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1 Introduction

Traditionally, displacement maps have been rendered with microp-
olygons [Cook et al. 1987]. In both raytracers and real-time sys-
tems, these high polygon counts lead to memory/bandwidth ineffi-
ciency, and high geometric transformation costs, which limit per-
formance. Recently, displacement maps have also been directly
rendered in raytracing, using iterative root-finding methods [Hei-
drich and Seidel 1998]. Here, we propose a similar ray intersection
approach for real-time rendering. However, an iterative solution
is infeasible in graphics hardware due to the limitations on texture
indirections. A texture indirection occurs when the results of one
texture access affect the coordinates of subsequent accesses, such
as in each step of an iterative solution. These are currently limited
to 4 on Radeon 9700/9800 where in contrast, a possible total of 32
texture accesses are allowed per fragment. This has led us to the
hybrid sampling/iterative approach described here

2 Algorithm

Our algorithm renders displacement mapped planes, directly from
a displacement map given as a texture image. Displacements are
assumed to always penetrate into the surface (rather than bumping
out from it) and are bounded by some maximum.

The reference surface is rendered as a polygon in OpenGL, pro-
cessing each pixel as follows. Along the ray from the viewpoint
through the current pixel, we sample the displacement map at N
discrete points where the ray is between the reference surface and
the maximum displacement depth. Displacement values di are com-
pared to the ray heights hi at each point to determine which side of
the surface the ray is on at each point.

Figure 1: Algorithm: di are shown in blue, hi in green, and the
intersection point in red

We take the interval between the sample nearest to the viewer, j,
where h j > d j and its neighboring sample, j− 1, to contain the
intersection of the ray with the surface (see figure 1). The surface is
then approximated by the secant line from d j to d j−1. Finally, we
calculate texture coordinates, which are used to index texture and
normal maps, as the intersection of this secant line with the view
ray.

In comparison, using the point j for texture coordinates, rather than
performing the final step, is equivalent to rendering displacement
maps with volumetric slicing, as in [Deitrich 2000], but with lower
depth complexity, and less geometry, since one polygon is rendered
rather than N.

3 Implementation and Results

We have implemented this method on a mid-consumer grade
Radeon 9700 using an OpenGL fragment program with 83 instruc-
tions. N = 15 samples are used. Some displacement maps with
large or high frequency displacements cause under-sampling arti-
facts at grazing angles (see video for examples). These artifacts are
reduced by multi-pass rendering where each pass processes only a
portion of the ray. Single pass performance is approximately 130
fps for an entirely full 640x480 window.

Figure 2: Upper right object is made from 6 displacement mapped
planes rendered in 4 passes, others are rendered in a single pass
with a single plane. Special thanks to Terry Welsh for sample dis-
placement maps and textures.

4 Conclusions and Future work

We have shown that ray-casting can be used to render planar dis-
placement maps efficiently in hardware. Generalizing this tech-
nique to support curved surfaces is work in progress.
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