhead of
IDA*

 Only expands nodes that are shown to
be relevant

 Needs to maintain a history of all nodes
previously searched

 In practice, faster than IDA*, but A* runs
out of memory very quickly!

9/9/02 42

IDA* versus A*

 For many types of problems, IDA* flounders
in the cost of the re-searches, causing many
to prefer A* over IDA*
 Why?

 But… IDA* is handicapped with no storage!
 A* uses a closed list -- in effect a perfect cache of

previously seen states
 IDA* uses almost no storage
 IDA* with a transposition table can be competitive

with A*

9/9/02 43

Which to Choose?

 IDA* is guaranteed to work, albeit
possibly more slowly

 A* is more efficient, but can run out of
memory
 Can also run slower because of cache

effects

 The right choice depends on properties
of your application

9/9/02 44

References

[1] R. Korf. “Best-first Iterative-Deepening: An
Optimal Admissible Tree Search”, Artificial
Intelligence, vol. 27, no.1, pp. 97-109, 1985.

[2] P. Hart, N. Nilsson and B. Raphael. “A
Formal Basis for the Heuristic Determination
of Minimum Cost Paths”, IEEE Trans. Syst.
Sci. Cyber., vol. 4, no. 2, pp. 100-107, 1968.

