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Abstract

Uncertainty in poker stems from two key sources, the shuffleck and an
adversary whose strategy is unknown. One approach to plggker is to find a
pessimistic game-theoretic solution (i.e., a Nash equilib), but human players
have idiosyncratic weaknesses that can be exploited if soodel or counter-
strategy can be learned by observing their play. Howevenegaagainst humans
last for at most a few hundred hands, so learning must be esiytd be useful.
We explore two approaches to opponent modelling in the gbufeKuhn poker,
a small game for which game-theoretic solutions are knowanafeter estimation
and expert algorithms are both studied. Experiments detradaghat, even in this
small game, convergence to maximally exploitive solutiona small number of
hands is impractical, but that good (e.g., better than Nasfhfprmance can be
achieved in as few as 50 hands. Finally, we show that amorggtt @f strategies
with equal game-theoretic value, in particular the set o$tiNequilibrium strate-
gies, some are preferable because they speed learning opplo@ent’s strategy
by exploring it more effectively.

1 Introduction

Poker is a game of imperfect information against an adveradth an unknown,
stochastic strategy. It represents a tough challenge ifeciaitintelligence research.
Game-theoretic approaches seek to approximate the Naghego (i.e., maximin)
strategies of the game (Koller & Pfeffer, 1997; Billings dt, 2003; Gilpin & Sand-
holm, 2005; Zinkevich et al., 2007a, 2007b), but this repnés a pessimistic world-
view where we assume some form of optimality in our oppondatan players have
weaknesses that can be exploited to obtain winnings hidtzer the game-theoretic
value of the game. Learning by observing their play allowsowsxploit their idiosyn-
cratic weaknesses. The learning can be done either dirbgtlystimating a model of
their strategy and then computing an appropriate responggdirectly, by identifying
an effective counter-strategy.

Several factors render this difficult in practice. Firsglrevorld poker games like
Texas Hold’em have huge game trees and the strategies @wany parameters (e.g.,



two-player, limit Texas Hold’em has 10'® parameters (Billings et al., 2003)). The
game also has high variance, stemming from the shuffled detkmae or both players
playing stochastic strategies. Strategically compleg, dm in poker is not simply
to win but to maximize winnings by enticing a weakly-positasl opponent to bet
or a strongly-positioned opponent to fold. Decisions dgrinhand must be made
with imperfect information because we cannot see our oppitmeards. A further
aggravation of this uncertainty arises when one playesfolthe opponent’s cards are
never observed, leaving us with only a partial observati@mafter the hand has been
played out. Finally, we cannot expect a large amount of ddtanaplaying human
opponents. We may play 200 hands or less against a given eppand must learn
how they can be exploited quickly in order to gain by their kressses.

This research explores how rapidly one can gain an advabtagbserving oppo-
nent play given that only a small number of hands will be pthiyetotal. The aim
here is not to develop new, specialized algorithms but rathassess how established
learning techniques perform. Can these algorithms impowes game-theoretic per-
formance by quickly learning and exploiting human weakas®s How should one
play while learning? To address these questions, two stdridarning approaches
are studiedmaximum a posteriori parameter estimatigparameter learninyj and an
“experts” method derived from Exp4 (Auer et al., 199&ydtegy learniny Both will
be described in detail.

While most existing poker opponent modelling research $esuon real-world
games (Korb & Nicholson, 1999; Billings et al., 2004; Zinigvet al., 2007a),
we systematically study a simpler version, reducing the gjaintrinsic difficulty to
show that, even in what might be considered the simplest tas@roblem is still hard
in the sense that one cannot expect to converge to a neamalsexploitation with so
little data. We start by assuming that the opponent’s giyaiefixed. Tracking a non-
stationary strategy is a hard problem and learning to ekplfiked strategy is clearly
the first step. We also limit complexity by considering thengeof Kuhn poker (Kuhn,
1950), a tiny game for which complete game-theoretic amalgsavailable. Finally,
we evaluate learning in a two-phase manner—the first phgslereng and learning
while the second phase switches to pure exploitation base¢hat was learned. Note
that we do not propose this fixed switching point as an actategyy for play, but
rather as a readily comprehensible experimental methggloM/e use this simplified
framework to demonstrate the following points:

e Learning to maximally exploit an opponent in a small numbehands is not
feasible.

e A substantial advantage can nonetheless be attainedyamiaking short-term
learning a winning proposition.

e Finally, we observe that, amongst the set of Nash stratégidke learner, the
exploration inherent in some strategies facilitates fastrning compared with
other members of the set.

The material presented here extends an earlier paper oreigarch (Hoehn et al.,
2005) by presenting a wider range of results (including § eemplete set in a sup-



plemental online appendix), full derivations of our estiara, and more detailed de-
scriptions of algorithms and experimental methodologyafel studies can be found
in (Hoehn, 2006).

2 Kuhn Poker

2.1 Rules and Notation

Kuhn poker (Kuhn, 1950) is a very simple, two-player game{Pthyer 1, P2 - Player
2). The deck consists of three cards (J - Jack, Q - Queen, aniKg). There are
two actions availablebet and pass The value of each bet is 1. In the event of a
showdown(players have matched bets), both players reveal theiraaddhe player
with the higher card wins the pot (the King is highest and thekJs lowest). In the
event of afold (one player increases the standing bet and the other de¢bnaatch
the bet), the folding player loses and the players’ cardsareevealed. A singlaand

proceeds as follows:
e Both players initially put an ante of 1 into the pot.

e Each player is dealt a single card which they keep privatdf@demaining card
is unseen by either player.

o After the deal, P1 has the opportunity to bet or pass.

— If P1 bets in round one, then in round two P2 can:

x pass (fold) and forfeit the pot to P1, or
x bet (call P1's bet) and the game then ends in a showdown.

— If P1 passes (checks) in round one, then in round two P2 can:

x pass (check) and go to a showdown, or

x bet, in which case there is a third action where P1 can
- bet (call P2’s bet) and go to showdown, or
- pass (fold) and forfeit to P2.

It is useful to summarize a hand so we introduce the followiatation

<P1 card> <P2 card> <P1 action> <P2 action>

where the cards are one of “J”, “Q”, “K”, or “?” (the last meagithat the card has
not been observed). The actions for P1 are “b” or “p” and fothR% are “B” or “P”
(we use upper vs. lowercase to distinguish the players neaily). For example, the
string “QJpBb” means that P1 held a Queen, P2 held a Jackherattions were “P1
passes”, “P2 bets”, and “P1 bets”. In the case where one iplaigs, players cannot
observe each other’s cards. It is useful to record obsensbf this kind, for example,
“K?bP” means that P1 held a K and observed the actions “P1 aets“P2 passes”.
Because this game folded, P2’s card was not observed by P1.



Kuhn poker is an attractive choice for study because, asallening discussion
will elaborate, it has been analyzed in detail and can be tetalp characterized ana-
lytically. We can therefore compare empirical results teotfetical ideals easily. The
game captures several essential qualities of real-wottéipgames: decision making
with partial observations, bluffing, and information lostedto folded hands. Finally,
the game is small enough to visualize some results in a fdirbct manner.

2.2 Analysis of the Game

Figure 1 shows the game tree we consider in this work. Thedapof nodes shows
all possible combinations of cards held by the players (d|@ means P1 holds the
Jack and P2 holds the Queen). P1's value for each outcomditaird in the leaf
nodes. The game is zero-sumgame (whatever one player gains, the other loses)
so P2’s values are simply the negation of P1's. Branchegspond to the available
actions. Note that the dominated strategies have been ezhfoym this tree already.
Informally, a dominated strategy is one for which there &x@n alternative strategy
that offers better value against at least one opponenegiratnd equal value against
all others!

We eliminate these obvious sources of universally subadtptay but note that
strategies remain that play suboptimally against speqifiooents. Dominated strate-
gies often correspond to obvious mistakes such as foldingnvguaranteed to win,
whereas the remaining suboptimal strategies typicallynefailing to achieve an ideal
mixture of actions (e.g., bluffing too often in a particulduation). We have eliminated
obvious errors because our goal is to develop learning tqaba that will challenge the
best human and machine players rather than simply exploitpay by weak players.

In Figure 1, branches where alternatives are availableahedled with a parameter.
The game has a well-known parametrization (Kuhn, 1950) iiclwR1’s strategy can
be summarized by three parameters{, ), and P2's by two parameters, ). The
decisions governed by these parameters are shown in Figuféd meaning of the
decisions governed by each parameter are

e « = probability that P1 bets in the first round when holding thekJa
e (3 = probability that P1 calls in the third round when holding Geeen
e ~ = probability that P1 bets in the first round when holding thadi

e 71 = probability that P2 calls a P1 bet when holding the Queen

e ¢ = probability that P2 bluffs by betting when holding a Jacleaf1 passes in
the first round

1Dominance can bstrong(the dominating strategy is always a better choice, regasdf the opponent’s
actions) oweak(the dominating strategy is better for one or more opporteaiegies and equal for the rest).
For example, the P2 strategy of passing when holding the Qaree faced with a P1 pass weakly dominates
the strategy of betting in the same scenario. Similarly, Riestrategy of betting in the first round when
holding the Queen is weakly dominated by the strategy to mad<all a P2 bet (if such a bet is made). This
latter dominance is not immediately obvious but is arrivebyaiterative elimination of dominated strategies
(Fudenberg & Levine, 1998).
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If players play only non-dominated strategies, the exmketdue to P1 of any pair of
opposing strategies (i.e., any pair(of, 3, ) and(n, £)) is given by

EV(0,8,7,1,6) = £ (-804 ) + E(-1435 =) ta-5 (O

An important concept in game theory is that oNash equilibrium Again infor-
mally, a Nash equilibrium is a pair of strategies, one forhgalayer, such that neither
player gains by unilaterally deviating from their own Nastategy. So long as one
player plays a Nash strategy, the other cannot, by playintgesmon-Nash strategy, im-
prove on the expected value of playing a Nash strategy theesseKuhn determined
that the set of Nash strategies for P1 has the faug, v) = (v/3, (1 + ~)/3, ) for
0 < < 1. Thus, there is a continuum of Nash strategies for P1 goddipa single
parameter. There is only one Nash strategy for7P2,1/3 and¢ = 1/3; all other P2
strategies can be exploited by P1. If either player plays shidrategy (and neither
plays dominated strategies), then P1 expects to lose at afratl /18 per hand® Thus
P1 can only hope to win in the long run if P2 is playing suboptignand P1 deviates
from playing Nash strategies to exploit errors in P2’s plawr discussion focuses on
playing as P1 and exploiting P2, so, unless specified otlservaill observations and
results are from this perspective.

For any given P2 strategy, there is a set of correspondindrBtegies that max-
imally exploit P2. Each such maximally exploitive stratagycalled abest response
(Fudenberg & Levine, 1998). Furthermore, the set of begtaieses includes at least
onepure strategy a deterministic strategy in which all probabilities areazer one.
Thus, in any attempt to exploit an opponent, we would ideadly a strategy that is a
best response to that opponent. Note that this applieslgqo@?2 exploiting P1.

In a game of this size, it is possible to characterize theespéstrategies in great
detail. In order to better systematize our study, we havéytoally derived bound-
aries within the P2 strategy space that allow us to ensuteotirastudy thoroughly
covers all interesting regions of that space (Hoehn et @052 The two-dimensional
(n x &) strategy-space for P2 can be partitioned into the 6 regibos/s in Fig-
ure 2. Within each region, one of P1l’s pure strategies givasimmal value to P1
(i.e., the pure strategy is a best response to all opponeatiegtes in that region).
For P2 strategies corresponding to points on the lines idigithe regions, the adja-
cent P1 best responses achieve the same value. The intanseicthe three divid-
ing lines is the Nash strategy for P2. Therefore, to maxiyneXploit P2, it is suf-
ficient to identify the region in which P2'’s strategy lies goldy the corresponding
P1 pure strategy. Note that there are 8 pure strategies fowfitten as(«, 3,7):
So = (0,0,0),51 = (0,0,1),5, = (0,1,0),...,57 = (1,1,1). Two of these §, and
S7) are not a best response to any P2 strategy, so we need osigleothe remaining

2In two-player, zero-sum games such as poker, all Nash gieat@re interchangeable. That is, each
player has a set of Nash strategies and any pairing from thassets forms a Nash equilibrium. Further-
more, all pairings give the same expected value to the gayemore general games, this is not always the
case; only specific pairs of strategies form equilibria dredequilibria may have different expected values.

3This is true because, in Kuhn poker, all non-dominated esgies areessential(i.e., have a non-zero
probability of being played as part of some Nash strategy)twb player, zero-sum games, if one player
plays a Nash strategy and the other plays some mixture ofigsgtrategies, then they will always obtain
the value of the equilibrium (von Neumann & Morgenstern, 7)94



six. In brief, the partitioning was derived by substitutitig various P1 pure strate-
gies into the expected value equation and then determihagainges ovey and¢ for
which one pure strategy gives greater value than all othBestitioning of the strategy
space is not required for any of our algorithms but has setwepiide our choice of
opponents and assist in understanding results.
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Figure 2: Partition of P2 Strategy Space by Maximal P1 Sgiate

This natural division of P2’s strategy space was used toimbtaelection of sub-
optimal opponents for our study. Six opponent strategia®weeated by selecting a
point at random from each of the six regions. Written as pair§), they areO; =
(.25,.67),05 = (.75,.8),03 = (.67,.4),04 = (.5,.29),05 = (.25,.17),06 =
(.17,.2). Experiments were run against these six opponents. It inewgssary to run
experiments against a Nash strategy opponent since the aghinst such an opponent
is guaranteed regardless of the strategy P1 might play rgedominated strategies).
Any attempt to exploit a Nash opponent can neither benefihaan either player.

Other experiments were run against randomly sampled oppstieat all share the
same level of exploitability. Figure 3 shows the exploiliépiof P2 over its strategy
space. It is a contour plot of the expected value to P1 if PYspthe appropriate
best response at every point in P2 strategy space. This texpealue is the best P1
can possibly achieve and therefore represents the maximpioigbility for every P2
strategy. Note that within a small area around the P2 Naategly, P1's expected value
is less than 0. P1 can never hope to win against a P2 oppomrgirighithin this area,
although P1 can attempt to minimize the loss. Beyond the @amtour, exploiting the
opponent is a winning proposition. Our randomly sampledomgmts can be thought
of as samples from some contour on this plot. This meanshbgtiiehave differently,
but all have the same value when challenged by the apprefirést response.

“We would like to thank Valeriy Bulitko for the analysis thaiopuced this partitioning (Hoehn et al.,
2005).
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Figure 3: Contour Plot of Exploitability of P2 over P2 StigyeSpace

Experiments were also run where P2 is modelling P1. Howewediscussion will
be in terms of P1 modelling P2 for the sake of simplicity.

3 Parameter Learning

The first approach we consider for exploiting the opponeta directly estimate the
parameters of their strategy and play a best response tstthitgy. We start with a
prior over the opponent’s strategy and computerttaimum a posterio(MAP) esti-
mate of those parameters given our observations. This isxadoBayesian parameter
estimation, a typical approach to learning and thereforataral choice for our study.

In general poker games a hand either results in a showdowmhich case the
opponent’s cards are observed, or a fold, which leaves thergmt's cards uncertain
(we only get to observe their actions, our own cards, and abjipcards). However,
in Kuhn poker, the small deck and dominated strategies d¢anspcertain cases to
make the opponent’s cards obvious despite their foldingr dxample, if P1 holds
the Jack and observes the sequdmete—passwe can conclude that P2 must hold the
Queen. Examination of Figure 1 shows that if P2 holds the Kimgn passing on a bet
would be a dominated strategy. Because we have precludethdimu strategies, we
can therefore conclude that P2 holds the Queen despite segirg it. Thus, certain
folding observations (but not all) contain as much inforimags a showdown.



Parameter estimation in Kuhn poker is quite straightfodMagcause in no case
does the estimate of any single player parameter dependearlar decision governed
by some other parameter belonging to that player. The taskmiputing a posterior
distribution over opponent strategies for arbitrary pofames is more complicated
and is discussed in a separate paper (Southey et al., 2005hd-present study, the
dominated strategies and small deck again render the tidkvedy simple.

Once the opponent’s strategy has been estimated, a beshsesmust be com-
puted. In general, this is achieved via tgectimaxlgorithm (Michie, 1966; Russell
& Norvig, 1995), which involves a traversal of the game tréwever, since Kuhn
poker has been thoroughly analyzed and the opponent strapage partitioned as
shown in Figure 2, we simply determine the region in which ¢iséimate lies and
lookup the corresponding pure strategy. While we discussstue of scaling to larger
games more fully in Section 9, we note here that the partiipof the opponent’s
strategy space is simply a convenience in this particulse cand that computing (or
approximating) an expectimax response in larger games mateloe prohibitively ex-
pensive.

We have chosen to compute a response to the MAP estimate ofpfienent’s
strategy, essentially assuming that the the most probgiplerent strategy is the only
strategy they could be playing. In general, it would be mateust to consider all
possible strategies the opponent might be playing weightedrding to the posterior
distribution over those strategies. If, for example, thetpror distribution gives high
probability to multiple strategies that differ significanfe.g., the posterior distribution
is multimodal), the MAP approach may fixate on the wrong stnat Computing the
Bayesian best response an opponent’s play in poker has been explored previously
for larger poker games (Southey et al., 2005). In this worlcasmsider only the MAP
estimate because our choice of prior distribution (seei@e8t1) means that the pos-
terior distribution will be unimodal, so the MAP estimatauislikely to be significantly
deceptive.

It should be mentioned here that MAP estimation of the opptsistrategy fol-
lowed by play of a best response is a generalization of aiclapproach to learning
in games known afictitious play (Brown, 1951) (see (Fudenberg & Levine, 1998)
for a lengthy discussion of fictitious play). In fictitiousapl the learner assumes their
opponent’s strategy is stationary. Each roundhaximum likelihoodestimate of the
opponent’s strategy is computed and a best response isdpdgygénst it. This is iden-
tical to our own procedure when a uniform prior is usétk{a(0,0)). Note that the
term “fictitious play” arises from its original conceptios a means to compute max-
imin strategies by self-play. In this scenario, two ins&sof this algorithm repeatedly
play against each other. It can be shown that each playenaviomur, averaged over
repeated games, will converge to a maximin strategy (ilash strategy in two player
zero-sum games) (Robinson, 1951). Our experiments witardifit priors include the
uniform prior.

3.1 Priors

For our prior we use @eta distribution, which gives a probability distribution ovar
single parameter that ranges from 0 to 1. When modelling ir&efore, we require



two Beta distributions to characterize our prior belief of how thdsyp EachBeta
distribution is characterized by two parametérs> 0 andw > 0. The distribution
can be understood as pretending that we have observed tlo@enjs binary deci-
sions several times in the past, and that we obsef\abices one way and choices
the other way. Thus, low values férandw (e.g.,Beta(1, 1)) represent a weak prior,
easily overcome by subsequent observations. Larger védugsBeta(10,10)) rep-
resent a much stronger belief. We offer a somewhat morele@tdiscussion oBeta
distributions in Appendix A.

A poorly chosen prior (i.e. a bad model of the opponent) thatiéak may not
cost us much because it will be quickly overwhelmed by oletésus. However, a
good prior (i.e. a close model of the opponent) that is tookweay be thwarted
by unlucky observations early in the game that belie the oppts true nature. We
examine the effects of the prior in a later section. The defaior, unless otherwise
specified, isBeta(1, 1) for bothn and¢ (i.e., the most probable P2 strategy is assumed
to ben = 0.5 and¢ = 0.5, pretending we have observed, for each parameter, two
decisions (onbetand ongpas$ governed by that parameter). Note that this prior was
selected, before any experimentation, as a natural firgtelifthe experimenter was
not previously familiar with other logical choices, sucttlas Nash strategy%@ %). The
use of this prior is a very common default choice in Bayesaameter estimation and
other statistical methods where it is sometimes referred tihvel aplacian correction
(e.g., (Margineantu & Dietterich, 2002)).

It should be noted that playing a best response to the priatesfy itself would
have different expected values against different oppandrterefore, the payoff rates
and winnings that will be shown in plots for the experimem&dults have different
values against different opponents even in the first fewsstéphe game, despite the
fact that the same initial strategy is used. We make thisrghtien to explain what,
at first, might seem like an inconsistency in our experime¥s present results for a
variety of priors in Section 5.2.

3.2 Maximum a Posteriori for Kuhn Poker

We will now derive the MAP parameter estimate for P2, using@®eta prior. We want
to find the most probable settings for parameteasd¢ given a set of observatiornds.
More formally, we need to solve

argm‘c}éxp(n, €l0)
un

Using Bayes rule in the standard way, we can get the followiogortionality

P(,£|0) o< P(Oln, §)P(n,€)

whereP(n, £) is our prior. Our maximization then, is simply
argrr%agxP(n,é“IO) - argrglafo(Oln,f)P(n,ﬁ)

We assume the two parameters are independent and eachsfslbomeBeta distribu-
tion, soP(n,§) = P(n)P(§) = Beta(f,,w,)Beta(fe, we).

10



3.2.1 Probability of Kuhn Observations Given Parameters

P(Oln,€) is the probability of the observations given parameteemdé. There are
only a small number of possible observations in Kuhn poket,anly a subset of these
actually depend on P2’s strategy. Most of these obsenatinquite straightforward.
For example, the probability of a single observationFofbB (i.e., P1 holdsk, P2
holds@, and the betting sequencebig — bet), is %777. Probabilities such as these can
easily be derived by examination of the tree in Figure 1. iathase, there is g prob-
ability of K@) being dealt, and the betting sequence is the product of thelayers’
parameters andn. However, from P1's perspective,is a known constant, and so in
our maximization, we can drop terms involving P1’s paramsd@d the constants from
dealing cards, leaving us with the parameteTherefore, the probability of observing
the KQbB gameN times is proportional tg.

A complication arises when one of the players folds. In suchse, P1 does not
get to observe P2’s card. This can be addressed by margiabnt the unknown
quantity, which consists of summing the probabilities ¢f tibservation given every
card that P2 could have held. In Kuhn poker, there can onlywbestich cards.

For example, suppose P1 obseryé®P (i.e., P1 heldk, P2's card is unknown
because P2 folded, and the betting sequencebafas pass). Two possible hands
might have been played{(JbP and K QbP). We must therefore sum the probabilities
of these two,P(K?bP) = P(KJbP) + P(KQbP) = v+ ty(1 —n) < 2 —n.
Therefore, the probability of observing thé?bP gameN times is proportional to
(2 — n)N. A full discussion of handling uncertainty due to foldingpker can be
found in (Southey et al., 2005).

One additional subtlety relates to dominated strategieke dbservation/?6P
would appear to be ambiguous because P2 folded. HoweveérhibllsK , the strategy
of passing is dominated by betting. Since we assume thatayepplays dominated
strategies, we can then infer that any observatiof?6f” was due to P2 holding@. P1
has certain information about P2’s card, even though it vea®bserved. We therefore
write this sequencé(Q)bP to show that it is not truly unknowp.

By examining the tree in this fashion, we can derive expogssior every possi-
ble observation. We omit a detailed account as they arerallasito the preceding
examples. The final expression is then

P(O|77, 5) 08 WNJQbB+NKQbB (1 — n)NJ(Q)bP (2 _ TI)NK?bP
gNQJpBbJrNKJpBb(l _ g)NQ,;perNK,,pP(l + g)NQpr

where each subscriptéd is the number of times each corresponding observation was
made.

The Beta priors simply correspond to additional counts, pretendieghave made
past observations. Therefore our objective simply becomes

p(0|77’ §)P(77)P(§) x nN.IQbB+NKQbB+077(1 _ n)N.I(Q)bP+W77 (2 _ ,rl)NK?bP
gNQ.IpBb+NK.IpBb+05 (1 _ é’)NQJpP+NKJpP+UJE(1 4 g)NQ?po

SEquivalently, we could note that the sequend&bP has probability 0, and then apply the summation
over JKbP andJQbP as described for the more general folding case.

11



In order to simplify the discussion that follows, we summarhese counts as follows

A = Ny + Nrgvs +0, D = NqpBs+ NipBy + 0¢
B = Ny@pup+wy E Noipp + Nk jpp + we
C = Ngwp F = Ngupsp

giving us the more readable objective

POln,&)P(mP(E) o« n*(1—n)P@2-n°eP1-" 1+

We now need to find the maximum of this objective. Note thatWmwparameters
n and¢ occur independently, so we can maximize them independ®itilg will now
show the closed form maximization of each.

3.2.2 Maximum a posteriori for n

We maximize by setting the derivative of the posterior phulitg for 7 to zero.

OP(n,&|0)P(n)P(§)
on

AnAT 1 =n)B@2 =) =Byt —n)P 2 -n)°

—Cn(1—n)P2—-n°"
= A(l-n)(2-n) —Bn2-n)—Cn(l—n)
= 244 (-3A-2B—C)p+(A+B+O)n?

This expression is quadratic so we need only find the rootbt@imthe maximum.
Using the negative root, which ensures a valu@in], the estimate for is then

—by — | /b% — daycy

2ay,
wherea, = A+ B+ C, b, = —3A— 2B — C, andc, = 2A.

’f]:

3.2.3 Maximum a posteriori for £

A similar derivation for¢ gives

R —bg 4 /b? — 40‘565
5 =

2&5

whereasg = —D — E — F,bg = —E + F, andc; = D.

It should be noted that such convenient closed forms for Mstifretes of strate-
gies are very rare in the space of possible Hold’em style igokeven in Kuhn poker,
we encounter difficulty when we try to apply the same apprdéatiaving P2 model P1
(see Section 3.3 for more details on this). In general, elightly more complicated
games make the estimation problem substantially more dliffitVe will discuss this
broader issue in greater detail in Section 9.

6This independence is due in the first place to the structutbeofjame itself, which does not couple
these two parameters, and in the second place, to our pfiichvassumes independence. A different prior
could conceivably couple these two parameters.

12



3.3 P2 Modelling P1

The MAP estimators for P2 modelling P1's parameters haveoneanient closed form
solution that we have been able to compute (and there mayri®) .né/e therefore use
the approximate estimators described in (Hoehn, 2006).ekhet formulation is a bit
lengthy so we omit it here. In brief, the estimators are comply identifying each
information set corresponding to the application of a Phpeater and then consider-
ing the corresponding information sets for P2’s view of tiaeng. In several of these,
P2 does not always obtain information about P1's holdings, t folding. In such
cases, there are two possible states for P1’s holdingsndepeon which card they
were dealt. Since the overall number of occasions where @néhformation set was
encountered by P1 is known to P2, the estimators make thenasisum that exactly
half of those occasions correspond to each possible cardex@mnple, if P2 holds
the King k times and observes the opponent holding the Quetmes, the Jaclj,
and does not observe the opponent’s eatines (note thak = ¢ + j + u), then the
opponent is assumed to have held unobserved Queens ¢ times and unobserved
Jacksk/2 — j times. Using these assumed counts for the unobserved opipoole-
ings, MAP estimates are then computed independently fdr paameter in each such
situation. Having now multiple estimates for each paramétey are combined by a
weighted sum, with weights proportional to the number oagadints observed by the
corresponding estimator.

There are a few tricky details related to the handling of v@mall numbers of
observations or observations inconsistent with a pesfestén dealing of cards (see
(Hoehn, 2006) Section 3.2.2 and particularly equation @r@létails) but, broadly, this
estimation procedure can be thought of as an average oféndept estimators, with
the strong assumption that the cards were dealt exactly@iogoto the mean of the
distribution over cards. As the number of hands played gtamge, this approximation
is expected to behave like the true MAP estimate. Experisn@escribed in (Hoehn,
2006) used a similar approximation for P1 modelling P2 amigared the learning
results with the true MAP estimate. These showed littleedéice between the two
approaches and that they quickly converge to near identsailts as the number of
hands played increases. This provides some evidence ghaptiroximation has value,
albeit in a simpler context. We therefore present the istecereader with results using
this approximation for P2 modelling P1 in the supplemerdaline appendix, with a
caveat regarding any conclusions that may be drawn from.them

3.4 Nash Equilibria and Exploration

In two player, zero-sum games, Nash equilibrium strategiegantee a certain min-
imum value regardless of the opponent’s strategy. As shay, are “safe” strategies
in the sense that they minimize the worst-case loss. As omesdi above, the Nash
strategies for P1 in Kuhn poker guarantee an expected vélud 418,” and thus can
only guarantee a loss. Against a given P2 strategy, soméNiash-P1 strategy could
be better or worse than Nash. There are no guarantees. Sothewggh any Nash

"Recall that all strategies we consider assentiglso the guarantee is for an exact value rather than just
a minimum.
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strategy is a losing proposition for P1, it may be better ttenalternatives against an
unknown opponent. It therefore makes sense to considetiag@Nash strategy until
an opponent model can be learned. Then the best means oftixptbat model can
be tried.

In many games, and more particularly in the case of Kuhn Pokdr, there are
multiple Nash strategies. We explore the possibility tloate of these strategies allow
for faster learning of an opponent model than others. Thetexce of such strategies
means that even though they guarantee identical gameetieeailues, some strategies
may be more useful than others against exploitable oppsnent

Another interesting approach is to mix essential strategfeas to maximize explo-
ration, regardless of the cost. For this, we employ a “badhexploration strategy,
( = 1,8 = 1,y = .5), that forces as many showdowns as possible and equally ex-
plores P2’s two parameters. This exploratory strategy hsanum winning rate of
-0.417, which is more than 7 times worse than a Nash strafBggrefore, the infor-
mation it gains can come at a substantial cost. Of courss,fbssible that against
a particular opponent, the balanced strategy is a good mespand exploits that op-
ponent effectively. The experiments presented in Secti@8rsBow how this tradeoff
between safety and exploration plays out in practice.

Finally, we will note that one might choose to play non-etiséstrategies in order
to obtain more informatiof. We have explored this possibility briefly, omitting the
results here. While one can gain some information by plagiparticular dominated
strategy in Kuhn poker (P2 passing when holding the King imob?2), experiments
showed that the cost of playing this strategy vs. the infdionagained was a poor
tradeoff (Hoehn, 2006). However, in other forms of poker aright gain useful in-
formation by playing dominated strategies (e.g., callingppponent to a showdown in
order to observe their holdings in a situation where the selysible choice from an
immediate winnings perspective is to fold).

4 Strategy Learning

The other learning approach we examine here is what we willstategy learning
We can view a strategy as arpertthat recommends how to play the hand. In experts-
based learning, a set of experts is used, each making itsreeadation and the final
decision being made by masterprogram. Ascoreis kept for each expert, tracking
how good its past decisions would have been. The mastergrogelects its actions
by considering the scores of the various experts. Favouvéndo the experts in pro-
portion to their past success. There are many specific i@r&bn this basic approach,
intended to handle the different features of specific proldemains.

Taking the six pure strategies shown in Figure 2 plus a siNgleh strategya =
1.8 = 1,7 = 3) as our experts, we use a variation of the Exp4 algorithm (&tiel.,
1995) to control play by these experts. Exp4 mainded-regredlgorithm designed for
partially-observable games, based on earlier work usipgres for perfectinformation
games (Freund & Schapire, 1996, 1999). It mixes exploraiwhexploitation in an

8Note that, in general, dominated strategies are a subsheafdn-essential strategies. In Kuhn poker
specifically, all non-essential strategies are dominated.
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online fashion to ensure that it cannot be trapped by a dveeppponent. Exp4 has
two parameters, a learning rate> 0 and an explorationrate < ¢ < 1 (¢ = 11is
uniform random exploration with no online exploitation).

As formulated by Auer et al., Exp4 only handles games withnglsi decision.
However, for Kuhn poker, a sequence of decisions is sometiteeessary. This slightly
complicates matters because a strategy specifies a digtnbaver actions in every
possible situation. For any single observed hand, howessewill only observe a sub-
set of the possible decision points. The exact subset dspmdhance events (i.e.,
cards being dealt) and on the opponent’s actions. Therefwcestrategies that give
differing recommendations in unobserved parts of the gamgétagree on the set of
actions taken during this particular hand. Since eithetagy could have produced the
observed actions, it makes sense to award each expert soneg gportional to the
probability with which they would have behaved as obserwd.call this algorithm
sequential Exp4see Algorithm 1 for details). A closely related algorithmshbeen
analyzed in (Zinkevich, 2004).

Algorithm 1 Sequential Exp4
1. GivenK strategies (experts); - - - ok, initialize thescoresfor each strategy to
zerois; =0,1<1 < K

2. Fort = 1,2, ... until the match ends:

(a) Letthe probability of playing théh strategy for handbe

A+p"® @
Zf:l(l + p)si® K

pi(t) = (1—9)

(b) Randomly select a strategy from the set of’ experts with probability
proportional to they;.

(c) Play according to.

(d) Observe the resulting sequence of actiansnd the hand’s winnings
(scaled so thaw € [0, 1]).

(e) Compute the probability for each strategy of generatiregobserved se-
quence ofl actionsg;(t) = P(alo;) = Hj.l:l P(aj|oy)

() Compute new scores

Sit 1:Sit it*,lgigK
ey ()Jrq()Zf:wj(t)Qj(t)

Exp4 makes very weak assumptions regarding the opponehasag guarantees
apply very broadly. In particular, it assumes a non-statigmwpponent that can decide
the payoffs in the game at every round. This is a much more gal@ponent than
our assumptions dictate (a stationary opponent and fixeaffsqyAlong with updating
all agreeing experts, a further modification was made to #séctalgorithm in order to
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improve its performance in our particular setting.

A simple improvement, intended to mitigate the effects cdbisample sizes, is to
replace the single score;] for each strategy with multiple scores, depending on the
card they hold. We also keep a count of how many times eachheartdeen held. So,
instead of just;, we have per-card scorgs, s; g, ands; x, and card counters ;,
¢i,0, ande; k. We then update the score specific to the card held duringethe and
increment the corresponding counter. We now compute therespores for Algorithm
1's probabilistic selection as follows:; = is; ;/cis + 25:.0/ci0 + 251k /ci k.
This avoids erratic behaviour if one card shows up dispriuately often by chance
(e.g. the King 10 times and the Jack only once). Naturallghseffects vanish as
the number of hands grows large but we are specifically coecewith short-term
behaviour. We are simply using the sum of estimated expentaihstead of estimating
the expectation of a sum, in order to reduce variance.

In all experiments reported herg, = 1 andy = 0.75, values determined by
experimentation to give good results. Recall that we amngiting to find out how
well it is possibleto do, so this parameter tuning is consistent with our objest

5 Experimental Results

We conducted a large set of experiments using both learn@thads to answer various
questions. In particular, we are interested in how quiokfrhing methods can achieve
better than Nash equilibrium (i.e., winning rate—1/18) or breakeven (i.e., winning
rate > 0) results for P1, assuming the opponent is exploitable tbekgent. In the
former case, P1 is successfully exploiting an opponentdace losses, while in the
latter case P1 can actually win if enough hands are playeaeker, we aim to play
well in short matches, making asymptotic winning rates wiitied interest. Most of
our results focus on the total winnings over a small numbérasfds (typically 200,
although other numbers are considered).

In our experiments, P1 plays an exploratory strategy up ta haearning during
this period. P1 then stops learning and switches stratégiegploit the opponent.
In parameter learning, unless specified otherwise, thaftzald” exploratory strategy
described earlier is used throughout the first phase. Iretb@rsl phase, a best response
is computed to the estimated opponent strategy and thaleige'd” (in practice, having
both strategies, we compute the exact expected winningusatgy Equation 1). For
strategy learning, sequential Exp4 is run in the first phaisempting some exploitation
as it explores, since it is an online algorithm. In the secphdse, the highest rated
expert plays the remaining hands.

We are chiefly interested in the number of hands after whigheitfective to switch
from exploration to exploitation. Our results are expressetwo kinds of plot. The
first kind is apayoff rate plot—a plot of the expected payoff rate versus the number
of hands before switching, showing the rate at which P1 will after switching to
exploitation. Such plots serve two purposes; they showahg-term effectiveness of
the learned model, and also how rapidly the learner conggogmaximal exploitation.

The second kind of plot, #tal winnings plot,is more germane to our goals. It
shows the expected total winnings versus the number of Haefdse switching, where
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the player plays a fixed total number of hands (e.g. 200). iBlasmore realistic view
of the problem because it allows us to answer questions ssichf #1 switches at
hand 50, will the price paid for exploring be offset by the éf#trof exploitation? It is
important to be clear that the x-axis of both kinds of ploersfto the number of hands
before switching to exploitation.

All experiments were run against all six P2 opponents seteftom the six re-
gions in Figure 2. Results were also run for randomly geedrapponents, all with
the same maximum exploitability. In thefiged exploitabilityexperiments, a maxi-
mum exploitation rater, is fixed for the experiment and a new opponent is randomly
generated every trial such that a best response for eacmeppwins at rate. This
allow us to average results across a large set of opponategies without introducing
variance due to different levels of exploitability.

Only representative results are shown here due to spactaiots The remaining
results are available in the supplemental online appehdike supplemental online
appendix also contains results for P2 modelling P1 (sedd®e8t3 for related com-
ments). Results were averaged over 30,000 trials for batmpeter learning and strat-
egy learning. The single opponent in the figures that follsv@§, unless otherwise
specified, and is typical of the results obtained for the ppanents. Similarly, results
are for parameter learning unless otherwise specified, amlstent results were found
for strategy learning, albeit with overall lower perforncan

5.1 Convergence Rate Study

This study addresses the question of how quickly the twalagrapproaches converge
to optimal exploitation of the opponent (i.e., the true bresponse). Figure 4 shows
the expected payoff rate plot of the two learning methodsnsga single opponent.
The straight line near the top shows the maximum exploiatide for this opponent
(i.e. the value of a best response to P2’s strategy). It tdR@shands for parameter
learning to almost converge to the maximum and strategyilegudoes not converge
within 900 hands. Results for other opponents are genesifiijar or worse Q- is a
notable exception), requiring several hundred hands far-nenvergence. This shows
that, even in this tiny game against a stationary opponeetcannot expect to achieve
maximal exploitation in a small number of hands, at leashwiese standard methods
and probably most related variations. The possibility okimmel exploitation in larger
games can reasonably be ruled out on this basis and we mystradce modest goals
for opponent modelling. Figure 5 shows the same study, beitaaed over random
opponents with fixed exploitability = 0.055. The results here are very similar to
the single opponent, but we also show the results for the Magloration parameter
learning =1).

5.2 Parameter Learning Prior Study

In any Bayesian parameter estimation approach, the chdigeiar is clearly im-
portant. Here we present a comparison of various priorsnagai single opponent

9(The eventual URL for the supplemental appendix will go h&tease find the supplement attached for
review.)
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Figure 6: Prior Study: Four different priors for parameearhing againsbs.

(Os = (.17,.2)). Expected total winnings are shown for five priors. Eachhefse
is characterized by tw@eta distributions and we note the most probable parameter
setting under that prior in parentheses.

e a weak, default prior ofBeta(1,1), Beta(1,1)] (.5,.5)

e aweak, bad prior ofBeta(1.4,0.6), Beta(1,1)] (.7,.5)

e astrong, default prior ofBeta(10, 10), Beta(10, 10)] (.5,.5)
e astrong, bad prior dfBeta(14, 6), Beta(10,10)] (.7,.5)

e anuninformedprior (no prior at all)

The weak priors assume 2 fictitious observations of eachpetex and the strong pri-
ors assume 20 observations each. The “bad” prior is so dadleduse it is quite distant
from the real strategy of this opponent. The uninformedrgras no fictitious observa-
tions; MAP estimation with such a prior is known mximum likelihooastimation.
Figure 6 shows that the weak and uninformed priors clearlpetter than the strong,
allowing for fast adaptation to the correct opponent modék strong priors perform
much more poorly, especially the strong bad prior. It is alesth noting that after
50 hands, the bad weak prior is scarcely inferior to the defeeak prior, so our poor
early choice does not hurt us much. While very closelgn the weak default prior
and uninformed prior each outperform the other on some ofpip@nents, making no
clear choice between them obvious.
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Figure 7: Nash Exploration Study: Expected total winnings switching hand for
parameter learning using various Nash strategies for exjdm againsOs.

5.3 Nash Exploration Study

Figure 7 shows the expected total winnings for parametenileg when various Nash
strategies are played by the learner during the learningghkhe strategies with larger

~ values are typically stronger, more effectively explorihg opponent’s strategy dur-
ing the learning phase. This advantage is true across akliagpponents we tried,
with the behaviour ofy = 0 a noteworthy exception in that on some opponents it is the
best performer, while on others it is the worst. This is bseahe Nash strategy with

~ = 0 always passes while holding the King or the Jack and thezefever makes any
observations related to the opponentjsarameter.

5.4 Learning Method Comparison

Figure 8 directly compares strategy and parameter leafibioth balanced and Nash
exploration ¢ = 0.75)), all against a single opponent. Balanced parameteritggrn
outperforms strategy learning substantially for this apgrat. Over all opponents, ei-
ther the balanced or the Nash parameter learner is the bebstategy learning is
worst in most cases (a notable exception is strategy legquagainst opponeri®; and
for O, its results are not far from the winner, Nash parameter iegjn Figure 9
shows the same study averaged over random opponents witmomaxexploitability
7 = 0.055. Here we see some differences. Most notably, the Nash etaris a
much safer choice for late switches. Balanced exploratreesgoest results with early
switches but pays a heavy penalty for switching late. Swiglt around 50 hands is
a safe choice for either of the parameter learners. Strd¢egging remains an overall
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Figure 8: Learning Method Comparison: Expected total wigsivs. switching hand
for both parameter learning and strategy learning agéigst

loser, but is more robust to late switching than balancedbeafion.

5.5 Game Length Study

This study is provided to show that our total winnings resalte robust to games of
varying length. While most of our results are presented fomgs of 200 hands, it
is only natural to question whether different numbers ofdsawould have different
optimal switching points. Figure 10 shows overlaid totahmings plots for 50, 100,
200, and 400 hands using parameter learning. The lines peraded because the
possible total winnings is different for differing numbess hands. The important
observation to make is that the highest value regions otthasves are fairly broad,
indicating that switching times are flexible. Moreover, tfeak regions of the various
curves overlap substantially. Thus, switching at hand %0risasonable choice for all
of these game lengths, offering close to the best possitdéwonnings in all cases.
This means that even if we are unsuaegriori, of the number of hands to be played,
we can be confident in our choice of switching time, at leastr dke range of 50 to
400. Moreover, this result is robust across our range of nppts. A switch at hand
50 works acceptably in all cases.

5.6 Proportion Above Nash Study

If a Nash strategy is known, then any deviation from thatisgy must be justified by
the hope that it successfully exploits the opponent. Otlseryone is better off sticking
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Figure 11: Proportion Above Nash Strategy Study: Propostaf trials with winnings
higher than Nash vs. switching hand for parameter and giyd¢éarning againsbg.

to the “safe” strategy. While the opponent modelling altforis have been seen to do
well on average, how often is the attempt to exploit a losirgppsition? We attempt
to answer this question by plotting the proportion of trialsvhich the opponent mod-
eller’s total winnings equal or exceed the expected totahinigs for playing a Nash
strategy, versus the switching hand. This proportion isftbguency with which the
attempt to exploit at least did not hurt us, and possibly wexseficial. It gives some
notion of how damaging the variance can be. Figure 11 showexperiment against
a single opponent)s. The results show that, around the 50 hand switching point,
over 80% of trials of balanced parameter learning and oty less than 80% of
trials of Nash exploration parameter learning achieveastlthe expected winnings of
a Nash strategy. Strategy learning fares the worst butpgtifiorms at least as well as
the expected Nash strategy winnings in almost 70% of thés taaits best switching
point.

6 Non-Monotonic Learning Curves

Most of the payoff rate curves in our parameter-learninglissi are like Figure 5,
with the expected payoff rate of the estimated model inémnganonotonically as more
hands are played. This makes sense intuitively; even tholighce events in the deal
of the cards or the opponent’s stochastic play can sometim®ead, on average each
hand gives representative information about the oppomdrith accumulates to pro-
duce increasingly accurate estimates of the opponerdegic parameters.
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Figure 12: Expected Payoff Rate for Balanced Explore (Pi3us, for different
strengths of priors.

However, some payoff curves in our studies exhibit a difigraon-monotone be-
haviour. For example, Figure 12 shows three convergeneeuates for P1 modelling
P2 when P2 is playing the strategy = (,£) = (0.75,0.8), P1 is using the Bal-
anced Explore strategy for exploration and P1’s initialneate of P2's parameters is
(n,&) = (0.5,0.5). The different curves result from P1 having different sgs given
to this initial estimate, with “weak" and “strong" being dedd exactly as in the Prior
study in Section 5.2. The uninformed curve is based on P1daang its initial esti-
mate of a parameter as soon as it has any observed data onta/iake its estimate.
For example, when P1, with the uninformed prior, first seebd2vith the Jack, it will
immediately change its estimatefo bel.0. As can be seen in Figure 12, the payoff
rate curves for the “weak" and uninformed priors are not ntomically increasing;
they decrease very sharply during the first few hands of phalyamly become mono-
tonically increasing after roughly 10 hands. These curvesagerages over 30,000
trials, so this effect is systematic.

The explanation of this phenomenon is as follows. Althougd default values
for n and¢ are not especially close to their actual values, in P2'desisaspace they
are on the boundary of regions S2 and S3 (see diagram 2), winéeims P1’'s best
response given these default values is almost the bestpmsssponse t@),. This
can be seen in Figure 12 by how close the expected payoff analto the maximum
possible expected payoff. As long as the data gatheredglpldy keeps P1's estimates
in regions S2 and S3, its expected payoff will remain at orvabibie initial value.
However, if the first few hands of play are not representativ®s’s play (e.g. O-
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does not bet with the Jack even though it has a probability.®bf doing so) P1's
estimate will move out of regions S2 and S3 and its expectgdfpaill plummet from
roughly +0.09 to less than-0.1. Figure 13 shows the percentage of trials on which
this happened. After playing 9 hands, P1's model had an ¢xgeayoff of—0.1 or
less on almost% of the trials when the default strength was “weak" and on ntivae
than25% of the trials when the prior was uninformed. From hand 10 agd&ghand 5
for uninformed) this percentage decreases monotonicalysing the expected payoff
rate curve to increase monotonically.

0.35 T T T T —T
uninformed —+—
weak, default ---x---

0.3

0.25

0.2

0.15

0.1

Percentage of trials with expected payoff < -0.1

0.05

60

Number of hands played

Figure 13: Percentage of Trials on which P1 had a badly wroodatofO-.

This phenonemonis important because it reflects a fundainit on how quickly
an adaptive system can acquire a trustworthy model of iteogpt. If the strength of
the default setting is sufficiently great to avoid this nooratonicity when the default
produces a good best response, it will be detrimental talegmhen the default is not
good, as shown in Figure 6. Thus, whatever strength is asdignthe default, it will
take roughly 15 hands of play to be sure the learned modetisadly wrong.

7 Learning against a Non-Stationary Opponent

One issue that has not been explored so far in this paper imtuelling of non-

stationary opponents, a complex issue for which much reseamains to be done. In
this section we present an initial study in which each pléyarodelling the other. The
main purpose of this experiment is to highlight the complegiof this situation rather
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than offer a comprehensive treatment.

In this experiment P1 is a parameter learner (using eitleeBtlanced Exploration
data-collection strategy or a Nash strategy=€ 0.75)) and P2 is a strategy learner
(ComponentAverageExp3 with 5 experts, described belowh FAhand match is
played, with P1 switching from exploration to exploitatiathand: (and not changing
his model or counter-strategy from that point on), and PAqutie ComponentAver-
ageExp3 method to select and re-weight its stategies e@ilyrthroughout the match.
P2 is therefore non-stationary, because the probability which it selects each expert
strategy changes from hand to hand to reflect the success strtiegy against P1. We
expect this ability to continually adapt will give P2 a graalvantage over the simple
“explore-then-exploit" P1.

P2 uses 5 experty, &) = {(1/3,1/3), (0,0), (0,1),(1,0), (1, 1)}, and the param-
eter settingp = 1 andy = 0.30. Because the experts initially have equal weight, P2
will initially appear to be playing the mixed strategy, £) = (0.47,0.47), the average
n and¢ values of its experts. Because P2 uniformly chooses betiteestrategies
30% of the time () = 0.30), P2’s effective; and¢ values cannot be less thar 41 or
greater thaf.841. This range of values allow P2 to play strategies in any regfdhe
P2 strategy space, and to heavily exploit P1's non-Nashoeaqibn strategy and P1's
play after it switches to playing a best response to its motieR.

Figure 7 shows the total expected winnings for P1 over a H¥20@l match as
a function of the time at which P1 switches from the data gatgephase to the ex-
ploitation phase. The curve marked with the asterisks shtivssing the “Balanced"
exploration strategy while the curve marked with the sgsiateows P1 using a Nash
data-gathering strategy. Each point is an average of 3®00¢hand matches. The
dashed horizontal line shows the winnings of a static Nasttegly over a 200-hand
match.

P1’s initial parameter estimatds;, £) = (0.5,0.5), are almost perfectly correct for
P2’s initially uniformly weighted experts. If P2 were a stabpponent, P1 would do
very well to switch at time 0O; it would have an expected payaft of —0.011, five
times better than the payoff rate of the static Nash StrategyP2 is not static, and if
P1 switches at time 0, P1 will be playing a fixed strategy thrmut the match, giving
P2 all 200 hands to shift weight towards, and play, the exghaittis best against this
P1 strategy. As a consequence, if P1 switches at time 0 @stirinings are somewhat
worse than playing a static Nash strategy.

The curves exhibit the 3-phase form that is often seen whehaBlgood initial
estimates of stationary opponents. In the first phase (sinjchand in the approximate
range 1-15 for Balanced Exploration, 1-20 for Nash), totainings drops sharply.
This is caused by the randomness of the cards dealt and ttteasta play by both P1
and P2, which result in there being a significant number oftdtend sequences that
mislead P1 into choosing to play strategies S4 or S5, whitltbehighly exploited by
P2 without P2 having to change its initial expert weightings

In the second phase (switching hand in the range 16-45 farBall, 21-150 for
Nash), enough hands have been played that P1 is reliablyfamayhe “disaster zone"
that caused the steep initial decline. P1’s total winnimggrove steadily through this
phase.

Against a stationary opponent, the second phase ends ontasRéarned a very
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good (if not quite optimal) model of P2. Further exploratisrdetrimental to total
winnings once the incremental improvement in the modeleghby further exploration
is outweighed by the reduction in the number of trials in vihice learned model can
be exploited, the classic exploration-exploitation tiaftle

Against a non-stationary opponent, the second phase endsifth more complex
reasons. First of all, there is pressure for P1 to switch feoqploration to exploita-
tion simply because P2 is modelling P1 while P1 explores. lifeRplores for too
long, P2 will learn, and play, a best response to P1's exfptoratrategy and P1 will
be paying an inordinately large price for the informatioisigathering. This is why
the second phase for Balanced exploration is so much shbeerthe second phase
for Nash exploration: the former strategy is easily ideatife and highly exploitable,
whereas the latter is hard for P2 to learn, because of its stigthasticity, and mini-
mally exploitable. On the other hand, there are also read®om&l to extend its second
phase against a non-stationary opponent. The longer Pihuestto explore the more
strongly P2 will believe P1 is playing according to the expt®on strategy and the
slower P2 will be to respond to P1’s switch to exploitatiamaddition, P2 will have
less time to exploit P1's learned model. The interplay betwall these factors deter-
mines the optimal switching point for P1.
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8 Related Work

Poker has received increasing attention in recent yeatls,aniecent emphasis on op-
ponent modelling. For large scale games, both frequeilings et al., 2004) and
Bayesian (Korb & Nicholson, 1999) approaches have beed, toigt each of these has
omitted some aspect of the full game in their model. A recenp of results has ap-
peared for small scale games attempting, as in this papgppimach the problem with
small models that are easier to analyze. Powers and Sholemirexthe problem of
computing a best response given only samples from an oppssaategy, exploring
both oblivious opponents and opponents that are aware offttrenation they have re-
vealed (Powers & Shoham, 2003). They also present criterigérning in games and
an algorithm achieving those criteria in two player, perfatormation games against
a stationary opponent (Powers & Shoham, 2005)Geoff Gordon has examined a
class of no-regret algorithms on a game of one-card pokerd@n 2005). Finally,
Poland and Hutter have conducted a study similar to oursiiit, sgmpirically evaluat-
ing a probabilistic modelling approach and an expertsdbapproach o2 x 2 matrix
games rather than poker (Poland & Hutter, 2005).

9 Scaling to Larger Games

The study of a small game like Kuhn poker allows exact conspas to theoretical
ideals, a thorough study by empirical means, and detailatysis of results by hand.
However, the question naturally arises whether the oppanedelling approaches dis-
cussed here will behave similarly on larger games, inclgid@al-world poker games.
In particular, are large-scale versions of these algostlikely to achieve the rapid
learning required? Game theory research like Kuhn's isciifyi limited to small
games for which analytical methods can be applied. At therathd of the spectrum,
research on real-world games like chess and poker typiatitgks the full version of
the games with approximate algorithms and empirical studie
There are two obvious ways in which Kuhn poker can be scaled up

1. broadening: adding cards to the deck, thereby incred&sargching factors, and,

2. deepening: adding more rounds of betting or allowing nmwets per round,
thereby increasing depth.

In other Hold’em-style pokers that have been studied, holg research games such
as Leduc Hold’em (Southey et al., 2005) and Rhode Island’EimidShi & Littman,

10The Powers and Shoham algorithm simplifies to somethinglait our Nash exploration parameter
learning in the case of two player, zero-sum games. It skartgsing the BullyMixed strategy during an
initial exploration phase. In two-player, zero-sum gantks,BullyMixed strategy is equivalent to a Nash
strategy. The exact path of the algorithm depends on théaeship between the variance in the game’s
value on each round, variance in the distribution of oppbaetions, and a set of fixed parameters, but it is
likely to switch from its Nash exploration to playing arbest response against an estimate of the opponent
strategy. While their setting is perfect information garaes they have no prior over opponent strategies,
our approach of Nash exploration followed by playing bespomses to a MAP estimate of the opponent
based on imperfect observations is conceptually very aimil
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2001), and real-world games like limit Texas Hold’em, botmensions have been
increased. Compared to Kuhn poker, Leduc Hold’em has siksdastead of three and
two rounds of betting instead of one. A typical set of rulesliimit Texas Hold’'em
uses the full deck of 52 cards and four betting rounds with asynas three or four
bets allowed per round. Increasing either aspect of the gaoneases the size of the
game tree and therefore the number of decision painfisrnation setsn game theory
parlance) for both players. To fully describe the strateigy player, one must specify
the probabilities of the actions at every information sdtisTset of parameters grows
very quickly as the number of cards and rounds increases.

The challenge to opponent modelling is immediate. In terfrdirect parameter
learning, we must estimate a large set of parameters with litde data. With in-
creased deck size, the number of parameters within eaatmafmn set grows, adding
to the uncertainty of folded hands. In terms of the indirexpert-based, strategy learn-
ing approach, the set of possible experts increases dathatiVe must evaluate the
performance of a large set of experts based on only a smabeuai hands.

For short-term opponent modelling to have any hope, we nelysbn the existence
of some correlation between the decisions made in diffgraris of the game tree. This
is not an unreasonable belief in many cases, as we would ergasonable players to
behave similarly in similar situations. A good player wilbntheir strategies in order
to confuse opponents but there must still be some consistetieeir play, dictated by
the nature of the game (highly erratic or nonsensical pldynet perform well).

Research has explored two ways of addressing this quedtaorrelation. One is
to take the game itself and identify “similar” situationer some chosen definition of
similarity. The game can then be simplified and strategieegged with respect to this
new game. Another approach is to make assumptions abouathesrof the strategies
themselves. In our parameter learning, this corresporaptimr over strategies, while
in strategy learning it corresponds to the selection of gspe

9.1 Abstraction

The simplification of games is typically referred to alsstractionin the related re-
search. Abstraction reduces the size of a game tree by ngengides together and
treating them as equivalent. By extension, abstractionngans to reduce the num-
ber of information sets (distinguishable decision poiirighe game by grouping their
nodes together. Information sets can be grouped togettteequivalence classes, es-
sentially assuming that strategies can be well-modelleddsyming the players will
use the same (possibly randomized) strategy at all infaomagets within a class. Each
equivalence class becomes an information set in the newaated game. Informa-
tion sets in poker consist of all cards revealed to the plapdrall actions taken by all
players so far. Clearly, these can be grouped together imampways. However, most
work on abstraction has looked at grouping information sagether based on cards
rather than actions. In this case, distinct sequencesiofacdre treated as distinct, but
differences amongst cards are partially ignored.

One common abstraction for cards is to computeathin-equityfor a set of cards
(Shi & Littman, 2001; Billings et al., 2003; Southey et al0@b). This number can be
thought of as the proportion of the pot the player can expaein given the cards they
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hold and imagining all possible future cards that might appad all cards that might
be held by the opponent. In two player games specificallg,tihé probability of win-
ning plus half the probability of a tie. The actions takenaoifi the game are ignored
by this metric, so it is clearly a gross simplification. Nawégss, it does provide a con-
venient scalar estimate in the rangeé®fl | for the “strength” of the player’s hand. This
range can then be discretized into, for example, 10 intsyedfectively grouping cards
into one of ten card equivalence classes. These card egnosklasses, combined
with the action history, make up the information sets in thsteacted game.

One example of abstraction over actions is found in the VéxiBagram (Billings
et al., 2004). VexBot is akin to maximum likelihood, estiimgtthe opponent’s strat-
egy from frequency counts for actions and observed opparaeds. However, in the
presence of very little data, estimates will be scatteredragst the huge number of
information sets. To achieve some generalization, VexBakis estimates over several
different abstractions that group together situationetam similiarities in actions.
For example, one such grouping considers a set of situatiions the same if the op-
ponent made an equal number of bets/raises. This essgiiadires the player's own
actions, and the specific order of the opponent’s actionxBdtthen combines the
estimates from the different abstractions to guide its.play

Finally, Gilpin and Sandholm have worked extensively oroedtically generating
abstractions of game trees with specific application to p&#pin & Sandholm, 2006,
2007a, 2007b; Gilpin et al., 2007). These methods even dlowhe discovery of
abstracted games with Nash equilibria that correspondttirto the equilibria in the
original game. Approximate methods that do not preservéibra provide an avenue
for even smaller abstractions.

9.2 Correlation in Strategies

Abstraction is essentially a hard decision about cormtain the original game; un-
der an abstraction, two information sets from the origireahg are either completely
correlated or completely independent. This has the aitteaptoperty that all subse-
quent reasoning is performed with respect to a smaller gatwsvever, it is clearly
a very strong assumption about the nature of opponents.h&namoother approach
is to recognize that strategies at information sets may bre mveakly correlated. For
example, a player holding two tens might be expected to havieas behaviour when
holding a pair of nines, only somewhat less cautious (e.grertikely to bet).

In Bayesian parameter learning, such correlations caniteiread in the prior over
strategies, giving higher probabilities to strategies thflect correlations between in-
formation sets supposed to be similar. The priors used imvouk here on Kuhn poker
do not capture any such correlation, since each paramedsrauiseta distribution as
a prior. However, in the work described in (Southey et alQ®0an expert-designed
prior was used. Characterized by ten parameters, the paatdigenerate strategies
that correlate the behaviour between betting rounds andsimélar classes of cards.
Thus, an overall tendency toward aggressive betting woalietflected over a range of
strong hands, and would be pursued round after round.

In strategy learning, as games grow larger, enumeratinfelpure strategies for
use as experts quickly becomes infeasible. It is therefecessary to select a smaller
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set of strategies, or to work with classes of strategies foickveffective algorithms
can be found that consider large numbers. In the simplest eaperts can be sampled
from a prior similar to that used by parameter learning. Aeoapproach is to sample
strategies from a prior, compute a best response for eachledrstrategy, and use
those as experts. More recently, the research in (Johatsah,&007) explores the
question of generating robust strategies for use in oppenedelling, dealing directly
with large abstractions of Texas Hold’em.

9.3 Learning in Larger Games

The closed-form MAP estimates used here for parameteritegimKuhn poker are not
feasible for larger games. One alternative is to use thelpogxpectation-maximization
(EM) algorithm (Dempster et al., 1977). In (Southey et a02), we instead used
Monte Carlo sampling from the prior. Over a fixed sample, oap simply track
the sampled strategy with highest posterior probabilityaasapproximation to the
true MAP strategy. While those experiments did not use tmeesavo-phase, ex-
plore/exploit framework presented here, we can make sorseredtions about the
convergence of the posterior distribution.

In (Southey et al., 2005), experiments on Leduc and absttabtxas Hold’'em
were run over 200 hands against fixed opponents using 10@tegites sampled from
the prior. In each experiment, the sampled strategy withhtgbest posterior proba-
bility after 200 hands was recorded, which we will here derig; 4 p. This means
thatoas ap is the “best fit” to the opponent amongst the sampled strasedrior Leduc
Hold’em, the relative posterior probability éf; 4 (i.€., the proportion of posterior
probability attributed to it) was about 0.05 after 50 har@i45 after 100 hands, 0.4
after 150 hands, and 0.78 after 200 hands. This shows thavérgual best fit strat-
egy had substantial mass on it (much more than the uniformghtieq initially on the
samples), even after 50 hands. The results are still mdkensfrin Texas Hold’em,
where the relative posterior probability &, 4 p was about 0.12 after 50 hands, 0.3 af-
ter 100 hands, 0.6 after 150 hands, and 0.9 after 200 hanisisTdn even more rapid
convergence to the best fit. While this does not necessaniyyi strong play, which
is heavily influenced by the prior from which the sampledtstges are drawn, it does
demonstrate fast learning. This leads us to believe thainpeter learning methods, at
least, will scale to offer some short-term benefit. Furtiedgis required to determine
exactly how much can be achieved with different priors.

Results are not available for strategy learning, but thezesemilarities to the pa-
rameter learning case. Strategy learning relies on a wesidgeal to inform the choice
of strategy, looking only at performance against the oppbaad not at the specific
actions taken by the opponent. However, there are seveyal tvaeduce the variance
in the estimates obtained by observing performance (dtgmpting to separately ac-
count for randomness introduced by the cards rather thandtgchastic opponent).
Strategy learning also has the advantage that it does natedhat our set of strategies
contain one that is similar to the opponent, but only thaoittain one that is effective
against the opponent. In larger games, where we can cormiflen comparatively
small subset of the possible strategies, this advantagédetyme important.
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10 Conclusions

This work shows that learning to maximally exploit an oppan&ven a stationary
one in a game as small as Kuhn poker, is not generally feaisildesmall number of
hands. However, the learning methods explored are capbéif®aing positive results
in as few as 50 hands, so that learning to exploit is typichdter than adopting a
pessimistic Nash strategy. Furthermore, this 50 hand bimigpoint is robust to game
length and opponent. Future work includes non-stationppoaents, a wider explo-
ration of learning strategies, and larger games. Both amtwes can scale up, provided
the number of parameters or experts is kept small (abstractin reduce parameters
and small sets of experts can be carefully selected). Ateoexploration differences
amongst equal-valued strategies (e.g., Nash in two plageo-sum games) deserves
more attention. It may be possible to more formally charétethe exploratory ef-
fectiveness of a strategy. We believe these results shawodueage more opponent
modelling research because, even though maximal expdoitet unlikely, fast oppo-
nent modelling may still yield significant benefits.

Appendix A: Beta Distribution

A Beta distribution gives a probability distribution over a siagdrobability (a value
in [0,1]). As such, it is a useful prior for single parameters in philigtic models.
A Beta distribution is characterized by two parametétsandw. The probability
assigned to a parameter value bgeta distribution is

oI +w)

PBeta(@,w) (I) = x9(1 o x) W

where the ratio of Gamma functions is simply a normalizingstant. A single prob-
ability is a distribution over two event#3eta distributions can be understood as “pre-
tending” that we have observed several events in the pasthabwe observefiof one
event andv of the other. Figure 15 shows three example®efaq distributions. Note
how we can obtain the uniform distribution wifBeta (0, 0) or distributions showing
the impact of past “pretended” evidente.
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Figure 15: Exampl&eta distributions.
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