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Mechanical Generation of Admissible
Heuristics

Robert Holte, Jonathan Schaeffer, and Ariel Felner

1 Introduction

This chapter takes its title from Section 4.2 of Judea Pearl’s landmark book Heuris-
tics [Pearl 1984], and explores how the vision outlined there has unfolded in the
quarter-century since its appearance. As the book’s title suggests, it is an in-depth
summary of classical artificial intelligence (AI) heuristic search, a subject to which
Pearl and his colleagues contributed substantially in the early 1980s.

The purpose of heuristic search is to find a least-cost path in a state space from
a given start state to a goal state. In principle, such problems can be solved by
classical shortest path algorithms, such as Dijkstra’s algorithm [Dijkstra 1959], but
in practice the state spaces of interest in AI are far too large to be solved in this way.
One of the seminal insights in AI was recognizing that even extremely large search
problems can be solved quickly if the search algorithm is provided with additional
information in the form of a heuristic function h(s) that estimates the distance
from any given state s to the nearest goal state [Doran and Michie 1966; Hart,
Nilsson, and Raphael 1968]. A heuristic function h(s) is said to be admissible if,
for every state s, h(s) is a lower bound on the true cost of reaching the nearest goal
from state s. Admissibility is desirable because it guarantees the optimality of the
solution found by the most widely-used heuristic search algorithms.

Most of the chapters in Heuristics contain mathematically rigorous definitions
and analysis. In contrast, Chapter 4 offers a conceptual account of where heuristic
functions come from, and a vision of how one might create algorithms for automat-
ically generating effective heuristics from a problem description. An early version
of the chapter had been published previously in the widely circulated AI Maga-
zine [Pearl 1983].

Chapter 4’s key idea is that distances in the given state space can be estimated
by computing exact distances in a “simplified” version of the state space. There
are many different ways a state space can be simplified. Pearl focused almost
exclusively on relaxation, which is done by weakening or eliminating one or more of
the conditions that restrict how one is allowed to move from one state to another.
For example, to estimate the driving distance between two cities, one can ignore
the constraint that driving must be done on roads. In this relaxed version of the
problem, the distance between two cities is simply the straight-line distance. It is
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Figure 1. 15-puzzle

easy to see, in general, that distances in a relaxed space cannot exceed distances
in the given state space, and therefore the heuristic functions defined in this way
are guaranteed to be admissible. An alternate way of looking at this is to view the
elimination of conditions as equivalent to adding new edges to the search graph.
Therefore, optimal solutions to the relaxed graph (with the additional edges) must
be a lower bound on the solution to the original problem.

As a second example of relaxation, consider the 15-puzzle shown in Figure 1,
which consists of a set of tiles numbered 1-15 placed in a 4 × 4 grid, leaving one
square in the grid unoccupied (called the “blank” and shown as a black square). The
only moves that are permitted are to slide a tile that is adjacent to the blank into
the blank position, effectively exchanging the tile with the blank. For example, four
moves are possible in the right-hand side of Figure 1: tile 10 can be moved down, tile
11 can be moved right, tile 8 can be moved left, and tile 12 can be moved up. To solve
the puzzle is to find a sequence of moves that transforms a given scrambled state
(right side of Figure 1) into a goal state (such as the one on the left). One possible
relaxation of the 15-puzzle state space can be defined by removing the restriction
that a tile must be adjacent to the blank to be moveable. In this relaxation any tile
can move from its current position to any adjacent position at any time, regardless
of whether the adjacent position is occupied or not. The number of moves required
to solve this relaxed version (called the Manhattan Distance) is clearly less than or
equal to the number of moves required to solve the 15-puzzle itself. Note that in
this case the relaxed state space has many more states than the original 15-puzzle
(many tiles can now occupy a single location) but it is easier to solve, at least for
humans (tiles move entirely independently of one another).

Pearl observes that in AI a state space is almost always defined implicitly by a set
of operators that describe a successor relation between states. Each operator has
a precondition defining the states to which it can be applied and a postcondition
describing how the operator changes the values of the variables used to describe a
state. This implies that relaxing a state space description by eliminating one or more
preconditions is a simple syntactic operation, and the set of all possible relaxations
of a state space description (by eliminating combinations of preconditions) is well-
defined and, in fact, easy to enumerate. Hence it is entirely feasible for a mechanical



Mechanical Generation of Admissible Heuristics

system to generate heuristic functions and, indeed, to search through the space of
heuristic functions defined by eliminating preconditions in all possible ways.

The mechanical search through a space of heuristic functions has as its goal, in
Pearl’s view, a heuristic function with two properties. First, the heuristic function
should return values that are as close to the true distances as possible (Chapter 6
in Heuristics justifies this). Second, the heuristic function must be efficiently com-
putable, otherwise the reduction in search effort that the heuristic function produces
might be outweighed by the increase in computation time caused by the calculation
of the heuristic function. Pearl saw the second requirement as the more difficult to
detect automatically and proposed that mechanically-recognizable forms of decom-
posability of the relaxed state space would be the key to mechanically generating
efficiently-computable heuristic functions. Pearl recognized that the search for a
good heuristic function might itself be quite time-consuming, but argued that this
cost was justified because it could be amortized over an arbitrarily large number
of problem instances that could all be solved much more efficiently using the same
heuristic function.

The preceding paragraphs summarize Pearl’s vision for how effective heuristics
might be generated automatically from a state space description. The remainder
of our chapter contains a brief look at the research efforts directed towards real-
izing Pearl’s vision. We conclude that Pearl correctly anticipated a fundamental
breakthrough in heuristic search in the general terms he set out in Chapter 4 of
Heuristics although not in all of its specifics. Our discussion is informal and the
ideas presented and their references are illustrative, not exhaustive.

2 The Vision Emerges

The idea of using a solution in a simplified state space to guide the search for a
solution in the given state space dates to the early days of AI [Minsky 1963] and was
first implemented and shown to be effective in the abstrips system [Sacerdoti 1974].
However, these early methods did not use the cost of the solution in the simplified
space as a heuristic function; they used the solution itself as a skeleton which was to
be refined into a solution in the given state space by inserting additional operators.

The idea of using distances in a simplified space as heuristic estimates of dis-
tances in the given state space came later. It did not originate with Judea Pearl
(in fact, he credits Stan Rosenschein for drawing the idea to his attention). How-
ever, by devoting a chapter of his otherwise technical book to the speculative idea
that admissible heuristic functions could be created automatically, he became an
important early promoter of it.

The idea was first developed in the Milan Polytechnic Artificial Intelligence
Project in the period 1973-1979. In a series of papers (e.g. [Sangiovanni-Vincentelli
and Somalvico 1973; Guida and Somalvico 1979]) the Milan group developed the
core elements of Pearl’s vision. They proposed defining a heuristic function as
the exact distance in a relaxed state space and proved that such heuristic func-
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tions would be both admissible and consistent.1 To make the computation of such
heuristic functions efficient the Milan group envisaged a hierarchy of relaxed spaces,
with search at one level being guided by a heuristic function defined by distances
in the level above. The Milan group also foresaw the possibility of algorithms for
searching through the space of possible simplified state spaces, although the first
detailed articulation of this idea, albeit in a somewhat different context, was by
Richard Korf [1980].

John Gaschnig [1979] picked up on the Milan work. He made the key observation
that if a heuristic function is calculated by searching in a relaxed space, the total
time required to solve the problem using the heuristic function could exceed the
time required to solve the problem directly with breadth-first search (i.e. without
using the heuristic function). This was formally proven shortly afterwards by Marco
Valtorta [1981, 1984]. This observation led to a focus on the efficiency with which
distances in the simplified space could be computed. The favorite approach to doing
this (as exemplified in Heuristics) was to search for simplified spaces that could be
decomposed.

3 The Vision Becomes a Reality

Directly inspired by Pearl’s vision, Jack Mostow and Armand Prieditis set them-
selves the task of automating what had hitherto been paper-and-pencil speculation.
The result was their absolver system [Mostow and Prieditis 1989; Prieditis 1993],
which fully vindicated Pearl’s enthusiasm for the idea of mechanically generating
effective, admissible heuristics.

The input to absolver was a state space description in the standard strips

notation [Fikes and Nilsson 1971]. absolver had a library containing two types
of transformations, each of which would take as input a strips representation of a
state space and produce as output one or more other strips representations. The
first type of transformation were abstracting transformations. Their purpose was to
create a simplification (or “abstraction”) of the given state space. One of these was
drop precondition, exactly as Pearl had proposed. Their other abstracting trans-
formations were a type of simplification that Pearl had not anticipated—they were
homomorphisms, which are many-to-one mappings of states in the given space to
states in the abstract space. Homomorphic state space abstractions for the purpose
of defining heuristic functions were first described by Dennis Kibler in an unpub-
lished report [1982], but their importance was not appreciated until absolver and
the parallel work done by Keki Irani and Suk Yoo [1988].

An example of a homomorphic abstraction of the 15-puzzle is shown in Figure 2.
Here tiles 9-15 and the blank are just as in the original puzzle (Figure 1) but tiles 1-8
have had their numbers erased so that they are not distinguishable from each other.
Hence for any particular placement of tiles 9-15 and the blank, all the different ways

1Heuristic function h(s) is consistent if, for any two states s1 and s2, h(s1) ≤ dist(s1, s2)+h(s2),

where dist(s1, s2) is the distance from s1 to s2.
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Figure 2. Homomorphic abstraction of the 15-puzzle

of permuting tiles 1-8 among the remaining positions produce 15-puzzle states that
map to the same abstract state, even though they would all be distinct states in the
original state space. For example, the abstract state in the left part of Figure 2 is
the abstraction of the goal state in the original 15-puzzle (left part of Figure 1), but
it is also the abstraction of all the non-goal states in the original puzzle in which
tiles 9-15 and the blank are in their goal positions but some or all of tiles 1-8 are
not. Using this abstraction, the distance from the 15-puzzle state in the right part
of Figure 1 to the 15-puzzle goal state would be estimated by calculating the true
distance, in the abstract space, from the abstract state in the right part of Figure 2
to the state in the left part of Figure 2.

In addition to abstracting transformations, absolver’s library contained “opti-
mizing” transformations, which would create an equivalent description of a given
strips representation in which search could be completed more quickly. This in-
cluded the “factor” transformation that would, if possible, decompose the state
space into independent subproblems, one of the methods Pearl had suggested.

absolver was applied to thirteen state spaces and found effective heuristic func-
tions in six of them. Five of the functions it discovered were novel, including a
simple, effective heuristic for Rubik’s Cube that had been overlooked by experts:

after extensive study, Korf was unable to find a single good heuristic
evaluation function for Rubik’s Cube [Korf 1985]. He concluded that “if
there does exist a heuristic, its form is probably quite complex.”

([Mostow and Prieditis 1989], page 701)

4 Dawn of the Modern Era

Despite absolver’s success, it did not launch the modern era of abstraction-based
heuristic functions. That would not happen until 1994, when Joe Culberson and
Jonathan Schaeffer’s work on pattern databases (PDBs) first appeared [Culberson
and Schaeffer 1994]. They used homomorphic abstractions of the kind illustrated in
Figure 2 and, as explained above, defined the heuristic function, h(s), of state s to be
the actual distance in the abstract space between the abstract state corresponding
to s and the abstract goal. The key idea behind PDBs is to store the heuristic
function as a lookup table so that its calculation during a search is extremely fast.
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To do this, it is necessary to precompute all the distances to the goal state in the
abstract space. This is typically done by a backwards breadth-first search starting
at the abstract goal state. Each abstract state reached in this way is associated with
a specific storage location in the PDB, and the state’s distance from the abstract
goal is stored in this location as the value in the PDB.

Precomputing abstract distances to create a lookup-table heuristic function was
actually one of the optimizing transformations in absolver, but Culberson and
Schaeffer had independently come up with the idea. Unlike the absolver work,
they validated it by producing a two orders of magnitude reduction in the search
effort (measured in nodes expanded) needed to solve instances of the 15-puzzle, as
compared to the then state-of-the-art search algorithms using an enhanced Man-
hattan Distance heuristic. To achieve this they used two PDBs totaling almost one
gigabyte of memory, a very large amount in 1994 when the experiments were per-
formed [Culberson and Schaeffer 1994]. The paper’s referees were sharply critical of
the exorbitant memory usage, rejecting the paper three times before it finally was
accepted [Culberson and Schaeffer 1996].

Such impressive results on the 15-puzzle could not go unnoticed. The fundamen-
tal importance of PDBs was established beyond doubt in 1997 when Richard Korf
used PDBs to enable standard heuristic search techniques to find optimal solutions
to instances of Rubik’s Cube for the first time [Korf 1997].

Since then, PDBs have been used to build effective heuristic functions in numer-
ous applications, including various combinatorial puzzles [Felner, Korf, and Hanan
2004; Felner, Korf, Meshulam, and Holte 2007; Korf and Felner 2002], multiple se-
quence alignment [McNaughton, Lu, Schaeffer, and Szafron 2002; Zhou and Hansen
2004], pathfinding [Anderson, Holte, and Schaeffer 2007], model checking [Edelkamp
2007], planning [Edelkamp 2001; Edelkamp 2002; Haslum, Botea, Helmert, Bonet,
and Koenig 2007], and vertex cover [Felner, Korf, and Hanan 2004].

5 Current Status

The use of abstraction to create heuristic functions has profoundly advanced the
fields of planning and heuristic search. But the current state of the art is not
entirely as Pearl envisaged. Although he recognized that there were other types
of state space abstraction, Pearl emphasized relaxation. In this detail, he was
too narrowly focused. Researchers have largely abandoned relaxation in favor of
homomorphic abstractions, of which many types have been developed and shown
useful for defining heuristic functions, such as domain abstraction [Hernádvölgyi
and Holte 2000], h-abstraction [Haslum and Geffner 2000], projection [Edelkamp
2001], constrained abstraction [Haslum, Bonet, and Geffner 2005], and synchronized
products [Helmert, Haslum, and Hoffmann 2007].

Pearl argued for the automatic creation of effective heuristic functions by search-
ing through a space of abstractions. There has been some research in this direc-
tion [Prieditis 1993; Hernádvölgyi 2003; Edelkamp 2007; Haslum, Botea, Helmert,
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Bonet, and Koenig 2007; Helmert, Haslum, and Hoffmann 2007], but more is needed.
However, important progress has been made on the subproblem of evaluating the
effectiveness of a heuristic function, with the development of a generic, practi-
cal method for accurately predicting how many nodes IDA* (a standard heuristic
search algorithm) will expand for any given heuristic function [Korf and Reid 1998;
Korf, Reid, and Edelkamp 2001; Zahavi, Felner, Burch, and Holte 2008].

Finally, Pearl anticipated that efficiency in calculating the heuristic function
would be achieved by finding abstract state spaces that were decomposable in some
way. This has not come to pass, although there is now a general theory of when it is
admissible to add the values returned by two or more different abstractions [Yang,
Culberson, Holte, Zahavi, and Felner 2008]. Instead, the efficiency of the heuristic
calculation has been achieved either by precomputing the heuristic function’s values
and storing them in a lookup table, as PDBs do, or by creating a hierarchy of
abstractions and using distances at one level as a heuristic function to guide the
calculation of distances at the level below [Holte, Perez, Zimmer, and MacDonald
1996; Holte, Grajkowski, and Tanner 2005], as anticipated by the Milan group.

6 Conclusion

Judea Pearl has received numerous accolades for his prodigious research and its
impact. Amidst this impressive body of work are his often-overlooked contributions
to the idea of the automatic discovery of heuristic functions. Even though Heuristics
is over 25 years old (ancient by Computing Science standards), Pearl’s ideas still
resonate today.
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