Journal of Machine Learning Research 12 (2011) 349-384 Stdai6/10; Revised 12/10; Published 2/11

Models of Cooperative Teaching and Learning

Sandra Zilles ZILLES@CS.UREGINA.CA
Department of Computer Science

University of Regina

Regina, SK, Canada, S4S 0A2

Steffen Lange S.LANGE@FBI.H-DA.DE
Department of Computer Science

Darmstadt University of Applied Sciences

Haardtring 100, 64295 Darmstadt, Germany

Robert Holte HOLTE@CS.UALBERTA.CA
Department of Computing Science

University of Alberta

Edmonton, AB, Canada, T6G 2E8

Martin Zinkevich MAZ @YAHOO-INC.COM
Yahoo! Inc.

701 First Avenue

Sunnyvale, CA 94089, USA

Editor: Nicold Cesa-Bianchi

Abstract

While most supervised machine learning models assume thatng examples are sampled at
random or adversarially, this article is concerned with eledf learning from a cooperative teacher
that selects “helpful” training examples. The number ofnirey examples a learner needs for
identifying a concept in a given clagsof possible target concepts (sample complexityCpfis
lower in models assuming such teachers, that is, “helpfuingples can speed up the learning
process.

The problem of how a teacher and a learner can cooperate én tardeduce the sample com-
plexity, yet without using “coding tricks”, has been widagdressed. Nevertheless, the resulting
teaching and learning protocols do not seem to make thedeaelect intuitively “helpful” exam-
ples. The two models introduced in this paper are built ontwieacall subset teaching setsd
recursive teaching setsThey extend previous models of teaching by letting bothtéaeher and
the learner exploiknowingthat the partner is cooperative. For this purpose, we initeda hew
notion of “coding trick”/“collusion”.

We show how both resulting sample complexity measuressiihset teaching dimensiamd
therecursive teaching dimensipoan be arbitrarily lower than the classic teaching dimamsind
known variants thereof, without using coding tricks. Fatance, monomials can be taught with
only two examples independent of the number of variables.

The subset teaching dimension turns out to be nonmonotoiticrespect to subclasses of
concept classes. We discuss why this honmonotonicity nfighbhherent in many interesting co-
operative teaching and learning scenarios.
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1. Introduction

A central problem in machine learning is that learning algorithms often redpiige quantities
of data. Data may be available only in limited quantity, putting successful deplayofiestan-
dard machine learning techniques beyond reach. This problem is addreg models of machine
learning that are enhanced by interaction between a learning algorithmefiefor short) and its
environment, whose main purpose is to reduce the amount of data needieatfiing. Interaction
here means that at least one party actively controls which informationteeged about the target
object to be learned. Most classic machine learning models address gradawcase” of data pre-
sentation to a learner (labeled examples are drawn independently atrré&oo some distribution)
or even the “worst case” (examples are drawn in an adversariabfgsiThis results in the design
of learners requiring more data than would be necessary under more dipt{iauigl often realistic)
assumptions. As opposed to that, interactive learning refers to a “geetlicavhich representative
examples are selected, whereby the number of examples needed fsgutlearning may shrink
significantly.

Interactive machine learning is of high relevance for a variety of applicgtior example, those
in which a human interacts with and is observed by a learning system. A systemdtiormally
founded study of interactive learning is expected to result in algorithmsémateduce the cost of
acquiring training data in real-world applications.

This paper focusses on particular formal models of interactive coeapting. Considering
a finite instance space and a class of (thus finite) concepts over that gpambvious that each
concept can be uniquely determined if enough examples are known. Msglobvious is how
to minimize the number of examples required to identify a concept, and with this aim th min
models ofcooperative learningind learning frongood examplewere designed and analyzed. The
selection of good examples to be presented to a learner is often modeledausimching device
(teacher) that is assumed to be benevolent by selecting examples exptditiegrning process
(see, for instance, Angluin and Krikis, 1997; Jackson and Tomki®82;:1Goldman and Mathias,
1996; Mathias, 1997).

Throughout this paper we assume that teaching/learning proceeds in lg girafocol; the
teacher presents a batch of labeled examples (that is, a set of insteademaired with a label 1
or 0, according to whether or not the instance belongs to the targetptdneehe learner and the
learner returns a concept it believes to be the target concept. If thet&aconjecture is correct,
the exchange is considered successful. The sample size, that is, thermfrakamples the teacher
presents to the learner, is the object of optimization; in particular we aregoedt with the worst
case sample size measured over all concepts in the underlyin@adhad possible target concepts.
Other than that, computational complexity issues are not the focus of this pape

A typical question ifHow can a teacher and a learner cooperatively minimize the worst case
sample size without using coding tricks@ coding trick being, for example, aaypriori agreement
on encoding concepts in examples, depending on the conceptl&ss instance, if teacher and
learner agreed on a specific order for the concept representatiotiseainstances and agreed to use
the jt" instance in this ordering to teach thi@ concept, that would be a coding trick. In practice,
the teacher and the learner might not be able to agree on such an ordestdnce, if the teacher is
a human who does not have the same representation of a concept ashieerhas. There is so far
no generally accepted definition of the term “coding trick” (sometimes alsadcaltdlusion”); the
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reader is referred to Angluin and Krikis (1997), Ott and StephanZp@fd Goldman and Mathias
(1996). It is often more convenient to define what constitutes a valid pseaoher and learner.

The most popular teaching model is the one introduced by Goldman and Mgtags). Here
a team of teacher and learner is considered valid if, for every congephe underlying clas€ the
following properties hold.

e The teacher selects a $0f labeled examples consistent with

e On input ofany supersedf Sof examples that are labeled consistently vitthe learner will
return a hypothesis representiag

The idea behind this definition is that the absence of examples in the s&roaleot be used for
encoding knowledge about the target concept. This is completely in line wibnscof inductive
inference from good examples, see Freivalds et al. (1993) anceletray. (1998).

One way for a teacher and a learner to form a valid team under thedesintsss for the teacher
to select, for every concepte C, a sampleSthat is consistent witle but inconsistent with every
other concept ifC. The size of the minimum such sample is calledtiémching dimensioof cin
C. The teaching dimension of the claSss the maximum teaching dimension over all concepts in
C. For more information, the reader is referred to the original literature ahieg dimension and
variants thereof (Shinohara and Miyano, 1991; Goldman and Ke&885; Anthony et al., 1992).

The teaching dimension however does not always seem to capture thedntléth of coopera-
tion in teaching and learning. Consider the following simple exampleCh.ebnsist of the empty
concept and all singleton concepts over a given instance spaedxi,...,X,}. Each singleton
concept{x;} has a teaching dimension of 1, since the single positive exafmple) is sufficient
for determining{x;}. This matches our intuition that concepts in this class are easy to teach. In
contrast to that, the empty concept has a teaching dimensior-efrery example has to be pre-
sented. However, if the learner assumed the teacher was cooperatidesould therefore present
a positive example if the target concept was non-empty—the learner confidiently conjecture
the empty concept upon seeing just one negative example.

Let us extend this reasoning to a slightly more complex example, the class obédhbin func-
tions that can be represented as a monomial aveariables fh = 4 in this example). Imagine
yourself in the role of a learner knowing your teacher will present béfptamples. If the teacher
sent you the examples

(0100+),(0111 +),

what would be your conjecture? Presumably most people would conjabiimmonomialM =
Vi AVp, as does for instance the algorithm proposed by Valiant (1984). Ndt¢éhikahoice is not
uniquely determined by the data: the empty (always true) monomial and the mdsepeadv,
are also consistent with these examples. AndWeteems the best choice, because we’d think the
teacher would not have kept any bit in the two examples constant if it wiam e position of
a relevant variable. In this example, the natural conjecture is the mosfispencept consistent
with the sample, but that does not, in general, capture the intuitive idea pératve learning. In
particular, if, instead of the class of all monomials, the class of all compleméttiese concepts
over the same instance space is chosen, then a cooperative teacthesrard would need only
two negatively labeled example for teaching the complement of the concemtiaed withvg A v,
which is now the least specific concept in the class. Going further, arid swap+ for — and vice
versa only for some of the instances. In effect, only the labels in the exaripdsen by the teacher
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would change, but not the instances as such. The concepts gugsttedi®arner would then be
neither the most specific nor the least specific concepts.

Could the learner’s reasoning about the teacher’s behavior in thasepées be implemented
without a coding trick? We will argue below that, for a very intuitive, yet mathgcally rigorous
definition of coding tricks, no coding trick is necessary to achieve exadybhavior of teacher
and learner; there are general strategies that teachers and leaméngdependently implement to
cooperatively learn any finite concept class. When applied to the classmdmials this princi-
ple enables any monomial to be learned from just two examples, regardldss mumbem of
variables.

Our approach is to define a new model of cooperation in learning, basttadea that each
partner in the cooperation tries to reduce the sample size by exploiting the@ssuthat the other
partner does so. If this idea is iteratively propagated by both partnees;an refine teaching sets
iteratively ending up with a framework for highly efficient teaching andriesy without any coding
tricks. It is important to note that teacher and learner do not agree oordayof the concept class
or any order of the instances. All they know about each others’ stestégya general assumption
about how cooperation should work independent of the conceptmldssrepresentation.

We show that the resulting variant of the teaching dimension—calleduhset teaching di-
mension (STDB}is not only a uniform lower bound of the teaching dimension but can bstanh
where the original teaching dimension is exponential, even in cases whigrere iteration is
needed. For example, as illustrated above, the STD of the class of monowaais B 2 variables
is 2, in contrast to its original teaching dimension &% 2

Some examples however will reveal a nonmonotonicity of the subset teatihiegsion: some
classes possess subclasses with a higher subset teaching dimensabnisvett first glance not
very intuitive. We will explain below why in a cooperative model such a namohanicity does
not have to contradict intuition; additionally we introduce a second moded@perative teaching
and learning, that results in a monotonic dimension, calledetersive teaching dimension (RT.D)
Recursive teaching is based on the idea to let the teacher and the legrlwt & hierarchical
structure that is intrinsic in the concept class. The canonical hierasdoceted with a concept
classC is a nesting o€, starting with the class of all conceptsirthat are easiest to teach (i.e., have
the lowest teaching dimension) and then applying the nesting processiveuto the remaining
set of concepts. At every stage, the recursive teaching sets footieeputs that are easiest to
teach are the teaching sets for these concepts with respect to the clessafing concepts. The
recursive teaching dimension is the size of the largest recursive tgasgticonstructed this way.

The RTD-model is not as intuitive a model of cooperative teaching andifepas the STD-
model is, but it displays a surprising set of properties. Besides its manitypthe RTD corre-
sponds to teacher-learner protocols that do not violate Goldman and Blaitthédinition of teach-
ing and learning without coding tricks. Nevertheless, substantial impraviesnoeer the classical
teaching dimension are obtained. A recent study furthermore shows tha¢dbrsive teaching
dimension is a combinatorial parameter of importance when analyzing the campielearning
problems from the perspective of active learning, teaching, learnorg fandom examples, and
sample compression, see Doliwa et al. (2010).

Both our teaching protocols significantly improve sample efficiency comp@arguleviously
studied variants of the teaching dimension.

This paper is a correction and extension of an earlier publication (Zillek, &0®8). In this
earlier publication, both Proposition 5(1) and the conjecture in Lemma 23wrergy.
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2. Related Work

The problem of defining what are “good” or “helpful” examples in leagniras been studied in
several fields of learning theory.

Various learning models, which each involve one particular type of teaateee proposed by
Goldman and Kearns (1995), Goldman and Mathias (1996), Mathias )}, 128kson and Tomkins
(1992), Shinohara and Miyano (1991), Angluin and Krikis (199%)ghin and Krikis (2003), Bal-
bach (2008) and Kobayashi and Shinohara (2009); these studidly faosis on learning boolean
functions. See also Balbach and Zeugmann (2009) for a recentysuftie teaching dimension
model, independently introduced by Goldman and Kearns (1991; 1995pwrghinohara and
Miyano (1991), is concerned with the sample complexity of teaching arbitrangistent learn-
ers. Samples that will allow any consistent learner to identify the targeepbiace calledeaching
sets the maximum size of minimal teaching sets of all concepts in the underlying pocies<C is
called theteaching dimensioof C. The problem of avoiding unfair “coding tricks” between teach-
ers and learners is addressed in particular by Goldman and Mathiag (1i&®81e introduction of a
formal notion of collusion-free learning. It is known that computing (the si§ minimal teaching
sets is in general intractable, see Servedio (2001), which is one redsothe polynomial-time
models introduced by Jackson and Tomkins (1992) are of interest.aiaakg Tomkins no longer
require that teachers choose samples that make any consistent leacesséul; they rather focus
on specific teacher/learner pairs. Loosening the requirement of fedo@i@g consistent, Kobayashi
and Shinohara (2009) analyze how restrictions on the number of exagipdesby the teacher in-
fluence the worst-case error of the hypothesis returned by a learner.

The teaching dimension was analyzed in the context of online learning, ee®®&vid and
Eiron (1998) and Rivest and Yin (1995), and in the model of learniogpfgueries, for example, by
Hegedis (1995) and by Hanneke (2007), with a focus on active learning iRAl:framework. In
contrast to these models, in inductive inference the learning process necessarily considered
to be finite. Approaches to defining learning infinite concepts from goatheles (Freivalds et al.,
1993; Lange et al., 1998) do not focus on the size of a finite sample dfgm@mples, but rather on
characterizing the cases in which learners can identify concepts friynfititely many examples.

One of the two approaches we present in this paper is mainly based onaahyid®albach
(2008). He defined and analyzed a model in which, under the premis¢hthatacher uses a
minimal teaching set (as defined by Goldman and Kearns, 1991, 1995as@e, a learner can
reduce the size of a required sample by eliminating concepts which poseeashiang set smaller
than the number of examples provided by the teacher so far. lIterating thistfde size of the
teaching sets might be gradually reduced significantly. Though our agipiie syntactically quite
similar to Balbach'’s, the underlying idea is a different one (we do notidenglimination by the
sample size but elimination by the sample content as compared to all possibiegesets). The
resulting variant of the teaching dimension in general yields differefibpeance results in terms
of sample size than Balbach’s model does.

3. The Teaching Dimension and the Balbach Teaching Dimension

Let N denote the set of all non-negative integ@rgienote the empty set, afd| denote the cardi-
nality of a finite seM. For anyk € N, the power set of1, ..., k} will be denoted by #.
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In the models of teaching and learning to be defined below, we will alwags@sthat the goal
in an interaction between a teacher and a learner is to make the learner ideffitifiye) concept
over a (finite) instance spaoeée

Most of the recent work on teaching (cf. Balbach, 2008; Zilles et aD828albach and Zeug-
mann, 2009; Kobayashi and Shinohara, 2009) defines a concepy sisa subset oK and a
concept class as a set of subsetXofln effect, this is exactly the definition we would need for
introducing the teaching models we define below. However, the definitiordisedssion of the
notion of collusion (i.e., the conceptualization of what constitutes a coding tsele Section 4,
motivates a more general definition of concepts and concept classiesndite general definition
considers the instance spaXeas an ordered set and every concept class an ordered set of
subsets oK.

To formalize this, leX = {1,...,n}. Concepts and concept classes are defined as follows.

Definition 1 Letze N.

A concept class of cardinality z is defined by an injective mappinglC...,z} — 2N Everyie
{1,...,z} and thus every concept{J is associated with a membership function oe=X1,...,n},
given by Gi)(j) =+if j €C(i),and Qi)(j) = —if j ¢ C(i), wherel < j <n. Thus a concept class
C of cardinality ze N is represented as a matri(i)(j))i<i<z1<j<n Over{+,—}.

(; denotes the collection of all concept classes of cardinality 2,y C; denotes the collec-
tion of all concept classes (of any cardinality).

Consequently, concepts and concept classes considered belowvaitsdbe finite.

Definition 2 Letze Nand Ce (.

A sample is a set S {(j1,11),...,(jr,Ir)} C X x {+,—}, where every elemeii,l) of S is
called a (labeled) example.

Letie {1,...,z}. C(i) is consistent with S (and S is consistent with)¥Cif C(i)(j;) = I for all
te{1,...,r}. Denote

CongSC) ={ie{1,...,z} |C(i) is consistent with 5

The power set of1,...,n} x {+,—}, that is, the set of all samples, is denotedshy

3.1 Protocols for Teaching and Learning in General

In what follows, we assume that a teacher selects a sample for a giveh ¢cargcept and that a
learner, given any samp always returns an index of a concept from the underlying condags c
C. Formally, ifze N and(C(i)(j))1<i<z1<j<n IS @ concept class id;, ateacherfor C is a function
1:{1,...,2} — S; alearnerfor Cis a functionA : § — {1,...,z}.

In order to constrain the definition of validity of a teacher/learner pair tsaaform of inter-
action in a learning process, the notion of adversaries will be usefuleradvies will be considered
third parties with the option to modify a sample generated by a teacher befosathige is given to
a learner. Formally, aadversaryis a relationAd C s3. Intuitively, if (1(i),C(i),S) € Ad for some
to modify (i) to Sand the learner communicating withwill get Srather thart(i) as input. A
special adversary is the so-calledial adversary Ad, which satisfiesS;, S, S) € Ad* if and only
if S = S. This adversary does not modify the samples generated by the teaalier at
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All teaching and learning models introduced below will involve a very sinppd¢ocolbetween
a teacher and a learner (and an adversary).

Definition 3 Let P be a mapping that maps every concept class@to a pair P(C) = (1,A) where
T is a teacher for C and is a learner for C. P is called a protocol; given € C, the pair RC) is
called a protocol for C.

1. Let ze N and let Ce (, be a concept class. Let Adbe an adversary. &) = (1,A) is called
successful for C with respect to Ad A(S) =i for all pairs (i,S) where i€ {1,...,z}, S€ S,
and(1(i),C(i),S) € Adc.

2. LetAa = (Adc)cec be a family of adversaries. P is called successful with respegtifofor
allC € ¢, P(C) is successful for C with respect to Ad

Protocols differ in the strategies according to which the teacher and timetegperate, that is,
according to which the teacher selects a sample and according to whichrtiex keelects a concept.

In all protocols considered below, teachers always select conssdenles for every given
target concept and learners, given any sangpkdways return a concept consistent wghf such
a concept exists in the underlying cla@sFormally, all teachers for a concept clas€ € ¢, will
fulfill i € Cong1(i),C) foralli € {1,...,z}; all learners\ for a clas<C will fulfill A(S) € CongS,C)
for all Se § with CongS,C) # 0. Moreover, all the adversariésl we present below will have the
following property:

for any three sampleS;, S, S S, if (S1,$,S) € AdthenS CSC S;,.

However, this does not mean that we consider other forms of teachareets, or adversaries
illegitimate. They are just beyond the scope of this paper.

The goal in sample-efficient teaching and learning is to design protoce)$adhavery concept
classC, are successful fa€ while reducing the (worst-case) size of the samples the teacher presents
to the learner for any target concepidnAt the same time, by introducing adversaries, one tries to
avoid certain forms of collusion, an issue that we will discuss in Section 4.

3.2 Protocols Using Minimal Teaching Sets and Balbach Teaching Sets

The fundamental model of teaching we consider here is based on the nbtiwnimal teaching
sets which is due to Goldman and Kearns (1995) and Shinohara and Miy&84).1

Let ze N and letC € ¢, be a concept class. L&be a sampleSis called ateaching sefor
i with respect toC if CongS,C) = {i}. A teaching set allows a learning algorithm to uniquely
identify a concept in the concept cla8sTeaching sets of minimal size are callathimal teaching
sets Theteaching dimensionf i in C is the size of such a minimal teaching set, thaT3(i,C) =
min{|§ | CongSC) = {i}}, the worst case of which defines the teaching dimensid, dfat is,
TD(C) =max{TD(i,C) | 1 <i < z}. To refer to the set of all minimal teaching sets wiith respect
toC, we use

T9i,C) ={S|CongSC) = {i} and|§ =TD(i,C)}.

Minimal teaching sets induce the following protocol.

Protocol 4 Let P be a protocol. P is called a teaching set protocol (TS-protocol fort} if the
following two properties hold for every € C, where RC) = (T,A).
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1. 1(i) e TSi,C) foralli € {1,...,z},
2. A\(S) € CongS C) for all S€ S with CongS C) # 0.

This protocol is obviously successful with respect to the family consistinlg of the trivial
adversary. The teaching dimension of a concept casghen a measure of the worst case sample
size required in this protocol with respectAd” when teaching/learning any conceptin

The reason that, for every concept cl@ss (, the protocoP(C) is successful (with respect to
Ad") is simply that a teaching set eliminates all but one concept due to incongistéowever, if
the learner kneWwD(i,C) for everyi € {1,...,z} then sometimes concepts could also be eliminated
by the mere number of examples presented to the learner. For instancaeaskarner knows that
all but one concep(i) have a teaching set of size one and that the teacher will teach using tgachin
sets. After having seen 2 examples, no matter what they are, the leantgtetiminate all concepts
butC(i). This idea, referred to as elimination by sample size, was introduced by Bg[P@@8). If
a teacher knew that a learner eliminates by consistency and by sample sizbehieacher could
consequently reduce the size of some teaching sets (e.g., hEEg|,i€) > 3, a new “teaching set”
for i could be built consisting of only 2 examples).

More than that—this idea is iterated by Balbach (2008): if the learner knevhid#eacher uses
such reduced “teaching sets” then the learner could adapt his assumptioa size of the samples
to be expected for each concept, which could in turn result in a furtideiction of the “teaching
sets” by the teacher and so on. The following definition captures this ideefiy.

Definition 5 (Balbach, 2008)
Let ze N and let Ce ¢, be a concept class. Letd {1,...,z} and S a sample. Let BP,C) =
TD(i,C). We define iterated dimensions for akKkY as follows.

e ConsidS.C,k) = {i € Cong§S C) | BTDX(i,C) > |S|}.
e BTDL(i,C) = min{|S | Cons;z{S,C.k) = {i}}

Letk be minimal such that BT(i,C) = BTDX(i,C) for all i € {1,...,z}. The Balbach teaching
dimension BT, C) of i in C is defined by BTD,C) = BTD*(i,C) and the Balbach teaching di-
mension BTIC) of the class C is BTEC) = max{BTD(i,C) | 1<i < z}.! Foreveryic {1,...,z}
we define

BTSi,C) = {S| Consizd SC,k) = {i} and|§ = BTD(i,C)}

and call every set in BT§C) a minimal Balbach teaching set of i with respect to C.
By ConsizdS,C) we denote the set Cofg(S C,K).

The Balbach teaching dimension measures the sample complexity of the follovaturq
with respect to the trivial adversary.

Protocol 6 Let P be a protocol. P is called a Balbach teaching set protocol (BT &pobfor short)
if the following two properties hold for every € C, where RC) = (T,A).

1. 1(i) e BTSi,C) foralli € {1,...,z},

1. Balbach (2008) denotes this B®TTD, called iterated optimal teacher teaching dimension; we deviate from this
notation for the sake of convenience.
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2. A(S) €{i | there is some’S BTSi,C) such that SC S} for all S § that contain a set’Se
BTSi,C) for some ic {1,...,z}.

Obviously,BTD(C) < TD(C) for every concept class € C. How much the sample complexity
can actually be reduced by a cooperative teacher/learner pair aggdedthis “elimination by
sample size” principle, is illustrated by the concept clégsvhich consists of the empty concept
and all singleton concepts ov&r The teaching dimension of this classisvhereas th&@TDis 2.

3.3 Teaching Monomials

A standard example of a class of boolean functions studied in learningytieethre class¥y, of
monomials over a sefvs,...,vm} of mvariables, for anym > 22 Usually, this class is just de-
fined by choosingX = {0,1}™ as the underlying instance space. Then, for any monakhjahe
corresponding concept is defined as the set of those assignmd®d }i' for which M evaluates
positively. Within our more general notion of concept classes, there is than just one class of
all monomials ovem variables (which we will later consider as equivalent). This is due to distin-
guishing different possible orderings overand over the class of monomials itself.

Definition 7 Let me N, m> 2 and assume & 2™, that is, X={1,...,2M}.

Letbin: {1,...,2™} — {0,1}™ be a bijection, that is, a repetition-free enumeration of all bit
strings of length m. Lanon :{1,...,3™} — 7, be a bijective enumeration of all monomial func-
tions over m variablesyy. .., Vm.

A mapping C {1,...,3M} — 212" is called a concept class of all monomials over m variables
if, foralli e {1,...,3"}andall je {1,...,2"},

Cli)(j) = +, if mon(i) evaluates to TRUE when assigniba(j) to (vi,...,Vm),
V=12, mon(i) evaluates to FALSE when assignibim(j) to (vy,...,Vm).

It turns out that a class of all monomials contains only one concept folwtheBTD-iteration
yields an improvement.

Theorem 8 (Balbach, 2008)Let me N, m> 2. Let C: {1,...,3™} — 22" be a concept class of
all monomials over m variables. Let& {1,...,3M} with C(i*) = 0 be an index for the concept
representing the contradictory monomial.

1. BTD(i*,C) = m+2 < 2™ = TD(i*,C).

2. BTO(i,C) =TD(i,C) for alli € {1,...,3M™}\ {i*}.

The intuitive reason foBTD(i*,C) = m+ 2 in Theorem 8 is that samples 16(i*) of sizem+1
or smaller are consistent also with monomials different f@(it), namely those monomials that
contain every variable exactly once (each such monomial is positive &mtlg>one of the 2 in-
stances). These other monomials hence cannot be eliminated—neither bgrdiganconsistency.

2. A monomial ovefvy, ..., Vm} is a conjunction of literals ovefvy, ..., vm}, also called a 1-CNF or a 1-term DNF.
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4. Avoiding Coding Tricks

Intuitively, the trivial adversary of course does not prevent temahd learner from using coding
tricks. One way of defining what a coding trick is—or what a valid (colludiae) behaviour of a
teacher/learner is supposed to look like—is to require success with tes@especific non-trivial
type of adversary.

Goldman and Mathias (1996) called a pair of teacher and learner validttocept clas€ € ¢,
if, for every concep€(i) in the clas<C, the following properties hold.

e The teacher selects a se0f labeled examples consistent Wit ).

e On input ofany supersedf Sof examples that are labeled consistently v@tln), the learner
will return a hypothesis representi@gi).

In other words, they considered a teacher-learner(wak) a valid protocol forC if and only if it
is successful with respect emyadversanAdc that fulfills t(i) C SC C(i) foralli € {1,...,z} and
all Se § with (1(i),C(i),S) € Adc.

Obviously, teacher/learner pairs using minimal teaching sets according T&{r@tocol (Pro-
tocol 4) are valid in this sense.

Theorem 9 Let ze N and let Ce (; be a concept class. Letbe a teacher for CA a learner for
C. If (1,A) is a TS-protocol for C thefit,A) is successful with respect to any adversary: Aot
fulfills t(i) CSCC(i) foralli € {1,...,z}.

Proof. Immediate from the definitions. O

Not only the protocol based on the teaching dimension (Protocol 4))dmuttee protocol based
on the Balbach teaching dimension (Protocol 6) yields only valid teacherdepairs according to
this definition—a consequence of Theorem 10.

Theorem 10 Let ze N and let Ce (; be a concept class. Letd {1,...,z}, Se€ BTSi,C), and
T D Ssuch that& CongT,C). Then there is nd i CongT,C) such that £ i’ and $C T for some
S e BTS/,C).

Proof. Assume there is somiée CongT,C) such that # i’ and someS € BTSi’,C) such that
S CT. Since bottC(i) andC(i’) are consistent witfl and bothSandS are subsets of, we have
i € CongS,C) andi’ € CongS,C). Now letk > 1 be minimal such thaTD(i*,C) = BTD(i*,C)
for alli* € C. Fromi’ € CongS,C) andSe BTSi,C) we obtain

|S| =BTD'(i",C) <BTD* 1(i",C) < |5 .
Similarly,i € CongS,C) andS € BTSi’,C) yields

|S = BTD!(i,C) < BTD* %(i,C) < |S].

This is a contradiction. O
This implies that ever8TSprotocol is valid in the sense of the definition given by Goldman
and Mathias (1996).
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Corollary 11 Letze N and let Ce (; be a concept class. Letbe a teacher for Ch a learner for
C. If (t,A) is a BTS-protocol for C thefr, ) is successful with respect to any adversary. Atht
fulfills (i) C SC C(i) foralli € {1,...,z}.

Goldman and Mathias’s definition of valid teacher/learner pairs encongpassead set of sce-
narios. It accommodates all consistent learners even those that do kewamaprior assumptions
about the source of information (the teacher) beyond it being noise-ffewever, in many appli-
cation scenarios (e.g., whenever a human interacts with a computer or trroblod interaction) it
is reasonable to assume that (almost) all the examples selected by the teadtedpfal or partic-
ularly important for the target concept in the context of the underlyingepinclass. Processing a
sampleSselected by a teacher, a learner could exploit such an assumption bgtiegatiot only all
concepts that are inconsistent wilbut also all concepts for which some exampleSimould not
seem particularly helpful/important. This would immediately call Goldman and M&tdagnition
of validity into question.

Here we propose a more relaxed definition of what a valid teacher/lepaieis (and thus,
implicitly, a new definition of collusion). It is important to notice, first of all, thatgarts of the
existing literature, teaching sets and teaching dimension are defined viarjemfsetsrather
than properties aepresentationsf sets, see Balbach (2008) and Kobayashi and Shinohara (2009).
Whenever this is the case, teacher/learner pairs cannot make use ofghada they use for repre-
senting instances i or concepts irC. For example, teacher and learner cannot agree amdzam
over the instance space or over the concept class in order to encodwatibn in samples just by
the rank of their members with respect to the agreed-upon orders.

We want to make this an explicit part of the definition of collusion-free teidigaener pairs.

Intuitively, the complexity of teaching/learning concepts in a class shouldeund on certain
representational features, such as any orderXwearoverC itself. Moreover, negating the values of
all concepts on a single instance should not affect the complexity of tepahthlearning either. In
other words, we want protocols to be “invariant” with respect to the follgvéquivalence relation
over(.

cept classes igy. C and C are called equivalent if there is a bijectiopf : {1,...,2} — {1,...,z},
a bijection o : {1,...,n} — {1,...,n}, and for every jc {1,...,n} a bijection?; : {+,—} —
{+,—1}, such that

C(i)(i) = ¢;(C(frow(i))(fea(j)) foralli € {1,...,2}, j€ {1,...,n}.
In this case( frow, feol, (¢j)1<j<n) is said to witness that C and @re equivalent.
We call a protocol collusion-free if it obeys this equivalence relation irfahewing sense.

Definition 13 Let P be a protocol. P is collusion-free if, for everg N and CC' € (&, where C
and C are equivalent as witnessed bftow, fcol, (¢j)1<j<n), the following two properties hold for
P(C) = (t,A) and RC') = (T, \).

1. Ifi1<i<zandt(i) ={(j,l1),...,(ir,Ir)}, then
T (frow(1)) = {(feal(J), £j(12)), -, (feat(Jr) £ (Ir)) } -
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2. 1 {(jv.10), ., (ir, 1)} € S andA({(jw 1), .-, (jr, 1) }) =1, then

)\,({(fcol(jl)agj(ll))a---»(fcol(jr)7fj(|r))}) = frow(i) .
It is obvious that both protocols introduced above are collusion-free.

Theorem 14 1. Every teaching set protocol is collusion-free.

2. Every Balbach teaching set protocol is collusion-free.

Proof. Immediate from the definitions. O

The new protocols we define below are collusion-free as well. This meanslthprotocols
studied in this article are defined independently of the order BvandC. Concept classes can
hence be considered as sets of sets rather than matrices. Conse@efimitfon 1 is more general
than required in the rest of this paper. We therefore ease notation aggollo

X = {x1,...,Xn} denotes the instance space. A conaejsta subset oK and a concept class
C is a subset of the power set f. We identify every concept with its membership func-
tion given byc(x) = + if x € ¢, andc(x) = — if x ¢ ¢, where 1<i <n. Given a sample
S={(y1,11),..., (¥, 1)} S X x {+,—}, we callc consistent wittSif c(y;) =l foralli € {1,...,r}.
If Cis a concept class thebongS,C) = {c € C | c is consistent witt5}. Sis called a teaching
set forc with respect taC if Con§SC) = {c}. ThenTD(c,C) = min{|§ | CongSC) = {c}},
TD(C) =max{TD(c,C) | ce C}, andTSc,C) = {S| CongS,C) = {c} and|§ = TD(c,C)}. The
notations concerning the Balbach teaching model are adapted by analogy.

5. The Subset Teaching Dimension

The approach studied by Balbach (2008) does not always meet the imtigiéia of teacher and
learner exploiting the knowledge that either partner behaves coomdyatt®onsider for instance
one more time the clas® containing the empty concept and all singletons ovef {xi,...,Xn}.
Each concepfx;} has the unique minimal teaching g€k, +)} in this class, whereas the empty
concept only has a teaching set of sig@mamely{(x1,—),...,(X,,—)}. The idea of elimination by
size allows a learner to conjecture the empty concept as soon as two exaa@dseen provided,
due to the fact that all other concepts possess a teaching set of siz&lisdés why the empty
concept has BTD equal to 2 in this example.

However, as we have argued in Section 1, it would also make sense te dde@rner in a way
to conjecture the empty concept as soon as a first example for that tismpepvided—knowing
that the teacher would not use a negative example for any other cdndbgt class. In terms of
teaching sets this means to reduce the teaching sets to their minimal subsets twdtcantained
in minimal teaching sets for other concepts in the given concept class.

In fact, a technicality in the definition of the Balbach teaching dimension (Definitjafisal-
lows the Balbach teaching dimension to be 1 unless the teaching dimension itdedbidyal, as
the following proposition states.

Proposition 15 Let C be a concept class. If BTD) = 1then TOC) = 1.

Proof. Let BTD(C) = 1. AssumelrD(C) > 1.
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SinceTD(C) > 1, there exists a conceptc"C such thafTD(€,C) > 1. SinceBTD(E,C) = 1,
there exists a minimat > 1 such thaBTD*(¢,C) = BTD(E,C) = 1. In particular, there exists a
sampleSsuch thatS = 1 and

{ce CongS,C) |BTD(c,C) > 1} = {&}.

SinceBTD*1(c,C) > 1 trivially holds for allc € C, we obtainCongS,C) = {€}. Consequently, as
|S| = 1, it follows thatTD(€,C) = 1. This contradicts the choice of ThusTD(C) = 1. O

So, if the Balbach model improves on the worst case teaching complexityeststmonly by
improving the teaching dimension to a value of at least 2.

5.1 The Model

We formalize the idea of cooperative teaching and learning using sulbset€bing sets as follows.

Definition 16 Let C be a concept class, €C, and S a sample. Let S¥@,C) = TD(c,C),
STS(c,C) = TYc,C). We define iterated sets for alkkN as follows.

e Congyu(SC,k) = {ceC|SC S for some Sc STS(c,C)}.
e STO(c,C) = min{|S | Congu(S.C,k) = {c}}
e STEH(c,C) = {S| Consu(S.C,k) = {c}, |5 = STD*(c,C)}.

Letk be minimal such that ST&'(c,C) = ST$(c,C) forallc € C3

A sample S such that Capg(S C,k) = {c} is called a subset teaching set for c in C. The subset
teaching dimension STB,C) of ¢ in C is defined by STbB,C) = STD¥(c,C) and we denote by
STSc,C) = STS(c,C) the set of all minimal subset teaching sets for ¢ in C. The subset teaching
dimension STIEL) of C is defined by ST@@) = max{STD(c,C) | c € C}.

For illustration, consider again the concept cl@gsthat is,Co = {ci | 0 <i < n}, wherecy =0
andc = {x} foralli € {1,...,n}. Obviously, fork > 1,

STS(c) = {{(x,+)}} foralli e {1,...,n}

and
STS(co) = {{(%,—)} | 1<i <n}.

HenceSTDO(Cp) = 1 althoughTD(Cop) = n.

Note that the example of the concept cl@g®stablishes that the subset teaching dimension can
be 1 even if the teaching dimension is larger, in contrast to Proposition 15.

The definition ofSTSc,C) induces a protocol for teaching and learning: For a target comgept
a teacher presents the examples in a subset teaching sebftire learner. The learner will also be
able to pre-compute all subset teaching sets for all concepts and deténeniiaeget concept from
the sample provided by the teaclier.

3. Such & exists becaus8TI(c,C) is finite and can hence be reduced only finitely often.
4. Note that we focus on sample size here, but neglect efficiencysissising from the pre-computation of all subset
teaching sets.
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Protocol 17 Let P be a protocol. P is called a subset teaching set protocol (STi&qmidfor short)
if the following two properties hold for every C C, where RC) = (T,A).

1. 1(c) € STSc,C) forallc € C,

2. A(S) € {c | there is some’S= STSc,C) such that SC S} for all S € § that contain a set
S € STSc,C) for some o= C.

Note that Definition 16 does not presume any special order of the coreg@psentations or of
the instances, that is, teacher and learner do not have to agree aichrgrder to make use of the
teaching and learning protocol. That means, given a special conespCg the computation of
its subset teaching sets does not involve any special coding trick dagesmdC—it just follows a
general rule.

By definition, every subset teaching set protocol is collusion-freewedder, teacher-learner
pairs following a subset teaching set protocol are not necessarilyindhié sense of Goldman and
Mathias’s definition. This is easily seen for the concept ctassf all linear threshold functions
over three instancesg, x2,xs. This class has four concepts, namely= {xa, X2,X3}, C2 = {X2, X3},
c3 = {x3}, andcy = {}. It is easy to verify thaf (x;,—)} is a subset teaching set fos and is
consistent withcz.  Similarly, {(xs,+)} is a subset teaching set fog and is consistent witla,.
Hence{(x1,—), (X3, +)} is consistent with botle, andcz and contains a subset teaching setdor
as well as a subset teaching setdgrObviously, there exists a teacher-learner fmik) satisfying
the properties of aBT S- protocolfor this class, such thatc,) = {(x1,—)}, 1(c3) = {(x3,+)}, and
A{(x1,—), (X3, +)}) = c2. However, there is no learngtf such tha{t,\’) is a valid teacher-learner
pair forCy. Such a learneX’ would have to hypothesize both andcs on input{(x1,—), (X3, +)}.
See Table 1 for illustration of this example.

| concept || x1 | %2 [ xs | STS \ STS \
{xuxex8} || + | + | + {(x1,+)} {(x1, +)}
{X27X3} - ||+ {<X17_)7 (X27+)} {(le_)}' {(XZ’_'_)}
{X3} i i s {(X27_)7 ()(37"’_)} {<X27_)}' {(X37+)}
{} il Bl B {(xs,—)} {(xs,—)}

Table 1: Iterated subset teaching sets for the lgss

5.2 Comparison to the Balbach Teaching Dimension

Obviously, when using the trivial adversary, Protocol 17 based osubset teaching dimension
never requires a sample larger than a teaching set; often a smaller samfeisnsu However,
compared to the Balbach teaching dimension, the subset teaching dimensiperisrsin some
cases and inferior in others. The latter may seem unintuitive, but is possibsise Balbach’s
teaching sets are not restricted to be subsets of the original teaching sets.

Theorem 18 1. For each ue N there is a concept class C such that STP= 1 and BTOC) =
u.

2. For each u> 3 there is a concept class C such that BTD= 3 and STHC) = u.
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Proof. Assertion 1.Let n = 2"+ u be the number of instances ¥a Define a concept clasd =

vair @s follows. For everg = (sy,...,s) € {+,—}", C contains the conceptgo = {X | 1 <i <
uands = +} andcsy = CsoU {Xu+14iny(s) }- Hereint(s) € N is defined as the sum of all values 2
for whichs =+, 1 <i < u. We claim thatSTD(C) = 1 andBTD(C) = u. See Table 2 for the case
u=2.

Lets=(sy,...,s) € {+,—}". Then

T9Cs0,C) = {{(*%:8)[1<i <upU{(Xusatins)>—) 1}
andTS(cs1,C) = {{(Xuy1rinys), )1}

Since for eaclt € C the minimal teaching set far with respect taC contains an example that
does not occur in the minimal teaching set for any other corgep€, one obtainSTD(C) =1 in
just one iteration.

In contrast to that, we obtain

BTD(cs0,C) = u+1,
BTDY(cs0,C) = u,
andBTD(cs1,C) = 1forallse {+,—}".

Consider ang e {+, —}"and any sampl8C {(x,Cso(X)) | x € X} with |§ =u—1. Clearly there is
somes’ € {+,—}" with §' # ssuch thaty o € CongS C). So|CongS,C,+)| > 1 and in particular
CongS,C,+) # {cso}. HenceBTD?(csp,C) = BTD(csp0,C), which finally impliesBTD(C) = u.

Assertion 2Letn=u+ 1 be the number of instancesXn Define a concept clags=Cj , as
follows. For everyi, j € {1,...,u+1}, C contains the concegdi;} and the concepfx;,x;}. See
Table 3 for the casa = 4.

Then the only minimal teaching set for a singletpg} is the sampleS = {(x,—) | X # %}
with |S| = u. The only minimal teaching set for a concdpt, x;} with i # j is the sampleS:] =
{(%,4), (%)}

On the one hand, every subset of every minimal teaching set for afioned is contained in
some minimal teaching set for some concgpt C with ¢ # ¢. ThusST$(c,C) = TS(c,C) for all
ceCandallk e N. HenceSTD(C) = TD(C) = u.

On the other hand, any sampfcontaining(x;,+) and two negative exampldg,,—) and
(Xg,—) (wherei, a, andp are pairwise distinct) is iBTS{x;},C). This holds because every other
concept inC that is consistent with this sample is a concept containing two instances arfthhas
teaching set of size smaller than=3 [S)). ThusBTD(C) = 3. O

5.3 Teaching Monomials

This section provides an analysis of tB&Dfor a more natural example, the monomials, showing
that the very intuitive example given in the introduction is indeed what a catipe teacher and
learner in arSTSprotocol would do. The main result is that tB8& D of the class of all monomials
is 2, independent on the numbmarof variables, whereas its teaching dimension is exponential in
and itsBTDiis linear inm, see Balbach (2008).

Theorem 19 Let me N, m> 2 and C the class of all boolean functions over m variables that can
be represented by a monomial. Then $TP= 2.
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lconcept || x1 | X2 [ X3 | x4 | X5 [ X | STS | STS |
0 ST ) = ) = = =), (%, =), (Xas =)} | {(Xs =)}
{xs} i s B e {(x3,+)} {(xs,+)}
{x2} 1 — () = = =), (X +), (%, =)} | {(%a, )}
{x2,%4} -+ =[] - - {(xa,+)} {(xq,+)}
{x1} (K1 1] — | — [T = G, +), (% —)s (X5, =)} | {(%s,—)}
{X1,%s} + | = = = |[H] - {(xs,+)} {(xs,+)}
{x1, %2} L H ] = = 1 = [ {0 +), (k2 +), (%6, =)} | {(X6,—)}
Xt | + | + | — | = | — |[+] {(%,+)} {(%,+)}

Table 2: Iterated subset teaching sets for the clays;

with u = 2, where CY

pair —

{c—0,C—1...,C440,Cpp1} With C__o =10, c__1 = {X3}, C_y 0= {X}, C_41=
{x2,%a}, cy_o={x1}, C+—1={X1, %5}, Ci1 0= {X1,%}, Ci4 1= {X1,%,Xs}. All labels
contributing to minimal teaching sets are highlighted by square brackets.

| concept| x1 [ X2 | Xs [ x4 | %s || TS(equal toSTS \

{Xl} S i B Ml s {(X27_)7(X37 )( )(X57 )}
{XZ} i I el M {(X]_,—),(Xg, )v( X4, )7(X57 >}
{X3} i Mt A M {(Xl’_)’(XZ’ )v( X4, )7(X57 )}
{X4} — |||t - {(Xl’—)a(XZa )3(33 )7(X57 )}
{X5} — |- |- |- * {(X]_,—),(X2,—),(X3,—),(X4, >}
{X1>X2} S A el M {(X1,+),(X2,—|-)}
{X17X3} S i A M {(X1a+)v(x3v+)}
{X17X4} S i i B s {(X1,+>,(X4,+)}
{X17X5} S il M il {(X1,+),(X5,+)}
{X27X3} e e {(X27+)7(X37+)}
{X27X4} i B R M s {(X27+)7(X47+)}
{X27X5} i B Bl M B {(X2’+)7(X57+)}
{xaxa} | — | — |+ |+ |~ {(x3,4), (xa,+)}
{X3>X5} — ||t |-t {(X3,+),(X5, )}
{xaxs} | -] -] -]+ ]+ {(xa,+), (x5, +)}
Table 3:

Iterated subset teaching sets for the @qsswith u = 4.

Proof. Letme N, m> 2 ands= (sy,...,Sm), S = (S},...,Sy) elements in{0,1}™. LetA(s,s)
denote the Hamming distance®&nds), that is A(s g)= zlg,gm\s( )—S(i)].

We distinguish the following types of monomiad¥s overmvariables.

Type 1:M is the empty monomial (i.e., the always true concept).

Type 2:M involvesmvariablesM # vy A V7.5

Type 3:M involvesk variables, 1< k <m, M # vi A V1.

Type 4:M is contradictory, that igyl = v; A V1.

5. The symbolss and=# denote functional equivalence and semantic non-equivalence efdyoimrmulae, respectively.
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The following facts summarize some rather obvious properties of the pomdgg minimal
teaching sets for monomials (cf., for example Balbach, 2008, for more details

Fact1: LetM be of Type 1 and lex, s' € {0,1}™ such that\(s,s') =m. ThenS={(s,+),(s,+)}
forms a minimal teaching set fdd, that is,Se ST§(M,C).

Fact 2: LetM be of Type 2 and les € {0,1}™ be the unique assignment for whibhevaluates
positively. Moreover, lesy,...,sy € {0,1}™ be them unique assignments with(s,s;) = - =
A(s,sm) = 1. ThenS={(s,+),(s1,—),.--,(Sm,—)} forms the one and only minimal teaching set
for M, that is,Se STS(M,C). (Note that any two negative examplesShave Hamming distance
2.)

Fact 3: LetM be of Type 3 and les € {0,1}™ be one assignment for whidd evaluates
positively. Moreover, les' € {0,1}™ be the unique assignment wift{s,s’) = m— k for which M
evaluates positively and let, ..., s € {0,1}™ be thek unique assignments with(s,s;) = --- =
A(s,s¢) = 1 for whichM evaluates negatively. The&= {(s,+),(s,+),(s1,—),..., (S, —)} forms
a minimal teaching set favl, that is,Se STS(M,C). (Note that any two negative examples3n
have Hamming distance 2.)

Fact 4: LetM be of Type 4 and leS= {(s,—) | s€ {0,1}"}. ThenSforms the one and only
minimal teaching set foM, that is,S€ ST$(M,C).

After the first iteration the following facts can be observed.

Fact 1(a): LeM be of Type 1 and lec STS(M,C). ThenSe STS(M,C).

This is due to the observation that any singleton suBsetSis a subset of a teaching set in
STS(M’,C) for someM’ of Type 2.

Fact 2(a): LeM be of Type 2 and leBc STS(M,C). ThenSe ST$(M,C).

This is due to the observation that any proper sulsset Sis a subset of a teaching set in
STS(M’,C) for someM’ of Type 3, ifS contains one positive example, or for soMéof Type 4,
otherwise.

Fact 3(a): LetM be of Type 3 and les € {0,1}™ be one assignment for whidd evaluates
positively. Moreover, les' € {0,1}™ be the unique assignment wift{s,s') = m— k for which M
evaluates positively and 1&= {(s,+),(s,+)}. ThenSe ST$(M,C).

This is due to the following observations: §)s not a subset of any teaching Sein STS(M’,C)
for someM’ of Type 1, since the two positive examplesSnhave Hamming distanaa. (ii) Sis
obviously not a subset of any teaching Sein STS(M’,C) for someM’ # M of Type 3. (iii) Any
sufficiently small “different” subse8 of some teaching set iIBT$(M,C)—that is,S contains at
most two examples, but not two positive examples—is a subset of any tgaatimSTS(M’,C)
for someM’ of Type 2, if S contains one positive example, or for somMeof Type 4, otherwise.

Fact 4(a): LeM be of Type 4 and les € {0,1}™ be any assignment. Moreover, &£ {0,1}™
be any assignment with(s,s') # 2 and letS= {(s,—),(s,—)}. ThenSe ST$(M,C).

This is due to the following observations: §)s not a subset of any teaching Sein STS(M’,C)
for someM’ of Type 2 or of Type 3, since any two negative exampleS imave Hamming distance
2. (i) Any sufficiently small “different” subse® of the unique teaching set 8T8 (M,C)—that is,
S contains at most two negative examples, but two having Hamming distance 2suisat of a
teaching set i8S TS(M’,C) for someM’ of Type 2.

After the second iteration the following facts can be observed.

Fact 1(b): LetM be of Type 1 and le € ST$(M,C). ThenSe ST$(M,C).

This is due to the observation that any singleton suBs€tSis a subset of a teaching set in
STS(M’,C) for someM’ of Type 2.
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Fact 2(b): LetM be of Type 2 and les € {0,1}™ be the unique assignment for whidh
evaluates positively. Moreover, Igte {0,1}™ be any assignments with(s,s) = 1 and letS=
{(s,+),(s,=)}. ThenSec ST$(M,C).

This is due to the following observations: §)s not a subset of any teaching $ein STS$(M’,C)
for someM’ of Type 1, of Type 3 or of Type 4, since none of these teaching setaiosrone posi-
tive and one negative example. @)s obviously not a subset of any teaching Séh STS(M’,C)
for someM’ £ M of Type 2. (iii) Any sufficiently small “different” subse® of a teaching set in
STS(M,C)—that is,S contains at most two examples, but not a positive and a negative example—
is a subset of a teaching set 8T$(M’,C) for someM’ of Type 3, if S contains one positive
example, or for som®!’ £ M of Type 2, otherwise.

Fact 3(b): LetM be of Type 3 and leBe STS(M,C). ThenSec ST$(M,C).

This is due to the observation that any singleton suBsetSis a subset of a teaching set in
STS(M’,C) for someM’ of Type 2.

Fact 4(b): LetM be of Type 4 and leBe STS(M,C). ThenSe ST$(M,C).

This is due to the observation that any singleton suBs€tSis a subset of a teaching set in
STS(M’,C) for some monomiaM’ of Type 2.

Note at this point that, for any monomisl of any type, we hav€ TZ*(M,C) = 2.

Finally, it is easily seen th&TD*(M,C) = STD*(M,C) = 2 for allM € C. O

For illustration of this proof in casm = 2 see Table 4.

A further simple example showing that tB& Dcan be constant as compared to an exponential
teaching dimension, this time with &TDof 1, is the following.

Let Cl,\e contain all boolean functions oven > 2 variables that can be represented by a 2-
term DNF of the formvy vV M, whereM is a monomial that contains, for eaichith 2 <i < m, either
the literalv; or the literalv;. MoreoverCl,\ contains the boolean function that can be represented
by the monomiaM’ = v,.%

Theorem 20 Letme N, m> 2.
1. TD(Clpne) =24

2. STRCpnr) = 1.

Proof. Assertion 1Let Sbe a sample that is consistent wi. Assume that for somee {0,1}™,
the sampleS does not contain the negative exampde—). Obviously, there is a 2-term DNF
D = v; VM such thaD is consistent wittbU {(s,+)} andD # M’. HenceSis not a teaching set
for M. Since there are exactly"2! 2-term DNFs that represent pairwise distinct function€ jm
teaching set foM’ must contain at least2* examples.

Assertion 2The proof is straightforward: ObviouslyD(D,C) = 1 for all D € C with D = M.
In particular,STO(D,C) = 1 for all D € C with D # M’. It remains to show the&8TD(M’,C) = 1.
For this it suffices to see that a minimal teaching setMbiin C must contain negative examples,
while no minimal teaching set for arly € C with D # M’ contains any negative examples. Hence
ST¥(M/,C) = 1 and thusSTD(M/,C) = 1. O

6. Here and in the proof of Theorem 20, as in the proof of Theorerth&%ymbok denotes functional equivalence of
boolean formulae.
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monomial[[ 00 [ 01 | 10 | 11 || SE STS
Vi - | - + {(10,+),(11,+),(00,) {(10,4),(11,+}
{(10,+),(11,+),(01,9)
Vi + | + - {(00,+),(01,+),(10,-) {(00,+),(01,+}
{(00,+),(01,+),(11,9)
Vo — | + + {(01,+),(11,+),(00,9) {(01,+),(11,+}
{(01,+),(11,+),(10,7)
V2 + | - - {(00,+),(10,+),(01,9) {(00,+),(10,+}
{(00,+),(10,+),(11,9
VI AV - + {(11,+),(01,-),(10,7) {(11,+),(01,-),(10,7)
A, | - | - —|[_{(310,+),00).(I1) | {(10,4),(00,).(1L)
Vi AVa B {(01,+),(00,-),(11,9) {(01,+),(00,-),(11,9)
VIAVR + | - - {(00,+),(01.-),(10,) {(00,+),(01,-),(10,7)
V1 AVL - - - {(001')1(01!')1(10!')!(111}) {(00!')!(011_}
{(001')1(107_}
{(01,-),(11,-}
{(10,-),(11,-}
T + ]+ + {(00,+),(11,+} 1(00,%),(11,+)
{(01,+),(10,+} {(01,+),(10,+}
monomial[[ 00 [ 01| 10| 11 | STS STS \
Vi — | =1+ | + | {Q0,+),(11,+} | {(20,+),(11,+}
Vi + | + | — | — || {(00,+),(01,+} | {(00,+),(01,+}
Vo — |+ | = | + || {(01,+),(11,+} | {(01,+),(11,+}
V2 + | — |+ | — | {(©0+),(10,+} | {(00,+),(10,+}
VI AV — | =1 =14 | {@a1,+),01,-} | {(11,+),(01,-}
{(11,+),(10,-} | {(11,+),(10,-}
VIAV; — | + | — | {(10,+),(00,-} | {(10,+),(00,-}
{(10,+),(11,-} | {(10,+),(11,-}
VIAV2 + - {(01,+),(00,-} | {(01,+),(00,-}
{(014),(11,} | {(01,4),(11,-}
VIAVR + - - - {(001+)!(011_} {(00!+)1(01!_}
{(00,4),(10,-} | {(00,+),(10,}
V1 AVp - - - - {(001')1(01!_} {(OO!')!(O]-!_}
{(001')1(10!_} {(00!')!(101_}
{(011')1(111_} {(011')1(111_}
{(101')1(111_} {(107')1(111-}
T + | + | + | + || {(00,+),(11,+} | {(00,+),(11,+}
{(01,+),(10,+} | {(01,+),(10,+}

Table 4: Iterated subset teaching sets for the class of all monomialsrove2 variables. Herd@
denotes the empty monomial. For better readability, the instances (denoting-timel se
through fifth columns) are written in the form of bit strings representing s#ignments

to the two variables.
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6. Why Smaller Classes can be Harder to Teach

Interpreting the subset teaching dimension as a measure of complexity n€@pta@lass in terms
of cooperative teaching and learning, we observe a fact that is wisthssing, namely the non-
monotonicity of this complexity notion, as stated by the following theorem.

Theorem 21 There is a concept class C such that STD > STD(C) for some subclass'€ C.

Proof. This is witnessed by the concept clas€es C‘l’/2 U {0} and its subclas€’ = Ci‘/z used in

the proof of Theorem 18.2, for any> 2 (see Table 3 and Table 5 for= 4). STIZXC‘lj/2 u{0})=2

while STIXCE‘/Z) =u. O
In contrast to that, it is not hard to show tH&ED in fact is monotonic, see Theorem 22.

Theorem 22 If C is a concept class and' € C a subclass of C, then BTD') < BTD(C).
Proof. Fix C andC’ C C. We will prove by induction ork that
BTD'(c,C') < BTD¥(c,C) forallce C’ (1)

forallk € N.

k = 0: Property (1) holds because BTD(c,C') = TD(c,C') < TD(c,C) = BTDP(c,C) for all
ceC.

Induction hypothesis: assume (1) holds for a fiked

k ~» k4 1: First, observe that

ConsiSC,k) = {ceCongSC)|BTD(c,C)>|S}

{ce CongS,C') | BTD¥(c,C) > |} (ind. hyp.)
{ce CongSC) | BTD(c,C) > |8}

= Consgizd SC,k)

-
-

Second, for alt € C’ we obtain

BTDY(c,C') = min{|§ |Cons;,dS,C’ k) = {c} }

min{|S | Cons;z¢S,C,k) = {c} }
BTD1(c,C)

This completes the proof. O

6.1 Nonmonotonicity After Elimination of Redundant Instances

Note that the nonmonotonicity of the subset teaching dimension holds with arfixater of in-
stances. In fact, if n was not considered fixed then every concept aZissould have a superset
C (via addition of instances) of lower subset teaching dimension. Howidnesame even holds for
the teaching dimension itself which we yet consider monotonic since it is monaiveic fixedn.
So whenever we speak of monotonicity we assume a fixed instanceXpace

Of course such an instance spatenight containredundantinstances the removal of which
would not affect the subset teaching dimension and would retain a mlomdant subset of the
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[ concept][ x1 [ % [ X3 | x4 [ %5 | STS \
0 — - — - - {(X17_)7(X27_)7()(37_)7()(47_)7()(57_)}
{xa} ol G ) (e )y (Xa, =), (%4 —), (X5, —)
{XZ} — + — — — {(lef)v(X27+)7(X377)7(X477)a(XSaf)}
{X3} — — + — — {(X17_)7(X27_)7(X37+)7(X47_)7(X57_)}
{X4} — — — + — {(le_)v(xz_)7(X37_)7(X47+)7(X57_)}
{xs} — === e ), (=), (X8, ), (Xa, =), (X5, +) }
{XLXZ} + + - - - {(X17+)>(X27+)}

{lex3} + - + - - {(Xl=+)7(x3:+)}
axal | + ] - | -]+ ]~ {(xa,+), (xa,+)}
axst | + | - -] -]+ {(x1,+), (x5, +)}
{X27X3} — + + — — {(X27+)>(X3a+)}
foxal | = |+ | = |+ ]~ {(x2,+), (xa,+)}
oxst || — |+ [ =] -]+ {(x2,+), (x5, +)}
{X37X4} — — + + — {(X37+)>(X43+)}
fxaxst | = | =+ | -]+ {(x3, 1), (x5, +)}
{X4’X5} — — — + + {(X47+)7(X57+)}

[ concept][ x1 [ % [ X3 | x4 [ %5 | STS \
0 — — — — — {(le_)v(XZu_)7(X37_)7(X47_)7(X57_)}
{xa} === A ) e )b {(Ka ) (%6, ) )
{x2} — = ) () - {2 ), (X5, —) )
{X3} — — + — — {(X17—)7(X3,+)} """ {(X37+)7(X51_)}
{xa} === G ) () { (e ), (X5, —) )
{XS} — — — — + {(X17_)5(X57+)} llll {(X47_)7(X57+)}
{leXZ} + + - - {(X17+)7(X27+)}

{X]_,Xg} + — + — {(X1,+),(X3,+)}
{xixab || + | — + - {(x2,+),(xa,+)}
axsh || + | = — | =]+ {(x1,+), %6, +)}
{XZ’X3} — + + — — {(X27+)7(X37+)}
oxal | = |+ | — |+ |~ %2, +), (xa,+)}
{X27X5} — + — — + {(X27+)>(X53+)}
fxaxat | = | - |+ |+ |- {(xg,+), (xa,+)}
axst | — | - [+ ] -]+ {(xa,+), (x5, +)}
{X47X5} - — - + + {(X47+)>(X53+)}

Table 5: Iterated subset teaching sets for the (ﬂ%ﬁsu {0} with u= 4; two iterations. In the third
iteration, the sample for the empty concept (first row) will be reduced to alitsets of
size two, thus witnessing éiTDof 2.

set of all subset teaching sets. In the following subsection, where wesdis possible intuition
behind the nonmonotonicity of tHeTD, redundancy conditions on instances will actually play an
important role and show the usefulness of the following technical discusgiowever, it is not
straightforward to impose a suitable redundancy condition characterizieg an instance can be
removed.

We derive such a condition starting with a redundancy condition for thenatigariant of
teaching sets. For that purpose we introduce the n&@idhfor the concept class resulting froth
after removing the instancefrom the instance space. HereC is any concept class ovet and
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x € X is any instance. For example Xf= {Xq,x2, X3} andC = {{x¢}, {X1, %2}, {X2,%3} } then

C = {{x}, {x1, %2}, {*2}}

considered over the instance spdge x»}.
To ease notation, we use a single nanfier both a concept € C and its corresponding concept
in the clas<C* for anyx € X. It will always be clear from the context which concept is referred to.

Lemma 23 Let C be a concept class over X and X. Suppose for all € C and for all Se TSc,C)

(x,¢(x)) € S=Jy # x [(S\{(x,c(x))}) U{(y;c(y))} € Tc,C)].
Then the following two assertions are true.
1. |C¥ =|C|
2. For all ce C and for all samples S

SeTSC,C¥) «= [SETSC,C) A (x,c(X) ¢ 9.

Proof. Assertion 1Assume/C*| < |C|.

Then there must be two distinct concepie’ € C such that andc’ disagree only irx, that is,
c(y) =c/(y) forally € X\ {x} andc(x) # ¢/(x). Consequently,x,c(x)) must be contained in some
Se TS, C). By the premise of the lemma, this implies that there is sgraeX \ {x} such that
(S\{(x,c(x))}) U{(y,c(y))} € TSc,C). Hence(S\ {(x,c(x))}) U{(y,c(y))} is a teaching set for
c in C that does not contaifx,c(x)). However,(S\ {(x,c(x))}) U{(y,c(y))} is consistent wittt,
which is a contradiction. Therefof€ | = |C]|.

Assertion 2Let ¢ € C be an arbitrary concept and 8be any sample ovex.

First assumeS € TSc,C) and (x,c(x)) ¢ S By Assertion 1,|C™* = |C| and therefore
TD(c,C %) > TD(c,C). Thus we immediately obtaiBe TS c,C ).

Second assunm®e TS c,C™*). By definition, we havéx, c(x)) ¢ S. Hence it remains to prove
thatSe TSc,C). If S¢ TYc,C) then there exists sone € TSc,C) such thaiT| < |§, because
otherwisel/C~*| would be smaller thafC|. We distinguish two cases.

Case 1.(x,¢c(x)) ¢ T.

ThenT € TSc,C ™) in contradiction to the factSe TSc,C™) and|S| # |T|.

Case 2.(x,c(x)) € T.

Then by the premise of the lemma there exisys/ax such that

AZ (S\{(x.c0))U{(y:cy)} € THC.C).

Since(x,c(x)) ¢ Awe haveA € TSc,C*) and|A| = |T| #|S. This again contradicSe TS c,C ™).

Since both cases reveal a contradiction, we olanTSc,C). O

For illustration see Table 6. In this example the instangesdxs meet the redundancy condi-
tion. After eliminatingxs, the instancey still meets the condition and can be removed as well. The
new representation of the concept class then involves only the instanggss.

Lemma 23 provides a condition on an instarcH that instance is eliminated from the instance
space then the resulting concept cl@ss not only has the same teaching dimensio€dmit, even
more, for each of its conceptsthe teaching sets are exactly those that are teaching setsnf@
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[ conceptirC [ x1 [ % [ X3 | X | X5 | TS \
0 I - {(X17 )a (X3v )}' {(lef)a (X477)}’ {(Xla )7 (X577)}
{Xl} S i M e M {(X1’+>7<X27_)}1{(X1>+)’(X5’ )}
{X3,X4,X5} i i M i i e {(X27 )v (X3v+)}' {(szf)a (X47 )}! {(X237)7 (X57+)}
{X25X3;X4)X5} i B o M s {(X17_>7(X27+)}'{(X2’+)’( ’+)}
{X1;X2;X5} + 1+ - — + {(X2a+)v()@77)}' {()(377)7()(574’)}
{Xl,Xz,X3,X5} il Bl o Ml s {(X17+)7(X37+)}1 {(X3’+)’(X4’_)}

[ conceptin(C ™)™ [ x1 [ x2 [ X3 || TS \
0 I e {(Xl’_)v(x37_)}
{Xl} + — — {(le+)>(X277)}
{X3} - | Tt {(XZa_)v(X 7+)}
{X27X3} - |+ |+ {(le_)’(x ’+)}
{x1, %2} T+ = [ {(e+),(xs )}
{x1, %2, X3} + [+ |+ [ {xa,+), (%, +) }

Table 6: Teaching sets for a claSdefore and after elimination of two redundant instances.

and do not contain an example involving the eliminated instanddote that even though several
instances might meet that condition at the same time, only one at a time may be refrorétk
remaining instances it has to be checked whether the condition still holds laftération of the
first redundant instance.

In the example in Table &, andxs are exactly those instances that could be eliminated without
reducing the size of the concept class, that is,

Cl=ICT4|=[CT®|=[(CT™) | =[(CT*)™|.

However, if we were to simply eliminate all instancess long asC| = |C¥|, then the consequence
of Lemma 23 would not necessarily be fulfilled any longer. For examplesidenthe concept class
Cin Table 7. HereC| = |C |, but removing«; from the instance space would increase the teaching
dimension ofc;, namelyTD(c;,C) =1 < 2=TD(c;,C™™).

So one legitimate redundancy condition for instances—considering therpaéisn of teaching
sets—is the one given in the premise of Lemma 23. This condition can be edtienaleedundancy
condition with respect to subset teaching sets.

Theorem 24 Let C be a concept class over X and X. Suppose for all k N, for all c € C, and
for all S€ ST(c,C)

(x,c(x)) € S= 3y #x[(S\ {(x,c(x))}) U{(¥,c(y))} € STS(c,C)],
Then the following two assertions are true.
1. |C¥ =|C|
2. Forallke N, for all c € C, and for all samples S

Se STH(c,C™¥) < [Se STH(c,C) A (x,c(x)) ¢ 5.
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| conceptiC [ x1 [ x2 | X3 | TS
cr={X, %, X3} || + | + | + {(x1,+)}
CZZ{XZ} . {<X27 7(X37 )} {<X27 )7(X17_)}
C3 = {X3} - | = |+ {<X37 7(X )} {<X37 )7(X17_)}
Ca=0 —-1-1- {02, =), (X3, =)}
| conceptirC™ || xz | x3 || TS |

CL = {X2,X3} + |+ [ {0k, +), (X3, +) }

Co = {XZ} + | - {(X27+)’ (X3’ _)}

C3 = {X3} - |+ {(X37+)7 (X27 _)}

ca=0 — | = || {(x2,—), (X3, —)}

Table 7: Teaching sets for a cla@defore and after elimination of the instangenot satisfying the
premises of Lemma 23, despite fulfilling the propg@y= |[C|.

Proof. Assertion 1This follows immediately by applying Lemma 23.1 foe= 0.

Assertion 2\We prove the second assertion by inductiorkon

Fork = 0 the assertion follows immediately from Lemma 23.2. So assume that the assertion is
proven for somé (induction hypothesis). It remains to show that it then also holdk fet.

For that purpose note that

vce CVA e STS(c,C) 3B e STH(c,C™) [|JAl = |B| A A\ {(x,¢(x))} CB] (¥)

by combination of the induction hypothesis with the premise of the theorem.

Choose an arbitrarg € C.

First assum& e STS(c,C) and(x,c(x)) ¢ S. By the definition of subset teaching sets, there
is anS € ST$(c,C) such that

SCS. (2)
Using () we can assume without loss of generality that
S e ST(c,C™). 3)

Moreover, again by the definition of subset teaching sets, one ol8ainS’ for every S’

ST¥(c,C) with ¢ # c. The induction hypothesis then implies
S¢ S’ for everyS' € ST(c,C™*) with ¢ #c. (4)

Due to (2), (3), (4) we get eithed e STE(c,C™) or | > STD%(c,C ). In the latter
case there would be a s€te ST$™(c,C ) such that|T| < |§. T is a subset of some set in
ST%(c,C ) and thus also of some set 8T$(c,C) by induction hypothesis. T was contained
in someT’ € ST$(c,C) for somec # ¢ then we could again assume without loss of generality,
using () and (x,c(x)) ¢ T, that T is contained in some set BT$(¢,CX)—in contradiction to
T e ST$ Y (c,C ). ThereforeT € STE™(c,C) and so|T| = |§—a contradiction. This implies
Se STE (c,Cc™).
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Second assume th&te ST$*(c,C*). Obviously, (x,c(x)) ¢ S, so that it remains to show
Se ST$(c,C).
Because o8¢ ST$™(c,C ) there exists some s8te ST$(c,C ) such that

Scs. %)

The induction hypothesis implies
S € STY(c,C). (6)

Further, by the definition of subset teaching sets, one ob8ihS’ for everyS’ € ST$(c,C %)
with ¢ # c. If there was a se8’ € ST$(c/,C) such that/ # candSC S’ then(x) would imply that
without loss of generalit®’ € ST$(c/,C ). So we have

S¢ ' for everyS’ € ST$(c/,C) with ¢ #c. (7)

Combining (5), (6), (7) we get eith&c STE"%(c,C) or|§ > STD}(c,C). In the latter case
there would be a sat € ST$*1(c,C) such thatT| < |S|. T is a subset of some sé&t € ST%(c,C).
We can assume without loss of generality, usiny thatT’ € ST$(c,C ). If T was contained
in some set iST$(c/,C ) for somec # ¢ then by induction hypothesi would be contained
in some set irSTS(¢/,C) for somec # c. This is a contradiction td@ € ST$*Y(c,C). SoT ¢
ST+ (c,C*) and hencéT| = |§—a contradiction. ThuS e ST$"%(c,C). O

The example in Table 7 illustrates that eliminating instanceatisfying|C*| = |C|, without
any additional constraints, can actually change the subset teaching dimehs class. In the given
example, the subset teaching dimensiof @ 1, while the subset teaching dimensiorCof is 2.
The stronger condition on the instance the premise of Theorem 24 guarantees that eliminating
x does not change the subset teaching dimension.

6.2 Nonmonotonicity and the Role of Nearest Neighbours

From a general point of view, it is not obvious how to explain why a teagtimension resulting
from a cooperative model should be nonmonotonic.

First of all, this is a counter-intuitive observation when considei8Tp as a notion of
complexity—intuitively any subclass @& should be at most as complex for teaching and learn-
ing asC.

However, there is in fact an intuitive explanation for the nonmonotonicity efcttimplexity in
cooperative teaching and learning: when teaclirgC, instead of providing examples that elim-
inate all concepts i€\ {c} (as is the idea underlying minimal teaching sets) cooperative teachers
would rather pick only those examples that distinguiffom its “most similar” concepts i€. Sim-
ilarity here is measured by the number of instances on which two concepts @gr., dissimilarity
is given by the Hamming distance between the concepts, where a carisappresented as a bit
vector (c(x1),...,C(Xn))). This is reflected in the subset teaching sets in all illustrative examples
considered above.

Considering a clags = Cgair (see the proof of Theorem 18.1), one observes that a subset teach-
ing set for a conceptsp contains only the negative exampgbe,, 1 iny(s), —) distinguishing it from
Cs1 (its nearest neighbor in terms of Hamming distance). A learner will recognizexample as
the one that separates only that one faip,cs1) of nearest neighbors. In contrast to that, if we
consider only the subcla€s = {cso | s€ {0,1}"}, the nearest neighbors of eacdy are different
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ones, and every single example separating one nearest neighbolspaseparates other nearest
neighbor pairs. Thus no single example can be recognized by the lesracseparating example
for one unique pair of concepts.

This intuitive idea of subset teaching sets being used for distinguishingcapbfrom its nearest
neighbors has to be treated with care though. The reason is that theptofass may contain
“redundant” instances, that is, instances that could be removed fromstasmce space according
to Theorem 24.

Such redundant instances might on the other hand affect Hamming dstamtaeearest neigh-
bor relations. Only after their elimination does the notion of nearest neighbtansms of Hamming
distance become useful. Consider for instance Table 6. In the corlaspC®ver 5 instances the
only nearest neighbor df is {x;} and an example distinguishirfyfrom {x;} would be(x1,—).
Moreover, no other concept is distinguished from its nearest neigllyathe instancg;. Accord-
ing to the intuition explained here, this would sugggst;, —)} being a subset teaching set fr
although the subset teaching sets here equal the teaching sets andfecarainality 2.

After instance elimination ofk4,xs there is only one subset teaching set fiyr namely
{(x1,—),(X3,—)}. This is still of cardinality 2 but note that no® has two nearest neighbors,
namely{x;} and{xs}. The two examples in the subset teaching set are those that distirfjuish
from its nearest neighbors. Note that either one of these two examplesurigae as an example
used for distinguishing a concept from its nearest neightdagis:-) would be used by{x,, x3} for
distinguishing itself from its nearest neighbos, X2, X3}, and(xs, —) would be used byx;, X} for
distinguishing itself from its nearest neighbpt;, x2,X3}. So the subset teaching set fbhas to
contain both examples.

This illustrates why a subclass of a cl&san have a higher complexity th@xif crucial nearest
neighbors of some concepts are missing in the subclass.

To summarize,

e nonmonotonicity has an intuitive reason and is not an indication of an ill-akfiaesion of
the teaching dimension,

e nonmonotonicity would in fact be a consequence of implementing the idea thetigtence
of specific concepts (e.g., nearest neighbours) associated with adamgept is beneficial
for teaching and learning.

So, the STD captures certain intuitions about teaching and learning thatanandimensions
cannotcapture; at the same time monotonicity might in other respects itself be an intuttperpr
of teaching and learning which then the STD cannot capture.

In particular there are two underlying intuitive properties that seem to ecatisfiable by a
single variant of the teaching dimension.

7. The Recursive Teaching Dimension

On the one hand, we have the teaching framework based on the sulohingedimension which
results in a nonmonotonic dimension, and on the other hand we have a mondtoensibn in the
BTD framework, which unfortunately does not always meet our idea of parative teaching and
learning protocol. That raises the question whether nonmonotonicity issegeo achieve certain
positive results. In fact, the nonmonotonicity concerning the (ﬂ%gsis not counter-intuitive, but
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would a dimension that is monotonic also result in a worse sample complexity th&Tan
general, such as, for example, for the monomials?
In other words, is there a teaching/learning framework

e resulting in a monotonic variant of a teaching dimension and
e achieving low teaching complexity results similar to the subset teaching dimension?

At this point of course it is difficult to define what “similar to the subset téaghklimension” means.
However, we would like to have a constant dimension for the class of all miatg as well as, for
example, a teaching set of size 1 for the empty concept in our often usedpicclas€y.

We will now via several steps introduce a monotonic variant of the teacimmgngion and show
that for most of the examples studied above, it is as low as the subset gpdahiension. General
comparisons will be made in Section 8, in particular in order to show that thisnagmework is
uniformly at least as efficient as tfBI'D framework, while sometimes being less efficient than the
STDframework. This reflects to a certain extent that monotonicity constraints @ffgut sample
efficiency.

7.1 The Model

We will first define our new variant of teaching dimension and show its monaitg.

The nonmonotonicity o8 TDis caused by considering eveBT $-set for every concept when
computing arS TS 1-set for a single concept. Hence the idea in the following approach is to enpos
a canonical order on the concept class, in terms of the “teaching complekityg concepts. This is
what the teaching dimension does as well, but our design principle is &nszane. After selecting
a set of concepts each of which is “easy to teach” because of pwgsassmall minimal teaching
set, we eliminate these concepts from our concept class and considéh@ngmaining concepts.
Again we determine those with the lowest teaching dimension, now howeveuradagith respect
to the class of remaining concepts, and so on. The resulting notion of dimegasierefore called
therecursive teaching dimension

Definition 25 Let C be a concept class. The teaching hierarchy for C is the sequeracg€,d; ),
...,(Chn,dn)) that fulfills, for all j € {1,...,h},

Cj={ceCj|d; =TD(c,Cj) <TD(c,Cj) for all ¢’ € Cj},
whereC; =C andCj;; =C\ (C;U...UG) foralli € {1,...,h—1}.
Forany je {1,...,h} and any c= Cj, a sample % TS(c,C;) is called a recursive teaching set
for cin C. The recursive teaching dimension RELT) of c in C is then defined as RTEC) = d;

and we denote by RTSC) = TSc,C;) the set of all recursive teaching sets for c in C.
The recursive teaching dimension R of C is defined by

RTD(C) =max{d; | 1< j <h}.
The desired monotonicity property, see Proposition 26, follows immediatetytie definition.

Proposition 26 If C is a concept class and' € C is a subclass of C, then RTO) < RTD(C).
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The definition of teaching hierarchy induces a protocol for teachingearthing: for a target
conceptc, a teacher uses the teaching hierarehy: ((Cq,d;),.. ., (Ch,dn)) for C to determine the
unique indexj with c € Cj. The teacher then presents the examples in a teaching seT8anc; ),
that is, a recursive teaching set foin C, to the learner. The learner will use the teaching hierarchy
to determine the target concept from the sample provided by the teacher.

Protocol 27 Let P be a protocol. P is called a recursive teaching set protocol (Ro&qol for
short) if the following two properties hold for everyC(C, where RC) = (T,A).

1. 1(c) e RTSc,C) forallc € C,

2. A(S) € {c | thereis some'SE RTSc,C) such that SC S} for all S € § that contain a set
S € RTSc,C) for some c= C.

Note again that Definition 25 does not presume any special order of tieegbrepresentations
or of the instances, that is, teacher and learner do not have to ageew snch order to make use
of the teaching and learning protocol. The partial order resulting frortetiiehing hierarchy is still
well-defined.

The following definition of canonical teaching plans yields an alternatifmitien of the re-
cursive teaching dimension.

Definition 28 LetC be a concept clas;| = z. A teaching plan for C is a sequence-f(c1,S,), . . .,
(c2:Sy)) € (C x 2¢{01))Z sych that

1. C={cy,...,C}.
2. §eTHcj,{cj,....c})for1< <z
The order of p is given by ofg)) = max{|Sj| | 1 < j < z}.
p is called a canonical teaching plan for C, if for anyj ie {1,...,z}:
i < j=TD(c,{c,...,c;}) <TD(cj,{Ci,...,C}).

Note that every concept class has a canonical teaching plan. It wirtheda canonical teaching
plan has the lowest possible order over all teaching plans; this ordaridesnwith the recursive
teaching dimension, see Theorem 29.

Theorem 29 Let C be a concept class and p canonical teaching plan for C. Then dil) =
min{ord(p) | p is a teaching plan for §= RTD(C).

Proof. Let C and p* as in the theorem be givep; = ((¢1,S1), ..., (¢, S)). ord(p*) = RTD(C)
follows by definition. It needs to be shown that

ord(p*) = min{ord(p) | pis a teaching plan fo€} .
Letp' = ((c},S), ..., (¢, S)) be any teaching plan fa&. It remains to prove thaird(p*) <
ord(p).

For that purpose choose the minima& {1,...,z} such that|S;| = ord(p*). By definition
of a teaching planTD(cj,{cj,...,c,}) = ord(p*). Leti e {1,...,z} be minimal such that| €
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{cj,...,c;}. Letke {1,...,z} fulfill ¢« =¢. By definition of a canonical teaching plan,
TD(ck,{cj,...,c;}) > TD(cj,{cj,...,c;}) = ord(p*). This obviously yields ord(p’) >
TD(c), {di; .-, &}) = TD(Ck. {C;, - -, Cz}) = ord(p). O

To summarize briefly, the recursive teaching dimension is a monotonic compiexityn which
in fact has got some of the properties we desired; for example, it is easified thatRTD(Cp) = 1
(by any teaching plan in which the empty concept occurs last) and th&Tbef the class of all
monomials equals 2 (see below). Thus RiED overcomes some of the weaknesseB 0D, while
at the same time preserving monotonicity.

Interestingly, unlike for subset teaching set protocols, the teacherelepairs based on recur-
sive teaching set protocols are valid in the sense of Goldman and Mattiédsition (Goldman
and Mathias, 1996). This is an immediate consequence of the following theore

Theorem 30 Let C be any concept class and-«C. Let S be any sample. If S is consistent with ¢
and there is some & RTSc,C) such that TC S then there is no concepte CongS C) with ¢ # ¢
and T C S for some Te RTSc/,C).

Proof. LetC, ¢, S andT as in the theorem be given. Udt= ((Cy,d;),...,(Cy,dn)) be the teaching
hierarchy forC and leti € {1,...,h} be such that € C;.

Assume there was a concapte CongS C) with ¢’ # candT’ C Sfor someT’ € RTSc/,C).
Letj e {1,...,h} be such that’ € C;.

Sincec is consistent wittBandScontains the recursive teaching $éfor ¢/, cis also consistent
with T’. Asc € G is consistent with a recursive teaching setdog C;, we obtainj > i.

Similarly, sincec’ is consistent withS and S contains the recursive teaching Sefor c, we
obtaini > j.

This is clearly a contradiction. Hence there is no conceptCongS C) with ¢/ #candT’' C S
for someT’ € RTSC/,C). O

7.2 Comparison to the Balbach Teaching Dimension

Unlike the subset teaching dimension, the recursive teaching dimensioridoweds the Balbach
dimension. To prove this, we first observe that the smallest teaching dimewfsédl concepts in

a given concept class is a lower bound on the Balbach dimension. Thigdd sbamally in the

following lemma.

Lemma 31 Let C be a concept class. Then BID > min{TD(c,C) | c € C}.

Proof. Letu= min{TD(c,C) | c € C}. To show thaBTD(C) > u, we will prove by induction ork
thatu < BTD¥(c,C) for all k e N for all c € C.

k=0:BTD’(c,C) = TD(c,C) > uforall ce C.

Induction hypothesis: assurme< BTDX(c,C) for all ¢ € C holds for a fixeck.

k ~ k+1: Suppose by way of contradiction that there is a concégt C such thatu >
BTD"(c*,C). In particular, there exists a samg@ such that|S’| < u and Cong;,{S",C,k) =
{c}.

By induction hypothesis, the s€bns;,{S",C,k) defined by{c € CongS",C) | BTD!(c,C) >
|S*|} is equal toCongS',C). Note thatTD(c,C) > u for all c € C implies eitherfCongS",C)| > 2
or CongS+,C) = 0. We obtain a contradiction t6ong;,{S",C,k) = {c*}.
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This completes the proof. O
This lemma helps to prove that the recursive teaching dimension cannatdettee Balbach
dimension.

Theorem 32 1. IfCis a concept class then RTD) < BTD(C).

2. There is a concept class C such that RCP< BTD(C).

Proof. Assertion 1.To prove this assertion, |1& be a concept class such tHRTD(C) = u. By
Theorem 29 there is a canonical teaching ptaa ((¢1,S1), ..., (Cz, S)) for C such thabrd(p) =
u. Fix j <N minimal such thatS;| = u and defineC’ = {c; ...,c;}. Obviously,RTD(C') = u.
Moreover, using Theorem 2BTD(C') < BTD(C). Thus it suffices to prove < BTD(C'). This
follows from Lemma 31, sinca = min{TD(c,C’) | ce C'}.

This completes the proof of Assertion 1.

Assertion 2.The second assertion is witnessed by the concept Gassntaining the empty
concept and all singletons. ObviousRTD(Cy) = 1 andBTD(Cp) = 2. O

7.3 Teaching Monomials

In this subsection, we pick up the two examples from Section 5.3 again, this tinrdento de-
termine the recursive teaching dimension of the corresponding classesadpts represented by
boolean functions. As in the case of the subset teaching dimension, seesh19, we obtain
that the recursive teaching dimension of the class of all monomialsnoyer> 2) variables is 2,
independent oim.

Theorem 33 Let me N, m> 2, and C the class of all boolean functions over m variables that can
be represented by a monomial. Then RTP= 2.

Proof. Fix mandC. For alli € {0,...,m} letC' be the subclass of atlc C that can be represented
by a non-contradictory monomi# that involves variables. There is exactly one concepCinot
belonging to any subcla&$ of C, namely the concept representable by a contradictory monomial.
The proof is based on the following observation.
ObservationFor anyi € {0,...,m} and anyc€ C': TD(c,C'U{c*}) < 2, whereC' = Uigjgmcj.
Now it is easily seen thatrd(p) < 2 for every teaching plap = ((¢1,S),...,(¢, S)) for C
that meets the following requirements:

(@) c; e C?andc, = c*.
(b) Foranyk,k € {1,...,z—1}: If k< K, thenc, € C' andcy € Cl for somei, j € {0,...,m}
with i < j.

ThereforeRTD(C) < 2.

Since obviouslyTD(c,C) > 2 for all c € C, we obtainRTD(C) = 2.

(For illustration of the casm = 2 see Table 8.) O

For the sake of completeness, note tRAD(C,ye) = 1 whereClh\r is the class of boolean
functions ovem variables as defined in Section 5.3.

Theorem 34 RTD(Cp\g) = 1forallme N, m> 2.
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monomial || subclass| 00 [ 01| 10 [ 11 | RTS \
T (o + | + | + | + | {(00,+),(11,+}
Vi ct — | = | + | + | {(10,4),(11,+}
Vi ct + |+ | = | = | {(00,+),(01,+}
Vo ct — |+ | = | + [ {(01,+),21,+}
A ct + | — | + | — | {(00,+),(10,+}
Vi Ay C? - =1 -1+ {11,+)}
VIAV; C? - |-+ - {(10,+)}
VAV c? R {(01,+)
VIAV; C? e {(00,+)}
ViAVL -l - 1-1- {}

Table 8: Recursive teaching sets in the teaching hierarchy (cormisgao teaching plans of order
2) for the class of all monomials oven = 2 variables.T denotes the empty monomial.
For better readability, the instances (denoting the third through sixth collarmsyritten
in the form of bit strings representing truth assignments to the two variables.

Proof. This follows straightforwardly from the fact thatD(c,Clp\z) = 1 for every concept
corresponding to a 2-term DNF of form v M.
(For illustration see Table 4.) O

8. Subset Teaching Dimension Versus Recursive Teaching Démsion

Comparing thesTDto theRTDturns out to be a bit more complex. We can show that the recursive
teaching dimension can be arbitrarily larger than the subset teaching dimehs#meven be larger
than the maximaSTDcomputed over all subsets of the concept class.

Theorem 35 1. For each ue N there is a concept class C such that §TP= 1 and RTOC) =
u.

2. There is a concept class C such thex{ STD(C') | C’' C C} < RTD(C).

Proof. Assertion 1This is witnessed by the classgs;; defined in the proof of Theorem 18.1.

Assertion 2.To verify Assertion 2, consider the concept cl&ss {c,...,Cs} given byc; = 0,
C2 = {X1}, €3 = {X1, %2}, €4 = {X2,X3}, C5 = {X2,Xa}, Cs = {X2,X3,X4}. It is not hard to verify
that TD(c,C) = 2 for all c € C and thusord(p) = 2 for every teaching plap for C. Therefore
RTD(C) = 2. MoreovelSTD(C') = 1 for allC’ C C (the computation o8 TDC) is shown in Table 9;
further details are omitted). O

Similarly, we can prove that the subset teaching dimension can be arbitragér fdan the
recursive teaching dimension.

Theorem 36 For each u> 2 there is a concept class C such that RUP= 2 and STOC) = u.

Proof. This is witnessed by the cla€s= C! /2 used in the proof of Theorem 18.2. O
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| concept [ x1 | % [ x| X | SsTS \ STS | STS |

0 N {(Xlﬂ_)v(X27_)} {(X17_)} {(le_)}
{x1} | = | G4, (=) ) | ke 4), (2, =)} | {(xa,+)}

{2, =)}
{X17X2} t -1 - {(X17+)7(X27+)} {(X27+)} {(X2a+)}
{X27X3} - |+t t+]= {(X37+>7(X47_)} {(X47_)} {(X47_)}
{X27X4} - |+t |-t {(Xg,—),(X4,+)} {(X37_)} {(X37_)}
Daxgxal || — |+ | 4+ | + || {0 +), 04 4+)} | {06+), ()} | {(6,+)}

{(xa, )}

Table 9: Iterated subset teaching sets for the dlass{ci,...,Cs} given byc; = 0, ¢z = {x1},
C3 = {X1,X2}, C4 = {X2,X3}, C5 = {X2, X4}, Cs = {X2, X3, X4}

Due to the incomparability dsTDandRTD it seems worth analyzing conditions under which
they become comparable. To this end, we define a property that is suffmienconcept class to
have a recursive teaching dimension equal to its subset teaching dimension

Definition 37 (Subset Teaching Property)Let C be a concept class. C fulfills the Subset Teaching
Property if for every teaching plan$ ((¢1,S), . . ., (¢, S;)) for C with ord(p) = RTD(C) and every
j with ord(p) = |Sj| and STOic;,C) > ord(p) there exists a teaching plan

p/ = ((Cl)sl)v .- '7(027 gz))
for C and a sample 8 STSc;j,C) such that $C S and|S| = |§| for all i.

Theorem 38 Let C be a concept class with the Subset Teaching Property. ThefC3HRTD(C).

Proof. STOIC) > RTD(C) follows trivially: if p=((c1,S1),...,(¢z, S)) is ateaching plan fa€ with
ord(p) = RTD(C) and if j fulfils RTD(C) = ord(p) = |Sj|, then there is som§; with |Sj| = |Sj|
and somes € STgc;j,C) such thas; C S henceSTD(C) > |§| > |Sj| = [Sj| = ord(p).

In order to show thaBTD(C) < RTD(C), we prove propertyP;) for all j € {1,...,|C|}. The
proof is done by induction of

(Py):
If p=((c1,S1),.-.,(C2,S)) is ateaching plan faC with ord(p) = RTD(C) thenSTD(c;,C) <
ord(p).

For j = 1 this is obvious, because
STD(¢y,C) < TD(cy,C) < ord(p)

for any teaching plap = ((¢1,S1),...,(Cz,S)) for C.

The induction hypothesis is thé®) holds for alli < j, j fixed.

To prove(Pj+1), letp= ((c1,S1),.. ., (2, S)) be any teaching plan f@ with ord(p) = RTD(C).
Consider the j + 1)St concepttj;1 in p.
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Case 1/Sj;1| < ord(p).
In this case we swa@; andcj,; and get a new teaching plan

p/ = ((01781)7 ERRR) (Cj—lasj—1)7
(Cj+1,T), (Cj,TI), (€, S))

for C.

Note thaiT'| <|Sj|. Moreover,T| < |Sj;11]|+1 <ord(p) =RTD(C). Henceord(p') = RTD(C).

Nowcj;1isin j" position in the teaching plapl whose order is equal ®TD(C). By induction
hypothesis we ge8TD(cj;1,C) < ord(p’) = ord(p).

Case 2.Sj ;1| = ord(p).

In this case we use the Subset Teaching Property. Assum8Tiiat; 1,C) > ord(p). By the
Subset Teaching Property, there is a teaching plan

p/ = ((Cl,s.l.)v SXE (CZv S’z))

for C and a sampl&e STSc;.1,C) such thasS,; C Sand|§| = |S| for all i.

First, note tha‘s’j+1 is not contained in any subset teaching set foraayC \ {cj;1}: The con-
ceptsci,o, ..., C; are not consistent with the sam;ﬂpH, becausé“:’j+1 € TSCj+1,{Cj+1,---,C}).
The conceptsy, ...,cj have, by induction hypothesis, a subset teaching dimension uppedduun
by ord(p) = [Sj+1| =[S 4 If S}, ; was contained in a subset teaching set for some concept among
Cy, ...,Cj, this would imply thaIS]Jrl egualed some subset teaching set for some concept arnong
...,Cj, and thueS}+1 could not be contained in the subset teachingsdet cj ;.

Second, sinc:.S.BgJrl is contained in the subset teaching Séor c;, 1 and not contained in any
subset teaching set for asy= C\ {cj;1}, Sﬁ+1 equalsSand is itself a subset teaching set épr;.
Consequently,

S}44] = STO(G}+1,C) > ord(p) = ord(p) > |S] 4]

This is obviously a contradiction in itself.

HenceSTD(cj, 1,C) < ord(p).

This concludes the induction step. O

For example, the class of all linear threshold functionsCgin Table 1, has the subset teaching
property. Every teaching plap= ((¢1,S1),...,(¢z, S;)) for Cg with ord(p) = RTD(Cg) = 1 starts
either with the concept; = X or with the concept; = 0. In either caseS, actually is a subset
teaching set for;. A recursive argument for the subsequent concepts in the teachimglpdavs
thatCq has the subset teaching property.

A similar argument proves that the class of all monomials ovérstances, for anyn > 2, has
the subset teaching property.

9. Conclusions

We introduced two new models of teaching and learning of finite conceadabased on the idea
that learners can learn from a smaller number of labeled examples if theyadkat the teacher
chooses helpful examples. These models contrast with the classic tedahigigsion model in
which no more assumptions on the learner are made than it being consistettienitifiormation
presented. As a consequence, the information-theoretic complexity rgsuttim our new models
is in general much lower than the teaching dimension.
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Such results have to be interpreted with care since one constraint in motégleigng is that
coding tricks have to be avoided. However, one of our two models, thébased orrecursive
teaching setscomplies with Goldman and Mathias’s original definition of valid teaching without
coding tricks, see Goldman and Mathias (1996). The model bassdlset teaching setkes not
comply with the same definition of valid teaching. As we argued though, GoldmduMathias’s
definition may be too restrictive when modeling cooperation in teaching anuidgarintuitively,
their definition requires a learner to hypothesize a concaptsoon as any teaching set éds con-
tained in the given sample. This artificially precludes the possibility of a modehinhna learner
assumes that all the examples selected by the teacher are represditainewe introduced a less
restrictive definition of coding trick. Each of the protocols presented inpé@per can be regarded
as meta-algorithms generating teacher/learner pairs that do not involivg ¢odks.

The subset teaching protocol questions not only classic definitionsdaigtrick but also the
intuitive idea that information-theoretic complexity measures should be monatathicespect to
the inclusion of concept classes. We discussed why non-monotonicity ilcahiext may be a
natural phenomenon in cooperative teaching and learning.

For many “natural” concept classes, the subset teaching dimensioneanectirsive teaching
dimension turn out to be equal, but in general the two measures are noaaig This immedi-
ately implies that neither one of the two corresponding teaching models is optimoabgprotocols
that yield collusion-free teacher-learner pairs. One could easily desgmtocol that, for every
concept clas€, would follow the subset teaching protocoSTD(C) < RTD(C) and would follow
the recursive teaching protocolRTD(C) < STDC). Such a protocol would comply with our def-
inition of collusion-freeness and would strictly dominate both the subsetitepplotocol and the
recursive teaching protocol. In this paper, we did not address trstign®f optimality of teaching
protocols; we focused on intuitiveness of the protocols and the resulanbitey sets.
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