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Abstract. Perimeters and pattern databases are two similar memory-
based techniques used in single-agent search problems. We present partial
pattern databases, which unify the two approaches into a single memory-
based heuristic table. Our approach allows the use of any abstraction
level. We achieve a three-fold reduction in the average number of nodes
generated on the 13-pancake puzzle and a 27% reduction on the 15-
puzzle.

1 Introduction

Perimeters and pattern databases (PDBs) are two successful techniques that
improve forward search in single-agent search problems. They have proven ef-
fective at improving search performance when combined with minimal-memory,
depth-first search techniques such as IDA* [12]. Pattern databases, in particular,
have been used to great effect in solving puzzle, DNA sequence alignment, and
planning problems [2, 18, 4].

Perimeters and pattern databases are very similar in their approach to speed-
ing up search. Both techniques use retrograde (reverse) search to fill a memory-
based heuristic table. However, pattern databases use abstraction when filling
this table, whereas perimeters use none. Also, the memory limit determines the
abstraction level for pattern databases; the full PDB must completely fit in
memory. Perimeters on the other hand, are built without any abstraction; the
perimeter stops being expanded when a memory limit is reached.

We present two general techniques that allow the use of arbitrary abstrac-
tion levels in between the two extremes. Partial pattern databases use memory
similarly to the perimeters, storing part of the space in a hash table. Compressed

partial PDBs use memory more efficiently, like pattern databases. Our unifying
approach allows flexibility when choosing the abstraction level. Through testing,
we can determine the best abstraction level for our domains.

We test on two complimentary puzzle domains: the K-pancake puzzle, which
has a large branching factor, and the 15-puzzle, which has a small branching
factor. Our techniques are compared against full pattern databases, which have
proven very effective on these domains. On the 13-pancake puzzle, keeping mem-
ory constant, we reduce the average number of generated nodes by a factor of
three. On the 15-puzzle, keeping memory constant, we reduce the average num-
ber of nodes generated by 27%.



Section 2 examines related work on perimeters, pattern databases, and pre-
vious attempts at combining the two approaches. Partial pattern databases and
compressed partial PDBs are introduced in Section 3. Results on the K-pancake
puzzle and 15-puzzle are shown in Section 4 and Section 5, respectively. Section
6 presents our final analysis and possible extensions to our approach.

2 Background

The domains used in this paper are the K-pancake puzzle and the 15-puzzle.
The K-pancake puzzle consists of a stack of K pancakes all of different sizes,
numbered 0 to K − 1 (Figure 1). There are K − 1 operators, where operator
k (1 ≤ k ≤ K − 1) reverses the order of the top k pancakes. We refer to an
individual pancake as a tile and its placement in the stack as a location.

The 15-puzzle is comprised of a 4 by 4 grid of tiles, with one location empty.
The empty location is called the blank. Valid operations include swapping the
blank with one of up to 4 adjacent tiles. Figure 1 shows a possible arrangement
of tiles for the 15-puzzle.
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Fig. 1. Goal node for 8-pancake (left) and 15-puzzle (right).

A node is a unique arrangement of tiles. Given a start and goal node, we
wish to find a path (series of operators) of minimal cost leading to the goal
node. In our domains, operators have unit cost. However, the ideas in this paper
are applicable to any domain that can be structured as a graph with directed,
weighted edges of non-negative cost.

IDA* is a traditional search technique proven to work well in these two do-
mains. IDA* is a depth-first search method that finds optimal solution paths
through a directed weighted graph [12]. Nodes are pruned if the total cost
through a node, f(n), exceeds a bound flimit according to the definition f(n) =



g(n)+h(n), where g(n) is the actual cost to node n and h is the heuristic estimate
of the remaining cost to the goal. IDA* iteratively increases the bound, flimit,
and re-searches until the goal is found. If h is admissible, does not overestimate
the cost to the goal, then IDA* guarantees finding an optimal path, provided
that one exists.

If a heuristic is consistent, then the change in heuristic between any two nodes
in the graph is less than or equal to the cost between the two nodes. Consistency
implies admissibility. If IDA* is used with an inconsistent heuristic, heuristic
values can be improved through the use of bidirectional-pathmax (BPMX) [8].
BPMX propagates heuristic inconsistencies through the search tree from parent-
to-child and child-to-parent, increasing heuristic values when appropriate. This
technique uses no extra memory in IDA* and takes very little time.

The original space, S, consists of the set of nodes that can reach the goal
through a series of operators. An abstract space is a set of abstract nodes and
all applicable operators, where every node in the original space maps to some
corresponding node in the abstract space. We use domain abstraction as our
abstraction technique [10]. The abstraction is created by renaming specific tiles
to the same name, x. These re-named tiles are called don’t-care tiles while the
other tiles are called unique tiles. In the case of the 15-puzzle, the blank will
always be a unique tile. When we refer to abstraction-N , we refer to a specific
abstraction with N unique tiles (the actual tiles vary with the domain). A coarse-

grained abstraction has fewer unique tiles (and hence covers more abstract nodes)
than a fine-grained abstraction.

The following are memory-based heuristic methods. Both techniques use ret-

rograde (backwards) search from the goal to improve or create heuristic values,
but they achieve this in quite different ways.

2.1 Perimeters

Perimeter search is a type of bidirectional search technique and requires a prede-
cessor function. Originally proposed by Dillenburg and Nelson, perimeter search
performs two successive searches [3]. The first search proceeds in the backwards
direction from the goal, forming a set of perimeter nodes P , which encompass
the goal. A node n is on the perimeter if n ∈ P , inside the perimeter if it was
expanded during perimeter creation, and outside the perimeter if it was not ex-
panded. Any node outside the perimeter must pass through some node in the
perimeter to reach the goal. Many techniques can be applied to generate the
perimeter: Breadth-first search creates a constant-depth perimeter [3, 14]; A*
creates a constant-evaluation perimeter [3]; and expansion based on heuristic
difference creates another kind of perimeter [11].

If the perimeter is generated for one problem instance, then the backward and
forward searches are performed in series. The backward search forms a perimeter
and, if the start node is not found, it is followed by the forward search. However,
if the perimeter is constructed for use on multiple problem instances with the
same goal, then the interior of the perimeter, set A, is stored. When the forward
search begins, if the start is in set A, the actual cost to the goal is known so the



heuristic is corrected to this value. Otherwise the start is outside the perimeter
and the forward search begins.

The second, forward search progresses either from the start to the perimeter,
called front-to-front evaluation, or from the start to the goal, called front-to-goal

evaluation. Front-to-front evaluation calculates the heuristic value of a node
based on the estimated cost through every node on the perimeter. Although
larger perimeters provide better heuristic values, the heuristic takes increasingly
longer to compute. Additionally, front-to-front evaluation requires a heuristic to
exist between any two distinct nodes.

By contrast, search using front-to-goal evaluation requires only a heuristic
to the goal. The heuristic of nodes found to be inside the perimeter is corrected
using the exact cost to the goal. The heuristic of nodes outside the perimeter
can sometimes be corrected; here are two different approaches for correcting the
heuristic values using front-to-goal evaluation. Using a depth-limited perimeter
where d is the cost bound, d is a lower bound on the true cost to the goal for
all nodes outside the perimeter [1]. Or, given a consistent heuristic, a correction
factor is equal to the lowest difference between the actual cost to the goal and
the estimated heuristic cost to the goal [11]. The correction factor is now added
to the original heuristic if outside the perimeter.

Any search technique will work for the forward search, but IDA* and similar
low-memory search techniques are most commonly employed for their adaptabil-
ity, scalability, and low memory requirements [3, 14, 11]. We use IDA* throughout
this paper.

2.2 Pattern Databases

Introduced by Culberson and Schaeffer, pattern databases use abstraction to
create a heuristic lookup table [2]. Retrograde search starts from the abstract
goal. The search proceeds backwards applying all applicable reverse operators
until the space is covered. The costs from the abstract goal in the abstract
space are recorded in a table and used as a heuristic in the forward search. This
produces an admissible and consistent heuristic.

Holte et al. have investigated generating and caching parts of pattern databases
during search in [9]. Similarly, Zhou and Hansen have demonstrated a technique
whereby provably unnecessary parts of the PDB are not generated (given an ini-
tial consistent heuristic and an upper bound on solution length) [17]. Felner and
Adler further iterated upon on this procedure using instance dependent pattern

databases [5]. We approach this problem from the opposite position; how can
we create and use part of a pattern databases and/or a perimeter over multiple
problem instances?

2.3 Perimeter and PDB comparison

Perimeters and pattern databases are similar in many respects. Both perimeters
and pattern databases require a predecessor function. This predecessor function
enables retrograde search from the goal. Both procedures can also be improved



by using domain-specific properties: perimeters by using a heuristic function
between two arbitrary nodes, and pattern databases through symmetry [2], ad-
ditivity [6], and duality [8, 16].

The two techniques also differ in critical ways. First, pattern databases re-
quire a node abstraction mechanism, which perimeters avoid. This freedom al-
lows perimeters to be applied to domains without any known abstraction. On
the other hand, where perimeter search requires an available heuristic between
any two nodes, pattern databases can generate a heuristic for domains where one
is not known. Finally, PDBs cover the entire space, while perimeters only cover
part of it (Figure 2). As a result, each node in the perimeter must store a node
identifier as well as the cost to the goal. In general, any partial set of the original
or abstract space requires extra memory to store the node identifier information.
Perimeters fall into this category, as do instance-dependent pattern databases.
On the other hand, because pattern databases cover the entire domain space,
heuristic values may be indexed by their nodeID (the node need not be stored
for each entry (Figure 3)).

2.4 Combining Perimeters with PDBs

Perimeter search works well for correcting pre-existing heuristics [3, 14, 11], while
pattern databases prove valuable for creating a heuristic to the goal node [2]. In
the remainder of this paper, we propose and investigate a new, general method
for combining these two techniques into a single lookup table.

Culberson and Schaeffer use a pattern database as a heuristic simultaneously
with a perimeter [1]. Because the pattern database only provides a heuristic to
the goal node, perimeter search must use a front-to-goal evaluation technique. If
a node is in the perimeter, we know the actual cost to the goal and use that for
the heuristic value. A perimeter with cost-bound d has the following property:
d equals the minimum cost to the goal of all nodes outside the perimeter. This
means that for any node n not inside this perimeter, h(n) ≥ d and is corrected
accordingly. In fact, as long as d is defined as above, this can be applied to any
shaped perimeter.

In a concurrent submission to this SARA symposium, Ariel Felner uses a
perimeter to seed a pattern database [7]. The pattern database is built using
the perimeter as the goal node. This represents an alternative procedure for
combining the techniques of perimeter search with pattern databases, but differs
significantly from the approach that we present in Section 3.

For every node on the perimeter, Kaindl and Kainz track the difference be-
tween the actual cost to the goal and the heuristic value [11]. We call the minimal
difference value for all nodes on the perimeter the heuristic correction factor. The
perimeter is build by expanding the node with the smallest difference, to increase
the heuristic correction factor. If the heuristic is consistent, they admissibly add
the heuristic correction factor to every node outside the perimeter. A pattern
database is a consistent heuristic, so this technique is applicable. However, Felner
has shown the following is true for the 15 puzzle using our abstraction method:
given an abstract node a with an abstract cost c to the abstract goal, there



exists a node in the original space mapping to a with a cost c from the goal [7].
The same is true for the K-pancake puzzle. Consider using a perimeter built by
expanding nodes with the lowest heuristic value [11]. To obtain a correctional
factor equal to one, the perimeter must have at least as many entries as the pat-
tern space. Because of the additional memory required by perimeters to store
the nodeID (see Figure 3), this method is impractical for our domains.

3 Partial Pattern Databases

Research in pattern databases is beginning to incorporate approaches typically
seen in perimeter search. Specifically, subsets of full pattern databases are be-
ing stored in the form of instance-specific PDBs and caching in hierarchical
search [17, 5, 9]. We take this one step further by storing part of a full PDB.
Our approach is not instance-specific; it reuses the same database over multiple
search instances with a fixed goal.

A partial pattern database consists of a set of abstract nodes A and their cost
to the goal, where A contains all nodes in S with cost to goal less than d. d is a
lower bound on the cost of any abstract node not contained in A. In essence, a
partial pattern database is a perimeter in the abstract space (with the interior
nodes stored). Any node n in the original space has a heuristic estimate to the
goal: if n is in the partial PDB, return the recorded cost; if n is not in the partial
PDB, return d. This heuristic is both admissible and consistent.

Building a partial PDB is similar to building a perimeter, only in the ab-
stract space. Retrograde search is performed starting from the abstract goal.
The heuristic values are recorded. When a memory limit is reached, the partial
PDB building stops and heuristic values are used for the forward search. Depth
d is the minimum cost of all abstract nodes outside the partial PDB. Note that
all abstract nodes in A with cost equal to d can be removed from the partial
PDB to save memory. This will not affect the heuristic.

On one extreme, a partial PDB with no abstraction reverts to exactly a
perimeter (with the interior nodes stored). On the other extreme, a partial PDB
with a coarse-grained abstraction will cover the entire space, and performs ex-
actly like a full PDB. However, a partial PDB does not store the data as effi-
ciently as a full PDB.

3.1 Memory Requirements

A full PDB encompasses the entire space (Figure 2); every node visited during
the forward search has a corresponding heuristic value in the lookup table. The
PDB abstraction level is determined by the amount of available memory. Finer-
grained abstraction levels are not possible because the memory requirements
increase exponentially with finer abstractions.

Partial PDBs, as perimeters, generally do not cover the entire space. During
the forward search, if a node is not contained in the partial PDB lookup table,
d is returned. Partial PDBs add flexibility over full PDBs by allowing the use
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Fig. 2. Coverage of original space by lookup tables (full PDB on left, partial PDB in
middle, and perimeter on right)

of any abstraction level. However, there are drawbacks with respect to memory
requirements.

Because full pattern databases cover the entire domain space, the heuristic
values in the lookup table are indexed by their unique node identifier (nodeID).
Therefore, a table of the exact size of the abstract space can be used and there
is no need to store the nodeID (Figure 3(a)). Memory is only used to store the
abstract cost to the goal. On the other hand, perimeters, instance-dependent
PDBs [17, 5], and partial PDBs only cover part the space. As a result, each node
in the perimeter must store the nodeID in addition to the abstract cost to the
goal (Figure 3(b)). This requires extra memory for every table entry.

In our domains, the 15-puzzle and the pancake puzzle, partial pattern database
entries require nine times more memory than full pattern database entries. This
is a severe limitation on the effective use of partial pattern databases.

������
3

5

1

h(nodeID)

nodeID

(a) Full PDBs

���	
�
3

5

1

h(nodeID)

hash(nodeID) nodeID

nodeID

nodeID

(b) Partial PDBs

�
����
3

5

1

hash(nodeID)

min∀n∈hash{h(n)}

(c) Compressed
Partial PDBs

Fig. 3. PDB storage strategies



3.2 Compressed Partial PDBs

For perimeters and partial pattern databases, the added cost of storing a node’s
identification information is an expensive use of memory. To maintain efficiency,
the hash table should have a reasonable fill-factor, but space is inevitably wasted
on empty table positions. We therefore present a compressed version of a partial
PDB that does not store the nodeID and can be filled to any convenient fill-
factor.

Given an abstraction granularity, our hash function maps each abstract node
to a location. For all abstract nodes mapped to the same location, we store
the minimum heuristic value (to preserve admissibility) (Figure 3(c)). When we
query for a node’s heuristic value, we return the value stored in the table at that
node’s hashed location. This heuristic value is guaranteed to be admissible, but
it may be inconsistent.

The creation of compressed partial PDBs occurs as a preprocessing step.
Therefore, we can take a large amount of time, use machines with more available
memory, or use disk-based algorithms. The simplest technique is to use iterative-
deepening depth-first search from the abstract goal, filling a value in the table
if it is lower than the existing entry. However, unlike with full PDBs, if a node’s
heuristic value is larger than the entry in the table, it cannot be cut-off without
breaking admissibility. Therefore, this depth-first construction method must use
a complimentary technique to remove transpositions; we use a transposition
table [15]. This is the technique used in Section 4.

A second technique is to use breadth-first search. This removes transposi-
tions, but uses a large amount of memory for construction. However, delayed
duplicate-detection is an efficient disk-based algorithm that can be used to do
this [13]. In the interest of simplicity, we did not attempt this technique.

A third alternative is to build a full PDB at a fine-grained level using a ma-
chine with a large amount of memory. Full pattern databases can be computed
very efficiently using iterative-deepening depth-first search with only a small
amount of excess memory. This is the approach used in Section 5. The main
drawback to this approach is that it does not scale well to very fine-grained
abstractions. However, our results in Section 4 show that very fine-grained ab-
stractions are not necessary.

One item worth consideration is the hashing function. As the authors found
out, a simple modular hashing scheme can introduce regularity in the table. In
the worst case, a fine-grained compressed partial PDB can revert to exactly the
coarser-grained version. Also, depending on the hash function, the table may not
fill to 100%.

4 Experiments on the K-Pancake Puzzle

The abstractions used for the K-pancake puzzle have don’t-care tiles as the
low-indexed tiles. For example, abstraction-7 for the 12-pancake puzzle refers to
the abstraction ‘x x x x x 5 6 7 8 9 10 11,’ with x as a don’t-care. Note that



abstraction-11 is the finest-grained abstraction and is the same as the original
space because there are 12 distinct tiles. We use the depth-first construction
technique to create the compressed PDBs.

4.1 Performance with constant a number of entries

Throughout this section, we report the average number of nodes generated dur-
ing the forward search as our metric. Each data point is an average of 100
random starting nodes. Partial pattern databases of various abstraction levels
are used for the heuristic. The number of entries in the partial PDB remains
constant (specified in the results tables), while the level of abstraction varies.
IDA* with BPMX is used for the forward search. Recall that BPMX only has
an effect if the heuristic is inconsistent; therefore, only the compressed partial
pattern database will be affected by using BPMX. Also, note that this is only
a comparison between partial pattern databases; full pattern databases make
much more efficient use of memory. We will cross-compare techniques in Section
4.2.

Table 1 shows the average number of nodes generated on the 8, 10, 12, and
13-pancake puzzles. Each puzzle fixes the number of entries in the partial PDB to
exactly the number of entries of a full PDB with bK/2c unique tiles. For instance,
the 12-pancake puzzle partial PDBs each have 665,280 entries (six unique tiles).
The top data point of each column generates the same number of nodes as a
full pattern database, while the bottom data point generates the same number
of nodes as a perimeter.

Number of 8-Pancake 10-Pancake 12-Pancake 13-Pancake
Unique Tiles 1,680 entries 30,240 entries 665,280 entries 1,235,520 entries

(cost-bound d) (cost-bound d) (cost-bound d) (cost-bound d)

4 2,065 (7)

5 682 (5) 48,408 (9)

6 403 (5) 14,268 (6) 1,316,273 (11) 25,833,998 (12)

7 335 (5) 8,251 (6) 178,464 (8) 3,106,345 (8)

8 7,370 (6) 183,172 (7) 4,097,683 (7)

9 7,242 (6) 167,584 (7) 3,851,260 (7)

10 165,390 (7) 3,820,667 (7)

11 164,951 (7) 3,816,931 (7)

12 3,819,909 (7)

Table 1. Average number of nodes generated using a single Partial PDB on K-Pancake
puzzle.

We see that with the same number of entries, but using a finer granularity
partial PDB, the average number of nodes generated reduces. Note however, that
in the 12-pancake puzzle, abstraction-7 produced fewer nodes than abstraction-
8. Search performance is very sensitive to the cost-bound of the partial pattern



database. The increase in nodes generated from abstraction-7 to abstraction-8
occurs because abstraction-7 has a larger cost-bound d than abstraction-8.

Consider two partial pattern databases with the same cost-bound d, but one
being based on a coarser granularity than the other. The finer-grained database
will dominate the coarser-grained one because for every node n in the space,
hfine(n) ≥ hcoarse(n). Abstraction-8, 9, 10, and 11 on the 12-pancake puzzle
demonstrate this principle.

We will continue to see this trade-off between abstraction granularity and
database cost-bound throughout the results. We can think of this intuitively as
follows: making a partial PDB finer-grained improves the heuristic value of nodes
inside the database at the cost of nodes outside the database (if d gets smaller).
At some point the heuristic outside the partial PDB becomes so inaccurate that
the performance is dominated by these nodes. Refining the abstraction further
from this point generally produces worse performance. Analogous results are doc-
umented in [10], where increasing small heuristic values improves performance,
but only up to a point.

Number of 8-Pancake 10-Pancake 12-Pancake 13-Pancake
Unique Tiles 1,680 entries 30,240 entries 665,280 entries 1,235,520 entries

(cost-bound d) (cost-bound d) (cost-bound d) (cost-bound d)

4 2,065 (7)

5 1,024 (6) 48,414 (8)

6 1,227 (6) 18,026 (8) 1,316,284 (10) 25,834,132 (10)

7 1,564 (6) 22,117 (7) 358,585 (9) 6,481,829 (9)

8 29,867 (7) 379,655 (9) 6,599,913 (9)

9 39,080 (7) 520,648 (8) 10,142,002 (9)

10 677,805 (8) 15,214,336 (8)

11 841,576 (8) 22,068,332 (8)

12 27,498,382 (8)

Table 2. Average number of nodes generated using a single compressed partial PDB
filled to 70% on K-Pancake puzzle.

Table 2 shows the average number of nodes generated over 100 search in-
stances using compressed partial PDBs. The compressed database is filled to
70% full. We examine the 8, 10, and 12-pancake puzzles.

The top entry of each column matches closely with the performance of a full
pattern database (shown at the top of the corresponding columns in Table 1).
At this abstraction level, each entry corresponds to one abstract node; if the
compressed partial PDB were filled to 100% and had no hash collisions, then
it would be identical to a full PDB. However, these conditions do not hold in
general, so the top entries in each table do not match exactly.

Let us examine another two corresponding entries in each table, 12-Pancake
at abstraction-7. For the partial pattern database (Table 1), there is an average



of 178,464 nodes generated. For the compressed partial PDB (Table 2), there
are 358,585 generated nodes on average. Keep in mind that both tables have the
same number of entries, but the entries themselves are different.

The compressed partial PDB generates more nodes for three reasons. First,
the table is only filled to 70% full, but this has a small effect because the un-
reached entries are filled with d, limiting the heuristic error. Second, the heuristic
values in the perimeter are degraded by taking the minimal value of all nodes
hashed to the same location. Third and most importantly, the heuristic correc-
tion of d is not applied to all nodes outside the perimeter. Because we store the
minimum heuristic value, nodes outside the perimeter overlap with nodes inside
the perimeter, reducing the effect of the heuristic correction factor.

However, because of the construction method, the partial PDB does not
necessarily dominate the compressed partial PDB. The compressed partial PDB
is filled until 70% full. Overlapping nodes cause the table to fill more slowly than
the partial PDB. Thus the final cost-bound d may be greater in the compressed
partial PDB than the partial PDB. This is seen in our example with the 12-
Pancake puzzle at abstraction-7: the partial PDB is built to d = 8 while the
compressed partial PDB is built to d = 9.

As the granularity becomes finer, we quickly reach the point of diminish-
ing returns. In all examples, this occurs after adding one more unique tile to
the original PDB abstraction. For the 8, 10, 12, and 13-pancakes, the optimal
granularity is 5, 6, 7, and 8 unique tiles respectively. Further refining of the ab-
straction only causes the number of generated nodes to increase. This is caused
by the poor, high-valued heuristics.

The improvement factor is the improvement over the original abstraction
(top entry in Table 1). This factor increases with puzzle size. The 8, 10, 12, and
13-pancake puzzles’ best performance factors are 50%, 63%, 73%, and 75%. This
indicates that savings may scale favorably to larger problems.

4.2 Performance with constant memory

As stated, partial pattern databases need extra memory to store the nodeID.
In the case of the 10-pancake puzzle, the amount of memory used to store the
nodeID is about eight times larger than the heuristic value that is stored. To
directly compare partial PDBs with full PDBs and compressed partial PDBs, we
need to keep memory constant. So we limit the number of entries in the partial
PDB appropriately.

Each full PDB entry consists of one byte, as does each compressed partial
PDB entry. Each partial PDB entry consists of 9 bytes (1 for the heuristic value
and 8 for the node id) plus extra room in the hash table for empty entries
(fill factor). We therefore calculate an approximate number of entries for the
partial PDB that fits into the designated number of bytes using the formula:
entriespartialPDB = bytes/9 ∗ 0.7.

Table 3 directly compares the performance of the three heuristic techniques
(full PDBs, partial PDBs, and compressed partial PDBs) on the 10-pancake
puzzle while keeping memory constant. Each data entry is the average number of



10-Pancake Puzzle

Memory Limit Normal PDB Best Partial PDB Best Compressed Partial PDB
(unique tiles) (unique tiles) (unique tiles)

3,628,800 bytes 40 (9) 2,003 (7) 40 (9)

1,814,400 bytes 200 (8) 4,628 (7) 70 (9)

604,800 bytes 1,216 (7) 16,147 (6) 417 (8)

151,200 bytes 7,756 (6) 78,073 (5) 2,695 (7)

30,240 bytes 48,408 (5) 511,794 (5) 18,026 (6)

5,040 bytes 337,021 (4) 3,299,716 (4) 135,352 (5)

Table 3. Average number of nodes generated using a single PDB of the best abstraction
granularity. The tests are performed on the 10-Pancake puzzle while keeping memory
constant.

generated nodes over 100 random instances. For the partial PDB and compressed
partial PDB, we tested from one to nine unique tiles; this table shows only the
best result. The associated number in parentheses depicts the number of unique
tiles used to generate the data point. For each memory limit, we show the best-
performing database in bold.

Partial PDBs by themselves are not an efficient use of memory; as in all
tested cases, partial PDBs generate at least an order of magnitude more nodes
than full PDBs. However, the compressed partial PDBs are an efficient use of
memory. The top row covers the entire space at the finest granularity; this is
a perfect heuristic. In this case the full PDB has slightly better performance
because the compressed partial PDB is only filled to 70% (this is not apparent
in the table because of averaging). The improvement factor for every row except
the first is between 60% and 65%, indicating similar performance gains when
the memory limit is smaller than the size of the abstract space.

5 Experiments on the 15-Puzzle

The abstractions used for the 15-puzzle are as follows: abstraction-8 is the
fringe [2], ‘b x x 3 x x x 7 x x x 11 12 13 14 15’; and abstraction-9 adds
one more unique tile, ‘b x x 3 x x x 7 x x 10 11 12 13 14 15’. The heuristic used
is the maximum of Manhattan Distance and the PDB or compressed partial
PDB lookup. No symmetries or other search enhancements are used.

Each test is run over all 100 Korf problem instances [12]. The databases
compared are the full pattern database with abstraction-8 (PDB8) and the
compressed partial pattern database using abstraction-9 (PPDB9). PPDB9 is
created from the full PDB using abstraction-9. We use IDA* with bidirectional
pathmax (BPMX) to take advantage of the inconsistency in the compressed
partial PDBs.

The columns of Table 4 are as follows:

– The PDB is the type of pattern database used: either the full pattern
database PDB8 or the compressed partial pattern database PPDB9.



PDB Memory BPMX Fill d small medium large total

PDB8 518,918,400 DC 100 64 283,309 6,929,803 80,291,808 1,067,439,170

PPDB9 518,918,400 Yes 50 38 792,425 14,465,508 123,546,247 1,840,334,929
PPDB9 518,918,400 Yes 60 39 651,152 12,181,920 101,463,007 1,525,898,811
PPDB9 518,918,400 Yes 70 40 554,045 10,529,666 86,096,055 1,304,112,453
PPDB9 518,918,400 Yes 80 41 487,551 9,361,520 75,459,248 1,149,450,912
PPDB9 518,918,400 Yes 90 43 409,084 7,943,644 62,933,272 965,285,000
PPDB9 518,918,400 Yes 98 66 330,510 6,473,794 50,611,367 780,456,393

PPDB9 518,918,400 No 98 66 539,065 9,917,842 82,560,198 1,242,278,013

Table 4. Nodes generated on the 15-puzzle using a single PDB technique and Man-
hattan Distance while keeping memory constant.

– Memory is the number of bytes in the database: in this case held constant
at 518,918,400 bytes.

– BPMX tells whether bidirectional pathmax is used: Yes it is used, No it is
not used, and DC (don’t care) means that BPMX has no effect.

– Fill shows the percentage of memory that is expanded when creating the
pattern database. Because of the hashing scheme, however, even when filled
completely, 2% of PPDB9 remains unexpanded.

– For PDB8, d is the largest value in the database. For PPDB9, d is the cost
bound (as defined in Section 3).

– The small problems are the problems that result in searches with less than
1,000,000 generated nodes when solving with PDB8. Medium problems are
between 1,000,000 and 31,999,999 generated nodes. The hard problems are
greater than or equal to 32,000,000 generated nodes. There are 43 small
problems, 48 medium problems, and 9 hard problems. We report the average
number of nodes expanded in each of the three problem sets.

– total is the sum of all generated nodes over the 100 Korf problem instances.

At less than 90% full, using BPMX, PPDB9 generates more total nodes
than PDB8. PPDB9 generates slightly fewer nodes when at 90% full, and at
98% full the total number of generated nodes is decreased by 27%. However,
this result can be slightly misleading, since the total is dominated by the largest
searches (which build over three orders of magnitude larger search trees). Thus,
we also examine the problems grouped by difficulty. With and without BPMX,
the small problems have worse performance using PPDB9 than PDB8. However,
the large problems have improved performance when using BPMX and filled to
80% or more. When PPDB9 is 98% full, the small, medium, and large problems
have -95%, 6%, and 36% improvement respectively, in average number of nodes
generated. Not only does the total number of generated nodes decrease by 27%,
but the hard instances are improved the most.

The last row shows the importance of using BPMX in the 15-puzzle to im-
prove performance. Using BPMX leads to a 37% reduction in the total number of
nodes generated when PPDB9 is 98% full. This pushes the performance ahead



of PDB8. Small, medium, and large instances benefit equally from BPMX, im-
proving the number of generated nodes by 39%, 35%, and 39% respectively. This
indicates that the influence of BPMX may not depend on instance difficulty.

6 Conclusions

This paper presents partial pattern databases, a general approach that merges
the ideas of front-to-goal perimeter search and full pattern databases. Our ap-
proach decouples the abstraction granularity from the database size, freeing the
programmer to use the best abstraction for a given domain and amount of mem-
ory. Partial PDBs are applicable to domains with a predecessor function and a
space abstraction technique and can be re-used over multiple problem instances
with the same goal.

Two versions are presented: the original partial pattern databases, which
store the heuristic value and the nodeID; and the more memory-efficient com-
pressed partial PDBs, which store only one heuristic value. Two complementary
puzzle domains are tested: the K-pancake puzzle, which has a large branching
factor of K−2, and the 15-puzzle, which has an average branching factor of 2.1.

Compressed partial pattern databases are shown to be most effective on the
K-pancake puzzle; the number of nodes generated on the 13-pancake puzzle is
reduced by three-fold. Uncompressed partial pattern databases are not shown to
be effective for this domain because of the memory inefficiency.

On the 15-puzzle, compressed partial PDBs in combination with the Man-
hattan Distance heuristic are slightly less successful. This is because MD often
corrects a PDB’s low heuristic values, which is one of the primary benefits of
using partial PDBs. However, in combination with BPMX, and filled to 98%, we
are able to reduce total number of nodes generated by 27%. Interestingly, hard
problem instances are better improved than small instances.

This paper presents, implements, and tests partial PDBs in general terms.
This technique can be further incorporated with other general methods. For ex-
ample, the maximum can be taken over multiple heuristic lookup tables, whether
they be PDBs, partial PDBs, or compressed partial PDBs [10]. As well, domain-
specific adaptations and improvements can be integrated into this framework.
Two glaring examples are additivity in the 15-puzzle and duality in the pan-
cake puzzle. On the 15-puzzle, partial PDBs can always be made into additive
versions by ignoring don’t-care tile movements. Compressed partial PDBs can
effectively compress larger full additive pattern databases into memory-efficient
versions. On the pancake puzzle, we can use any pattern database technique to
get a heuristic to the goal. By using the general duality principal [8], we can get
get an admissible heuristic between any two nodes (map the operator sequence
Π between two nodes onto the goal to get node nd, and look up h(nd) from the
PDB). This would allow for front-to-front heuristic improvement using a partial
pattern database, effectively coming full-circle back to the original perimeter
search technique.
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