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Abstract

Uncertainty in poker stems from two key sources, the shuffleddeck and an
adversary whose strategy is unknown. One approach to playing poker is to find a
pessimistic game-theoretic solution (i.e., a Nash equilibrium), but human players
have idiosyncratic weaknesses that can be exploited if somemodel or counter-
strategy can be learned by observing their play. However, games against humans
last for at most a few hundred hands, so learning must be very fast to be useful.
We explore two approaches to opponent modelling in the context of Kuhn poker,
a small game for which game-theoretic solutions are known. Parameter estimation
and expert algorithms are both studied. Experiments demonstrate that, even in this
small game, convergence to maximally exploitive solutionsin a small number of
hands is impractical, but that good (e.g., better than Nash)performance can be
achieved in as few as 50 hands. Finally, we show that amongst aset of strategies
with equal game-theoretic value, in particular the set of Nash equilibrium strate-
gies, some are preferable because they speed learning of theopponent’s strategy
by exploring it more effectively.

1 Introduction

Poker is a game of imperfect information against an adversary with an unknown,
stochastic strategy. It represents a tough challenge to artificial intelligence research.
Game-theoretic approaches seek to approximate the Nash equilibrium (i.e., maximin)
strategies of the game (Koller & Pfeffer, 1997; Billings et al., 2003; Gilpin & Sand-
holm, 2005; Zinkevich et al., 2007a, 2007b), but this represents a pessimistic world-
view where we assume some form of optimality in our opponent.Human players have
weaknesses that can be exploited to obtain winnings higher than the game-theoretic
value of the game. Learning by observing their play allows usto exploit their idiosyn-
cratic weaknesses. The learning can be done either directly, by estimating a model of
their strategy and then computing an appropriate response,or indirectly, by identifying
an effective counter-strategy.

Several factors render this difficult in practice. First, real-world poker games like
Texas Hold’em have huge game trees and the strategies involve many parameters (e.g.,
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two-player, limit Texas Hold’em has∼ 1018 parameters (Billings et al., 2003)). The
game also has high variance, stemming from the shuffled deck and one or both players
playing stochastic strategies. Strategically complex, the aim in poker is not simply
to win but to maximize winnings by enticing a weakly-positioned opponent to bet
or a strongly-positioned opponent to fold. Decisions during a hand must be made
with imperfect information because we cannot see our opponent’s cards. A further
aggravation of this uncertainty arises when one player folds. The opponent’s cards are
never observed, leaving us with only a partial observation even after the hand has been
played out. Finally, we cannot expect a large amount of data when playing human
opponents. We may play 200 hands or less against a given opponent and must learn
how they can be exploited quickly in order to gain by their weaknesses.

This research explores how rapidly one can gain an advantageby observing oppo-
nent play given that only a small number of hands will be played in total. The aim
here is not to develop new, specialized algorithms but rather to assess how established
learning techniques perform. Can these algorithms improveover game-theoretic per-
formance by quickly learning and exploiting human weaknesses? How should one
play while learning? To address these questions, two standard learning approaches
are studied:maximum a posteriori parameter estimation(parameter learning), and an
“experts” method derived from Exp4 (Auer et al., 1995) (strategy learning). Both will
be described in detail.

While most existing poker opponent modelling research focuses on real-world
games (Korb & Nicholson, 1999; Billings et al., 2004; Zinkevich et al., 2007a),
we systematically study a simpler version, reducing the game’s intrinsic difficulty to
show that, even in what might be considered the simplest case, the problem is still hard
in the sense that one cannot expect to converge to a near-maximal exploitation with so
little data. We start by assuming that the opponent’s strategy is fixed. Tracking a non-
stationary strategy is a hard problem and learning to exploit a fixed strategy is clearly
the first step. We also limit complexity by considering the game of Kuhn poker (Kuhn,
1950), a tiny game for which complete game-theoretic analysis is available. Finally,
we evaluate learning in a two-phase manner—the first phase exploring and learning
while the second phase switches to pure exploitation based on what was learned. Note
that we do not propose this fixed switching point as an actual strategy for play, but
rather as a readily comprehensible experimental methodology. We use this simplified
framework to demonstrate the following points:

• Learning to maximally exploit an opponent in a small number of hands is not
feasible.

• A substantial advantage can nonetheless be attained rapidly, making short-term
learning a winning proposition.

• Finally, we observe that, amongst the set of Nash strategiesfor the learner, the
exploration inherent in some strategies facilitates faster learning compared with
other members of the set.

The material presented here extends an earlier paper on thisresearch (Hoehn et al.,
2005) by presenting a wider range of results (including a very complete set in a sup-
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plemental online appendix), full derivations of our estimators, and more detailed de-
scriptions of algorithms and experimental methodology. Related studies can be found
in (Hoehn, 2006).

2 Kuhn Poker

2.1 Rules and Notation

Kuhn poker (Kuhn, 1950) is a very simple, two-player game (P1- Player 1, P2 - Player
2). The deck consists of three cards (J - Jack, Q - Queen, and K -King). There are
two actions available:bet and pass. The value of each bet is 1. In the event of a
showdown(players have matched bets), both players reveal their cardand the player
with the higher card wins the pot (the King is highest and the Jack is lowest). In the
event of afold (one player increases the standing bet and the other declines to match
the bet), the folding player loses and the players’ cards arenot revealed. A singlehand
proceeds as follows:

• Both players initially put an ante of 1 into the pot.

• Each player is dealt a single card which they keep private andthe remaining card
is unseen by either player.

• After the deal, P1 has the opportunity to bet or pass.

– If P1 bets in round one, then in round two P2 can:

∗ pass (fold) and forfeit the pot to P1, or

∗ bet (call P1’s bet) and the game then ends in a showdown.

– If P1 passes (checks) in round one, then in round two P2 can:

∗ pass (check) and go to a showdown, or

∗ bet, in which case there is a third action where P1 can

· bet (call P2’s bet) and go to showdown, or

· pass (fold) and forfeit to P2.

It is useful to summarize a hand so we introduce the followingnotation

<P1 card> <P2 card> <P1 action> <P2 action>· · ·

where the cards are one of “J”, “Q”, “K”, or “?” (the last meaning that the card has
not been observed). The actions for P1 are “b” or “p” and for P2they are “B” or “P”
(we use upper vs. lowercase to distinguish the players more readily). For example, the
string “QJpBb” means that P1 held a Queen, P2 held a Jack, and the actions were “P1
passes”, “P2 bets”, and “P1 bets”. In the case where one player folds, players cannot
observe each other’s cards. It is useful to record observations of this kind, for example,
“K?bP” means that P1 held a K and observed the actions “P1 bets” and “P2 passes”.
Because this game folded, P2’s card was not observed by P1.
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Kuhn poker is an attractive choice for study because, as the following discussion
will elaborate, it has been analyzed in detail and can be completely characterized ana-
lytically. We can therefore compare empirical results to theoretical ideals easily. The
game captures several essential qualities of real-world poker games: decision making
with partial observations, bluffing, and information lost due to folded hands. Finally,
the game is small enough to visualize some results in a fairlydirect manner.

2.2 Analysis of the Game

Figure 1 shows the game tree we consider in this work. The top row of nodes shows
all possible combinations of cards held by the players (e.g., J|Q means P1 holds the
Jack and P2 holds the Queen). P1’s value for each outcome is indicated in the leaf
nodes. The game is azero-sumgame (whatever one player gains, the other loses)
so P2’s values are simply the negation of P1’s. Branches correspond to the available
actions. Note that the dominated strategies have been removed from this tree already.
Informally, a dominated strategy is one for which there exists an alternative strategy
that offers better value against at least one opponent strategy and equal value against
all others.1

We eliminate these obvious sources of universally suboptimal play but note that
strategies remain that play suboptimally against specific opponents. Dominated strate-
gies often correspond to obvious mistakes such as folding when guaranteed to win,
whereas the remaining suboptimal strategies typically errin failing to achieve an ideal
mixture of actions (e.g., bluffing too often in a particular situation). We have eliminated
obvious errors because our goal is to develop learning techniques that will challenge the
best human and machine players rather than simply exploit poor play by weak players.

In Figure 1, branches where alternatives are available are labelled with a parameter.
The game has a well-known parametrization (Kuhn, 1950) in which P1’s strategy can
be summarized by three parameters (α, β, γ), and P2’s by two parameters (η, ξ). The
decisions governed by these parameters are shown in Figure 1. The meaning of the
decisions governed by each parameter are

• α = probability that P1 bets in the first round when holding the Jack

• β = probability that P1 calls in the third round when holding theQueen

• γ = probability that P1 bets in the first round when holding the King

• η = probability that P2 calls a P1 bet when holding the Queen

• ξ = probability that P2 bluffs by betting when holding a Jack after P1 passes in
the first round

1Dominance can bestrong(the dominating strategy is always a better choice, regardless of the opponent’s
actions) orweak(the dominating strategy is better for one or more opponent strategies and equal for the rest).
For example, the P2 strategy of passing when holding the Queen and faced with a P1 pass weakly dominates
the strategy of betting in the same scenario. Similarly, theP1 strategy of betting in the first round when
holding the Queen is weakly dominated by the strategy to passand call a P2 bet (if such a bet is made). This
latter dominance is not immediately obvious but is arrived at by iterative elimination of dominated strategies
(Fudenberg & Levine, 1998).
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If players play only non-dominated strategies, the expected value to P1 of any pair of
opposing strategies (i.e., any pair of(α, β, γ) and(η, ξ)) is given by

EV (α, β, γ, η, ξ) =
1

6
[η(−3α+ γ) + ξ(−1 + 3β − γ) + α− β] (1)

An important concept in game theory is that of aNash equilibrium. Again infor-
mally, a Nash equilibrium is a pair of strategies, one for each player, such that neither
player gains by unilaterally deviating from their own Nash strategy. So long as one
player plays a Nash strategy, the other cannot, by playing some non-Nash strategy, im-
prove on the expected value of playing a Nash strategy themselves.2 Kuhn determined
that the set of Nash strategies for P1 has the form(α, β, γ) = (γ/3, (1 + γ)/3, γ) for
0 ≤ γ ≤ 1. Thus, there is a continuum of Nash strategies for P1 governed by a single
parameter. There is only one Nash strategy for P2,η = 1/3 andξ = 1/3; all other P2
strategies can be exploited by P1. If either player plays a Nash strategy (and neither
plays dominated strategies), then P1 expects to lose at a rate of−1/18 per hand.3 Thus
P1 can only hope to win in the long run if P2 is playing suboptimally and P1 deviates
from playing Nash strategies to exploit errors in P2’s play.Our discussion focuses on
playing as P1 and exploiting P2, so, unless specified otherwise, all observations and
results are from this perspective.

For any given P2 strategy, there is a set of corresponding P1 strategies that max-
imally exploit P2. Each such maximally exploitive strategyis called abest response
(Fudenberg & Levine, 1998). Furthermore, the set of best responses includes at least
onepure strategy, a deterministic strategy in which all probabilities are zero or one.
Thus, in any attempt to exploit an opponent, we would ideallyuse a strategy that is a
best response to that opponent. Note that this applies equally to P2 exploiting P1.

In a game of this size, it is possible to characterize the space of strategies in great
detail. In order to better systematize our study, we have analytically derived bound-
aries within the P2 strategy space that allow us to ensure that our study thoroughly
covers all interesting regions of that space (Hoehn et al., 2005). The two-dimensional
(η × ξ) strategy-space for P2 can be partitioned into the 6 regions shown in Fig-
ure 2. Within each region, one of P1’s pure strategies gives maximal value to P1
(i.e., the pure strategy is a best response to all opponent strategies in that region).
For P2 strategies corresponding to points on the lines dividing the regions, the adja-
cent P1 best responses achieve the same value. The intersection of the three divid-
ing lines is the Nash strategy for P2. Therefore, to maximally exploit P2, it is suf-
ficient to identify the region in which P2’s strategy lies andplay the corresponding
P1 pure strategy. Note that there are 8 pure strategies for P1, written as(α, β, γ):
S0 = (0, 0, 0), S1 = (0, 0, 1), S2 = (0, 1, 0), . . . , S7 = (1, 1, 1). Two of these (S0 and
S7) are not a best response to any P2 strategy, so we need only consider the remaining

2In two-player, zero-sum games such as poker, all Nash strategies are interchangeable. That is, each
player has a set of Nash strategies and any pairing from thosetwo sets forms a Nash equilibrium. Further-
more, all pairings give the same expected value to the players. In more general games, this is not always the
case; only specific pairs of strategies form equilibria and the equilibria may have different expected values.

3This is true because, in Kuhn poker, all non-dominated strategies areessential(i.e., have a non-zero
probability of being played as part of some Nash strategy). In two player, zero-sum games, if one player
plays a Nash strategy and the other plays some mixture of essential strategies, then they will always obtain
the value of the equilibrium (von Neumann & Morgenstern, 1947).
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six. In brief, the partitioning was derived by substitutingthe various P1 pure strate-
gies into the expected value equation and then determining the ranges overη andξ for
which one pure strategy gives greater value than all others.4 Partitioning of the strategy
space is not required for any of our algorithms but has servedto guide our choice of
opponents and assist in understanding results.
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Figure 2: Partition of P2 Strategy Space by Maximal P1 Strategies

This natural division of P2’s strategy space was used to obtain a selection of sub-
optimal opponents for our study. Six opponent strategies were created by selecting a
point at random from each of the six regions. Written as pairs(η, ξ), they areO1 =
(.25, .67), O2 = (.75, .8), O3 = (.67, .4), O4 = (.5, .29), O5 = (.25, .17), O6 =
(.17, .2). Experiments were run against these six opponents. It is notnecessary to run
experiments against a Nash strategy opponent since the value against such an opponent
is guaranteed regardless of the strategy P1 might play (excepting dominated strategies).
Any attempt to exploit a Nash opponent can neither benefit norharm either player.

Other experiments were run against randomly sampled opponents that all share the
same level of exploitability. Figure 3 shows the exploitability of P2 over its strategy
space. It is a contour plot of the expected value to P1 if P1 plays the appropriate
best response at every point in P2 strategy space. This expected value is the best P1
can possibly achieve and therefore represents the maximum exploitability for every P2
strategy. Note that within a small area around the P2 Nash strategy, P1’s expected value
is less than 0. P1 can never hope to win against a P2 opponent playing within this area,
although P1 can attempt to minimize the loss. Beyond the zerocontour, exploiting the
opponent is a winning proposition. Our randomly sampled opponents can be thought
of as samples from some contour on this plot. This means that they behave differently,
but all have the same value when challenged by the appropriate best response.

4We would like to thank Valeriy Bulitko for the analysis that produced this partitioning (Hoehn et al.,
2005).
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Figure 3: Contour Plot of Exploitability of P2 over P2 Strategy Space

Experiments were also run where P2 is modelling P1. However,our discussion will
be in terms of P1 modelling P2 for the sake of simplicity.

3 Parameter Learning

The first approach we consider for exploiting the opponent isto directly estimate the
parameters of their strategy and play a best response to thatstrategy. We start with a
prior over the opponent’s strategy and compute themaximum a posteriori(MAP) esti-
mate of those parameters given our observations. This is a form of Bayesian parameter
estimation, a typical approach to learning and therefore a natural choice for our study.

In general poker games a hand either results in a showdown, inwhich case the
opponent’s cards are observed, or a fold, which leaves the opponent’s cards uncertain
(we only get to observe their actions, our own cards, and any public cards). However,
in Kuhn poker, the small deck and dominated strategies conspire in certain cases to
make the opponent’s cards obvious despite their folding. For example, if P1 holds
the Jack and observes the sequencebet—pass, we can conclude that P2 must hold the
Queen. Examination of Figure 1 shows that if P2 holds the King, then passing on a bet
would be a dominated strategy. Because we have precluded dominated strategies, we
can therefore conclude that P2 holds the Queen despite neverseeing it. Thus, certain
folding observations (but not all) contain as much information as a showdown.
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Parameter estimation in Kuhn poker is quite straightforward because in no case
does the estimate of any single player parameter depend on anearlier decision governed
by some other parameter belonging to that player. The task ofcomputing a posterior
distribution over opponent strategies for arbitrary pokergames is more complicated
and is discussed in a separate paper (Southey et al., 2005). For the present study, the
dominated strategies and small deck again render the task relatively simple.

Once the opponent’s strategy has been estimated, a best response must be com-
puted. In general, this is achieved via theexpectimaxalgorithm (Michie, 1966; Russell
& Norvig, 1995), which involves a traversal of the game tree.However, since Kuhn
poker has been thoroughly analyzed and the opponent strategy space partitioned as
shown in Figure 2, we simply determine the region in which theestimate lies and
lookup the corresponding pure strategy. While we discuss the issue of scaling to larger
games more fully in Section 9, we note here that the partitioning of the opponent’s
strategy space is simply a convenience in this particular case, and that computing (or
approximating) an expectimax response in larger games neednot be prohibitively ex-
pensive.

We have chosen to compute a response to the MAP estimate of theopponent’s
strategy, essentially assuming that the the most probable opponent strategy is the only
strategy they could be playing. In general, it would be more robust to consider all
possible strategies the opponent might be playing weightedaccording to the posterior
distribution over those strategies. If, for example, the posterior distribution gives high
probability to multiple strategies that differ significantly (e.g., the posterior distribution
is multimodal), the MAP approach may fixate on the wrong strategy. Computing the
Bayesian best responseto an opponent’s play in poker has been explored previously
for larger poker games (Southey et al., 2005). In this work weconsider only the MAP
estimate because our choice of prior distribution (see Section 3.1) means that the pos-
terior distribution will be unimodal, so the MAP estimate isunlikely to be significantly
deceptive.

It should be mentioned here that MAP estimation of the opponent’s strategy fol-
lowed by play of a best response is a generalization of a classic approach to learning
in games known asfictitious play(Brown, 1951) (see (Fudenberg & Levine, 1998)
for a lengthy discussion of fictitious play). In fictitious play, the learner assumes their
opponent’s strategy is stationary. Each round, amaximum likelihoodestimate of the
opponent’s strategy is computed and a best response is played against it. This is iden-
tical to our own procedure when a uniform prior is used (Beta(0, 0)). Note that the
term “fictitious play” arises from its original conception as a means to compute max-
imin strategies by self-play. In this scenario, two instances of this algorithm repeatedly
play against each other. It can be shown that each player’s behaviour, averaged over
repeated games, will converge to a maximin strategy (i.e., aNash strategy in two player
zero-sum games) (Robinson, 1951). Our experiments with different priors include the
uniform prior.

3.1 Priors

For our prior we use aBeta distribution, which gives a probability distribution overa
single parameter that ranges from 0 to 1. When modelling P2, therefore, we require
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two Beta distributions to characterize our prior belief of how they play. EachBeta
distribution is characterized by two parameters,θ ≥ 0 andω ≥ 0. The distribution
can be understood as pretending that we have observed the opponent’s binary deci-
sions several times in the past, and that we observedθ choices one way andω choices
the other way. Thus, low values forθ andω (e.g.,Beta(1, 1)) represent a weak prior,
easily overcome by subsequent observations. Larger values(e.g.,Beta(10, 10)) rep-
resent a much stronger belief. We offer a somewhat more detailed discussion ofBeta
distributions in Appendix A.

A poorly chosen prior (i.e. a bad model of the opponent) that is weak may not
cost us much because it will be quickly overwhelmed by observations. However, a
good prior (i.e. a close model of the opponent) that is too weak may be thwarted
by unlucky observations early in the game that belie the opponent’s true nature. We
examine the effects of the prior in a later section. The default prior, unless otherwise
specified, isBeta(1, 1) for bothη andξ (i.e., the most probable P2 strategy is assumed
to beη = 0.5 andξ = 0.5, pretending we have observed, for each parameter, two
decisions (onebetand onepass) governed by that parameter). Note that this prior was
selected, before any experimentation, as a natural first choice if the experimenter was
not previously familiar with other logical choices, such asthe Nash strategy (13 ,

1
3 ). The

use of this prior is a very common default choice in Bayesian parameter estimation and
other statistical methods where it is sometimes referred toas theLaplacian correction
(e.g., (Margineantu & Dietterich, 2002)).

It should be noted that playing a best response to the prior strategy itself would
have different expected values against different opponents. Therefore, the payoff rates
and winnings that will be shown in plots for the experimentalresults have different
values against different opponents even in the first few steps of the game, despite the
fact that the same initial strategy is used. We make this observation to explain what,
at first, might seem like an inconsistency in our experiments. We present results for a
variety of priors in Section 5.2.

3.2 Maximum a Posteriori for Kuhn Poker

We will now derive the MAP parameter estimate for P2, using ourBeta prior. We want
to find the most probable settings for parametersη andξ given a set of observationsO.
More formally, we need to solve

argmax
η,ξ

P (η, ξ|O)

Using Bayes rule in the standard way, we can get the followingproportionality

P (η, ξ|O) ∝ P (O|η, ξ)P (η, ξ)

whereP (η, ξ) is our prior. Our maximization then, is simply

arg max
η,ξ

P (η, ξ|O) = argmax
η,ξ

P (O|η, ξ)P (η, ξ)

We assume the two parameters are independent and each follows someBeta distribu-
tion, soP (η, ξ) = P (η)P (ξ) = Beta(θη, ωη)Beta(θξ, ωξ).
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3.2.1 Probability of Kuhn Observations Given Parameters

P (O|η, ξ) is the probability of the observations given parametersη andξ. There are
only a small number of possible observations in Kuhn poker, and only a subset of these
actually depend on P2’s strategy. Most of these observations are quite straightforward.
For example, the probability of a single observation ofKQbB (i.e., P1 holdsK, P2
holdsQ, and the betting sequence isbet− bet), is 1

6γη. Probabilities such as these can
easily be derived by examination of the tree in Figure 1. In this case, there is a16 prob-
ability of KQ being dealt, and the betting sequence is the product of the two players’
parametersγ andη. However, from P1’s perspective,γ is a known constant, and so in
our maximization, we can drop terms involving P1’s parameters and the constants from
dealing cards, leaving us with the parameterη. Therefore, the probability of observing
theKQbB gameN times is proportional toηN .

A complication arises when one of the players folds. In such acase, P1 does not
get to observe P2’s card. This can be addressed by marginalizing out the unknown
quantity, which consists of summing the probabilities of the observation given every
card that P2 could have held. In Kuhn poker, there can only be two such cards.

For example, suppose P1 observesK?bP (i.e., P1 heldK, P2’s card is unknown
because P2 folded, and the betting sequence wasbet − pass). Two possible hands
might have been played (KJbP andKQbP ). We must therefore sum the probabilities
of these two,P (K?bP ) = P (KJbP ) + P (KQbP ) = 1

6γ + 1
6γ(1 − η) ∝ 2 − η.

Therefore, the probability of observing theK?bP gameN times is proportional to
(2 − η)N . A full discussion of handling uncertainty due to folding inpoker can be
found in (Southey et al., 2005).

One additional subtlety relates to dominated strategies. The observationJ?bP
would appear to be ambiguous because P2 folded. However, if P2 holdsK, the strategy
of passing is dominated by betting. Since we assume that no player plays dominated
strategies, we can then infer that any observation ofJ?bP was due to P2 holdingQ. P1
has certain information about P2’s card, even though it was not observed. We therefore
write this sequenceJ(Q)bP to show that it is not truly unknown.5

By examining the tree in this fashion, we can derive expressions for every possi-
ble observation. We omit a detailed account as they are all similar to the preceding
examples. The final expression is then

P (O|η, ξ) ∝ ηNJQbB+NKQbB (1 − η)NJ(Q)bP (2 − η)NK?bP

ξNQJpBb+NKJpBb(1 − ξ)NQJpP +NKJpP (1 + ξ)NQ?pBp

where each subscriptedN is the number of times each corresponding observation was
made.

TheBeta priors simply correspond to additional counts, pretendingwe have made
past observations. Therefore our objective simply becomes

P (O|η, ξ)P (η)P (ξ) ∝ ηNJQbB+NKQbB+θη(1 − η)NJ(Q)bP +ωη(2 − η)NK?bP

ξNQJpBb+NKJpBb+θξ(1 − ξ)NQJpP +NKJpP +ωξ(1 + ξ)NQ?pBp

5Equivalently, we could note that the sequenceJKbP has probability 0, and then apply the summation
overJKbP andJQbP as described for the more general folding case.

11



In order to simplify the discussion that follows, we summarize these counts as follows

A = NJQbB +NKQbB + θη

B = NJ(Q)bP + ωη

C = NK?bP

D = NQJpBb +NKJpBb + θξ

E = NQJpP +NKJpP + ωξ

F = NQ?pBp

giving us the more readable objective

P (O|η, ξ)P (η)P (ξ) ∝ ηA(1 − η)B(2 − η)CξD(1 − ξ)E(1 + ξ)F

We now need to find the maximum of this objective. Note that thetwo parameters
η andξ occur independently, so we can maximize them independently.6 We will now
show the closed form maximization of each.

3.2.2 Maximum a posteriori for η

We maximize by setting the derivative of the posterior probability for η to zero.

∂P (η, ξ|O)P (η)P (ξ)

∂η
∝ AηA−1(1 − η)B(2 − η)C −BηA(1 − η)B−1(2 − η)C

−CηA(1 − η)B(2 − η)C−1

= A(1 − η)(2 − η) −Bη(2 − η) − Cη(1 − η)

= 2A+ (−3A− 2B − C)η + (A+B + C)η2

This expression is quadratic so we need only find the roots to obtain the maximum.
Using the negative root, which ensures a value in[0, 1], the estimate forη is then

η̂ =
−bη −

√

b2η − 4aηcη

2aη

whereaη = A+B + C, bη = −3A− 2B − C, andcη = 2A .

3.2.3 Maximum a posteriori for ξ

A similar derivation forξ gives

ξ̂ =
−bξ −

√

b2ξ − 4aξcξ

2aξ

whereaξ = −D − E − F , bξ = −E + F , andcξ = D.
It should be noted that such convenient closed forms for MAP estimates of strate-

gies are very rare in the space of possible Hold’em style pokers. Even in Kuhn poker,
we encounter difficulty when we try to apply the same approachto having P2 model P1
(see Section 3.3 for more details on this). In general, even slightly more complicated
games make the estimation problem substantially more difficult. We will discuss this
broader issue in greater detail in Section 9.

6This independence is due in the first place to the structure ofthe game itself, which does not couple
these two parameters, and in the second place, to our prior, which assumes independence. A different prior
could conceivably couple these two parameters.
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3.3 P2 Modelling P1

The MAP estimators for P2 modelling P1’s parameters have no convenient closed form
solution that we have been able to compute (and there may be none). We therefore use
the approximate estimators described in (Hoehn, 2006). Theexact formulation is a bit
lengthy so we omit it here. In brief, the estimators are computed by identifying each
information set corresponding to the application of a P1 parameter and then consider-
ing the corresponding information sets for P2’s view of the game. In several of these,
P2 does not always obtain information about P1’s holdings, due to folding. In such
cases, there are two possible states for P1’s holdings, depending on which card they
were dealt. Since the overall number of occasions where suchan information set was
encountered by P1 is known to P2, the estimators make the assumption that exactly
half of those occasions correspond to each possible card. For example, if P2 holds
the King k times and observes the opponent holding the Queenq times, the Jackj,
and does not observe the opponent’s cardu times (note thatk = q + j + u), then the
opponent is assumed to have held unobserved Queensk/2 − q times and unobserved
Jacksk/2 − j times. Using these assumed counts for the unobserved opponent hold-
ings, MAP estimates are then computed independently for each parameter in each such
situation. Having now multiple estimates for each parameter, they are combined by a
weighted sum, with weights proportional to the number of data points observed by the
corresponding estimator.

There are a few tricky details related to the handling of verysmall numbers of
observations or observations inconsistent with a perfectly even dealing of cards (see
(Hoehn, 2006) Section 3.2.2 and particularly equation 3.6 for details) but, broadly, this
estimation procedure can be thought of as an average of independent estimators, with
the strong assumption that the cards were dealt exactly according to the mean of the
distribution over cards. As the number of hands played growslarge, this approximation
is expected to behave like the true MAP estimate. Experiments described in (Hoehn,
2006) used a similar approximation for P1 modelling P2 and compared the learning
results with the true MAP estimate. These showed little difference between the two
approaches and that they quickly converge to near identicalresults as the number of
hands played increases. This provides some evidence that the approximation has value,
albeit in a simpler context. We therefore present the interested reader with results using
this approximation for P2 modelling P1 in the supplemental,online appendix, with a
caveat regarding any conclusions that may be drawn from them.

3.4 Nash Equilibria and Exploration

In two player, zero-sum games, Nash equilibrium strategiesguarantee a certain min-
imum value regardless of the opponent’s strategy. As such, they are “safe” strategies
in the sense that they minimize the worst-case loss. As mentioned above, the Nash
strategies for P1 in Kuhn poker guarantee an expected value of −1/18,7 and thus can
only guarantee a loss. Against a given P2 strategy, some non-Nash P1 strategy could
be better or worse than Nash. There are no guarantees. So, even though any Nash

7Recall that all strategies we consider areessential, so the guarantee is for an exact value rather than just
a minimum.
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strategy is a losing proposition for P1, it may be better thanthe alternatives against an
unknown opponent. It therefore makes sense to consider adopting a Nash strategy until
an opponent model can be learned. Then the best means of exploiting that model can
be tried.

In many games, and more particularly in the case of Kuhn Poker’s P1, there are
multiple Nash strategies. We explore the possibility that some of these strategies allow
for faster learning of an opponent model than others. The existence of such strategies
means that even though they guarantee identical game-theoretic values, some strategies
may be more useful than others against exploitable opponents.

Another interesting approach is to mix essential strategies so as to maximize explo-
ration, regardless of the cost. For this, we employ a “balanced” exploration strategy,
(α = 1, β = 1, γ = .5), that forces as many showdowns as possible and equally ex-
plores P2’s two parameters. This exploratory strategy has aminimum winning rate of
-0.417, which is more than 7 times worse than a Nash strategy.Therefore, the infor-
mation it gains can come at a substantial cost. Of course, it is possible that against
a particular opponent, the balanced strategy is a good response and exploits that op-
ponent effectively. The experiments presented in Section 5.3 show how this tradeoff
between safety and exploration plays out in practice.

Finally, we will note that one might choose to play non-essential strategies in order
to obtain more information.8 We have explored this possibility briefly, omitting the
results here. While one can gain some information by playinga particular dominated
strategy in Kuhn poker (P2 passing when holding the King in round 2), experiments
showed that the cost of playing this strategy vs. the information gained was a poor
tradeoff (Hoehn, 2006). However, in other forms of poker onemight gain useful in-
formation by playing dominated strategies (e.g., calling an opponent to a showdown in
order to observe their holdings in a situation where the onlysensible choice from an
immediate winnings perspective is to fold).

4 Strategy Learning

The other learning approach we examine here is what we will call strategy learning.
We can view a strategy as anexpertthat recommends how to play the hand. In experts-
based learning, a set of experts is used, each making its recommendation and the final
decision being made by amasterprogram. Ascoreis kept for each expert, tracking
how good its past decisions would have been. The master program selects its actions
by considering the scores of the various experts. Favour is given to the experts in pro-
portion to their past success. There are many specific variations on this basic approach,
intended to handle the different features of specific problem domains.

Taking the six pure strategies shown in Figure 2 plus a singleNash strategy(α =
1
6 , β = 1

2 , γ = 1
2 ) as our experts, we use a variation of the Exp4 algorithm (Aueret al.,

1995) to control play by these experts. Exp4 is abounded-regretalgorithm designed for
partially-observable games, based on earlier work using experts for perfect information
games (Freund & Schapire, 1996, 1999). It mixes explorationand exploitation in an

8Note that, in general, dominated strategies are a subset of the non-essential strategies. In Kuhn poker
specifically, all non-essential strategies are dominated.
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online fashion to ensure that it cannot be trapped by a deceptive opponent. Exp4 has
two parameters, a learning rateρ > 0 and an exploration rate0 ≤ ψ ≤ 1 (ψ = 1 is
uniform random exploration with no online exploitation).

As formulated by Auer et al., Exp4 only handles games with a single decision.
However, for Kuhn poker, a sequence of decisions is sometimes necessary. This slightly
complicates matters because a strategy specifies a distribution over actions in every
possible situation. For any single observed hand, however,we will only observe a sub-
set of the possible decision points. The exact subset depends on chance events (i.e.,
cards being dealt) and on the opponent’s actions. Therefore, two strategies that give
differing recommendations in unobserved parts of the game might agree on the set of
actions taken during this particular hand. Since either strategy could have produced the
observed actions, it makes sense to award each expert some score, proportional to the
probability with which they would have behaved as observed.We call this algorithm
sequential Exp4(see Algorithm 1 for details). A closely related algorithm has been
analyzed in (Zinkevich, 2004).

Algorithm 1 Sequential Exp4
1. GivenK strategies (experts),σ1 · · ·σK , initialize thescoresfor each strategy to

zero:si = 0, 1 ≤ i ≤ K

2. Fort = 1, 2, . . . until the match ends:

(a) Let the probability of playing theith strategy for handt be

pi(t) = (1 − ψ)
(1 + ρ)si(t)

∑K
j=1(1 + ρ)sj(t)

+
ψ

K

(b) Randomly select a strategyσz from the set ofK experts with probability
proportional to thepi.

(c) Play according toσz.

(d) Observe the resulting sequence of actionsa and the hand’s winningsw
(scaled so thatw ∈ [0, 1]).

(e) Compute the probability for each strategy of generatingthe observed se-
quence ofd actions,qi(t) = P (a|σi) =

∏d
j=1 P (aj |σi)

(f) Compute new scores

si(t+ 1) = si(t) + qi(t)
w

∑K
j=1 pj(t)qj(t)

, 1 ≤ i ≤ K

Exp4 makes very weak assumptions regarding the opponent so that its guarantees
apply very broadly. In particular, it assumes a non-stationary opponent that can decide
the payoffs in the game at every round. This is a much more powerful opponent than
our assumptions dictate (a stationary opponent and fixed payoffs). Along with updating
all agreeing experts, a further modification was made to the basic algorithm in order to
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improve its performance in our particular setting.
A simple improvement, intended to mitigate the effects of small sample sizes, is to

replace the single score (si) for each strategy with multiple scores, depending on the
card they hold. We also keep a count of how many times each cardhas been held. So,
instead of justsi, we have per-card scoressi,J , si,Q, andsi,K , and card countersci,J ,
ci,Q, andci,K . We then update the score specific to the card held during the hand and
increment the corresponding counter. We now compute the expert scores for Algorithm
1’s probabilistic selection as follows:si = 1

3si,J/ci,J + 1
3si,Q/ci,Q + 1

3si,K/ci,K .
This avoids erratic behaviour if one card shows up disproportionately often by chance
(e.g. the King 10 times and the Jack only once). Naturally, such effects vanish as
the number of hands grows large but we are specifically concerned with short-term
behaviour. We are simply using the sum of estimated expectations instead of estimating
the expectation of a sum, in order to reduce variance.

In all experiments reported here,ρ = 1 andψ = 0.75, values determined by
experimentation to give good results. Recall that we are attempting to find out how
well it is possibleto do, so this parameter tuning is consistent with our objectives.

5 Experimental Results

We conducted a large set of experiments using both learning methods to answer various
questions. In particular, we are interested in how quickly learning methods can achieve
better than Nash equilibrium (i.e., winning rate≥ −1/18) or breakeven (i.e., winning
rate≥ 0) results for P1, assuming the opponent is exploitable to that extent. In the
former case, P1 is successfully exploiting an opponent to reduce losses, while in the
latter case P1 can actually win if enough hands are played. However, we aim to play
well in short matches, making asymptotic winning rates of limited interest. Most of
our results focus on the total winnings over a small number ofhands (typically 200,
although other numbers are considered).

In our experiments, P1 plays an exploratory strategy up to hand t, learning during
this period. P1 then stops learning and switches strategiesto exploit the opponent.
In parameter learning, unless specified otherwise, the “balanced” exploratory strategy
described earlier is used throughout the first phase. In the second phase, a best response
is computed to the estimated opponent strategy and that is “played” (in practice, having
both strategies, we compute the exact expected winning rateusing Equation 1). For
strategy learning, sequential Exp4 is run in the first phase,attempting some exploitation
as it explores, since it is an online algorithm. In the secondphase, the highest rated
expert plays the remaining hands.

We are chiefly interested in the number of hands after which itis effective to switch
from exploration to exploitation. Our results are expressed in two kinds of plot. The
first kind is apayoff rate plot—a plot of the expected payoff rate versus the number
of hands before switching, showing the rate at which P1 will win after switching to
exploitation. Such plots serve two purposes; they show the long-term effectiveness of
the learned model, and also how rapidly the learner converges to maximal exploitation.

The second kind of plot, atotal winnings plot,is more germane to our goals. It
shows the expected total winnings versus the number of handsbefore switching, where
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the player plays a fixed total number of hands (e.g. 200). Thisis a more realistic view
of the problem because it allows us to answer questions such as: if P1 switches at
hand 50, will the price paid for exploring be offset by the benefit of exploitation? It is
important to be clear that the x-axis of both kinds of plot refers to the number of hands
before switching to exploitation.

All experiments were run against all six P2 opponents selected from the six re-
gions in Figure 2. Results were also run for randomly generated opponents, all with
the same maximum exploitability. In thesefixed exploitabilityexperiments, a maxi-
mum exploitation rate,τ , is fixed for the experiment and a new opponent is randomly
generated every trial such that a best response for each opponent wins at rateτ . This
allow us to average results across a large set of opponent strategies without introducing
variance due to different levels of exploitability.

Only representative results are shown here due to space constraints. The remaining
results are available in the supplemental online appendix.9 The supplemental online
appendix also contains results for P2 modelling P1 (see Section 3.3 for related com-
ments). Results were averaged over 30,000 trials for both parameter learning and strat-
egy learning. The single opponent in the figures that follow isO6, unless otherwise
specified, and is typical of the results obtained for the six opponents. Similarly, results
are for parameter learning unless otherwise specified, and consistent results were found
for strategy learning, albeit with overall lower performance.

5.1 Convergence Rate Study

This study addresses the question of how quickly the two learning approaches converge
to optimal exploitation of the opponent (i.e., the true bestresponse). Figure 4 shows
the expected payoff rate plot of the two learning methods against a single opponent.
The straight line near the top shows the maximum exploitation rate for this opponent
(i.e. the value of a best response to P2’s strategy). It takes400 hands for parameter
learning to almost converge to the maximum and strategy learning does not converge
within 900 hands. Results for other opponents are generallysimilar or worse (O2 is a
notable exception), requiring several hundred hands for near-convergence. This shows
that, even in this tiny game against a stationary opponent, one cannot expect to achieve
maximal exploitation in a small number of hands, at least with these standard methods
and probably most related variations. The possibility of maximal exploitation in larger
games can reasonably be ruled out on this basis and we must adopt more modest goals
for opponent modelling. Figure 5 shows the same study, but averaged over random
opponents with fixed exploitabilityτ = 0.055. The results here are very similar to
the single opponent, but we also show the results for the Nashexploration parameter
learning (γ=1).

5.2 Parameter Learning Prior Study

In any Bayesian parameter estimation approach, the choice of prior is clearly im-
portant. Here we present a comparison of various priors against a single opponent

9(The eventual URL for the supplemental appendix will go here. Please find the supplement attached for
review.)
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Figure 4: Convergence Rate Study: Expected payoff rate vs. switching hand for pa-
rameter and strategy learning againstO6.
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Figure 6: Prior Study: Four different priors for parameter learning againstO6.

(O6 = (.17, .2)). Expected total winnings are shown for five priors. Each of these
is characterized by twoBeta distributions and we note the most probable parameter
setting under that prior in parentheses.

• a weak, default prior of[Beta(1, 1), Beta(1, 1)] (.5,.5)

• a weak, bad prior of[Beta(1.4, 0.6), Beta(1, 1)] (.7,.5)

• a strong, default prior of[Beta(10, 10), Beta(10, 10)] (.5,.5)

• a strong, bad prior of[Beta(14, 6), Beta(10, 10)] (.7,.5)

• anuninformedprior (no prior at all)

The weak priors assume 2 fictitious observations of each parameter and the strong pri-
ors assume 20 observations each. The “bad” prior is so calledbecause it is quite distant
from the real strategy of this opponent. The uninformed prior has no fictitious observa-
tions; MAP estimation with such a prior is known asmaximum likelihoodestimation.
Figure 6 shows that the weak and uninformed priors clearly dobetter than the strong,
allowing for fast adaptation to the correct opponent model.The strong priors perform
much more poorly, especially the strong bad prior. It is alsoworth noting that after
50 hands, the bad weak prior is scarcely inferior to the default weak prior, so our poor
early choice does not hurt us much. While very close onO6, the weak default prior
and uninformed prior each outperform the other on some of theopponents, making no
clear choice between them obvious.
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Figure 7: Nash Exploration Study: Expected total winnings vs. switching hand for
parameter learning using various Nash strategies for exploration againstO6.

5.3 Nash Exploration Study

Figure 7 shows the expected total winnings for parameter learning when various Nash
strategies are played by the learner during the learning phase. The strategies with larger
γ values are typically stronger, more effectively exploringthe opponent’s strategy dur-
ing the learning phase. This advantage is true across almostall opponents we tried,
with the behaviour ofγ = 0 a noteworthy exception in that on some opponents it is the
best performer, while on others it is the worst. This is because the Nash strategy with
γ = 0 always passes while holding the King or the Jack and therefore never makes any
observations related to the opponent’sη parameter.

5.4 Learning Method Comparison

Figure 8 directly compares strategy and parameter learning(both balanced and Nash
exploration (γ = 0.75)), all against a single opponent. Balanced parameter learning
outperforms strategy learning substantially for this opponent. Over all opponents, ei-
ther the balanced or the Nash parameter learner is the best, and strategy learning is
worst in most cases (a notable exception is strategy learning against opponentO3 and
for O1 its results are not far from the winner, Nash parameter learning). Figure 9
shows the same study averaged over random opponents with maximum exploitability
τ = 0.055. Here we see some differences. Most notably, the Nash exploration is a
much safer choice for late switches. Balanced exploration gives best results with early
switches but pays a heavy penalty for switching late. Switching at around 50 hands is
a safe choice for either of the parameter learners. Strategylearning remains an overall
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Figure 8: Learning Method Comparison: Expected total winnings vs. switching hand
for both parameter learning and strategy learning againstO6.

loser, but is more robust to late switching than balanced exploration.

5.5 Game Length Study

This study is provided to show that our total winnings results are robust to games of
varying length. While most of our results are presented for games of 200 hands, it
is only natural to question whether different numbers of hands would have different
optimal switching points. Figure 10 shows overlaid total winnings plots for 50, 100,
200, and 400 hands using parameter learning. The lines are separated because the
possible total winnings is different for differing numbersof hands. The important
observation to make is that the highest value regions of these curves are fairly broad,
indicating that switching times are flexible. Moreover, thepeak regions of the various
curves overlap substantially. Thus, switching at hand 50 isa reasonable choice for all
of these game lengths, offering close to the best possible total winnings in all cases.
This means that even if we are unsure,a priori, of the number of hands to be played,
we can be confident in our choice of switching time, at least over the range of 50 to
400. Moreover, this result is robust across our range of opponents. A switch at hand
50 works acceptably in all cases.

5.6 Proportion Above Nash Study

If a Nash strategy is known, then any deviation from that strategy must be justified by
the hope that it successfully exploits the opponent. Otherwise, one is better off sticking
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Figure 11: Proportion Above Nash Strategy Study: Proportions of trials with winnings
higher than Nash vs. switching hand for parameter and strategy learning againstO6.

to the “safe” strategy. While the opponent modelling algorithms have been seen to do
well on average, how often is the attempt to exploit a losing proposition? We attempt
to answer this question by plotting the proportion of trialsin which the opponent mod-
eller’s total winnings equal or exceed the expected total winnings for playing a Nash
strategy, versus the switching hand. This proportion is thefrequency with which the
attempt to exploit at least did not hurt us, and possibly was beneficial. It gives some
notion of how damaging the variance can be. Figure 11 shows this experiment against
a single opponent,O6. The results show that, around the 50 hand switching point,
over 80% of trials of balanced parameter learning and only slightly less than 80% of
trials of Nash exploration parameter learning achieve at least the expected winnings of
a Nash strategy. Strategy learning fares the worst but stillperforms at least as well as
the expected Nash strategy winnings in almost 70% of the trials at its best switching
point.

6 Non-Monotonic Learning Curves

Most of the payoff rate curves in our parameter-learning studies are like Figure 5,
with the expected payoff rate of the estimated model increasing monotonically as more
hands are played. This makes sense intuitively; even thoughchance events in the deal
of the cards or the opponent’s stochastic play can sometimesmislead, on average each
hand gives representative information about the opponent,which accumulates to pro-
duce increasingly accurate estimates of the opponent’s strategic parameters.
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Figure 12: Expected Payoff Rate for Balanced Explore (P1) versusO2 for different
strengths of priors.

However, some payoff curves in our studies exhibit a different, non-monotone be-
haviour. For example, Figure 12 shows three convergence rate curves for P1 modelling
P2 when P2 is playing the strategyO2 = (η, ξ) = (0.75, 0.8), P1 is using the Bal-
anced Explore strategy for exploration and P1’s initial estimate of P2’s parameters is
(η, ξ) = (0.5, 0.5). The different curves result from P1 having different strengths given
to this initial estimate, with “weak" and “strong" being defined exactly as in the Prior
study in Section 5.2. The uninformed curve is based on P1 abandoning its initial esti-
mate of a parameter as soon as it has any observed data on whichto base its estimate.
For example, when P1, with the uninformed prior, first sees P2bet with the Jack, it will
immediately change its estimate ofξ to be1.0. As can be seen in Figure 12, the payoff
rate curves for the “weak" and uninformed priors are not monotonically increasing;
they decrease very sharply during the first few hands of play and only become mono-
tonically increasing after roughly 10 hands. These curves are averages over 30,000
trials, so this effect is systematic.

The explanation of this phenomenon is as follows. Although the default values
for η andξ are not especially close to their actual values, in P2’s strategy space they
are on the boundary of regions S2 and S3 (see diagram 2), whichmeans P1’s best
response given these default values is almost the best possible response toO2. This
can be seen in Figure 12 by how close the expected payoff is at hand0 to the maximum
possible expected payoff. As long as the data gathered during play keeps P1’s estimates
in regions S2 and S3, its expected payoff will remain at or above the initial value.
However, if the first few hands of play are not representativeof O2’s play (e.g. O2
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does not bet with the Jack even though it has a probability of0.8 of doing so) P1’s
estimate will move out of regions S2 and S3 and its expected payoff will plummet from
roughly+0.09 to less than−0.1. Figure 13 shows the percentage of trials on which
this happened. After playing 9 hands, P1’s model had an expected payoff of−0.1 or
less on almost8% of the trials when the default strength was “weak" and on morethan
than25% of the trials when the prior was uninformed. From hand 10 onwards (hand 5
for uninformed) this percentage decreases monotonically,causing the expected payoff
rate curve to increase monotonically.
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Figure 13: Percentage of Trials on which P1 had a badly wrong model ofO2.

This phenonemon is important because it reflects a fundamental limit on how quickly
an adaptive system can acquire a trustworthy model of its opponent. If the strength of
the default setting is sufficiently great to avoid this non-monotonicity when the default
produces a good best response, it will be detrimental to learning when the default is not
good, as shown in Figure 6. Thus, whatever strength is assigned to the default, it will
take roughly 15 hands of play to be sure the learned model is not badly wrong.

7 Learning against a Non-Stationary Opponent

One issue that has not been explored so far in this paper is themodelling of non-
stationary opponents, a complex issue for which much research remains to be done. In
this section we present an initial study in which each playeris modelling the other. The
main purpose of this experiment is to highlight the complexities of this situation rather
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than offer a comprehensive treatment.
In this experiment P1 is a parameter learner (using either the Balanced Exploration

data-collection strategy or a Nash strategy (γ = 0.75)) and P2 is a strategy learner
(ComponentAverageExp3 with 5 experts, described below). An H-hand match is
played, with P1 switching from exploration to exploitationat handt (and not changing
his model or counter-strategy from that point on), and P2 using the ComponentAver-
ageExp3 method to select and re-weight its stategies continually throughout the match.
P2 is therefore non-stationary, because the probability with which it selects each expert
strategy changes from hand to hand to reflect the success of the strategy against P1. We
expect this ability to continually adapt will give P2 a greatadvantage over the simple
“explore-then-exploit" P1.

P2 uses 5 experts(η, ξ) = {(1/3, 1/3), (0, 0), (0, 1), (1, 0), (1, 1)}, and the param-
eter settingsρ = 1 andψ = 0.30. Because the experts initially have equal weight, P2
will initially appear to be playing the mixed strategy(η, ξ) = (0.47, 0.47), the average
η andξ values of its experts. Because P2 uniformly chooses betweenits strategies
30% of the time (ψ = 0.30), P2’s effectiveη andξ values cannot be less than0.141 or
greater than0.841. This range of values allow P2 to play strategies in any region of the
P2 strategy space, and to heavily exploit P1’s non-Nash exploration strategy and P1’s
play after it switches to playing a best response to its modelof P2.

Figure 7 shows the total expected winnings for P1 over a H=200hand match as
a function of the time at which P1 switches from the data gathering phase to the ex-
ploitation phase. The curve marked with the asterisks showsP1 using the “Balanced"
exploration strategy while the curve marked with the squares shows P1 using a Nash
data-gathering strategy. Each point is an average of 30,000200-hand matches. The
dashed horizontal line shows the winnings of a static Nash strategy over a 200-hand
match.

P1’s initial parameter estimates,(η, ξ) = (0.5, 0.5), are almost perfectly correct for
P2’s initially uniformly weighted experts. If P2 were a static opponent, P1 would do
very well to switch at time 0; it would have an expected payoffrate of−0.011, five
times better than the payoff rate of the static Nash Strategy. But P2 is not static, and if
P1 switches at time 0, P1 will be playing a fixed strategy throughout the match, giving
P2 all 200 hands to shift weight towards, and play, the expertthat is best against this
P1 strategy. As a consequence, if P1 switches at time 0 its total winnings are somewhat
worse than playing a static Nash strategy.

The curves exhibit the 3-phase form that is often seen when P1has good initial
estimates of stationary opponents. In the first phase (switching hand in the approximate
range 1-15 for Balanced Exploration, 1-20 for Nash), total winnings drops sharply.
This is caused by the randomness of the cards dealt and the stochastic play by both P1
and P2, which result in there being a significant number of short hand sequences that
mislead P1 into choosing to play strategies S4 or S5, which will be highly exploited by
P2 without P2 having to change its initial expert weightings.

In the second phase (switching hand in the range 16-45 for Balanced, 21-150 for
Nash), enough hands have been played that P1 is reliably awayfrom the “disaster zone"
that caused the steep initial decline. P1’s total winnings improve steadily through this
phase.

Against a stationary opponent, the second phase ends once P1has learned a very
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good (if not quite optimal) model of P2. Further explorationis detrimental to total
winnings once the incremental improvement in the model gained by further exploration
is outweighed by the reduction in the number of trials in which the learned model can
be exploited, the classic exploration-exploitation tradeoff.

Against a non-stationary opponent, the second phase ends for much more complex
reasons. First of all, there is pressure for P1 to switch fromexploration to exploita-
tion simply because P2 is modelling P1 while P1 explores. If P1 explores for too
long, P2 will learn, and play, a best response to P1’s exploration strategy and P1 will
be paying an inordinately large price for the information itis gathering. This is why
the second phase for Balanced exploration is so much shorterthan the second phase
for Nash exploration: the former strategy is easily identifiable and highly exploitable,
whereas the latter is hard for P2 to learn, because of its highstochasticity, and mini-
mally exploitable. On the other hand, there are also reasonsfor P1 to extend its second
phase against a non-stationary opponent. The longer P1 continues to explore the more
strongly P2 will believe P1 is playing according to the exploration strategy and the
slower P2 will be to respond to P1’s switch to exploitation; in addition, P2 will have
less time to exploit P1’s learned model. The interplay between all these factors deter-
mines the optimal switching point for P1.
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8 Related Work

Poker has received increasing attention in recent years, with a recent emphasis on op-
ponent modelling. For large scale games, both frequentist (Billings et al., 2004) and
Bayesian (Korb & Nicholson, 1999) approaches have been tried, but each of these has
omitted some aspect of the full game in their model. A recent crop of results has ap-
peared for small scale games attempting, as in this paper, toapproach the problem with
small models that are easier to analyze. Powers and Shoham examine the problem of
computing a best response given only samples from an opponent’s strategy, exploring
both oblivious opponents and opponents that are aware of theinformation they have re-
vealed (Powers & Shoham, 2003). They also present criteria for learning in games and
an algorithm achieving those criteria in two player, perfect information games against
a stationary opponent (Powers & Shoham, 2005).10 Geoff Gordon has examined a
class of no-regret algorithms on a game of one-card poker (Gordon, 2005). Finally,
Poland and Hutter have conducted a study similar to ours in spirit, empirically evaluat-
ing a probabilistic modelling approach and an experts-based approach on2 × 2 matrix
games rather than poker (Poland & Hutter, 2005).

9 Scaling to Larger Games

The study of a small game like Kuhn poker allows exact comparisons to theoretical
ideals, a thorough study by empirical means, and detailed analysis of results by hand.
However, the question naturally arises whether the opponent modelling approaches dis-
cussed here will behave similarly on larger games, including real-world poker games.
In particular, are large-scale versions of these algorithms likely to achieve the rapid
learning required? Game theory research like Kuhn’s is typically limited to small
games for which analytical methods can be applied. At the other end of the spectrum,
research on real-world games like chess and poker typicallyattacks the full version of
the games with approximate algorithms and empirical studies.

There are two obvious ways in which Kuhn poker can be scaled up,

1. broadening: adding cards to the deck, thereby increasingbranching factors, and,

2. deepening: adding more rounds of betting or allowing morebets per round,
thereby increasing depth.

In other Hold’em-style pokers that have been studied, including research games such
as Leduc Hold’em (Southey et al., 2005) and Rhode Island Hold’em (Shi & Littman,

10The Powers and Shoham algorithm simplifies to something similar to our Nash exploration parameter
learning in the case of two player, zero-sum games. It startsby using the BullyMixed strategy during an
initial exploration phase. In two-player, zero-sum games,the BullyMixed strategy is equivalent to a Nash
strategy. The exact path of the algorithm depends on the relationship between the variance in the game’s
value on each round, variance in the distribution of opponent actions, and a set of fixed parameters, but it is
likely to switch from its Nash exploration to playing anǫ-best response against an estimate of the opponent
strategy. While their setting is perfect information gamesand they have no prior over opponent strategies,
our approach of Nash exploration followed by playing best responses to a MAP estimate of the opponent
based on imperfect observations is conceptually very similar.
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2001), and real-world games like limit Texas Hold’em, both dimensions have been
increased. Compared to Kuhn poker, Leduc Hold’em has six cards instead of three and
two rounds of betting instead of one. A typical set of rules for limit Texas Hold’em
uses the full deck of 52 cards and four betting rounds with as many as three or four
bets allowed per round. Increasing either aspect of the gameincreases the size of the
game tree and therefore the number of decision points (information setsin game theory
parlance) for both players. To fully describe the strategy of a player, one must specify
the probabilities of the actions at every information set. This set of parameters grows
very quickly as the number of cards and rounds increases.

The challenge to opponent modelling is immediate. In terms of direct parameter
learning, we must estimate a large set of parameters with very little data. With in-
creased deck size, the number of parameters within each information set grows, adding
to the uncertainty of folded hands. In terms of the indirect,expert-based, strategy learn-
ing approach, the set of possible experts increases dramatically. We must evaluate the
performance of a large set of experts based on only a small number of hands.

For short-term opponent modelling to have any hope, we must rely on the existence
of some correlation between the decisions made in differentparts of the game tree. This
is not an unreasonable belief in many cases, as we would expect reasonable players to
behave similarly in similar situations. A good player will mix their strategies in order
to confuse opponents but there must still be some consistency in their play, dictated by
the nature of the game (highly erratic or nonsensical play will not perform well).

Research has explored two ways of addressing this question of correlation. One is
to take the game itself and identify “similar” situations, for some chosen definition of
similarity. The game can then be simplified and strategies generated with respect to this
new game. Another approach is to make assumptions about the nature of the strategies
themselves. In our parameter learning, this corresponds toa prior over strategies, while
in strategy learning it corresponds to the selection of experts.

9.1 Abstraction

The simplification of games is typically referred to asabstractionin the related re-
search. Abstraction reduces the size of a game tree by merging nodes together and
treating them as equivalent. By extension, abstraction is ameans to reduce the num-
ber of information sets (distinguishable decision points)in the game by grouping their
nodes together. Information sets can be grouped together into equivalence classes, es-
sentially assuming that strategies can be well-modelled byassuming the players will
use the same (possibly randomized) strategy at all information sets within a class. Each
equivalence class becomes an information set in the new, abstracted game. Informa-
tion sets in poker consist of all cards revealed to the playerand all actions taken by all
players so far. Clearly, these can be grouped together in arbitrary ways. However, most
work on abstraction has looked at grouping information setstogether based on cards
rather than actions. In this case, distinct sequences of actions are treated as distinct, but
differences amongst cards are partially ignored.

One common abstraction for cards is to compute theall-in-equityfor a set of cards
(Shi & Littman, 2001; Billings et al., 2003; Southey et al., 2005). This number can be
thought of as the proportion of the pot the player can expect to win given the cards they
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hold and imagining all possible future cards that might appear and all cards that might
be held by the opponent. In two player games specifically, it is the probability of win-
ning plus half the probability of a tie. The actions taken so far in the game are ignored
by this metric, so it is clearly a gross simplification. Neverthless, it does provide a con-
venient scalar estimate in the range of[0, 1] for the “strength” of the player’s hand. This
range can then be discretized into, for example, 10 intervals, effectively grouping cards
into one of ten card equivalence classes. These card equivalence classes, combined
with the action history, make up the information sets in the abstracted game.

One example of abstraction over actions is found in the VexBot program (Billings
et al., 2004). VexBot is akin to maximum likelihood, estimating the opponent’s strat-
egy from frequency counts for actions and observed opponentcards. However, in the
presence of very little data, estimates will be scattered amongst the huge number of
information sets. To achieve some generalization, VexBot tracks estimates over several
different abstractions that group together situations based on similiarities in actions.
For example, one such grouping considers a set of situationsto be the same if the op-
ponent made an equal number of bets/raises. This essentially ignores the player’s own
actions, and the specific order of the opponent’s actions. VexBot then combines the
estimates from the different abstractions to guide its play.

Finally, Gilpin and Sandholm have worked extensively on automatically generating
abstractions of game trees with specific application to poker (Gilpin & Sandholm, 2006,
2007a, 2007b; Gilpin et al., 2007). These methods even allowfor the discovery of
abstracted games with Nash equilibria that correspond directly to the equilibria in the
original game. Approximate methods that do not preserve equilibria provide an avenue
for even smaller abstractions.

9.2 Correlation in Strategies

Abstraction is essentially a hard decision about correlation in the original game; un-
der an abstraction, two information sets from the original game are either completely
correlated or completely independent. This has the attractive property that all subse-
quent reasoning is performed with respect to a smaller game.However, it is clearly
a very strong assumption about the nature of opponents. Another, smoother approach
is to recognize that strategies at information sets may be more weakly correlated. For
example, a player holding two tens might be expected to have similar behaviour when
holding a pair of nines, only somewhat less cautious (e.g., more likely to bet).

In Bayesian parameter learning, such correlations can be captured in the prior over
strategies, giving higher probabilities to strategies that reflect correlations between in-
formation sets supposed to be similar. The priors used in ourwork here on Kuhn poker
do not capture any such correlation, since each parameter uses aBeta distribution as
a prior. However, in the work described in (Southey et al., 2005), an expert-designed
prior was used. Characterized by ten parameters, the prior would generate strategies
that correlate the behaviour between betting rounds and over similar classes of cards.
Thus, an overall tendency toward aggressive betting would be reflected over a range of
strong hands, and would be pursued round after round.

In strategy learning, as games grow larger, enumerating allthe pure strategies for
use as experts quickly becomes infeasible. It is therefore necessary to select a smaller
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set of strategies, or to work with classes of strategies for which effective algorithms
can be found that consider large numbers. In the simplest case, experts can be sampled
from a prior similar to that used by parameter learning. Another approach is to sample
strategies from a prior, compute a best response for each sampled strategy, and use
those as experts. More recently, the research in (Johanson et al., 2007) explores the
question of generating robust strategies for use in opponent modelling, dealing directly
with large abstractions of Texas Hold’em.

9.3 Learning in Larger Games

The closed-form MAP estimates used here for parameter learning in Kuhn poker are not
feasible for larger games. One alternative is to use the popularexpectation-maximization
(EM) algorithm (Dempster et al., 1977). In (Southey et al., 2005), we instead used
Monte Carlo sampling from the prior. Over a fixed sample, one can simply track
the sampled strategy with highest posterior probability asan approximation to the
true MAP strategy. While those experiments did not use the same two-phase, ex-
plore/exploit framework presented here, we can make some observations about the
convergence of the posterior distribution.

In (Southey et al., 2005), experiments on Leduc and abstracted Texas Hold’em
were run over 200 hands against fixed opponents using 1000 strategies sampled from
the prior. In each experiment, the sampled strategy with thehighest posterior proba-
bility after 200 hands was recorded, which we will here denote σ̂MAP . This means
thatσ̂MAP is the “best fit” to the opponent amongst the sampled strategies. For Leduc
Hold’em, the relative posterior probability of̂σMAP (i.e., the proportion of posterior
probability attributed to it) was about 0.05 after 50 hands,0.15 after 100 hands, 0.4
after 150 hands, and 0.78 after 200 hands. This shows that theeventual best fit strat-
egy had substantial mass on it (much more than the uniform weighting initially on the
samples), even after 50 hands. The results are still more striking in Texas Hold’em,
where the relative posterior probability ofσ̂MAP was about 0.12 after 50 hands, 0.3 af-
ter 100 hands, 0.6 after 150 hands, and 0.9 after 200 hands. This is an even more rapid
convergence to the best fit. While this does not necessarily imply strong play, which
is heavily influenced by the prior from which the sampled strategies are drawn, it does
demonstrate fast learning. This leads us to believe that parameter learning methods, at
least, will scale to offer some short-term benefit. Further study is required to determine
exactly how much can be achieved with different priors.

Results are not available for strategy learning, but there are similarities to the pa-
rameter learning case. Strategy learning relies on a weakersignal to inform the choice
of strategy, looking only at performance against the opponent and not at the specific
actions taken by the opponent. However, there are several ways to reduce the variance
in the estimates obtained by observing performance (e.g., attempting to separately ac-
count for randomness introduced by the cards rather than by astochastic opponent).
Strategy learning also has the advantage that it does not require that our set of strategies
contain one that is similar to the opponent, but only that it contain one that is effective
against the opponent. In larger games, where we can consideronly a comparatively
small subset of the possible strategies, this advantage maybecome important.
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10 Conclusions

This work shows that learning to maximally exploit an opponent, even a stationary
one in a game as small as Kuhn poker, is not generally feasiblein a small number of
hands. However, the learning methods explored are capable of showing positive results
in as few as 50 hands, so that learning to exploit is typicallybetter than adopting a
pessimistic Nash strategy. Furthermore, this 50 hand switching point is robust to game
length and opponent. Future work includes non-stationary opponents, a wider explo-
ration of learning strategies, and larger games. Both approaches can scale up, provided
the number of parameters or experts is kept small (abstraction can reduce parameters
and small sets of experts can be carefully selected). Also, the exploration differences
amongst equal-valued strategies (e.g., Nash in two player,zero-sum games) deserves
more attention. It may be possible to more formally characterize the exploratory ef-
fectiveness of a strategy. We believe these results should encourage more opponent
modelling research because, even though maximal exploitation is unlikely, fast oppo-
nent modelling may still yield significant benefits.

Appendix A: Beta Distribution

A Beta distribution gives a probability distribution over a single probability (a value
in [0, 1]). As such, it is a useful prior for single parameters in probabilistic models.
A Beta distribution is characterized by two parameters,θ andω. The probability
assigned to a parameter value by aBeta distribution is

PBeta(θ,ω)(x) = xθ(1 − x)ω Γ(θ + ω)

Γ(θ)Γ(ω)

where the ratio of Gamma functions is simply a normalizing constant. A single prob-
ability is a distribution over two events.Beta distributions can be understood as “pre-
tending” that we have observed several events in the past, and that we observedθ of one
event andω of the other. Figure 15 shows three examples ofBeta distributions. Note
how we can obtain the uniform distribution withBeta(0, 0) or distributions showing
the impact of past “pretended” evidence.11

Acknowledgments

Thanks to the Natural Sciences and Engineering Research Council of Canada and the
Alberta Ingenuity Centre for Machine Learning for funding,and the University of Al-
berta poker group for their insights. Particular thanks to Martin Zinkevich and Michael
Bowling for their insights.

11Some formulations of theBeta distribution offset the distribution’s parameters by -1 (i.e.,

PBeta(θ,ω)(x) = xθ−1(1 − x)ω−1 Γ(θ+ω)
Γ(θ)Γ(ω)

). We choose to use the above version, which offers a more
direct connection to the interpretation of “pretended” observations.

32



0 0.5 1

Beta(0,0)

0 0.5 1

Beta(1,1)

0 0.5 1

Beta(5,1)

Figure 15: ExampleBeta distributions.
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