
In Proceedings of SIGGRAPH 2004, Sketches and Applications track

Displacement Mapping with Ray-casting in Hardware

Keith Yerex

University of Alberta

Martin Jagersand

University of Alberta

1 Introduction

Traditionally, displacement maps have been rendered with microp-
olygons [Cook et al. 1987]. In both raytracers and real-time sys-
tems, these high polygon counts lead to memory/bandwidth ineffi-
ciency, and high geometric transformation costs, which limit per-
formance. Recently, displacement maps have also been directly
rendered in raytracing, using iterative root-finding methods [Hei-
drich and Seidel 1998]. Here, we propose a similar ray intersection
approach for real-time rendering. However, an iterative solution
is infeasible in graphics hardware due to the limitations on texture
indirections. A texture indirection occurs when the results of one
texture access affect the coordinates of subsequent accesses, such
as in each step of an iterative solution. These are currently limited
to 4 on Radeon 9700/9800 where in contrast, a possible total of 32
texture accesses are allowed per fragment. This has led us to the
hybrid sampling/iterative approach described here

2 Algorithm

Our algorithm renders displacement mapped planes, directly from
a displacement map given as a texture image. Displacements are
assumed to always penetrate into the surface (rather than bumping
out from it) and are bounded by some maximum.

The reference surface is rendered as a polygon in OpenGL, pro-
cessing each pixel as follows. Along the ray from the viewpoint
through the current pixel, we sample the displacement map at N
discrete points where the ray is between the reference surface and
the maximum displacement depth. Displacement values di are com-
pared to the ray heights hi at each point to determine which side of
the surface the ray is on at each point.

Figure 1: Algorithm: di are shown in blue, hi in green, and the
intersection point in red

We take the interval between the sample nearest to the viewer, j,
where h j > d j and its neighboring sample, j− 1, to contain the
intersection of the ray with the surface (see figure 1). The surface is
then approximated by the secant line from d j to d j−1. Finally, we
calculate texture coordinates, which are used to index texture and
normal maps, as the intersection of this secant line with the view
ray.

In comparison, using the point j for texture coordinates, rather than
performing the final step, is equivalent to rendering displacement
maps with volumetric slicing, as in [Deitrich 2000], but with lower
depth complexity, and less geometry, since one polygon is rendered
rather than N.

3 Implementation and Results

We have implemented this method on a mid-consumer grade
Radeon 9700 using an OpenGL fragment program with 83 instruc-
tions. N = 15 samples are used. Some displacement maps with
large or high frequency displacements cause under-sampling arti-
facts at grazing angles (see video for examples). These artifacts are
reduced by multi-pass rendering where each pass processes only a
portion of the ray. Single pass performance is approximately 130
fps for an entirely full 640x480 window.

Figure 2: Upper right object is made from 6 displacement mapped
planes rendered in 4 passes, others are rendered in a single pass
with a single plane. Special thanks to Terry Welsh for sample dis-
placement maps and textures.

4 Conclusions and Future work

We have shown that ray-casting can be used to render planar dis-
placement maps efficiently in hardware. Generalizing this tech-
nique to support curved surfaces is work in progress.

References

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. In Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 95–102.

DEITRICH, S. 2000. Elevation maps. Tech. rep., NVIDIA Corpo-
ration.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. Ray-tracing procedural
displacement shaders. In Graphics Interface, 8–16.


