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Abstract

While most supervised machine learning models assume that training examples are sampled at
random or adversarially, this article is concerned with models of learning from a cooperative teacher
that selects “helpful” training examples. The number of training examples a learner needs for
identifying a concept in a given classC of possible target concepts (sample complexity ofC) is
lower in models assuming such teachers, that is, “helpful” examples can speed up the learning
process.

The problem of how a teacher and a learner can cooperate in order to reduce the sample com-
plexity, yet without using “coding tricks”, has been widelyaddressed. Nevertheless, the resulting
teaching and learning protocols do not seem to make the teacher select intuitively “helpful” exam-
ples. The two models introduced in this paper are built on what we callsubset teaching setsand
recursive teaching sets. They extend previous models of teaching by letting both theteacher and
the learner exploitknowingthat the partner is cooperative. For this purpose, we introduce a new
notion of “coding trick”/“collusion”.

We show how both resulting sample complexity measures (thesubset teaching dimensionand
therecursive teaching dimension) can be arbitrarily lower than the classic teaching dimension and
known variants thereof, without using coding tricks. For instance, monomials can be taught with
only two examples independent of the number of variables.

The subset teaching dimension turns out to be nonmonotonic with respect to subclasses of
concept classes. We discuss why this nonmonotonicity mightbe inherent in many interesting co-
operative teaching and learning scenarios.
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1. Introduction

A central problem in machine learning is that learning algorithms often requirelarge quantities
of data. Data may be available only in limited quantity, putting successful deployment of stan-
dard machine learning techniques beyond reach. This problem is addressed by models of machine
learning that are enhanced by interaction between a learning algorithm (learner, for short) and its
environment, whose main purpose is to reduce the amount of data needed for learning. Interaction
here means that at least one party actively controls which information is exchanged about the target
object to be learned. Most classic machine learning models address the “average case” of data pre-
sentation to a learner (labeled examples are drawn independently at random from some distribution)
or even the “worst case” (examples are drawn in an adversarial fashion). This results in the design
of learners requiring more data than would be necessary under more optimistic (and often realistic)
assumptions. As opposed to that, interactive learning refers to a “good case” in which representative
examples are selected, whereby the number of examples needed for successful learning may shrink
significantly.

Interactive machine learning is of high relevance for a variety of applications, for example, those
in which a human interacts with and is observed by a learning system. A systematicand formally
founded study of interactive learning is expected to result in algorithms thatcan reduce the cost of
acquiring training data in real-world applications.

This paper focusses on particular formal models of interactive conceptlearning. Considering
a finite instance space and a class of (thus finite) concepts over that space, it is obvious that each
concept can be uniquely determined if enough examples are known. Muchless obvious is how
to minimize the number of examples required to identify a concept, and with this aim in mind
models ofcooperative learningand learning fromgood exampleswere designed and analyzed. The
selection of good examples to be presented to a learner is often modeled usinga teaching device
(teacher) that is assumed to be benevolent by selecting examples expeditingthe learning process
(see, for instance, Angluin and Kriķis, 1997; Jackson and Tomkins, 1992; Goldman and Mathias,
1996; Mathias, 1997).

Throughout this paper we assume that teaching/learning proceeds in a simple protocol; the
teacher presents a batch of labeled examples (that is, a set of instances,each paired with a label 1
or 0, according to whether or not the instance belongs to the target concept) to the learner and the
learner returns a concept it believes to be the target concept. If the learner’s conjecture is correct,
the exchange is considered successful. The sample size, that is, the number of examples the teacher
presents to the learner, is the object of optimization; in particular we are concerned with the worst
case sample size measured over all concepts in the underlying classC of all possible target concepts.
Other than that, computational complexity issues are not the focus of this paper.

A typical question isHow can a teacher and a learner cooperatively minimize the worst case
sample size without using coding tricks?—a coding trick being, for example, anya priori agreement
on encoding concepts in examples, depending on the concept classC. For instance, if teacher and
learner agreed on a specific order for the concept representations and the instances and agreed to use
the j th instance in this ordering to teach thej th concept, that would be a coding trick. In practice,
the teacher and the learner might not be able to agree on such an order, for instance, if the teacher is
a human who does not have the same representation of a concept as the machine has. There is so far
no generally accepted definition of the term “coding trick” (sometimes also called “collusion”); the
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reader is referred to Angluin and Kriķis (1997), Ott and Stephan (2002) and Goldman and Mathias
(1996). It is often more convenient to define what constitutes a valid pair of teacher and learner.

The most popular teaching model is the one introduced by Goldman and Mathias(1996). Here
a team of teacher and learner is considered valid if, for every conceptc in the underlying classC the
following properties hold.

• The teacher selects a setSof labeled examples consistent withc.

• On input ofany supersetof Sof examples that are labeled consistently withc, the learner will
return a hypothesis representingc.

The idea behind this definition is that the absence of examples in the sampleScannot be used for
encoding knowledge about the target concept. This is completely in line with notions of inductive
inference from good examples, see Freivalds et al. (1993) and Lange et al. (1998).

One way for a teacher and a learner to form a valid team under these constraints is for the teacher
to select, for every conceptc ∈ C, a sampleS that is consistent withc but inconsistent with every
other concept inC. The size of the minimum such sample is called theteaching dimensionof c in
C. The teaching dimension of the classC is the maximum teaching dimension over all concepts in
C. For more information, the reader is referred to the original literature on teaching dimension and
variants thereof (Shinohara and Miyano, 1991; Goldman and Kearns, 1995; Anthony et al., 1992).

The teaching dimension however does not always seem to capture the intuitive idea of coopera-
tion in teaching and learning. Consider the following simple example. LetC0 consist of the empty
concept and all singleton concepts over a given instance spaceX = {x1, . . . ,xn}. Each singleton
concept{xi} has a teaching dimension of 1, since the single positive example(xi ,+) is sufficient
for determining{xi}. This matches our intuition that concepts in this class are easy to teach. In
contrast to that, the empty concept has a teaching dimension ofn—every example has to be pre-
sented. However, if the learner assumed the teacher was cooperative—and would therefore present
a positive example if the target concept was non-empty—the learner could confidently conjecture
the empty concept upon seeing just one negative example.

Let us extend this reasoning to a slightly more complex example, the class of all boolean func-
tions that can be represented as a monomial overm variables (m= 4 in this example). Imagine
yourself in the role of a learner knowing your teacher will present helpful examples. If the teacher
sent you the examples

(0100,+),(0111,+) ,

what would be your conjecture? Presumably most people would conjecturethe monomialM ≡
v1∧ v2, as does for instance the algorithm proposed by Valiant (1984). Note that this choice is not
uniquely determined by the data: the empty (always true) monomial and the monomials v1 andv2

are also consistent with these examples. And yetM seems the best choice, because we’d think the
teacher would not have kept any bit in the two examples constant if it was not in the position of
a relevant variable. In this example, the natural conjecture is the most specific concept consistent
with the sample, but that does not, in general, capture the intuitive idea of cooperative learning. In
particular, if, instead of the class of all monomials, the class of all complements of these concepts
over the same instance space is chosen, then a cooperative teacher andlearner would need only
two negatively labeled example for teaching the complement of the concept associated withv1∧v2,
which is now the least specific concept in the class. Going further, one could swap+ for − and vice
versa only for some of the instances. In effect, only the labels in the examples chosen by the teacher

351



ZILLES, LANGE, HOLTE AND ZINKEVICH

would change, but not the instances as such. The concepts guessed by the learner would then be
neither the most specific nor the least specific concepts.

Could the learner’s reasoning about the teacher’s behavior in these examples be implemented
without a coding trick? We will argue below that, for a very intuitive, yet mathematically rigorous
definition of coding tricks, no coding trick is necessary to achieve exactly this behavior of teacher
and learner; there are general strategies that teachers and learnerscan independently implement to
cooperatively learn any finite concept class. When applied to the class ofmonomials this princi-
ple enables any monomial to be learned from just two examples, regardless of the numberm of
variables.

Our approach is to define a new model of cooperation in learning, based on the idea that each
partner in the cooperation tries to reduce the sample size by exploiting the assumption that the other
partner does so. If this idea is iteratively propagated by both partners, one can refine teaching sets
iteratively ending up with a framework for highly efficient teaching and learning without any coding
tricks. It is important to note that teacher and learner do not agree on anyorder of the concept class
or any order of the instances. All they know about each others’ strategies is a general assumption
about how cooperation should work independent of the concept classor its representation.

We show that the resulting variant of the teaching dimension—called thesubset teaching di-
mension (STD)—is not only a uniform lower bound of the teaching dimension but can be constant
where the original teaching dimension is exponential, even in cases where only one iteration is
needed. For example, as illustrated above, the STD of the class of monomials over m≥ 2 variables
is 2, in contrast to its original teaching dimension of 2m.

Some examples however will reveal a nonmonotonicity of the subset teachingdimension: some
classes possess subclasses with a higher subset teaching dimension, which is at first glance not
very intuitive. We will explain below why in a cooperative model such a nonmonotonicity does
not have to contradict intuition; additionally we introduce a second model of cooperative teaching
and learning, that results in a monotonic dimension, called therecursive teaching dimension (RTD).
Recursive teaching is based on the idea to let the teacher and the learner exploit a hierarchical
structure that is intrinsic in the concept class. The canonical hierarchy associated with a concept
classC is a nesting ofC, starting with the class of all concepts inC that are easiest to teach (i.e., have
the lowest teaching dimension) and then applying the nesting process recursively to the remaining
set of concepts. At every stage, the recursive teaching sets for the concepts that are easiest to
teach are the teaching sets for these concepts with respect to the class of remaining concepts. The
recursive teaching dimension is the size of the largest recursive teaching set constructed this way.

The RTD-model is not as intuitive a model of cooperative teaching and learning as the STD-
model is, but it displays a surprising set of properties. Besides its monotonicity, the RTD corre-
sponds to teacher-learner protocols that do not violate Goldman and Mathias’s definition of teach-
ing and learning without coding tricks. Nevertheless, substantial improvements over the classical
teaching dimension are obtained. A recent study furthermore shows that the recursive teaching
dimension is a combinatorial parameter of importance when analyzing the complexity of learning
problems from the perspective of active learning, teaching, learning from random examples, and
sample compression, see Doliwa et al. (2010).

Both our teaching protocols significantly improve sample efficiency comparedto previously
studied variants of the teaching dimension.

This paper is a correction and extension of an earlier publication (Zilles et al., 2008). In this
earlier publication, both Proposition 5(1) and the conjecture in Lemma 23 werewrong.
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2. Related Work

The problem of defining what are “good” or “helpful” examples in learning has been studied in
several fields of learning theory.

Various learning models, which each involve one particular type of teacher, were proposed by
Goldman and Kearns (1995), Goldman and Mathias (1996), Mathias (1997), Jackson and Tomkins
(1992), Shinohara and Miyano (1991), Angluin and Kriķis (1997), Angluin and Kriķis (2003), Bal-
bach (2008) and Kobayashi and Shinohara (2009); these studies mostly focus on learning boolean
functions. See also Balbach and Zeugmann (2009) for a recent survey. The teaching dimension
model, independently introduced by Goldman and Kearns (1991; 1995) andby Shinohara and
Miyano (1991), is concerned with the sample complexity of teaching arbitraryconsistent learn-
ers. Samples that will allow any consistent learner to identify the target concept are calledteaching
sets; the maximum size of minimal teaching sets of all concepts in the underlying concept classC is
called theteaching dimensionof C. The problem of avoiding unfair “coding tricks” between teach-
ers and learners is addressed in particular by Goldman and Mathias (1996) with the introduction of a
formal notion of collusion-free learning. It is known that computing (the size of) minimal teaching
sets is in general intractable, see Servedio (2001), which is one reasonwhy the polynomial-time
models introduced by Jackson and Tomkins (1992) are of interest. Jackson and Tomkins no longer
require that teachers choose samples that make any consistent learner successful; they rather focus
on specific teacher/learner pairs. Loosening the requirement of learners being consistent, Kobayashi
and Shinohara (2009) analyze how restrictions on the number of examplesgiven by the teacher in-
fluence the worst-case error of the hypothesis returned by a learner.

The teaching dimension was analyzed in the context of online learning, see Ben-David and
Eiron (1998) and Rivest and Yin (1995), and in the model of learning from queries, for example, by
Heged̋us (1995) and by Hanneke (2007), with a focus on active learning in thePAC framework. In
contrast to these models, in inductive inference the learning process is not necessarily considered
to be finite. Approaches to defining learning infinite concepts from good examples (Freivalds et al.,
1993; Lange et al., 1998) do not focus on the size of a finite sample of good examples, but rather on
characterizing the cases in which learners can identify concepts from only finitely many examples.

One of the two approaches we present in this paper is mainly based on an idea by Balbach
(2008). He defined and analyzed a model in which, under the premise thatthe teacher uses a
minimal teaching set (as defined by Goldman and Kearns, 1991, 1995) as asample, a learner can
reduce the size of a required sample by eliminating concepts which possess ateaching set smaller
than the number of examples provided by the teacher so far. Iterating this idea, the size of the
teaching sets might be gradually reduced significantly. Though our approach is syntactically quite
similar to Balbach’s, the underlying idea is a different one (we do not consider elimination by the
sample size but elimination by the sample content as compared to all possible teaching sets). The
resulting variant of the teaching dimension in general yields different performance results in terms
of sample size than Balbach’s model does.

3. The Teaching Dimension and the Balbach Teaching Dimension

Let N denote the set of all non-negative integers,/0 denote the empty set, and|M| denote the cardi-
nality of a finite setM. For anyk∈ N, the power set of{1, . . . ,k} will be denoted by 2[k].
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In the models of teaching and learning to be defined below, we will always assume that the goal
in an interaction between a teacher and a learner is to make the learner identifya (finite) concept
over a (finite) instance spaceX.

Most of the recent work on teaching (cf. Balbach, 2008; Zilles et al., 2008; Balbach and Zeug-
mann, 2009; Kobayashi and Shinohara, 2009) defines a concept simply as a subset ofX and a
concept class as a set of subsets ofX. In effect, this is exactly the definition we would need for
introducing the teaching models we define below. However, the definition anddiscussion of the
notion of collusion (i.e., the conceptualization of what constitutes a coding trick), see Section 4,
motivates a more general definition of concepts and concept classes. This more general definition
considers the instance spaceX as an ordered set and every concept classC as an ordered set of
subsets ofX.

To formalize this, letX = {1, . . . ,n}. Concepts and concept classes are defined as follows.

Definition 1 Let z∈ N.
A concept class of cardinality z is defined by an injective mapping C: {1, . . . ,z}→ 2[n]. Every i∈

{1, . . . ,z} and thus every concept C(i) is associated with a membership function on X= {1, . . . ,n},
given by C(i)( j) =+ if j ∈C(i), and C(i)( j) =− if j /∈C(i), where1≤ j ≤ n. Thus a concept class
C of cardinality z∈ N is represented as a matrix(C(i)( j))1≤i≤z,1≤ j≤n over{+,−}.

Cz denotes the collection of all concept classes of cardinality z.C =
⋃

z∈NCz denotes the collec-
tion of all concept classes (of any cardinality).

Consequently, concepts and concept classes considered below will always be finite.

Definition 2 Let z∈ N and C∈ Cz.
A sample is a set S= {( j1, l1), . . . ,( jr , lr)} ⊆ X ×{+,−}, where every element( j, l) of S is

called a (labeled) example.
Let i∈ {1, . . . ,z}. C(i) is consistent with S (and S is consistent with C(i)) if C(i)( jt) = lt for all

t ∈ {1, . . . , r}. Denote

Cons(S,C) = {i ∈ {1, . . . ,z} |C(i) is consistent with S} .

The power set of{1, . . . ,n}×{+,−}, that is, the set of all samples, is denoted byS .

3.1 Protocols for Teaching and Learning in General

In what follows, we assume that a teacher selects a sample for a given target concept and that a
learner, given any sampleS, always returns an index of a concept from the underlying concept class
C. Formally, if z∈ N and(C(i)( j))1≤i≤z,1≤ j≤n is a concept class inCz, a teacherfor C is a function
τ : {1, . . . ,z}→ S ; a learner for C is a functionλ : S →{1, . . . ,z}.

In order to constrain the definition of validity of a teacher/learner pair to a desired form of inter-
action in a learning process, the notion of adversaries will be useful. Adversaries will be considered
third parties with the option to modify a sample generated by a teacher before thissample is given to
a learner. Formally, anadversaryis a relationAd⊆ S3. Intuitively, if (τ(i),C(i),S) ∈ Ad for some
i ∈ {1, . . . ,z} and some teacherτ for C = (C(i)( j))1≤i≤z,1≤ j≤n, then the adversary has the option
to modify τ(i) to S and the learner communicating withτ will get S rather thanτ(i) as input. A
special adversary is the so-calledtrivial adversary Ad∗, which satisfies(S1,S2,S) ∈ Ad∗ if and only
if S1 = S. This adversary does not modify the samples generated by the teacher atall.
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All teaching and learning models introduced below will involve a very simpleprotocolbetween
a teacher and a learner (and an adversary).

Definition 3 Let P be a mapping that maps every concept class C∈ C to a pair P(C) = (τ,λ) where
τ is a teacher for C andλ is a learner for C. P is called a protocol; given C∈ C , the pair P(C) is
called a protocol for C.

1. Let z∈ N and let C∈ Cz be a concept class. Let AdC be an adversary. P(C) = (τ,λ) is called
successful for C with respect to AdC if λ(S) = i for all pairs (i,S) where i∈ {1, . . . ,z}, S∈ S ,
and(τ(i),C(i),S) ∈ AdC.

2. LetA = (AdC)C∈C be a family of adversaries. P is called successful with respect toA if, for
all C ∈ C , P(C) is successful for C with respect to AdC.

Protocols differ in the strategies according to which the teacher and the learner operate, that is,
according to which the teacher selects a sample and according to which the learner selects a concept.

In all protocols considered below, teachers always select consistentsamples for every given
target concept and learners, given any sampleS, always return a concept consistent withS if such
a concept exists in the underlying classC. Formally, all teachersτ for a concept classC ∈ Cz will
fulfill i ∈ Cons(τ(i),C) for all i ∈ {1, . . . ,z}; all learnersλ for a classC will fulfill λ(S)∈ Cons(S,C)
for all S∈ S with Cons(S,C) 6= /0. Moreover, all the adversariesAd we present below will have the
following property:

for any three samplesS1,S2,S∈ S , if (S1,S2,S) ∈ Ad thenS1 ⊆ S⊆ S2 .

However, this does not mean that we consider other forms of teachers, learners, or adversaries
illegitimate. They are just beyond the scope of this paper.

The goal in sample-efficient teaching and learning is to design protocols that, for every concept
classC, are successful forC while reducing the (worst-case) size of the samples the teacher presents
to the learner for any target concept inC. At the same time, by introducing adversaries, one tries to
avoid certain forms of collusion, an issue that we will discuss in Section 4.

3.2 Protocols Using Minimal Teaching Sets and Balbach Teaching Sets

The fundamental model of teaching we consider here is based on the notionof minimal teaching
sets, which is due to Goldman and Kearns (1995) and Shinohara and Miyano (1991).

Let z∈ N and letC ∈ Cz be a concept class. LetS be a sample.S is called ateaching setfor
i with respect toC if Cons(S,C) = {i}. A teaching set allows a learning algorithm to uniquely
identify a concept in the concept classC. Teaching sets of minimal size are calledminimal teaching
sets. Theteaching dimensionof i in C is the size of such a minimal teaching set, that is,TD(i,C) =
min{|S| | Cons(S,C) = {i}}, the worst case of which defines the teaching dimension ofC, that is,
TD(C) = max{TD(i,C) | 1≤ i ≤ z}. To refer to the set of all minimal teaching sets ofi with respect
to C, we use

TS(i,C) = {S| Cons(S,C) = {i} and|S|= TD(i,C)} .

Minimal teaching sets induce the following protocol.

Protocol 4 Let P be a protocol. P is called a teaching set protocol (TS-protocol for short) if the
following two properties hold for every C∈ C , where P(C) = (τ,λ).
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1. τ(i) ∈ TS(i,C) for all i ∈ {1, . . . ,z},

2. λ(S) ∈ Cons(S,C) for all S∈ S with Cons(S,C) 6= /0.

This protocol is obviously successful with respect to the family consisting only of the trivial
adversary. The teaching dimension of a concept classC is then a measure of the worst case sample
size required in this protocol with respect toAd∗ when teaching/learning any concept inC.

The reason that, for every concept classC∈ Cz, the protocolP(C) is successful (with respect to
Ad∗) is simply that a teaching set eliminates all but one concept due to inconsistency. However, if
the learner knewTD(i,C) for everyi ∈ {1, . . . ,z} then sometimes concepts could also be eliminated
by the mere number of examples presented to the learner. For instance, assume a learner knows that
all but one conceptC(i) have a teaching set of size one and that the teacher will teach using teaching
sets. After having seen 2 examples, no matter what they are, the learner could eliminate all concepts
butC(i). This idea, referred to as elimination by sample size, was introduced by Balbach (2008). If
a teacher knew that a learner eliminates by consistency and by sample size then the teacher could
consequently reduce the size of some teaching sets (e.g., here, ifTD(i,C)≥ 3, a new “teaching set”
for i could be built consisting of only 2 examples).

More than that—this idea is iterated by Balbach (2008): if the learner knew that the teacher uses
such reduced “teaching sets” then the learner could adapt his assumptionon the size of the samples
to be expected for each concept, which could in turn result in a further reduction of the “teaching
sets” by the teacher and so on. The following definition captures this idea formally.

Definition 5 (Balbach, 2008)
Let z∈ N and let C∈ Cz be a concept class. Let i∈ {1, . . . ,z} and S a sample. Let BTD0(i,C) =
TD(i,C). We define iterated dimensions for all k∈ N as follows.

• Conssize(S,C,k) = {i ∈ Cons(S,C) | BTDk(i,C)≥ |S|}.

• BTDk+1(i,C) = min{|S| | Conssize(S,C,k) = {i}}

Let κ be minimal such that BTDκ+1(i,C) = BTDκ(i,C) for all i ∈ {1, . . . ,z}. The Balbach teaching
dimension BTD(i,C) of i in C is defined by BTD(i,C) = BTDκ(i,C) and the Balbach teaching di-
mension BTD(C) of the class C is BTD(C) = max{BTD(i,C) | 1≤ i ≤ z}.1 For every i∈ {1, . . . ,z}
we define

BTS(i,C) = {S| Conssize(S,C,κ) = {i} and|S|= BTD(i,C)}

and call every set in BTS(i,C) a minimal Balbach teaching set of i with respect to C.
By Conssize(S,C) we denote the set Conssize(S,C,κ).

The Balbach teaching dimension measures the sample complexity of the following protocol
with respect to the trivial adversary.

Protocol 6 Let P be a protocol. P is called a Balbach teaching set protocol (BTS-protocol for short)
if the following two properties hold for every C∈ C , where P(C) = (τ,λ).

1. τ(i) ∈ BTS(i,C) for all i ∈ {1, . . . ,z},

1. Balbach (2008) denotes this byIOTTD, called iterated optimal teacher teaching dimension; we deviate from this
notation for the sake of convenience.
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2. λ(S) ∈ {i | there is some S′ ∈ BTS(i,C) such that S′ ⊆ S} for all S∈ S that contain a set S′ ∈
BTS(i,C) for some i∈ {1, . . . ,z}.

Obviously,BTD(C)≤ TD(C) for every concept classC∈ C . How much the sample complexity
can actually be reduced by a cooperative teacher/learner pair according to this “elimination by
sample size” principle, is illustrated by the concept classC0 which consists of the empty concept
and all singleton concepts overX. The teaching dimension of this class isn, whereas theBTD is 2.

3.3 Teaching Monomials

A standard example of a class of boolean functions studied in learning theory is the classFm of
monomials over a set{v1, . . . ,vm} of m variables, for anym≥ 2.2 Usually, this class is just de-
fined by choosingX = {0,1}m as the underlying instance space. Then, for any monomialM, the
corresponding concept is defined as the set of those assignments in{0,1}m for which M evaluates
positively. Within our more general notion of concept classes, there is more than just one class of
all monomials overm variables (which we will later consider as equivalent). This is due to distin-
guishing different possible orderings overX and over the class of monomials itself.

Definition 7 Let m∈ N, m≥ 2 and assume n= 2m, that is, X= {1, . . . ,2m}.
Let bin : {1, . . . ,2m} → {0,1}m be a bijection, that is, a repetition-free enumeration of all bit

strings of length m. Letmon :{1, . . . ,3m} → Fm be a bijective enumeration of all monomial func-
tions over m variables v1, . . . ,vm.

A mapping C: {1, . . . ,3m} → 2[2
m] is called a concept class of all monomials over m variables

if, for all i ∈ {1, . . . ,3m} and all j∈ {1, . . . ,2m},

C(i)( j) =

{

+ , if mon(i) evaluates to TRUE when assigningbin( j) to (v1, . . . ,vm) ,

− , if mon(i) evaluates to FALSE when assigningbin( j) to (v1, . . . ,vm) .

It turns out that a class of all monomials contains only one concept for which theBTD-iteration
yields an improvement.

Theorem 8 (Balbach, 2008)Let m∈ N, m≥ 2. Let C: {1, . . . ,3m} → 2[2
m] be a concept class of

all monomials over m variables. Let i∗ ∈ {1, . . . ,3m} with C(i∗) = /0 be an index for the concept
representing the contradictory monomial.

1. BTD(i∗,C) = m+2< 2m = TD(i∗,C).

2. BTD(i,C) = TD(i,C) for all i ∈ {1, . . . ,3m}\{i∗}.

The intuitive reason forBTD(i∗,C) = m+2 in Theorem 8 is that samples forC(i∗) of sizem+1
or smaller are consistent also with monomials different fromC(i∗), namely those monomials that
contain every variable exactly once (each such monomial is positive for exactly one of the 2m in-
stances). These other monomials hence cannot be eliminated—neither by sizenor by inconsistency.

2. A monomial over{v1, . . . ,vm} is a conjunction of literals over{v1, . . . ,vm}, also called a 1-CNF or a 1-term DNF.
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4. Avoiding Coding Tricks

Intuitively, the trivial adversary of course does not prevent teacher and learner from using coding
tricks. One way of defining what a coding trick is—or what a valid (collusion-free) behaviour of a
teacher/learner is supposed to look like—is to require success with respect to a specific non-trivial
type of adversary.

Goldman and Mathias (1996) called a pair of teacher and learner valid for aconcept classC∈ Cz

if, for every conceptC(i) in the classC, the following properties hold.

• The teacher selects a setSof labeled examples consistent withC(i).

• On input ofany supersetof Sof examples that are labeled consistently withC(i), the learner
will return a hypothesis representingC(i).

In other words, they considered a teacher-learner pair(τ,λ) a valid protocol forC if and only if it
is successful with respect toanyadversaryAdC that fulfills τ(i)⊆ S⊆C(i) for all i ∈ {1, . . . ,z} and
all S∈ S with (τ(i),C(i),S) ∈ AdC.

Obviously, teacher/learner pairs using minimal teaching sets according to theTS-protocol (Pro-
tocol 4) are valid in this sense.

Theorem 9 Let z∈ N and let C∈ Cz be a concept class. Letτ be a teacher for C,λ a learner for
C. If (τ,λ) is a TS-protocol for C then(τ,λ) is successful with respect to any adversary AdC that
fulfills τ(i)⊆ S⊆C(i) for all i ∈ {1, . . . ,z}.

Proof. Immediate from the definitions. �

Not only the protocol based on the teaching dimension (Protocol 4), but also the protocol based
on the Balbach teaching dimension (Protocol 6) yields only valid teacher/learner pairs according to
this definition—a consequence of Theorem 10.

Theorem 10 Let z∈ N and let C∈ Cz be a concept class. Let i∈ {1, . . . ,z}, S∈ BTS(i,C), and
T ⊇ S such that i∈ Cons(T,C). Then there is no i′ ∈ Cons(T,C) such that i6= i′ and S′ ⊆ T for some
S′ ∈ BTS(i′,C).

Proof. Assume there is somei′ ∈ Cons(T,C) such thati 6= i′ and someS′ ∈ BTS(i′,C) such that
S′ ⊆ T. Since bothC(i) andC(i′) are consistent withT and bothSandS′ are subsets ofT, we have
i ∈ Cons(S′,C) andi′ ∈ Cons(S,C). Now letκ ≥ 1 be minimal such thatBTDκ(i∗,C) = BTD(i∗,C)
for all i∗ ∈C. Fromi′ ∈ Cons(S,C) andS∈ BTS(i,C) we obtain

|S′|= BTDκ(i′,C)≤ BTDκ−1(i′,C)< |S| .

Similarly, i ∈ Cons(S′,C) andS′ ∈ BTS(i′,C) yields

|S|= BTDκ(i,C)≤ BTDκ−1(i,C)< |S′| .

This is a contradiction. �

This implies that everyBTS-protocol is valid in the sense of the definition given by Goldman
and Mathias (1996).
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Corollary 11 Let z∈ N and let C∈ Cz be a concept class. Letτ be a teacher for C,λ a learner for
C. If (τ,λ) is a BTS-protocol for C then(τ,λ) is successful with respect to any adversary AdC that
fulfills τ(i)⊆ S⊆C(i) for all i ∈ {1, . . . ,z}.

Goldman and Mathias’s definition of valid teacher/learner pairs encompasses a broad set of sce-
narios. It accommodates all consistent learners even those that do not make any prior assumptions
about the source of information (the teacher) beyond it being noise-free. However, in many appli-
cation scenarios (e.g., whenever a human interacts with a computer or in robot-robot interaction) it
is reasonable to assume that (almost) all the examples selected by the teacher are helpful or partic-
ularly important for the target concept in the context of the underlying concept class. Processing a
sampleSselected by a teacher, a learner could exploit such an assumption by excluding not only all
concepts that are inconsistent withSbut also all concepts for which some examples inSwould not
seem particularly helpful/important. This would immediately call Goldman and Mathias’s definition
of validity into question.

Here we propose a more relaxed definition of what a valid teacher/learnerpair is (and thus,
implicitly, a new definition of collusion). It is important to notice, first of all, that inparts of the
existing literature, teaching sets and teaching dimension are defined via properties ofsetsrather
than properties ofrepresentationsof sets, see Balbach (2008) and Kobayashi and Shinohara (2009).
Whenever this is the case, teacher/learner pairs cannot make use of the language they use for repre-
senting instances inX or concepts inC. For example, teacher and learner cannot agree on anorder
over the instance space or over the concept class in order to encode information in samples just by
the rank of their members with respect to the agreed-upon orders.

We want to make this an explicit part of the definition of collusion-free teacher/learner pairs.
Intuitively, the complexity of teaching/learning concepts in a class should notdepend on certain

representational features, such as any order overX or overC itself. Moreover, negating the values of
all concepts on a single instance should not affect the complexity of teaching and learning either. In
other words, we want protocols to be “invariant” with respect to the following equivalence relation
overC .

Definition 12 Let z∈ N. Let C= (C(i)( j))1≤i≤z,1≤ j≤n and C′ = (C′(i)( j))1≤i≤z,1≤ j≤n be two con-
cept classes inCz. C and C′ are called equivalent if there is a bijection frow : {1, . . . ,z}→ {1, . . . ,z},
a bijection fcol : {1, . . . ,n} → {1, . . . ,n}, and for every j∈ {1, . . . ,n} a bijection ℓ j : {+,−} →
{+,−}, such that

C(i)( j) = ℓ j(C
′( frow(i))( fcol( j)) for all i ∈ {1, . . . ,z}, j ∈ {1, . . . ,n} .

In this case,( frow, fcol,(ℓ j)1≤ j≤n) is said to witness that C and C′ are equivalent.

We call a protocol collusion-free if it obeys this equivalence relation in thefollowing sense.

Definition 13 Let P be a protocol. P is collusion-free if, for every z∈ N and C,C′ ∈ Cz, where C
and C′ are equivalent as witnessed by( frow, fcol,(ℓ j)1≤ j≤n), the following two properties hold for
P(C) = (τ,λ) and P(C′) = (τ′,λ′).

1. If 1≤ i ≤ z andτ(i) = {( j1, l1), . . . ,( jr , lr)}, then

τ′( frow(i)) = {( fcol( j1), ℓ j(l1)), . . . ,( fcol( jr), ℓ j(lr))} .
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2. If {( j1, l1), . . . ,( jr , lr)} ∈ S andλ({( j1, l1), . . . ,( jr , lr)}) = i, then

λ′({( fcol( j1), ℓ j(l1)), . . . ,( fcol( jr), ℓ j(lr))}) = frow(i) .

It is obvious that both protocols introduced above are collusion-free.

Theorem 14 1. Every teaching set protocol is collusion-free.

2. Every Balbach teaching set protocol is collusion-free.

Proof. Immediate from the definitions. �

The new protocols we define below are collusion-free as well. This means that all protocols
studied in this article are defined independently of the order overX andC. Concept classes can
hence be considered as sets of sets rather than matrices. Consequently,Definition 1 is more general
than required in the rest of this paper. We therefore ease notation as follows.

X = {x1, . . . ,xn} denotes the instance space. A conceptc is a subset ofX and a concept class
C is a subset of the power set ofX. We identify every conceptc with its membership func-
tion given byc(xi) = + if xi ∈ c, and c(xi) = − if xi /∈ c, where 1≤ i ≤ n. Given a sample
S= {(y1, l1), . . . ,(yr , lr)} ⊆ X×{+,−}, we callc consistent withSif c(yi) = l i for all i ∈ {1, . . . , r}.
If C is a concept class thenCons(S,C) = {c ∈ C | c is consistent withS}. S is called a teaching
set for c with respect toC if Cons(S,C) = {c}. ThenTD(c,C) = min{|S| | Cons(S,C) = {c}},
TD(C) = max{TD(c,C) | c∈ C}, andTS(c,C) = {S | Cons(S,C) = {c} and|S| = TD(c,C)}. The
notations concerning the Balbach teaching model are adapted by analogy.

5. The Subset Teaching Dimension

The approach studied by Balbach (2008) does not always meet the intuitive idea of teacher and
learner exploiting the knowledge that either partner behaves cooperatively. Consider for instance
one more time the classC0 containing the empty concept and all singletons overX = {x1, . . . ,xn}.
Each concept{xi} has the unique minimal teaching set{(xi ,+)} in this class, whereas the empty
concept only has a teaching set of sizen, namely{(x1,−), . . . ,(xn,−)}. The idea of elimination by
size allows a learner to conjecture the empty concept as soon as two exampleshave been provided,
due to the fact that all other concepts possess a teaching set of size one. This is why the empty
concept has aBTDequal to 2 in this example.

However, as we have argued in Section 1, it would also make sense to devise a learner in a way
to conjecture the empty concept as soon as a first example for that concept is provided—knowing
that the teacher would not use a negative example for any other conceptin the class. In terms of
teaching sets this means to reduce the teaching sets to their minimal subsets that are not contained
in minimal teaching sets for other concepts in the given concept class.

In fact, a technicality in the definition of the Balbach teaching dimension (Definition5) disal-
lows the Balbach teaching dimension to be 1 unless the teaching dimension itself is already 1, as
the following proposition states.

Proposition 15 Let C be a concept class. If BTD(C) = 1 then TD(C) = 1.

Proof. Let BTD(C) = 1. AssumeTD(C)> 1.
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SinceTD(C) > 1, there exists a concept ˆc ∈ C such thatTD(ĉ,C) > 1. SinceBTD(ĉ,C) = 1,
there exists a minimalκ ≥ 1 such thatBTDκ(ĉ,C) = BTD(ĉ,C) = 1. In particular, there exists a
sampleSsuch that|S|= 1 and

{c∈ Cons(S,C) | BTDκ−1(c,C)≥ 1}= {ĉ} .

SinceBTDκ−1(c,C)≥ 1 trivially holds for allc∈C, we obtainCons(S,C) = {ĉ}. Consequently, as
|S|= 1, it follows thatTD(ĉ,C) = 1. This contradicts the choice of ˆc. ThusTD(C) = 1. �

So, if the Balbach model improves on the worst case teaching complexity, it does so only by
improving the teaching dimension to a value of at least 2.

5.1 The Model

We formalize the idea of cooperative teaching and learning using subsets of teaching sets as follows.

Definition 16 Let C be a concept class, c∈ C, and S a sample. Let STD0(c,C) = TD(c,C),
STS0(c,C) = TS(c,C). We define iterated sets for all k∈ N as follows.

• Conssub(S,C,k) = {c∈C | S⊆ S′ for some S′ ∈ STSk(c,C)}.

• STDk+1(c,C) = min{|S| | Conssub(S,C,k) = {c}}

• STSk+1(c,C) = {S| Conssub(S,C,k) = {c}, |S|= STDk+1(c,C)}.

Let κ be minimal such that STSκ+1(c,C) = STSκ(c,C) for all c ∈C.3

A sample S such that Conssub(S,C,κ) = {c} is called a subset teaching set for c in C. The subset
teaching dimension STD(c,C) of c in C is defined by STD(c,C) = STDκ(c,C) and we denote by
STS(c,C) = STSκ(c,C) the set of all minimal subset teaching sets for c in C. The subset teaching
dimension STD(C) of C is defined by STD(C) = max{STD(c,C) | c∈C}.

For illustration, consider again the concept classC0, that is,C0 = {ci | 0≤ i ≤ n}, wherec0 = /0
andci = {xi} for all i ∈ {1, . . . ,n}. Obviously, fork≥ 1,

STSk(ci) = {{(xi ,+)}} for all i ∈ {1, . . . ,n}

and
STSk(c0) = {{(xi ,−)} | 1≤ i ≤ n} .

HenceSTD(C0) = 1 althoughTD(C0) = n.
Note that the example of the concept classC0 establishes that the subset teaching dimension can

be 1 even if the teaching dimension is larger, in contrast to Proposition 15.
The definition ofSTS(c,C) induces a protocol for teaching and learning: For a target conceptc,

a teacher presents the examples in a subset teaching set forc to the learner. The learner will also be
able to pre-compute all subset teaching sets for all concepts and determinethe target concept from
the sample provided by the teacher.4

3. Such aκ exists becauseSTD0(c,C) is finite and can hence be reduced only finitely often.
4. Note that we focus on sample size here, but neglect efficiency issues arising from the pre-computation of all subset

teaching sets.
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Protocol 17 Let P be a protocol. P is called a subset teaching set protocol (STS-protocol for short)
if the following two properties hold for every C⊆ C , where P(C) = (τ,λ).

1. τ(c) ∈ STS(c,C) for all c ∈C,

2. λ(S) ∈ {c | there is some S′ ∈ STS(c,C) such that S′ ⊆ S} for all S ∈ S that contain a set
S′ ∈ STS(c,C) for some c∈C.

Note that Definition 16 does not presume any special order of the concept representations or of
the instances, that is, teacher and learner do not have to agree on any such order to make use of the
teaching and learning protocol. That means, given a special concept classC, the computation of
its subset teaching sets does not involve any special coding trick depending onC—it just follows a
general rule.

By definition, every subset teaching set protocol is collusion-free. However, teacher-learner
pairs following a subset teaching set protocol are not necessarily validin the sense of Goldman and
Mathias’s definition. This is easily seen for the concept classCθ of all linear threshold functions
over three instancesx1,x2,x3. This class has four concepts, namelyc1 = {x1,x2,x3}, c2 = {x2,x3},
c3 = {x3}, andc4 = {}. It is easy to verify that{(x1,−)} is a subset teaching set forc2 and is
consistent withc3. Similarly, {(x3,+)} is a subset teaching set forc3 and is consistent withc2.
Hence{(x1,−),(x3,+)} is consistent with bothc2 andc3 and contains a subset teaching set forc2

as well as a subset teaching set forc3. Obviously, there exists a teacher-learner pair(τ,λ) satisfying
the properties of anSTS−protocolfor this class, such thatτ(c2)= {(x1,−)}, τ(c3)= {(x3,+)}, and
λ({(x1,−),(x3,+)}) = c2. However, there is no learnerλ′ such that(τ,λ′) is a valid teacher-learner
pair forCθ. Such a learnerλ′ would have to hypothesize bothc2 andc3 on input{(x1,−),(x3,+)}.
See Table 1 for illustration of this example.

concept x1 x2 x3 STS0 STS1

{x1,x2,x3} + + + {(x1,+)} {(x1,+)}

{x2,x3} − + + {(x1,−),(x2,+)} {(x1,−)}, {(x2,+)}

{x3} − − + {(x2,−),(x3,+)} {(x2,−)}, {(x3,+)}

{} − − − {(x3,−)} {(x3,−)}

Table 1: Iterated subset teaching sets for the classCθ.

5.2 Comparison to the Balbach Teaching Dimension

Obviously, when using the trivial adversary, Protocol 17 based on thesubset teaching dimension
never requires a sample larger than a teaching set; often a smaller sample is sufficient. However,
compared to the Balbach teaching dimension, the subset teaching dimension is superior in some
cases and inferior in others. The latter may seem unintuitive, but is possiblebecause Balbach’s
teaching sets are not restricted to be subsets of the original teaching sets.

Theorem 18 1. For each u∈N there is a concept class C such that STD(C) = 1 and BTD(C) =
u.

2. For each u≥ 3 there is a concept class C such that BTD(C) = 3 and STD(C) = u.
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Proof. Assertion 1.Let n = 2u+u be the number of instances inX. Define a concept classC =
Cu

pair as follows. For everys= (s1, . . . ,su) ∈ {+,−}u, C contains the conceptscs,0 = {xi | 1≤ i ≤

u andsi =+} andcs,1 = cs,0∪{xu+1+int(s)}. Hereint(s) ∈N is defined as the sum of all values 2u−i

for which si =+, 1≤ i ≤ u. We claim thatSTD(C) = 1 andBTD(C) = u. See Table 2 for the case
u= 2.

Let s= (s1, . . . ,su) ∈ {+,−}u. Then

TS(cs,0,C) = {{(xi ,si) | 1≤ i ≤ u}∪{(xu+1+int(s),−)}}

andTS(cs,1,C) = {{(xu+1+int(s),+)}}

Since for eachc∈C the minimal teaching set forc with respect toC contains an example that
does not occur in the minimal teaching set for any other conceptc′ ∈C, one obtainsSTD(C) = 1 in
just one iteration.

In contrast to that, we obtain

BTD0(cs,0,C) = u+1,

BTD1(cs,0,C) = u,

andBTD0(cs,1,C) = 1 for all s∈ {+,−}u .

Consider anys∈ {+,−}u and any sampleS⊆ {(x,cs,0(x)) | x∈X} with |S|= u−1. Clearly there is
somes′ ∈ {+,−}u with s′ 6= s such thatcs′,0 ∈ Cons(S,C). So|Cons(S,C,+)|> 1 and in particular
Cons(S,C,+) 6= {cs,0}. HenceBTD2(cs,0,C) = BTD1(cs,0,C), which finally impliesBTD(C) = u.

Assertion 2.Let n= u+1 be the number of instances inX. Define a concept classC =Cu
1/2 as

follows. For everyi, j ∈ {1, . . . ,u+1}, C contains the concept{xi} and the concept{xi ,x j}. See
Table 3 for the caseu= 4.

Then the only minimal teaching set for a singleton{xi} is the sampleSi = {(x,−) | x 6= xi}
with |Si | = u. The only minimal teaching set for a concept{xi ,x j} with i 6= j is the sampleSi, j =
{(xi ,+),(x j ,+)}.

On the one hand, every subset of every minimal teaching set for a concept c∈C is contained in
some minimal teaching set for some conceptc′ ∈C with c 6= c′. ThusSTSk(c,C) = TS(c,C) for all
c∈C and allk∈ N. HenceSTD(C) = TD(C) = u.

On the other hand, any sampleS containing(xi ,+) and two negative examples(xα,−) and
(xβ,−) (wherei, α, andβ are pairwise distinct) is inBTS({xi},C). This holds because every other
concept inC that is consistent with this sample is a concept containing two instances and thushas a
teaching set of size smaller than 3 (= |S|). ThusBTD(C) = 3. �

5.3 Teaching Monomials

This section provides an analysis of theSTDfor a more natural example, the monomials, showing
that the very intuitive example given in the introduction is indeed what a cooperative teacher and
learner in anSTS-protocol would do. The main result is that theSTDof the class of all monomials
is 2, independent on the numberm of variables, whereas its teaching dimension is exponential inm
and itsBTD is linear inm, see Balbach (2008).

Theorem 19 Let m∈ N, m≥ 2 and C the class of all boolean functions over m variables that can
be represented by a monomial. Then STD(C) = 2.
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concept x1 x2 x3 x4 x5 x6 STS0 STS1

/0 [−] [−] [−] − − − {(x1,−),(x2,−),(x3,−)} {(x3,−)}

{x3} − − [+] − − − {(x3,+)} {(x3,+)}

{x2} [−] [+] − [−] − − {(x1,−),(x2,+),(x4,−)} {(x4,−)}

{x2,x4} − + − [+] − − {(x4,+)} {(x4,+)}

{x1} [+] [−] − − [−] − {(x1,+),(x2,−),(x5,−)} {(x5,−)}

{x1,x5} + − − − [+] − {(x5,+)} {(x5,+)}

{x1,x2} [+] [+] − − − [−] {(x1,+),(x2,+),(x6,−)} {(x6,−)}

{x1,x2,x6} + + − − − [+] {(x6,+)} {(x6,+)}

Table 2: Iterated subset teaching sets for the classCu
pair with u = 2, where Cu

pair =
{c−−,0,c−−,1 . . . ,c++,0,c++,1} with c−−,0 = /0, c−−,1 = {x3}, c−+,0 = {x2}, c−+,1 =
{x2,x4}, c+−,0 = {x1}, c+−,1 = {x1,x5}, c++,0 = {x1,x2}, c++,1 = {x1,x2,x6}. All labels
contributing to minimal teaching sets are highlighted by square brackets.

concept x1 x2 x3 x4 x5 TS(equal toSTS)

{x1} + − − − − {(x2,−),(x3,−),(x4,−),(x5,−)}

{x2} − + − − − {(x1,−),(x3,−),(x4,−),(x5,−)}

{x3} − − + − − {(x1,−),(x2,−),(x4,−),(x5,−)}

{x4} − − − + − {(x1,−),(x2,−),(x3,−),(x5,−)}

{x5} − − − − + {(x1,−),(x2,−),(x3,−),(x4,−)}

{x1,x2} + + − − − {(x1,+),(x2,+)}

{x1,x3} + − + − − {(x1,+),(x3,+)}

{x1,x4} + − − + − {(x1,+),(x4,+)}

{x1,x5} + − − − + {(x1,+),(x5,+)}

{x2,x3} − + + − − {(x2,+),(x3,+)}

{x2,x4} − + − + − {(x2,+),(x4,+)}

{x2,x5} − + − − + {(x2,+),(x5,+)}

{x3,x4} − − + + − {(x3,+),(x4,+)}

{x3,x5} − − + − + {(x3,+),(x5,+)}

{x4,x5} − − − + + {(x4,+),(x5,+)}

Table 3: Iterated subset teaching sets for the classCu
1/2 with u= 4.

Proof. Let m∈ N, m≥ 2 ands= (s1, . . . ,sm), s′ = (s′1, . . . ,s
′
m) elements in{0,1}m. Let ∆(s,s′)

denote the Hamming distance ofs ands′, that is,∆(s,s′) = ∑1≤i≤m|s(i)−s′(i)|.
We distinguish the following types of monomialsM overm variables.
Type 1:M is the empty monomial (i.e., the always true concept).
Type 2:M involvesmvariables,M 6≡ v1∧v1.5

Type 3:M involvesk variables, 1≤ k< m, M 6≡ v1∧v1.
Type 4:M is contradictory, that is,M ≡ v1∧v1.

5. The symbols≡ and6≡ denote functional equivalence and semantic non-equivalence of boolean formulae, respectively.
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The following facts summarize some rather obvious properties of the corresponding minimal
teaching sets for monomials (cf., for example Balbach, 2008, for more details).

Fact 1: LetM be of Type 1 and lets,s′ ∈{0,1}m such that∆(s,s′)=m. ThenS= {(s,+),(s′,+)}
forms a minimal teaching set forM, that is,S∈ STS0(M,C).

Fact 2: LetM be of Type 2 and lets∈ {0,1}m be the unique assignment for whichM evaluates
positively. Moreover, lets1, . . . ,sm ∈ {0,1}m be them unique assignments with∆(s,s1) = · · · =
∆(s,sm) = 1. ThenS= {(s,+),(s1,−), . . . ,(sm,−)} forms the one and only minimal teaching set
for M, that is,S∈ STS0(M,C). (Note that any two negative examples inShave Hamming distance
2.)

Fact 3: LetM be of Type 3 and lets∈ {0,1}m be one assignment for whichM evaluates
positively. Moreover, lets′ ∈ {0,1}m be the unique assignment with∆(s,s′) = m− k for which M
evaluates positively and lets1, . . . ,sk ∈ {0,1}m be thek unique assignments with∆(s,s1) = · · · =
∆(s,sk) = 1 for whichM evaluates negatively. ThenS= {(s,+),(s′,+),(s1,−), . . . ,(sk,−)} forms
a minimal teaching set forM, that is,S∈ STS0(M,C). (Note that any two negative examples inS
have Hamming distance 2.)

Fact 4: LetM be of Type 4 and letS= {(s,−) | s∈ {0,1}m}. ThenS forms the one and only
minimal teaching set forM, that is,S∈ STS0(M,C).

After the first iteration the following facts can be observed.
Fact 1(a): LetM be of Type 1 and letS∈ STS0(M,C). ThenS∈ STS1(M,C).
This is due to the observation that any singleton subsetS′ ⊆ S is a subset of a teaching set in

STS0(M′,C) for someM′ of Type 2.
Fact 2(a): LetM be of Type 2 and letS∈ STS0(M,C). ThenS∈ STS1(M,C).
This is due to the observation that any proper subsetS′ ⊂ S is a subset of a teaching set in

STS0(M′,C) for someM′ of Type 3, ifS′ contains one positive example, or for someM′ of Type 4,
otherwise.

Fact 3(a): LetM be of Type 3 and lets∈ {0,1}m be one assignment for whichM evaluates
positively. Moreover, lets′ ∈ {0,1}m be the unique assignment with∆(s,s′) = m− k for which M
evaluates positively and letS= {(s,+),(s′,+)}. ThenS∈ STS1(M,C).

This is due to the following observations: (i)Sis not a subset of any teaching setS′ in STS0(M′,C)
for someM′ of Type 1, since the two positive examples inS′ have Hamming distancem. (ii) S is
obviously not a subset of any teaching setS′ in STS0(M′,C) for someM′ 6≡ M of Type 3. (iii) Any
sufficiently small “different” subsetS′ of some teaching set inSTS0(M,C)—that is,S′ contains at
most two examples, but not two positive examples—is a subset of any teaching set inSTS0(M′,C)
for someM′ of Type 2, ifS′ contains one positive example, or for someM′ of Type 4, otherwise.

Fact 4(a): LetM be of Type 4 and lets∈ {0,1}m be any assignment. Moreover, lets′ ∈ {0,1}m

be any assignment with∆(s,s′) 6= 2 and letS= {(s,−),(s′,−)}. ThenS∈ STS1(M,C).
This is due to the following observations: (i)Sis not a subset of any teaching setS′ in STS0(M′,C)

for someM′ of Type 2 or of Type 3, since any two negative examples inS′ have Hamming distance
2. (ii) Any sufficiently small “different” subsetS′ of the unique teaching set inSTS0(M,C)—that is,
S′ contains at most two negative examples, but two having Hamming distance 2—is asubset of a
teaching set inSTS0(M′,C) for someM′ of Type 2.

After the second iteration the following facts can be observed.
Fact 1(b): LetM be of Type 1 and letS∈ STS1(M,C). ThenS∈ STS2(M,C).
This is due to the observation that any singleton subsetS′ ⊆ S is a subset of a teaching set in

STS1(M′,C) for someM′ of Type 2.
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Fact 2(b): LetM be of Type 2 and lets∈ {0,1}m be the unique assignment for whichM
evaluates positively. Moreover, lets′ ∈ {0,1}m be any assignments with∆(s,s′) = 1 and letS=
{(s,+),(s′,−)}. ThenS∈ STS2(M,C).

This is due to the following observations: (i)Sis not a subset of any teaching setS′ in STS1(M′,C)
for someM′ of Type 1, of Type 3 or of Type 4, since none of these teaching sets contains one posi-
tive and one negative example. (ii)S is obviously not a subset of any teaching setS′ in STS1(M′,C)
for someM′ 6≡ M of Type 2. (iii) Any sufficiently small “different” subsetS′ of a teaching set in
STS1(M,C)—that is,S′ contains at most two examples, but not a positive and a negative example—
is a subset of a teaching set inSTS1(M′,C) for someM′ of Type 3, if S′ contains one positive
example, or for someM′ 6≡ M of Type 2, otherwise.

Fact 3(b): LetM be of Type 3 and letS∈ STS1(M,C). ThenS∈ STS2(M,C).
This is due to the observation that any singleton subsetS′ ⊆ S is a subset of a teaching set in

STS1(M′,C) for someM′ of Type 2.
Fact 4(b): LetM be of Type 4 and letS∈ STS1(M,C). ThenS∈ STS2(M,C).
This is due to the observation that any singleton subsetS′ ⊆ S is a subset of a teaching set in

STS1(M′,C) for some monomialM′ of Type 2.
Note at this point that, for any monomialM of any type, we haveSTD2(M,C) = 2.
Finally, it is easily seen thatSTD3(M,C) = STD2(M,C) = 2 for all M ∈C. �

For illustration of this proof in casem= 2 see Table 4.
A further simple example showing that theSTDcan be constant as compared to an exponential

teaching dimension, this time with anSTDof 1, is the following.
Let Cm

∨DNF contain all boolean functions overm≥ 2 variables that can be represented by a 2-
term DNF of the formv1∨M, whereM is a monomial that contains, for eachi with 2≤ i ≤m, either
the literalvi or the literalvi . Moreover,Cm

∨DNF contains the boolean function that can be represented
by the monomialM′ ≡ v1.6

Theorem 20 Let m∈ N, m≥ 2.

1. TD(Cm
∨DNF) = 2m−1.

2. STD(Cm
∨DNF) = 1.

Proof. Assertion 1.Let Sbe a sample that is consistent withM′. Assume that for somes∈ {0,1}m,
the sampleS does not contain the negative example(s,−). Obviously, there is a 2-term DNF
D ≡ v1∨M such thatD is consistent withS∪{(s,+)} andD 6≡ M′. HenceS is not a teaching set
for M′. Since there are exactly 2m−1 2-term DNFs that represent pairwise distinct functions inC, a
teaching set forM′ must contain at least 2m−1 examples.

Assertion 2.The proof is straightforward: Obviously,TD(D,C) = 1 for all D ∈C with D 6≡ M′.
In particular,STD(D,C) = 1 for all D ∈ C with D 6≡ M′. It remains to show thatSTD(M′,C) = 1.
For this it suffices to see that a minimal teaching set forM′ in C must contain negative examples,
while no minimal teaching set for anyD ∈C with D 6≡ M′ contains any negative examples. Hence
STD2(M′,C) = 1 and thusSTD(M′,C) = 1. �

6. Here and in the proof of Theorem 20, as in the proof of Theorem 19,the symbol≡ denotes functional equivalence of
boolean formulae.
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monomial 00 01 10 11 STS0 STS1

v1 − − + + {(10,+),(11,+),(00,-)} {(10,+),(11,+)}
{(10,+),(11,+),(01,-)}

v1 + + − − {(00,+),(01,+),(10,-)} {(00,+),(01,+)}
{(00,+),(01,+),(11,-)}

v2 − + − + {(01,+),(11,+),(00,-)} {(01,+),(11,+)}
{(01,+),(11,+),(10,-)}

v2 + − + − {(00,+),(10,+),(01,-)} {(00,+),(10,+)}
{(00,+),(10,+),(11,-)}

v1∧v2 − − − + {(11,+),(01,-),(10,-)} {(11,+),(01,-),(10,-)}
v1∧v2 − − + − {(10,+),(00,-),(11,-)} {(10,+),(00,-),(11,-)}
v1∧v2 − + − − {(01,+),(00,-),(11,-)} {(01,+),(00,-),(11,-)}
v1∧v2 + − − − {(00,+),(01,-),(10,-)} {(00,+),(01,-),(10,-)}
v1∧v1 − − − − {(00,-),(01,-),(10,-),(11,-)} {(00,-),(01,-)}

{(00,-),(10,-)}
{(01,-),(11,-)}
{(10,-),(11,-)}

T + + + + {(00,+),(11,+)} {(00,+),(11,+)}
{(01,+),(10,+)} {(01,+),(10,+)}

monomial 00 01 10 11 STS2 STS3

v1 − − + + {(10,+),(11,+)} {(10,+),(11,+)}
v1 + + − − {(00,+),(01,+)} {(00,+),(01,+)}
v2 − + − + {(01,+),(11,+)} {(01,+),(11,+)}
v2 + − + − {(00,+),(10,+)} {(00,+),(10,+)}
v1∧v2 − − − + {(11,+),(01,-)} {(11,+),(01,-)}

{(11,+),(10,-)} {(11,+),(10,-)}
v1∧v2 − − + − {(10,+),(00,-)} {(10,+),(00,-)}

{(10,+),(11,-)} {(10,+),(11,-)}
v1∧v2 − + − − {(01,+),(00,-)} {(01,+),(00,-)}

{(01,+),(11,-)} {(01,+),(11,-)}
v1∧v2 + − − − {(00,+),(01,-)} {(00,+),(01,-)}

{(00,+),(10,-)} {(00,+),(10,-)}
v1∧v1 − − − − {(00,-),(01,-)} {(00,-),(01,-)}

{(00,-),(10,-)} {(00,-),(10,-)}
{(01,-),(11,-)} {(01,-),(11,-)}
{(10,-),(11,-)} {(10,-),(11,-)}

T + + + + {(00,+),(11,+)} {(00,+),(11,+)}
{(01,+),(10,+)} {(01,+),(10,+)}

Table 4: Iterated subset teaching sets for the class of all monomials overm= 2 variables. HereT
denotes the empty monomial. For better readability, the instances (denoting the second
through fifth columns) are written in the form of bit strings representing truthassignments
to the two variables.
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6. Why Smaller Classes can be Harder to Teach

Interpreting the subset teaching dimension as a measure of complexity of a concept class in terms
of cooperative teaching and learning, we observe a fact that is worth discussing, namely the non-
monotonicity of this complexity notion, as stated by the following theorem.

Theorem 21 There is a concept class C such that STD(C′)> STD(C) for some subclass C′ ⊂C.

Proof. This is witnessed by the concept classesC = Cu
1/2∪{ /0} and its subclassC′ = Cu

1/2 used in
the proof of Theorem 18.2, for anyu> 2 (see Table 3 and Table 5 foru= 4). STD(Cu

1/2∪{ /0}) = 2
while STD(Cu

1/2) = u. �

In contrast to that, it is not hard to show thatBTD in fact is monotonic, see Theorem 22.

Theorem 22 If C is a concept class and C′ ⊆C a subclass of C, then BTD(C′)≤ BTD(C).

Proof. Fix C andC′ ⊆C. We will prove by induction onk that

BTDk(c,C′)≤ BTDk(c,C) for all c∈C′ (1)

for all k∈ N.
k = 0: Property (1) holds because ofBTD0(c,C′) = TD(c,C′) ≤ TD(c,C) = BTD0(c,C) for all

c∈C′.
Induction hypothesis: assume (1) holds for a fixedk.
k k+1: First, observe that

Conssize(S,C
′,k) = {c∈ Cons(S,C′) | BTDk(c,C′)≥ |S|}

⊆ {c∈ Cons(S,C′) | BTDk(c,C)≥ |S|} (ind. hyp.)

⊆ {c∈ Cons(S,C) | BTDk(c,C)≥ |S|}

= Conssize(S,C,k)

Second, for allc∈C′ we obtain

BTDk+1(c,C′) = min{|S| | Conssize(S,C
′,k) = {c} }

≤ min{|S| | Conssize(S,C,k) = {c} }

≤ BTDk+1(c,C)

This completes the proof. �

6.1 Nonmonotonicity After Elimination of Redundant Instances

Note that the nonmonotonicity of the subset teaching dimension holds with a fixednumber of in-
stancesn. In fact, if n was not considered fixed then every concept classC′ would have a superset
C (via addition of instances) of lower subset teaching dimension. However,the same even holds for
the teaching dimension itself which we yet consider monotonic since it is monotonicgiven fixedn.
So whenever we speak of monotonicity we assume a fixed instance spaceX.

Of course such an instance spaceX might containredundantinstances the removal of which
would not affect the subset teaching dimension and would retain a non-redundant subset of the
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concept x1 x2 x3 x4 x5 STS0

/0 − − − − − {(x1,−),(x2,−),(x3,−),(x4,−),(x5,−)}

{x1} + − − − − {(x1,+),(x2,−),(x3,−),(x4,−),(x5,−)}

{x2} − + − − − {(x1,−),(x2,+),(x3,−),(x4,−),(x5,−)}

{x3} − − + − − {(x1,−),(x2,−),(x3,+),(x4,−),(x5,−)}

{x4} − − − + − {(x1,−),(x2,−),(x3,−),(x4,+),(x5,−)}

{x5} − − − − + {(x1,−),(x2,−),(x3,−),(x4,−),(x5,+)}

{x1,x2} + + − − − {(x1,+),(x2,+)}

{x1,x3} + − + − − {(x1,+),(x3,+)}

{x1,x4} + − − + − {(x1,+),(x4,+)}

{x1,x5} + − − − + {(x1,+),(x5,+)}

{x2,x3} − + + − − {(x2,+),(x3,+)}

{x2,x4} − + − + − {(x2,+),(x4,+)}

{x2,x5} − + − − + {(x2,+),(x5,+)}

{x3,x4} − − + + − {(x3,+),(x4,+)}

{x3,x5} − − + − + {(x3,+),(x5,+)}

{x4,x5} − − − + + {(x4,+),(x5,+)}

concept x1 x2 x3 x4 x5 STS1

/0 − − − − − {(x1,−),(x2,−),(x3,−),(x4,−),(x5,−)}

{x1} + − − − − {(x1,+),(x2,−)}, . . . ,{(x1,+),(x5,−)}

{x2} − + − − − {(x1,−),(x2,+)}, . . . ,{(x2,+),(x5,−)}

{x3} − − + − − {(x1,−),(x3,+)}, . . . ,{(x3,+),(x5,−)}

{x4} − − − + − {(x1,−),(x4,+)}, . . . ,{(x4,+),(x5,−)}

{x5} − − − − + {(x1,−),(x5,+)}, . . . ,{(x4,−),(x5,+)}

{x1,x2} + + − − − {(x1,+),(x2,+)}

{x1,x3} + − + − − {(x1,+),(x3,+)}

{x1,x4} + − − + − {(x1,+),(x4,+)}

{x1,x5} + − − − + {(x1,+),(x5,+)}

{x2,x3} − + + − − {(x2,+),(x3,+)}

{x2,x4} − + − + − {(x2,+),(x4,+)}

{x2,x5} − + − − + {(x2,+),(x5,+)}

{x3,x4} − − + + − {(x3,+),(x4,+)}

{x3,x5} − − + − + {(x3,+),(x5,+)}

{x4,x5} − − − + + {(x4,+),(x5,+)}

Table 5: Iterated subset teaching sets for the classCu
1/2∪{ /0} with u= 4; two iterations. In the third

iteration, the sample for the empty concept (first row) will be reduced to all itssubsets of
size two, thus witnessing anSTDof 2.

set of all subset teaching sets. In the following subsection, where we discuss a possible intuition
behind the nonmonotonicity of theSTD, redundancy conditions on instances will actually play an
important role and show the usefulness of the following technical discussion. However, it is not
straightforward to impose a suitable redundancy condition characterizing when an instance can be
removed.

We derive such a condition starting with a redundancy condition for the original variant of
teaching sets. For that purpose we introduce the notionC−x for the concept class resulting fromC
after removing the instancex from the instance spaceX. HereC is any concept class overX and
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x∈ X is any instance. For example, ifX = {x1,x2,x3} andC= {{x1},{x1,x2},{x2,x3}} then

C−x3 = {{x1},{x1,x2},{x2}}

considered over the instance space{x1,x2}.
To ease notation, we use a single namec for both a conceptc∈C and its corresponding concept

in the classC−x for anyx∈ X. It will always be clear from the context which concept is referred to.

Lemma 23 Let C be a concept class over X and x∈X. Suppose for all c∈C and for all S∈TS(c,C)

(x,c(x)) ∈ S⇒∃y 6= x [(S\{(x,c(x))})∪{(y,c(y))} ∈ TS(c,C)] .

Then the following two assertions are true.

1. |C−x|= |C|.

2. For all c∈C and for all samples S

S∈ TS(c,C−x) ⇐⇒ [S∈ TS(c,C) ∧ (x,c(x)) /∈ S] .

Proof. Assertion 1.Assume|C−x|< |C|.
Then there must be two distinct conceptsc,c′ ∈C such thatc andc′ disagree only inx, that is,

c(y) = c′(y) for all y∈ X \{x} andc(x) 6= c′(x). Consequently,(x,c(x)) must be contained in some
S∈ TS(c,C). By the premise of the lemma, this implies that there is somey ∈ X \ {x} such that
(S\ {(x,c(x))})∪{(y,c(y))} ∈ TS(c,C). Hence(S\ {(x,c(x))})∪{(y,c(y))} is a teaching set for
c in C that does not contain(x,c(x)). However,(S\ {(x,c(x))})∪{(y,c(y))} is consistent withc′,
which is a contradiction. Therefore|C−x|= |C|.

Assertion 2.Let c∈C be an arbitrary concept and letSbe any sample overX.
First assumeS ∈ TS(c,C) and (x,c(x)) /∈ S. By Assertion 1, |C−x| = |C| and therefore

TD(c,C−x)≥ TD(c,C). Thus we immediately obtainS∈ TS(c,C−x).
Second assumeS∈ TS(c,C−x). By definition, we have(x,c(x)) /∈ S. Hence it remains to prove

thatS∈ TS(c,C). If S /∈ TS(c,C) then there exists someT ∈ TS(c,C) such that|T| < |S|, because
otherwise|C−x| would be smaller than|C|. We distinguish two cases.

Case 1.(x,c(x)) /∈ T.
ThenT ∈ TS(c,C−x) in contradiction to the factsS∈ TS(c,C−x) and|S| 6= |T|.
Case 2.(x,c(x)) ∈ T.
Then by the premise of the lemma there exists ay 6= x such that

A
def
= (S\{(x,c(x))})∪{(y,c(y))} ∈ TS(c,C) .

Since(x,c(x)) /∈Awe haveA∈TS(c,C−x) and|A|= |T| 6= |S|. This again contradictsS∈TS(c,C−x).
Since both cases reveal a contradiction, we obtainS∈ TS(c,C). �

For illustration see Table 6. In this example the instancesx4 andx5 meet the redundancy condi-
tion. After eliminatingx5, the instancex4 still meets the condition and can be removed as well. The
new representation of the concept class then involves only the instancesx1,x2,x3.

Lemma 23 provides a condition on an instancex. If that instance is eliminated from the instance
space then the resulting concept classC−x not only has the same teaching dimension asC but, even
more, for each of its conceptsc the teaching sets are exactly those that are teaching sets forc in C
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concept inC x1 x2 x3 x4 x5 TS

/0 − − − − − {(x1,−),(x3,−)}, {(x1,−),(x4,−)}, {(x1,−),(x5,−)}
{x1} + − − − − {(x1,+),(x2,−)}, {(x1,+),(x5,−)}
{x3,x4,x5} − − + + + {(x2,−),(x3,+)}, {(x2,−),(x4,+)}, {(x2,−),(x5,+)}
{x2,x3,x4,x5} − + + + + {(x1,−),(x2,+)}, {(x2,+),(x4,+)}
{x1,x2,x5} + + − − + {(x2,+),(x3,−)}, {(x3,−),(x5,+)}
{x1,x2,x3,x5} + + + − + {(x1,+),(x3,+)}, {(x3,+),(x4,−)}

concept in(C−x5)−x4 x1 x2 x3 TS

/0 − − − {(x1,−),(x3,−)}
{x1} + − − {(x1,+),(x2,−)}
{x3} − − + {(x2,−),(x3,+)}
{x2,x3} − + + {(x1,−),(x2,+)}
{x1,x2} + + − {(x2,+),(x3,−)}
{x1,x2,x3} + + + {(x1,+),(x3,+)}

Table 6: Teaching sets for a classC before and after elimination of two redundant instances.

and do not contain an example involving the eliminated instancex. Note that even though several
instances might meet that condition at the same time, only one at a time may be removed. For the
remaining instances it has to be checked whether the condition still holds after elimination of the
first redundant instance.

In the example in Table 6,x4 andx5 are exactly those instances that could be eliminated without
reducing the size of the concept class, that is,

|C|= |C−x4|= |C−x5|= |(C−x4)−x5|= |(C−x5)−x4| .

However, if we were to simply eliminate all instancesx as long as|C|= |C−x|, then the consequence
of Lemma 23 would not necessarily be fulfilled any longer. For example, consider the concept class
C in Table 7. Here|C|= |C−x1|, but removingx1 from the instance space would increase the teaching
dimension ofc1, namelyTD(c1,C) = 1< 2= TD(c1,C−x1).

So one legitimate redundancy condition for instances—considering the preservation of teaching
sets—is the one given in the premise of Lemma 23. This condition can be extended to a redundancy
condition with respect to subset teaching sets.

Theorem 24 Let C be a concept class over X and x∈ X. Suppose for all k∈ N, for all c ∈C, and
for all S∈ STSk(c,C)

(x,c(x)) ∈ S⇒∃y 6= x [(S\{(x,c(x))})∪{(y,c(y))} ∈ STSk(c,C)] ,

Then the following two assertions are true.

1. |C−x|= |C|.

2. For all k∈ N, for all c∈C, and for all samples S

S∈ STSk(c,C−x) ⇐⇒ [S∈ STSk(c,C) ∧ (x,c(x)) /∈ S] .
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concept inC x1 x2 x3 TS

c1 = {x1,x2,x3} + + + {(x1,+)}

c2 = {x2} − + − {(x2,+),(x3,−)}, {(x2,+),(x1,−)}

c3 = {x3} − − + {(x3,+),(x2,−)}, {(x3,+),(x1,−)}

c4 = /0 − − − {(x2,−),(x3,−)}

concept inC−x1 x2 x3 TS

c1 = {x2,x3} + + {(x2,+),(x3,+)}

c2 = {x2} + − {(x2,+),(x3,−)}

c3 = {x3} − + {(x3,+),(x2,−)}

c4 = /0 − − {(x2,−),(x3,−)}

Table 7: Teaching sets for a classC before and after elimination of the instancex1 not satisfying the
premises of Lemma 23, despite fulfilling the property|C|= |C−x1|.

Proof. Assertion 1.This follows immediately by applying Lemma 23.1 fork= 0.
Assertion 2.We prove the second assertion by induction onk.
For k= 0 the assertion follows immediately from Lemma 23.2. So assume that the assertion is

proven for somek (induction hypothesis). It remains to show that it then also holds fork+1.
For that purpose note that

∀c∈C ∀A∈ STSk(c,C) ∃B∈ STSk(c,C−x) [|A|= |B| ∧ A\{(x,c(x))} ⊆ B] (∗)

by combination of the induction hypothesis with the premise of the theorem.
Choose an arbitraryc∈C.
First assumeS∈ STSk+1(c,C) and(x,c(x)) /∈ S. By the definition of subset teaching sets, there

is anS′ ∈ STSk(c,C) such that
S⊆ S′ . (2)

Using(∗) we can assume without loss of generality that

S′ ∈ STSk(c,C−x) . (3)

Moreover, again by the definition of subset teaching sets, one obtainsS 6⊆ S′′ for everyS′′ ∈
STSk(c′,C) with c′ 6= c. The induction hypothesis then implies

S 6⊆ S′′ for everyS′′ ∈ STSk(c′,C−x) with c′ 6= c. (4)

Due to (2), (3), (4) we get eitherS∈ STSk+1(c,C−x) or |S| > STDk+1(c,C−x). In the latter
case there would be a setT ∈ STSk+1(c,C−x) such that|T| < |S|. T is a subset of some set in
STSk(c,C−x) and thus also of some set inSTSk(c,C) by induction hypothesis. IfT was contained
in someT ′ ∈ STSk(c′,C) for somec′ 6= c then we could again assume without loss of generality,
using(∗) and(x,c(x)) /∈ T, thatT is contained in some set inSTSk(c′,C−x)—in contradiction to
T ∈ STSk+1(c,C−x). ThereforeT ∈ STSk+1(c,C) and so|T| = |S|—a contradiction. This implies
S∈ STSk+1(c,C−x).
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Second assume thatS∈ STSk+1(c,C−x). Obviously,(x,c(x)) /∈ S, so that it remains to show
S∈ STSk+1(c,C).

Because ofS∈ STSk+1(c,C−x) there exists some setS′ ∈ STSk(c,C−x) such that

S⊆ S′ . (5)

The induction hypothesis implies
S′ ∈ STSk(c,C) . (6)

Further, by the definition of subset teaching sets, one obtainsS 6⊆S′′ for everyS′′ ∈STSk(c′,C−x)
with c′ 6= c. If there was a setS′′ ∈ STSk(c′,C) such thatc′ 6= c andS⊆ S′′ then(∗) would imply that
without loss of generalityS′′ ∈ STSk(c′,C−x). So we have

S 6⊆ S′′ for everyS′′ ∈ STSk(c′,C) with c′ 6= c. (7)

Combining (5), (6), (7) we get eitherS∈ STSk+1(c,C) or |S|> STDk+1(c,C). In the latter case
there would be a setT ∈ STSk+1(c,C) such that|T|< |S|. T is a subset of some setT ′ ∈ STSk(c,C).
We can assume without loss of generality, using(∗), thatT ′ ∈ STSk(c,C−x). If T was contained
in some set inSTSk(c′,C−x) for somec′ 6= c then by induction hypothesisT would be contained
in some set inSTSk(c′,C) for somec′ 6= c. This is a contradiction toT ∈ STSk+1(c,C). So T ∈
STSk+1(c,C−x) and hence|T|= |S|—a contradiction. ThusS∈ STSk+1(c,C). �

The example in Table 7 illustrates that eliminating instancesx satisfying|C−x| = |C|, without
any additional constraints, can actually change the subset teaching dimension of a class. In the given
example, the subset teaching dimension ofC is 1, while the subset teaching dimension ofC−x1 is 2.
The stronger condition on the instancex in the premise of Theorem 24 guarantees that eliminating
x does not change the subset teaching dimension.

6.2 Nonmonotonicity and the Role of Nearest Neighbours

From a general point of view, it is not obvious how to explain why a teaching dimension resulting
from a cooperative model should be nonmonotonic.

First of all, this is a counter-intuitive observation when consideringSTD as a notion of
complexity—intuitively any subclass ofC should be at most as complex for teaching and learn-
ing asC.

However, there is in fact an intuitive explanation for the nonmonotonicity of the complexity in
cooperative teaching and learning: when teachingc∈ C, instead of providing examples that elim-
inate all concepts inC\ {c} (as is the idea underlying minimal teaching sets) cooperative teachers
would rather pick only those examples that distinguishc from its “most similar” concepts inC. Sim-
ilarity here is measured by the number of instances on which two concepts agree (i.e., dissimilarity
is given by the Hamming distance between the concepts, where a conceptc is represented as a bit
vector(c(x1), . . . ,c(xn))). This is reflected in the subset teaching sets in all illustrative examples
considered above.

Considering a classC=Cu
pair (see the proof of Theorem 18.1), one observes that a subset teach-

ing set for a conceptcs,0 contains only the negative example(xu+1+int(s),−) distinguishing it from
cs,1 (its nearest neighbor in terms of Hamming distance). A learner will recognizethis example as
the one that separates only that one pair(cs,0,cs,1) of nearest neighbors. In contrast to that, if we
consider only the subclassC′ = {cs,0 | s∈ {0,1}u}, the nearest neighbors of eachcs,0 are different
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ones, and every single example separating one nearest neighbor pair also separates other nearest
neighbor pairs. Thus no single example can be recognized by the learneras a separating example
for one unique pair of concepts.

This intuitive idea of subset teaching sets being used for distinguishing a concept from its nearest
neighbors has to be treated with care though. The reason is that the concept class may contain
“redundant” instances, that is, instances that could be removed from theinstance space according
to Theorem 24.

Such redundant instances might on the other hand affect Hamming distances and nearest neigh-
bor relations. Only after their elimination does the notion of nearest neighborsin terms of Hamming
distance become useful. Consider for instance Table 6. In the concept classC over 5 instances the
only nearest neighbor of/0 is {x1} and an example distinguishing/0 from {x1} would be(x1,−).
Moreover, no other concept is distinguished from its nearest neighbors by the instancex1. Accord-
ing to the intuition explained here, this would suggest{(x1,−)} being a subset teaching set for/0
although the subset teaching sets here equal the teaching sets and are allof cardinality 2.

After instance elimination ofx4,x5 there is only one subset teaching set for/0, namely
{(x1,−),(x3,−)}. This is still of cardinality 2 but note that now/0 has two nearest neighbors,
namely{x1} and{x3}. The two examples in the subset teaching set are those that distinguish/0
from its nearest neighbors. Note that either one of these two examples is not unique as an example
used for distinguishing a concept from its nearest neighbors:(x1,−) would be used by{x2,x3} for
distinguishing itself from its nearest neighbor{x1,x2,x3}, and(x3,−) would be used by{x1,x2} for
distinguishing itself from its nearest neighbor{x1,x2,x3}. So the subset teaching set for/0 has to
contain both examples.

This illustrates why a subclass of a classC can have a higher complexity thanC if crucial nearest
neighbors of some concepts are missing in the subclass.

To summarize,

• nonmonotonicity has an intuitive reason and is not an indication of an ill-defined version of
the teaching dimension,

• nonmonotonicity would in fact be a consequence of implementing the idea that theexistence
of specific concepts (e.g., nearest neighbours) associated with a target concept is beneficial
for teaching and learning.

So, the STD captures certain intuitions about teaching and learning that monotonic dimensions
cannotcapture; at the same time monotonicity might in other respects itself be an intuitive property
of teaching and learning which then the STD cannot capture.

In particular there are two underlying intuitive properties that seem to not be satisfiable by a
single variant of the teaching dimension.

7. The Recursive Teaching Dimension

On the one hand, we have the teaching framework based on the subset teaching dimension which
results in a nonmonotonic dimension, and on the other hand we have a monotonic dimension in the
BTD framework, which unfortunately does not always meet our idea of a cooperative teaching and
learning protocol. That raises the question whether nonmonotonicity is necessary to achieve certain
positive results. In fact, the nonmonotonicity concerning the classCu

pair is not counter-intuitive, but
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would a dimension that is monotonic also result in a worse sample complexity than theSTD in
general, such as, for example, for the monomials?

In other words, is there a teaching/learning framework

• resulting in a monotonic variant of a teaching dimension and

• achieving low teaching complexity results similar to the subset teaching dimension?

At this point of course it is difficult to define what “similar to the subset teaching dimension” means.
However, we would like to have a constant dimension for the class of all monomials, as well as, for
example, a teaching set of size 1 for the empty concept in our often used concept classC0.

We will now via several steps introduce a monotonic variant of the teaching dimension and show
that for most of the examples studied above, it is as low as the subset teaching dimension. General
comparisons will be made in Section 8, in particular in order to show that this newframework is
uniformly at least as efficient as theBTD framework, while sometimes being less efficient than the
STDframework. This reflects to a certain extent that monotonicity constraints mightaffect sample
efficiency.

7.1 The Model

We will first define our new variant of teaching dimension and show its monotonicity.
The nonmonotonicity ofSTD is caused by considering everySTSk-set for every concept when

computing anSTSk+1-set for a single concept. Hence the idea in the following approach is to impose
a canonical order on the concept class, in terms of the “teaching complexity”of the concepts. This is
what the teaching dimension does as well, but our design principle is a recursive one. After selecting
a set of concepts each of which is “easy to teach” because of possessing a small minimal teaching
set, we eliminate these concepts from our concept class and consider onlythe remaining concepts.
Again we determine those with the lowest teaching dimension, now however measured with respect
to the class of remaining concepts, and so on. The resulting notion of dimension is therefore called
therecursive teaching dimension.

Definition 25 Let C be a concept class. The teaching hierarchy for C is the sequence H= ((C1,d1),
. . . ,(Ch,dh)) that fulfills, for all j ∈ {1, . . . ,h},

Cj = {c∈C j | d j = TD(c,C j)≤ TD(c′,C j) for all c′ ∈C j} ,

whereC1 =C andCi+1 =C\ (C1∪ . . .∪Ci) for all i ∈ {1, . . . ,h−1}.
For any j∈ {1, . . . ,h} and any c∈Cj , a sample S∈ TS(c,C j) is called a recursive teaching set

for c in C. The recursive teaching dimension RTD(c,C) of c in C is then defined as RTD(c,C) = d j

and we denote by RTS(c,C) = TS(c,C j) the set of all recursive teaching sets for c in C.
The recursive teaching dimension RTD(C) of C is defined by

RTD(C) = max{d j | 1≤ j ≤ h} .

The desired monotonicity property, see Proposition 26, follows immediately from the definition.

Proposition 26 If C is a concept class and C′ ⊆C is a subclass of C, then RTD(C′)≤ RTD(C).
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The definition of teaching hierarchy induces a protocol for teaching andlearning: for a target
conceptc, a teacher uses the teaching hierarchyH = ((C1,d1), . . . ,(Ch,dh)) for C to determine the
unique indexj with c∈Cj . The teacher then presents the examples in a teaching set fromTS(c,C j),
that is, a recursive teaching set forc in C, to the learner. The learner will use the teaching hierarchy
to determine the target concept from the sample provided by the teacher.

Protocol 27 Let P be a protocol. P is called a recursive teaching set protocol (RTS-protocol for
short) if the following two properties hold for every C⊆ C , where P(C) = (τ,λ).

1. τ(c) ∈ RTS(c,C) for all c ∈C,

2. λ(S) ∈ {c | there is some S′ ∈ RTS(c,C) such that S′ ⊆ S} for all S ∈ S that contain a set
S′ ∈ RTS(c,C) for some c∈C.

Note again that Definition 25 does not presume any special order of the concept representations
or of the instances, that is, teacher and learner do not have to agree onany such order to make use
of the teaching and learning protocol. The partial order resulting from theteaching hierarchy is still
well-defined.

The following definition of canonical teaching plans yields an alternative definition of the re-
cursive teaching dimension.

Definition 28 Let C be a concept class,|C|= z. A teaching plan for C is a sequence p=((c1,S1), . . . ,
(cz,Sz)) ∈ (C×2X×{0,1})z such that

1. C= {c1, . . . ,cz}.

2. Sj ∈ TS(c j ,{c j , . . . ,cz}) for 1≤ j ≤ z.

The order of p is given by ord(p) = max{|Sj | | 1≤ j ≤ z}.
p is called a canonical teaching plan for C, if for any i, j ∈ {1, . . . ,z}:

i < j ⇒ TD(ci ,{ci , . . . ,cz})≤ TD(c j ,{ci , . . . ,cz}) .

Note that every concept class has a canonical teaching plan. It turns out that a canonical teaching
plan has the lowest possible order over all teaching plans; this order coincides with the recursive
teaching dimension, see Theorem 29.

Theorem 29 Let C be a concept class and p∗ a canonical teaching plan for C. Then ord(p∗) =
min{ord(p) | p is a teaching plan for C}= RTD(C).

Proof. Let C and p∗ as in the theorem be given,p∗ = ((c1,S1), . . . , (cz,Sz)). ord(p∗) = RTD(C)
follows by definition. It needs to be shown that

ord(p∗) = min{ord(p) | p is a teaching plan forC} .

Let p′ = ((c′1,S
′
1), . . . , (c′z,S

′
z)) be any teaching plan forC. It remains to prove thatord(p∗) ≤

ord(p′).
For that purpose choose the minimalj ∈ {1, . . . ,z} such that|Sj | = ord(p∗). By definition

of a teaching plan,TD(c j ,{c j , . . . ,cz}) = ord(p∗). Let i ∈ {1, . . . ,z} be minimal such thatc′i ∈
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{c j , . . . ,cz}. Let k ∈ {1, . . . ,z} fulfill ck = c′i . By definition of a canonical teaching plan,
TD(ck,{c j , . . . ,cz}) ≥ TD(c j ,{c j , . . . ,cz}) = ord(p∗). This obviously yields ord(p′) ≥
TD(c′i ,{c′i , . . . ,c

′
z})≥ TD(ck,{c j , . . . ,cz})≥ ord(p∗). �

To summarize briefly, the recursive teaching dimension is a monotonic complexitynotion which
in fact has got some of the properties we desired; for example, it is easily verified thatRTD(C0) = 1
(by any teaching plan in which the empty concept occurs last) and that theRTDof the class of all
monomials equals 2 (see below). Thus theRTDovercomes some of the weaknesses ofBTD, while
at the same time preserving monotonicity.

Interestingly, unlike for subset teaching set protocols, the teacher-learner pairs based on recur-
sive teaching set protocols are valid in the sense of Goldman and Mathias’sdefinition (Goldman
and Mathias, 1996). This is an immediate consequence of the following theorem.

Theorem 30 Let C be any concept class and c∈C. Let S be any sample. If S is consistent with c
and there is some T∈ RTS(c,C) such that T⊆ S then there is no concept c′ ∈ Cons(S,C) with c′ 6= c
and T′ ⊆ S for some T′ ∈ RTS(c′,C).

Proof. LetC, c, S, andT as in the theorem be given. LetH = ((C1,d1), . . . ,(Ch,dh)) be the teaching
hierarchy forC and leti ∈ {1, . . . ,h} be such thatc∈Ci .

Assume there was a conceptc′ ∈ Cons(S,C) with c′ 6= c andT ′ ⊆ S for someT ′ ∈ RTS(c′,C).
Let j ∈ {1, . . . ,h} be such thatc′ ∈Cj .

Sincec is consistent withSandScontains the recursive teaching setT ′ for c′, c is also consistent
with T ′. As c∈Ci is consistent with a recursive teaching set forc′ ∈Cj , we obtainj > i.

Similarly, sincec′ is consistent withS andS contains the recursive teaching setT for c, we
obtaini > j.

This is clearly a contradiction. Hence there is no conceptc′ ∈ Cons(S,C) with c′ 6= c andT ′ ⊆ S
for someT ′ ∈ RTS(c′,C). �

7.2 Comparison to the Balbach Teaching Dimension

Unlike the subset teaching dimension, the recursive teaching dimension lower-bounds the Balbach
dimension. To prove this, we first observe that the smallest teaching dimension of all concepts in
a given concept class is a lower bound on the Balbach dimension. This is stated formally in the
following lemma.

Lemma 31 Let C be a concept class. Then BTD(C)≥ min{TD(c,C) | c∈C}.

Proof. Let u= min{TD(c,C) | c∈C}. To show thatBTD(C)≥ u, we will prove by induction onk
thatu≤ BTDk(c,C) for all k∈ N for all c∈C.

k= 0: BTD0(c,C) = TD(c,C)≥ u for all c∈C.
Induction hypothesis: assumeu≤ BTDk(c,C) for all c∈C holds for a fixedk.
k k+ 1: Suppose by way of contradiction that there is a conceptc∗ ∈ C such thatu >

BTDk+1(c∗,C). In particular, there exists a sampleS∗ such that|S∗| < u andConssize(S∗,C,k) =
{c∗}.

By induction hypothesis, the setConssize(S∗,C,k) defined by{c∈ Cons(S∗,C) | BTDk(c,C) ≥
|S∗|} is equal toCons(S∗,C). Note thatTD(c,C)≥ u for all c∈C implies either|Cons(S∗,C)| ≥ 2
or Cons(S∗,C) = /0. We obtain a contradiction toConssize(S∗,C,k) = {c∗}.
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This completes the proof. �

This lemma helps to prove that the recursive teaching dimension cannot exceed the Balbach
dimension.

Theorem 32 1. If C is a concept class then RTD(C)≤ BTD(C).

2. There is a concept class C such that RTD(C)< BTD(C).

Proof. Assertion 1.To prove this assertion, letC be a concept class such thatRTD(C) = u. By
Theorem 29 there is a canonical teaching planp= ((c1,S1), . . . ,(cz,Sz)) for C such thatord(p) =
u. Fix j ≤ N minimal such that|Sj | = u and defineC′ = {c j . . . ,cz}. Obviously,RTD(C′) = u.
Moreover, using Theorem 22,BTD(C′) ≤ BTD(C). Thus it suffices to proveu ≤ BTD(C′). This
follows from Lemma 31, sinceu= min{TD(c,C′) | c∈C′}.

This completes the proof of Assertion 1.
Assertion 2.The second assertion is witnessed by the concept classC0 containing the empty

concept and all singletons. Obviously,RTD(C0) = 1 andBTD(C0) = 2. �

7.3 Teaching Monomials

In this subsection, we pick up the two examples from Section 5.3 again, this time in order to de-
termine the recursive teaching dimension of the corresponding classes ofconcepts represented by
boolean functions. As in the case of the subset teaching dimension, see Theorem 19, we obtain
that the recursive teaching dimension of the class of all monomials overm (m≥ 2) variables is 2,
independent ofm.

Theorem 33 Let m∈ N, m≥ 2, and C the class of all boolean functions over m variables that can
be represented by a monomial. Then RTD(C) = 2.

Proof. Fix m andC. For all i ∈ {0, . . . ,m} let Ci be the subclass of allc∈C that can be represented
by a non-contradictory monomialM that involvesi variables. There is exactly one concept inC not
belonging to any subclassCi of C, namely the conceptc∗ representable by a contradictory monomial.

The proof is based on the following observation.
Observation.For anyi ∈{0, . . . ,m} and anyc∈Ci : TD(c,C′∪{c∗})≤ 2, whereC′ =

⋃
i≤ j≤mC j .

Now it is easily seen thatord(p) ≤ 2 for every teaching planp = ((c1,S1), . . . ,(cz,Sz)) for C
that meets the following requirements:

(a) c1 ∈C0 andcz = c∗.

(b) For anyk,k′ ∈ {1, . . . ,z−1}: If k < k′, thenck ∈ Ci andck′ ∈ C j for somei, j ∈ {0, . . . ,m}
with i ≤ j.

ThereforeRTD(C)≤ 2.
Since obviouslyTD(c,C)≥ 2 for all c∈C, we obtainRTD(C) = 2.
(For illustration of the casem= 2 see Table 8.) �

For the sake of completeness, note thatRTD(Cm
∨DNF) = 1 whereCm

∨DNF is the class of boolean
functions overmvariables as defined in Section 5.3.

Theorem 34 RTD(Cm
∨DNF) = 1 for all m∈ N, m≥ 2.
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monomial subclass 00 01 10 11 RTS

T C0 + + + + {(00,+),(11,+)}
v1 C1 − − + + {(10,+),(11,+)}
v1 C1 + + − − {(00,+),(01,+)}
v2 C1 − + − + {(01,+),(11,+)}
v2 C1 + − + − {(00,+),(10,+)}
v1∧v2 C2 − − − + {(11,+)}
v1∧v2 C2 − − + − {(10,+)}
v1∧v2 C2 − + − − {(01,+)}
v1∧v2 C2 + − − − {(00,+)}
v1∧v1 − − − − {}

Table 8: Recursive teaching sets in the teaching hierarchy (corresponding to teaching plans of order
2) for the class of all monomials overm= 2 variables.T denotes the empty monomial.
For better readability, the instances (denoting the third through sixth columns)are written
in the form of bit strings representing truth assignments to the two variables.

Proof. This follows straightforwardly from the fact thatTD(c,Cm
∨DNF) = 1 for every conceptc

corresponding to a 2-term DNF of formv1∨M.
(For illustration see Table 4.) �

8. Subset Teaching Dimension Versus Recursive Teaching Dimension

Comparing theSTDto theRTD turns out to be a bit more complex. We can show that the recursive
teaching dimension can be arbitrarily larger than the subset teaching dimension; it can even be larger
than the maximalSTDcomputed over all subsets of the concept class.

Theorem 35 1. For each u∈N there is a concept class C such that STD(C) = 1 and RTD(C) =
u.

2. There is a concept class C such thatmax{STD(C′) |C′ ⊆C}< RTD(C).

Proof. Assertion 1.This is witnessed by the classesCu
pair defined in the proof of Theorem 18.1.

Assertion 2.To verify Assertion 2, consider the concept classC= {c1, . . . ,c6} given byc1 = /0,
c2 = {x1}, c3 = {x1,x2}, c4 = {x2,x3}, c5 = {x2,x4}, c6 = {x2,x3,x4}. It is not hard to verify
that TD(c,C) = 2 for all c ∈ C and thusord(p) = 2 for every teaching planp for C. Therefore
RTD(C) = 2. MoreoverSTD(C′) = 1 for allC′ ⊆C (the computation ofSTD(C) is shown in Table 9;
further details are omitted). �

Similarly, we can prove that the subset teaching dimension can be arbitrarily larger than the
recursive teaching dimension.

Theorem 36 For each u≥ 2 there is a concept class C such that RTD(C) = 2 and STD(C) = u.

Proof. This is witnessed by the classC=Cu
1/2 used in the proof of Theorem 18.2. �
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concept x1 x2 x3 x4 STS0 STS1 STS2

/0 − − − − {(x1,−),(x2,−)} {(x1,−)} {(x1,−)}

{x1} + − − − {(x1,+),(x2,−)} {(x1,+),(x2,−)} {(x1,+)}
{(x2,−)}

{x1,x2} + + − − {(x1,+),(x2,+)} {(x2,+)} {(x2,+)}

{x2,x3} − + + − {(x3,+),(x4,−)} {(x4,−)} {(x4,−)}

{x2,x4} − + − + {(x3,−),(x4,+)} {(x3,−)} {(x3,−)}

{x2,x3,x4} − + + + {(x3,+),(x4,+)} {(x3,+),(x4,+)} {(x3,+)}
{(x4,+)}

Table 9: Iterated subset teaching sets for the classC = {c1, . . . ,c6} given byc1 = /0, c2 = {x1},
c3 = {x1,x2}, c4 = {x2,x3}, c5 = {x2,x4}, c6 = {x2,x3,x4}.

Due to the incomparability ofSTDandRTD it seems worth analyzing conditions under which
they become comparable. To this end, we define a property that is sufficient for a concept class to
have a recursive teaching dimension equal to its subset teaching dimension.

Definition 37 (Subset Teaching Property)Let C be a concept class. C fulfills the Subset Teaching
Property if for every teaching plan p= ((c1,S1), . . . ,(cz,Sz)) for C with ord(p) =RTD(C) and every
j with ord(p) = |Sj | and STD(c j ,C)≥ ord(p) there exists a teaching plan

p′ = ((c1,S
′
1), . . . ,(cz,S

′
z))

for C and a sample S∈ STS(c j ,C) such that S′j ⊆ S and|S′i |= |Si | for all i.

Theorem 38 Let C be a concept class with the Subset Teaching Property. Then STD(C) =RTD(C).

Proof. STD(C)≥RTD(C) follows trivially: if p= ((c1,S1), . . . ,(cz,Sz)) is a teaching plan forC with
ord(p) = RTD(C) and if j fulfils RTD(C) = ord(p) = |Sj |, then there is someS′j with |S′j | = |Sj |
and someS∈ STS(c j ,C) such thatS′j ⊆ S; henceSTD(C)≥ |S| ≥ |S′j |= |Sj |= ord(p).

In order to show thatSTD(C) ≤ RTD(C), we prove property(Pj) for all j ∈ {1, . . . , |C|}. The
proof is done by induction onj.

(Pj):
If p=((c1,S1), . . . ,(cz,Sz)) is a teaching plan forC with ord(p)=RTD(C) thenSTD(c j ,C)≤
ord(p).

For j = 1 this is obvious, because

STD(c1,C)≤ TD(c1,C)≤ ord(p)

for any teaching planp= ((c1,S1), . . . ,(cz,Sz)) for C.
The induction hypothesis is that(Pi) holds for alli ≤ j, j fixed.
To prove(Pj+1), let p=((c1,S1), . . . ,(cz,Sz)) be any teaching plan forC with ord(p)=RTD(C).

Consider the( j +1)st conceptc j+1 in p.
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Case 1.|Sj+1|< ord(p).
In this case we swapc j andc j+1 and get a new teaching plan

p′ = ((c1,S1), . . . ,(c j−1,Sj−1),

(c j+1,T),(c j ,T
′), . . . ,(cz,Sz))

for C.
Note that|T ′| ≤ |Sj |. Moreover,|T| ≤ |Sj+1|+1≤ord(p)=RTD(C). Henceord(p′)=RTD(C).
Now c j+1 is in j th position in the teaching planp′ whose order is equal toRTD(C). By induction

hypothesis we getSTD(c j+1,C)≤ ord(p′) = ord(p).
Case 2.|Sj+1|= ord(p).
In this case we use the Subset Teaching Property. Assume thatSTD(c j+1,C)> ord(p). By the

Subset Teaching Property, there is a teaching plan

p′ = ((c1,S
′
1), . . . ,(cz,S

′
z))

for C and a sampleS∈ STS(c j+1,C) such thatS′j+1 ⊆ Sand|S′i |= |Si | for all i.
First, note thatS′j+1 is not contained in any subset teaching set for anyc∈C\{c j+1}: The con-

ceptsc j+2, . . . ,cz are not consistent with the sampleS′j+1, becauseS′j+1 ∈ TS(c j+1,{c j+1, . . . ,cz}).
The conceptsc1, . . . ,c j have, by induction hypothesis, a subset teaching dimension upper-bounded
by ord(p) = |Sj+1|= |S′j+1|. If S′j+1 was contained in a subset teaching set for some concept among
c1, . . . ,c j , this would imply thatS′j+1 equaled some subset teaching set for some concept amongc1,
. . . ,c j , and thusS′j+1 could not be contained in the subset teaching setS for c j+1.

Second, sinceS′j+1 is contained in the subset teaching setS for c j+1 and not contained in any
subset teaching set for anyc∈C\{c j+1}, S′j+1 equalsSand is itself a subset teaching set forc j+1.
Consequently,

|S′j+1|= STD(c j+1,C)> ord(p) = ord(p′)≥ |S′j+1| .

This is obviously a contradiction in itself.
HenceSTD(c j+1,C)≤ ord(p).
This concludes the induction step. �

For example, the class of all linear threshold functions, cf.Cθ in Table 1, has the subset teaching
property. Every teaching planp= ((c1,S1), . . . ,(cz,Sz)) for Cθ with ord(p) = RTD(Cθ) = 1 starts
either with the conceptc1 = X or with the conceptc1 = /0. In either case,S1 actually is a subset
teaching set forc1. A recursive argument for the subsequent concepts in the teaching plan shows
thatCθ has the subset teaching property.

A similar argument proves that the class of all monomials overm instances, for anym≥ 2, has
the subset teaching property.

9. Conclusions

We introduced two new models of teaching and learning of finite concept classes, based on the idea
that learners can learn from a smaller number of labeled examples if they assume that the teacher
chooses helpful examples. These models contrast with the classic teachingdimension model in
which no more assumptions on the learner are made than it being consistent withthe information
presented. As a consequence, the information-theoretic complexity resulting from our new models
is in general much lower than the teaching dimension.
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Such results have to be interpreted with care since one constraint in modelingteaching is that
coding tricks have to be avoided. However, one of our two models, the onebased onrecursive
teaching sets, complies with Goldman and Mathias’s original definition of valid teaching without
coding tricks, see Goldman and Mathias (1996). The model based onsubset teaching setsdoes not
comply with the same definition of valid teaching. As we argued though, Goldman and Mathias’s
definition may be too restrictive when modeling cooperation in teaching and learning. Intuitively,
their definition requires a learner to hypothesize a conceptc as soon as any teaching set forc is con-
tained in the given sample. This artificially precludes the possibility of a model in which a learner
assumes that all the examples selected by the teacher are representative.Hence we introduced a less
restrictive definition of coding trick. Each of the protocols presented in thispaper can be regarded
as meta-algorithms generating teacher/learner pairs that do not involve coding tricks.

The subset teaching protocol questions not only classic definitions of coding trick but also the
intuitive idea that information-theoretic complexity measures should be monotonicwith respect to
the inclusion of concept classes. We discussed why non-monotonicity in thiscontext may be a
natural phenomenon in cooperative teaching and learning.

For many “natural” concept classes, the subset teaching dimension and the recursive teaching
dimension turn out to be equal, but in general the two measures are not comparable. This immedi-
ately implies that neither one of the two corresponding teaching models is optimal among protocols
that yield collusion-free teacher-learner pairs. One could easily designa protocol that, for every
concept classC, would follow the subset teaching protocol ifSTD(C)≤ RTD(C) and would follow
the recursive teaching protocol ifRTD(C)< STD(C). Such a protocol would comply with our def-
inition of collusion-freeness and would strictly dominate both the subset teaching protocol and the
recursive teaching protocol. In this paper, we did not address the question of optimality of teaching
protocols; we focused on intuitiveness of the protocols and the resulting teaching sets.
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