
CMPUT 657: Heuristic Search

Assignment 1: Two-player Search

Summary
You are to write a program to play the game of Lose Checkers. There are two goals

for this assignment. First, you want to build the smallest search trees possible. Second,
you want to win the CMPUT 657 Game-Programming Championship (win the coveted
championship trophy --- and defend our honor against the Icelandic game-programming
champion). Both parts will contribute to your final mark for this assignment. You want
the program to build small search trees, but also to run as fast as possible. Both issues are
very important, because in the championship each program will be given a fixed amount
of time per move. The smaller the search trees you build and the faster your program
runs, the deeper your program will be able to search and, presumably, the stronger it will
play.

Lose Checkers
Lose Checkers is played on an nxn board. Your program should be general enough to

handle the 6x6, 8x8 and 10x10 cases. The game is played on a checkerboard, where only
the white squares are used. A square can be one of empty, contain a black checker, black
king, white checker or white king. The figure below shows the starting position for an
8x8 board. Note that the columns are labeled ‘a’ to ‘h’, and the rows ‘1’ to ‘8’. For the
6x6 board, there are 6 pieces aside, while for the 10x10 board there are 20 aside.

8
7
6
5
4
3
2
1

 a b c d e f g h

The rules are simple: Black moves first; checkers move one square diagonally
forward; kings move one square diagonally forward or backward; when a checker reaches
the end of the board it is promoted to a king; checkers and kings can capture; the first
person to run out of moves wins.

Checkers can move only forward, diagonally, one square at a time to an unoccupied
square. Squares are specified using algebraic notation, by giving the coordinates of the

column, “a” to “h,” and row, “1” to “8”. Assuming Black starts at the top of the board, a
Black checker on f6 can move to either e5 or g5. When a checker moves to the last rank
of the board (squares a1, c1, e1, and g1 for Black; b8, d8, f8, and h8 for White), it is
promoted to a king (usually shown in diagrams as two checkers on a square). Kings are
allowed to move one square diagonally forward or backward to an unoccupied square.

Checkers and kings capture men by jumping over them. If the square to which a piece
could otherwise move is occupied by an opposing piece, and the next square in that
direction is vacant, then a capture is allowed. The piece jumps over the opposing man and
removes it, landing on the vacant square beyond it. If in the resulting position the same
piece can make another capture, you are required to continue jumping. Thus checkers can
only capture in the forward direction and kings can capture in any direction. If you have a
capture move you must play it. If you have a choice of captures any one will do. The
promotion of a checker to a king ends a move; a promotion cannot happen in the middle
of a jump sequence.

The goal of the game is to lose all your pieces! The game is over when:
1. the player to move has no legal moves (winning condition), or
2. a position has been repeated 3 times (the game is drawn).

Part 1
This component tests the efficiency of your search algorithm. Use alpha-beta search
(your choice of variant) with iterative deepening. At interior nodes, you will likely want
to do some move ordering. Use a transposition table with a maximum of 256K entries.
The evaluation function consists solely of the material difference (i.e. if player White has
10 pieces and player Black has 8, then the material difference is +2 in Black’s favour –
less pieces is better than more).

Part 2
This component tests the strength of your program. Anything goes. You can add search
extensions or reductions to your algorithm, or any other search enhancement that you
choose. You can modify the evaluation function in any way (note that you will want to
consider doing this; material by itself may not be a good evaluation function). Do
anything you can to improve your program's performance.

Interface
For Part 1, your program should support the following text commands:

Setting up a position:
i n Initialize the game to use an nxn board (n = 6, 8, or 10).
B Black is to move.
W White is to move.
s Setup a new position. The position is given by specifying the contents of the

board from left-to-right and top-to-bottom. The setup uses “e” for empty, “b” for
a black player’s checker, ‘B: for a black player’s king, “w” for a white player’s
checker and “W” for a white player’s king. For example, the setup commands for
the initial position of the 6x6 board would be as follows:

s

bbb
bbb
eee
eee
www
www
B

Playing moves:
mx1y2
mx1….y2

Move from square x1 to y2 (a piece duplication or a jump, depending on where y2
is in relation to x1). A move like “ma1b2” results in the piece on a1 moving to the
empty square b2, while “ma1b3” would be a jump, removing the opponent piece
on b2. Note that a move could consist of several jumps – each location that the
capturing piece lands on has to be specified. In the following example, it is White
to move and lose. White has only one legal move f8g7, Black must capture d8f6,
White must capture g7e5c7a5c3e1g3, Black plays the winning move e3f2, White
must capture g3e1, and since Black has no more legal moves, Black wins.

r Retract (undo) the last move played.

Search control:
d n Set the search depth to "n".
t n Search for "n" seconds of real time. When the time expires, stop the search. Note

that both "t" and "d" can be set. Whenever one of the conditions is true, the
search stops and the “best” move is played.

g Begin searching.
1 Enable subsequent searches to use the Part 1 settings (fixed-depth, simple

evaluation function).
2 Enable subsequent searches to use the Part 2 settings (anything goes).

Execution control:
q Quit from your program.
Cntl-C Interrupt the search and stop it. Play the “best” move returned by the search.

In addition, you will want to implement your own set of user interface commands to
assist in your debugging!

For Part 2, the CMPUT 657 Lose Checkers Championship will be played using the
Generic Games Server (GGS). You will get more information on connecting to the server
later on in the course.

Output
After a search is complete, your program should display the best move, the best score,
and the principal variation. It should play that move and then display the resulting new
position. The following statistics should be printed after every search:

Tree size: The number of interior and leaf/terminal nodes searched.
Time: The number of seconds that the search took.
Search depth: For each search depth (in an iterative deepening search), the number of

leaf nodes examined in the search.
Trans. table: The number of TT queries, the number of times the position was found in

the TT, and the number of times that the TT entry gave a cutoff.
CutBF: The average number of successors considered at a node where a cut-off

occurs. Count only nodes where at least one move is searched (i.e., not
just a transposition) and the value of the node is >= β.

Plan Of Attack
I recommend the following methodology for doing this assignment:

1. Build a program that supports setting up positions and playing legal moves. You
should be able to setup a position, generate legal moves, play and retract moves,
and end a game.

2. Add alpha-beta – nothing fancy – with the material-only evaluation function. Use
shallow search depths to verify that alpha-beta is working correctly. Add
assertions to your code so that if an error occurs, you catch it at the earliest
possible time.

3. Add transposition tables. If you initially restrict a TT lookup to be valid only if
the table depth exactly matches the depth that you need, then the TT will not
change the result of a fixed-depth alpha-beta search. It should, however, reduce
the number of nodes searched. Verify that this is working correctly!

4. Add in iterative deepening and move ordering. If you do this right, it should not
change the final result of the search but, again, it should reduce the number of
nodes searched.

5. Only when you are sure all the above is 100% working should you move on to
more search enhancements and a better evaluation function.

Assignment Submission
1. By e-mail, send Akihiro Kishimoto (kishi@cs) the code for your program and a

Makefile. All programs should compile and run without difficulty on a Linux box.

2. On paper, hand in a short document describing your Part 1 program. Skip the
basics (do not explain how alpha-beta works). I want to know how you
augmented alpha-beta to reduce the size of the search tree. Justify your search
enhancements by providing some experimental data for fixed-depth search trees.
This document must be no longer than five pages.

3. On paper, hand in a short document describing the enhancements made in Part 2.
Describe how you changed the search and/or evaluation function and why you
think this makes a difference in the program's performance. This document must
be no longer than three pages.

Good luck!

