
The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming

Dale Schuurmans and Finnegan Southey
Department of Computer Science

University of Waterloo
�dale,fdjsouth�@cs.uwaterloo.ca

Robert C. Holte�

Department of Computing Science
University of Alberta
holte@cs.ualberta.ca

Abstract

Boolean linear programs (BLPs) are ubiquitous in
AI. Satisfiability testing, planning with resource
constraints, and winner determination in combina-
torial auctions are all examples of this type of prob-
lem. Although increasingly well-informed by work
in OR, current AI research has tended to focus on
specialized algorithms for each type of BLP task
and has only loosely patterned new algorithms on
effective methods from other tasks. In this paper we
introduce a single general-purpose local search pro-
cedure that can be simultaneously applied to the en-
tire range of BLP problems, without modification.
Although one might suspect that a general-purpose
algorithm might not perform as well as specialized
algorithms, we find that this is not the case here.
Our experiments show that our generic algorithm
simultaneously achieves performance comparable
with the state of the art in satisfiability search and
winner determination in combinatorial auctions—
two very different BLP problems. Our algorithm
is simple, and combines an old idea from OR with
recent ideas from AI.

1 Introduction
A Boolean linear program is a constrained optimization prob-
lem where one must choose a set of binary assignments to
variables ��� ���� �� to satisfy a given set of � linear inequal-
ities �� � � � ��� ���� �� � � � �� while simultaneously opti-
mizing a linear side objective � � �. Specifically, we consider
BLP problems of the canonical form

���
����������

� � � subject to �� � � (1)

Clearly this is just a special case of integer linear program-
ming (ILP) commonly referred to as 0-1 integer program-
ming.1 Many important problems in AI can be naturally
expressed as BLP problems; for example: finding a satisfy-
ing truth assignment for CNF propositional formulae (SAT)

�Work performed while at the University of Ottawa.
1Although one could alternatively restrict the choice of values to

��� �� we often find it more convenient to use �������.

[Kautz and Selman, 1996], winner determination in combi-
natorial auctions (CA) [Sandholm, 1999; Fujishima et al.,
1999], planning with resource constraints [Kautz and Walser,
1999; Vossen et al., 1999], and scheduling and configuration
problems [Walser, 1999; Lau et al., 2000]. The two specific
problems we will investigate in detail below are SAT and CA.

In general, BLP problems are hard in the worst case
(NP-hard as optimization problems, NP-complete as decision
problems). Nevertheless, they remain important problems
and extensive research has been invested in improving the
exponential running times of algorithms that guarantee opti-
mal answers, developing heuristic methods that approximate
optimal answers, and identifying tractable subcases and effi-
cient algorithms for these subcases. There is a fundamental
distinction between complete methods, which are guaranteed
to terminate and produce an optimal solution to the problem,
and incomplete methods, which make no such guarantees but
nevertheless often produce good answers reasonably quickly.
Most complete methods conduct a systematic search through
the variable assignment space and use pruning rules and or-
dering heuristics to reduce the number of assignments vis-
ited while preserving correctness. Incomplete methods on the
other hand typically employ local search strategies that inves-
tigate a small neighborhood of a current variable assignment
(by flipping one or a small number of assignments) and take
greedy steps by evaluating neighbors under a heuristic evalu-
ation function. Although complete methods might appear to
be more principled, incomplete search methods have proven
to be surprisingly effective in many domains, and have led
to significant progress in some fields of research (most no-
tably on SAT problems [Kautz and Selman, 1996] but more
recently on CA problems as well [Hoos and Boutilier, 2000]).

In this paper we investigate incomplete local search meth-
ods for general BLP problems. Although impressive, most
of the recent breakthroughs in incomplete local search have
been achieved by tailoring methods to a reduced class of BLP
problems. A good illustration of this point is the CA sys-
tem of Hoos and Boutilier [2000] (Casanova) which is based
on the SAT system of [Hoos, 1999; McAllester et al., 1997]
(Novelty+), but is not the same algorithm (neither of these
algorithms can be directly applied to the opposing problem).
Another example is the WSAT(OIP) system of Walser [1999]
which is an extension of WSAT [Selman et al., 1994] and
achieves impressive results on general ILP problems, but nev-

ertheless requires soft constraints to be manually created to
replace a given optimization objective.

Our main contribution is the following: Although a va-
riety of research communities in AI have investigated BLP
problems and developed effective methods for certain cases,
the current level of specialization might not be yielding the
benefits that one might presume. To support this observa-
tion we introduce a generic local search algorithm that when
applied to specialized forms of BLP (specifically SAT and
CA) achieves performance that competes with the state of
the art on these problems. Our algorithm is based on com-
bining a simple idea from OR (subgradient optimization for
Lagrangian relaxation) with a recent idea from AI, specifi-
cally from machine learning theory (multiplicative updates
and exponentiated gradients). The conclusion we draw is that
research on general purpose methods might still prove fruit-
ful, and that known ideas in OR might still yield additional
benefits in AI problems beyond those already acknowledged.

2 Background
Research on constrained optimization in AI has become in-
creasingly well informed by extensive foundational work in
OR [Gomes, 2000]. OR has investigated the specific task of
ILP in greater depth than AI, and has tended to place more
emphasis on developing general purpose methods applicable
across the entire range of ILP problems. Complete methods
in OR typically employ techniques such as branch and bound
(using linear programming or Lagrangian relaxation), cutting
planes, and branch and cut to prune away large portions of
the assignment space in a systematic search [Martin, 1999].
This research has yielded sophisticated and highly optimized
ILP solvers, such as the commercial CPLEX system, which
although general purpose, performs very well on the special-
ized problems investigated in AI. In fact, it is still often un-
clear whether specialized AI algorithms perform better [An-
dersson et al., 2000].

Perhaps less well known to AI researchers is that beyond
systematic search with branch and bound, the OR litera-
ture also contains a significant body of work on incomplete
(heuristic) local search methods for approximately solving
ILP problems; see for example [Magazine and Oguz, 1984;
Larsson et al., 1996]. The simplest and most widespread of
these ideas is to use subgradient optimization (which we de-
scribe below).

Our algorithm arises from the observation that the most re-
cent strategies developed for the SAT problem have begun to
use an analog of subgradient optimization as their core search
strategy; in particular the DLM system of [Wu and Wah,
2000] and the SDF system of [Schuurmans and Southey,
2000] (see also [Thornton and Sattar, 1999; Frank, 1997;
Davenport et al., 1994]). Interestingly, these are among the
most effective methods for finding satisfying assignments for
CNF formulae, and yet they appear to be recapitulating a forty
year old idea in OR going back to [Everett, 1963]. Below we
show that, indeed, a straightforward subgradient optimization
approach (with just three basic improvements from AI) yields
a state of the art SAT search strategy that competes with DLM
(arguably the fastest SAT search procedure currently known).

Interestingly, the method we develop is not specialized to
SAT problems in any way. In fact, the algorithm is a general
purpose BLP search technique that can in principle be ap-
plied to any problem in this class. To demonstrate this point
we apply the method without modification (beyond parame-
ter setting) to CA problems and find that the method still per-
forms well relative to the state of the art (although somewhat
less impressively than on SAT problems). In this case we
also find that the commercial CPLEX system performs very
well and is perhaps the best of the methods that we inves-
tigated. Our results give us renewed interest in investigating
general purpose algorithms for BLP that combine well under-
stood methods from OR with recent ideas from AI.

3 The exponentiated subgradient algorithm
To explain our approach we first need to recap some basic
concepts from constrained optimization theory. Consider the
canonical BLP (1). For any constrained optimization problem
of this form the Lagrangian is defined to be

������ � � � � �
��
���

����� � � � ��� (2)

where �� is the 	th row vector of the constraint matrix �
and �� is the real valued Lagrange multiplier associated with
constraint
�. One can think of the multipliers �� simply
as weights on the constraint violations � �

�

� �� � � � ��.
Thus the Lagrangian can be thought of as a penalized ob-
jective function where for a given vector of constraint vi-
olation weights one could imagine minimizing the penal-
ized objective ������. In this way, the Lagrangian turns a
constrained optimization problem into an unconstrained op-
timization problem. In fact, the solutions of these uncon-
strained optimizations are used to define the dual function

���� � ���
����������

������ (3)

The dual problem for (1) is then defined to be

��	
�

���� subject to � � � (4)

Let �� denote the maximum value of (4) and let � denote
the minimum value of (1). Note that these are all just defini-
tions. The reason that (4) can be considered to be a dual to
(1) is given by the weak duality theorem, which asserts that
�� � � [Bertsekas, 1995; Martin, 1999] (see Appendix A).
Therefore, solving ������������� ������ for any Lagrange
multiplier vector � � � gives a lower bound on the optimum
value of the original problem (1). The best achievable lower
bound is achieved by solving the dual problem of maximizing
���� subject to � � �, yielding the optimal value � �. The
difference � ��� is called the duality gap. A fundamental
theorem asserts that there is no duality gap for linear (or con-
vex) programs with real valued variables [Bertsekas, 1995],
so in principle these problems can be solved by dual methods
alone. However, this is no longer the case once the variables
are constrained to be integer or ��
��
� valued.

Although the dual problem cannot be used to directly solve
(1) because of the existence of a possible duality gap, obtain-
ing lower bounds on the optimal achievable value can still

�

�
gradient

�

�

�
subgradient

�

Figure 1: Subgradients generalize gradients to nondifferen-
tiable functions. Note that the subgradient is not uniquely
defined at a nondifferentiable point.

prove very useful in various search strategies, ranging from
branch and bound to local search. Obviously there is a natu-
ral desire to maximize ���� by searching through Lagrange
multiplier vectors for larger values. A natural way to proceed
would be to start with a vector � ���, solve the unconstrained
minimization problem (3), and then update � ��� to obtain a
better weight vector ����, and so on. The issue is knowing
how to update the weight vector � ���. This question is com-
plicated by the fact that ���� is typically nondifferentiable,
which leads to the last technical development we will con-
sider: subgradient optimization.

Since ���� is always known to be concave [Bertsekas,
1995], a subgradient of � (at a point �) is given by any di-
rection vector � such that ���� � ���� � �� � ���� for
all � � ���. (Intuitively, a subgradient vector � gives the in-
creasing direction of a plane that sits above � but touches �
at �, and hence can serve as a plausible search direction if one
wishes to increase �; see Figure 1.) Therefore, to update �,
all we need to do is find a subgradient direction. Here we can
exploit an extremely useful fact: after minimizing ������ to
obtain �� � ���������������� � � � � ����� � �� the
resulting vector of residual constraint violation values 	 � �
����� is always a subgradient of� at � [Bertsekas, 1995;
Martin, 1999] (see Appendix B). So, in the end, despite the
overbearing terminology, subgradient optimization is a fun-
damentally simple procedure:

Subgradient optimization: To improve the lower bound
���� on the optimal solution of the original problem, take
a given vector of Lagrange multipliers �, solve for a pri-
mal vector � � ��
��
�� that minimizes the Lagrangian
������, and update � by adding a proportional amount of the
residual constraint violations 	� � ��� � � to � (maintain-
ing � � �); i.e. use the rule �� � ���	�. Note that this has
the intuitive effect of increasing the weights on the violated
constraints while decreasing weights on satisfied constraints.
Although this update is not guaranteed to increase the value
of ���� at every iteration, it is guaranteed to move � closer
to �� � �����	������� for sufficiently small step-sizes �
[Bertsekas, 1995].

These ideas go back at least to [Everett, 1963], and have
been applied with great success by Held and Karp [1970] and
many since. Typically, subgradient optimization has been
used as a technique for generating good lower bounds for
branch and bound methods (where it is known as Lagrangian
relaxation [Fisher, 1981]). However, subgradient optimiza-
tion can also be used as a heuristic search method for approx-

imately solving (1) in a very straightforward way: at each iter-
ation simply check if �� is feasible (i.e. satisfies ��� � �),
and, if so, report � � �� as a feasible objective value (keep-
ing it if it is the best value reported so far); see for example
[Magazine and Oguz, 1984; Larsson et al., 1996].

Interestingly, in the last few years this procedure has been
inadvertently rediscovered in the AI literature. Specifically, in
the field of incomplete local search methods for SAT, clause
weighting schemes turn out to be using a form of subgra-
dient optimization as their main control loop. These proce-
dures work by fixing a profile of clause weights (Lagrange
multipliers), greedily searching through variable assignment
space for an assignment that minimizes a weighted score
of clause violations (the Lagrangian), and then updating the
clause weights by increasing them on unsatisfied clauses—all
of which comprises a single subgradient optimization step.
However, there are subtle differences between recent SAT
procedures and the basic subgradient optimization approach
outlined above. The DLM system of [Wu and Wah, 2000] ex-
plicitly uses a Lagrangian, but the multiplier updates follow a
complex system of ad hoc calculations.2 The SDF system of
[Schuurmans and Southey, 2000] is simpler (albeit slower),
but includes several details of uncertain significance. Nev-
ertheless, the simplicity of this latter approach offers useful
hypotheses for our current investigation.

Given the clear connection between recent SAT procedures
and the traditional subgradient optimization technique in OR,
we conduct a study of the deviations from the basic OR
method so that we can identify the deviations which are truly
beneficial. Our intent is to validate (or refute) the significance
of some of the most recent ideas in the AI SAT literature.

Linear versus nonlinear penalties: One difference between
recent SAT methods and subgradient optimization is that the
SAT methods only penalize constraints with positive viola-
tions (by increasing the weight on these constraints), whereas
standard subgradient optimization also rewards satisfied con-
straints (by reducing their weight proportionally to the degree
of negative violation). To express this difference, consider an
augmented Lagrangian which extends (2) by introducing a
penalty function � on constraint violations

������� � � � � �
��
���

�� ���� � �� ���

The penalty functions we consider are the traditional linear
penalty ���� � � and the “hinge” penalty

���� �

�
��

� if � �
� � �

� if � �

(Note that � is an integer.) DLM and SDF can be interpreted
as implicitly using a hinge penalty for dual updates on SAT
problems. (However, SDF uses a different penalty for its pri-
mal search.) Intuitively, the hinge penalty has advantages
because it does not favor increasing the satisfaction level of

2The Lagrangian used in [Wu and Wah, 2000] is also quite dif-
ferent from (2) because it includes a redundant copy of the con-
straint violations in the minimization objective. This prevents their
Lagrangian from being easily generalized beyond SAT.

satisfied constraints above reducing the violations of unsatis-
fied constraints. Below we observe that the traditional linear
penalty leads to poor performance on constraint satisfaction
tasks and the AI methods have an advantage in this respect.

Unfortunately, the consequence of choosing a nonlinear
penalty function is that finding a variable assignment � which
minimizes ������� is no longer tractable. To cope with this
difficulty AI SAT solvers replace the global optimization pro-
cess with a greedy local search (augmented with randomiza-
tion). Therefore, they only follow a local subgradient direc-
tion in � at each update. However, despite the locally optimal
nature of the dual updates, the hinge penalty appears to retain
an advantage over the linear penalty.

Multiplicativeversus additive updates: The SDF procedure
updates � multiplicatively rather than additively, in an anal-
ogy to the work on multiplicative updates in machine learn-
ing theory [Kivinen and Warmuth, 1997]. A multiplicative
update is naturally interpreted as following an exponentiated
version of the subgradient; that is, instead of using the tradi-
tional additive update � � � �����	� one uses �� � ������,
� �
, given the vector of penalized violation values ��	�.
Below we compare both types of update and find that the mul-
tiplicative approach typically works better.

Weight smoothing: [Schuurmans and Southey, 2000] also
introduce the idea of weight smoothing: after each update
�� � ������ the constraint weights are pulled back to-
ward the population average �� � �

�

��

��� �
�
� using the rule

��� � ��� � �
 � ����, � � �
. This has the effect
of increasing the weights of frequently satisfied constraints
without requiring them to be explicitly violated (which led to
a noticeable improvement in SDF’s performance).

Exponentiated subgradient optimization (ESG): The final
procedure we propose follows a standard subgradient opti-
mization search with three main augmentations: (1) we use
the augmented Lagrangian �� with a hinge penalty rather
than a linear penalty, (2) we use multiplicative rather than
additive updates, and (3) we use weight smoothing to uni-
formize weights without requiring constraints to be explic-
itly violated. The parameters of the final procedure are �, �,
and a noise parameter � (see Figure 2).3 Below we compare
four variants of the basic method: ESG�, ESG� (multiplica-
tive updates with hinge and linear penalties respectively), and
ASG�, ASG� (additive updates with each penalty).4

The final ESG procedure differs from the SDF system of
[Schuurmans and Southey, 2000] in many respects. The most
important difference is that ESG can be applied to arbitrary
BLP tasks, whereas SDF is applicable only to SAT problems.
However, even if a generalized form of SDF could be devised,
there would still remain minor differences: First, ESG uses a
constant multiplier � for dual updates, whereas SDF uses an
adaptive multiplier that obtains a minimum difference Æ in
������ for some primal search direction. Second, SDF uses
a different penalty in its primal and dual phases (exponential

3Software available at http://ai.uwaterloo.ca/�dale/software/esg/.
4Note that when using a linear penalty we employ an optimal

primal search, but when using a hinge penalty we must resort to a
greedy local search to approximately minimize ������.

ESG���� �� �� procedure
Initialize � ��
 and � �� random ��
��
��

while solution not found and restart not reached
Primal search: Use greedy local search from � to find ��

that locally minimizes ����
���� (iff stuck, with probabil-

ity � take a random move and continue); 	 � �� ��� � �.
Dual step: �� �� �����

��; ��� �� ��� � �
� ����.
Update: � �� ��; � �� ���

Figure 2: ESG procedure

versus hinge) whereas ESG uses the same hinge penalty in
both phases. Third, ESG smooths all of the weights, whereas
SDF only smooths weights on satisfied constraints. Finally,
ESG includes a small probabilityof stepping out of local min-
ima during its primal search, whereas SDF employs a deter-
ministic primal search. Overall, these simplifications allow
for a more streamlined implementation for ESG that yields a
significant reduction in CPU overhead per step, while simul-
taneously allowing application to more general tasks.

4 SAT experiments
We consider applying the BLP techniques to SAT problems.
An instance of SAT is specified by a set of clauses � �
�
��

�
���, where each clause
� is a disjunction of �� literals,

and each literal denotes whether an assignment of “true” or
“false” is required of a variable ��. The goal is to find an as-
signment of truth values to variables such that every clause is
satisfied on at least one literal. In our framework, an instance
of SAT can be equivalently represented by the BLP

���
����������

� � � subject to �� � �� � (5)

where � and � are vectors of zeros and twos respectively, and

�� �

�

 if �� appears in a negative literal in
�

�
 if �� appears in a positive literal in
�
 otherwise

An assignment of �
 to variable �� denotes “true”, and an
assignment of �
 denotes “false”. The idea behind this rep-
resentation is that a clause
� is encoded by a row vector ��
in � which has �� nonzero entries corresponding to the vari-
ables occurring in
�, along with their signs. A constraint is
violated only when the ��
��
� assignment to � agrees with
the coefficients in �� on every nonzero entry, yielding a row
sum of �� �� � ��. If a single sign is flipped then the row sum
drops by 2 and the constraint becomes satisfied.

Note that the zero vector means that the minimization com-
ponent of this problem is trivialized. Nevertheless it remains a
hard constraint satisfaction problem. The trivialized objective
causes no undue difficulty to the methods introduced above,
and therefore the BLP formulation allows us to accommo-
date both constraint satisfaction and constrained optimization
problems in a common framework (albeit in a more restricted
way than [Hooker et al., 1999]).

For this problem we compared the subgradient optimiza-
tion techniques ESG/ASG against state of the art local search
methods: DLM, SDF, Novelty+, Novelty, WSAT, GSAT and
HSAT. However, for reasons of space we report results only

Avg. Est. Opt. Fail Opt.
Steps Steps % sec

uf50 (100 problems)
CPLEX (10 probs) 49 na 0 .186
ASG������ �� ���� 500,000 na 100 na
ESG������ ���� ����� 178,900 143,030 25 43.3
ASG������ �� ���� 1,194 359 0.3 .027
ESG������ ���� ������ 215 187 0 .0009

uf100 (1000 problems)
CPLEX (10 probs) 727 na 0 6.68
ASG����� �� ���� 3,670 2,170 1.3 0.26
ESG������� ���� ����� 952 839 0 .004

uf150 (100 problems)
CPLEX (10 probs) 13,808 na 0 275.2
ASG����� �� ���� 14,290 6,975 1.1 .071
ESG������� ���� ����� 2,625 2,221 0 .011

Table 1: Comparison of general BLP methods on SAT

for DLM, SDF, and Novelty+, which represent the best of the
last two generations of local search methods for SAT.5 We
ran these systems on a collection of (satisfiable) benchmark
problems from the SATLIB repository.6 Here the SAT solvers
were run on their standard CNF input representations whereas
the BLP solvers were run on BLP transformed versions of the
SAT problems, as given above. (Although alternative encod-
ings of SAT problems could affect the performance of BLP
solvers [Beacham et al., 2001] we find that the simple trans-
formation described above yields reasonable results.)

To measure the performance of these systems we recorded
wall clock time on a PIII 750MHz processor, average number
of primal search steps (“flips”) needed to reach a solution,
and the proportion of problems not solved within 500K steps
(5M on bw large.c). To avoid the need to tune every method
for a restart threshold we employed the strategy of [Schuur-
mans and Southey, 2000] and ran each method 100 times on
every problem to record the distributionof solution times, and
used this to estimate the minimum expected number of search
steps required under an optimal restart scheme for the distri-
bution [Parkes and Walser, 1996]. The remaining parame-
ters of each method were manually tuned for every problem
set. The parameters considered were: Novelty+(walk, noise),
DLM(16 tunable parameters), SDF�Æ�
���, ESG����
��� ��
and ASG����
��� ��.7

5Implementations of these methods are available at ai.uwater-
loo.ca/�dale, www.satlib.org, and manip.crhc.uiuc.edu.

6SATLIB is at www.satlib.org. We used three classes of prob-
lems in our experiments. The uf problems are randomly generated
3CNF formulae that are generated at the phase transition ratio of 4.3
clauses to variables. (These formulae have roughly a 50% chance of
being satisfiable, but uf contains only verified satisfiable instances.)
The flat problems are SAT encoded instances of hard random graph
coloring problems. The remaining problems are derived from AI
planning problems and the “all interval series” problem.

7For the large random collections (Tables 1 and 2: flat100–
uf250) the methods were tuned by running on 10 arbitrary problems.
Performance was then measured on the complete collection. Nov-
elty+ parameters were tuned from the published values of [Hoos and
Stützle, 2000]. DLM was tuned by running each of the 5 default pa-
rameter sets available at manip.crhc.uiuc.edu and choosing the best.

Avg. Est. Opt. Fail Opt.
Steps Steps % sec

ais8 (1 problem)
Novelty+��	� ���� 183,585 20,900 9 .078
SDF�����	� ����� 4,490 4,419 0 .083
DLM�pars1� 4,678 4,460 0 .044
ESG������ ����� ����
� 4,956 4,039 0 .043

ais10 (1 problem)
Novelty+���� ���� 434,469 340,700 79 1.64
SDF�������� ����� 15,000 13,941 0 .40
DLM�pars4� 18,420 14,306 0 .11
ESG������ ����� ����	� 15,732 15,182 0 .23

ais12 (1 problem)
Novelty+���� ���� 496,536 496,536 99 3.0
SDF������� ����� 132,021 97,600 1 3.6
DLM�pars1� 165,904 165,904 3 2.5
ESG������ ����� ������ 115,836 85,252 10 1.7

bw large.a (1 problem)
Novelty+��	� ���� 9,945 8,366 0 .025
SDF������� ����� 3,012 3,012 0 .057
DLM�pars4� 3,712 3,701 0 .028
ESG���� ����� ������ 2,594 2,556 0 .022

bw large.b (1 problem)
Novelty+��	� ���� 210,206 210,206 12 .82
SDF�������� ����� 33,442 33,255 0 1.30
DLM�pars4� 44,361 39,216 0 .34
ESG����	� ���� ������ 33,750 26,159 0 .40

bw large.c (1 problem)
Novelty+���� ���� 3,472,770 1,350,620 52 7
SDF�������� ����� 3,478,770 3,478,770 48 313
DLM�pars4� 3,129,450 2,282,900 32 41
ESG����	� ���� ������ 1,386,050 875,104 5 39

logistics.c (1 problem)
Novelty+��	� ���� 127,049 126,795 1 .38
SDF��������� ����� 15,939 15,939 0 1.40
DLM�pars4� 12,101 11,805 0 .13
ESG������ ���� ������ 8,962 8,920 0 .15

flat100 (100 problems)
Novelty+��
� ���� 17,266 12,914 .03 .019
SDF������� ����� 7,207 6,478 0 .074
DLM�pars4� 9,571 8,314 0 .022
ESG������ ���� ������ 7,709 6,779 0 .022

flat200 (100 problems)
Novelty+��
� ���� 238,663 218,274 27 .34
SDF������� ����� 142,277 115,440 7 1.56
DLM�pars4� 280,401 242,439 31 .77
ESG������� ���� ������ 175,721 134,367 14 .47

uf150 (100 problems)
Novelty+��
� ���� 6,042 3,970 0 .008
SDF�����
�� ����� 3,151 2,262 0 .023
DLM�pars4� 3,263 2,455 0 .008
ESG������� ���� ����� 2,625 2,221 0 .011

uf200 (100 problems)
Novelty+��
� ���� 25,917 22,214 1.8 .048
SDF������� ����� 14,484 11,304 .4 .134
DLM�pars4� 13,316 9,020 .1 .030
ESG������� ���� ����� 10,583 7,936 .2 .039

uf250 (100 problems)
Novelty+��
� ���� 27,730 24,795 1.8 .055
SDF������� ����� 18,404 13,626 .1 .177
DLM�pars4� 22,686 12,387 .2 .042
ESG������� ���� ����� 13,486 10,648 .1 .054

Table 2: Comparison of ESG� to specialized SAT methods

Table 1 compares the different BLP procedures on ran-
dom problems from SATLIB. The most salient feature of
these results is that the linear penalty performs poorly (as an-
ticipated). Here, the traditional ASG� method was unable
to solve any problems in the allotted steps. Table 1 also
shows that multiplicative updates (ESG) were generally su-
perior to additive updates (ASG) regardless of the penalty
function used (at least on random SAT problems). Although
details are omitted, we have also found that some smoothing
(
� � � �
) usually improves the performance of ESG but
is generally less beneficial for ASG. CPLEX generally per-
forms poorly in these experiments.

Table 2 shows the results of a larger scale comparison be-
tween ESG� and state of the art local search methods for SAT.
These results show that ESG� tends to finds solutions in fewer
primal search steps (flips) than other procedures. However,
ESG�’s time per flip is about 1.5 to 2 times higher than DLM
and about 2 to 4 times higher than Novelty+, which means
that its overall run time is only comparable to these methods.
Nevertheless, ESG�, DLM and SDF obtain a large reduction
in search steps over Novelty+ on the structured ais and plan-
ning problems (with the notable exception of bw large.c). As
a result, DLM and ESG� both tend to demonstrate better run
times than Novelty+ on these problems. All three methods
(Novelty+, DLM and ESG�) demonstrate similar run times
on the random uf and flat problems.

Note that none of these SAT procedures (other than
ESG/ASG and CPLEX) can be applied to general BLP prob-
lems without modification.

5 CA experiments
The second problem we considered is optimal winner deter-
mination in combinatorial auctions (CA). This problem intro-
duces a nontrivial optimization objective that is not present
in SAT. However, the subgradient optimization approach re-
mains applicable, and we can apply the same ESG/ASG
methods to this task without modifying them in any way.
(Nevertheless, we did conduct some implementation special-
izations to gain improvements in CPU times on SAT prob-
lems.) The CA problem has been much less studied in the AI
literature, but interest in the problem is growing rapidly.

An instance of the optimal winner determination problem
in combinatorial auctions (CA) is given by a set of items � �
�
��

�
��� with available quantities � ����

�
���, and a set of

bids � � ����
�
��� which offer amounts 	 � ����

�
��� for a

specified subset of items. We can represent the bid requests
in a constraint matrix � where

�� �

�

 if bid �� requests item
�
 otherwise

The problem then is to find a set of bids that maximizes the
total revenue subject to the constraint that none of the item
quantities are exceeded. If �� � ��
� this problem can be
expressed as the BLP

��	
�������

	 � � subject to �� � (6)

However it is not in our canonical ��
��
� form. To trans-
form it to the canonical form we use the substitutions � �

�� �
, � � �	�� and � � � � �
. The minimum so-
lution to the transformed version of this problem can then be
converted back to a maximum solution of the original CA.

For this task we compared the ESG/ASG algorithms to
CPLEX and Casanova [Hoos and Boutilier, 2000], a local
search method loosely based on Novelty+.8 The problems
we tested on were generated by the CATS suite of CA prob-
lem generators [Leyton-Brown et al., 2000], which are in-
tended to model realistic problems. However, our results in-
dicate that these tend to be systematically easy problems for
all the methods we tested, so we also tested on earlier artifi-
cial problem generators from the literature [Sandholm, 1999;
Fujishima et al., 1999]. Some of these earlier generators were
shown to be vulnerable to trivial algorithms [Andersson et al.,
2000] but some still appear to generate hard problems. How-
ever, to push the envelope of difficulty further, we also en-
coded several hard SAT problems as combinatorial auctions
by using an efficient polynomial (quadratic) reduction from
SAT to CA. Unfortunately, space limitations preclude a de-
tailed description of this reduction, but our results show that
these converted SAT problems are by far the most difficult
available at a given problem size.

To measure the performance of the various methods, we
first solved all of the problems using CPLEX and then ran the
local search methods until they found an optimal solution or
timed out. Although we acknowledge that this method of re-
porting ignores the anytime performance of the various meth-
ods, it seems sufficient for our purposes. To give some indi-
cation of anytime behavior, we recorded the fraction of opti-
mality achieved by the local search methods in cases where
they failed to solve the problem within the allotted time.

Table 3 shows a comparison of the different subgradi-
ent optimization procedures on one of the CATS problem
classes. These results show that the linear penalty is once
again weaker than the hinge (but to a lesser extent than on
SAT problems). Interestingly, additive updates appear to
work as well as multiplicative updates on these problems (al-
though the performance of ASG begins to weaken on harder
constraint systems such as those encountered in Table 5).

Table 4 shows the results of a larger comparison between
ESG/ASG, Casanova and CPLEX on the CATS problems and
an artificial problem. These results show that there is very
little reason not to use CPLEX to solve these problems in
practice.9 CPLEX, of course, also proves that its answers are
optimal, unlike local search. Nevertheless, the results show
that ESG� and ASG� are roughly competitive with Casanova,
which is a specialized local search technique for this task.

8Casanova is specialized to single unit CA problems (� �), so
we restrict attention to this class. However, ESG/ASG and CPLEX
can be applied to multi-unit CA problems without modification, and
hence are more general. CPLEX was run with the parameter set-
tings reported in [Andersson et al., 2000]. Casanova uses the same
parameters as Novelty+, walk and noise.

9The CPLEX timings show time to first discover the optimum,
not prove that it is indeed optimal. Also note that even though
“steps” are recorded for each of the methods, they are incompara-
ble numbers. Each method uses very different types of steps (unlike
the previous SAT comparison in terms of “flips”) and are reported
only to show method-specific difficulty.

Note that the large score proportions obtained by all meth-
ods when they fail to find the optimal solution follows from
the fact that even simple hill-climbing strategies tend to find
near optimal solutions in a single pass [Holte, 2001]. It ap-
pears that most of the difficulty in solving these problems is
in gaining the last percentage point of optimality.

Finally, Table 5 shows that Casanova demonstrates inferior
performance on the more difficult SAT�CA encoded prob-
lems. Nevertheless all methods appear to be challenged by
these problems. Interestingly, CPLEX slows down by a fac-
tor of 400 when transforming from the direct SAT encoding
of Section 4 to the SAT�CA encoding used here. By com-
parison the ESG method slows down by a factor of 20K.

6 Conclusion
Although we do not claim that the methods we have intro-
duced exhibit the absolute best performance on SAT or CA
problems, they nevertheless compete very well with the state
of the art techniques on both types of problem. Therefore,
we feel that the simple Lagrangian approach introduced here
might offer a useful starting point for future investigation be-
yond the myriad WalkSAT variants currently being pursued
in AI. Among several directions for future work are to inves-
tigate other general search ideas from the OR literature, such
as tabu search [Glover, 1989], and compare to other local
search methods for ILP problems [Resende and Feo, 1996;
Voudouris and Tsang, 1996] (which do not appear to be com-
petitive on SAT problems, but still offer interesting perspec-
tives on ILP problems in general).

A Weak duality
It is insightful to see why ���� � � � for all � � �. In fact, it is
almost immediately obvious: Note that for any � � � we have

���� ���
����������

������

� � � �� �
����� �� for all � � ��������

� � � � for all � such that �� � � (since � � �)

and hence ���� � � �. From this one can see that the constraint
� � � is imposed precisely to ensure a lower bound on � �.

B Subgradient direction
It is also easy to see that the vector of constraint violation values
	� ��� � � (where �� ��� ������������� ���� ��) must
yield a subgradient of � at �:

��
� ���
����������

� � ��

����� ��

� � � �� �

����� � �� (since �����
� � �����
��

 � � �� � �
����� � �� � �
� ������� � ��

 ���� � �
� ���	�

Acknowledgments
Research supported by NSERC and CITO. Thanks to Holger
Hoos and Craig Boutilier for helpful comments and providing
access to Casanova. Thanks also to Peter van Beek and the
anonymous referees for many helpful suggestions. The assis-
tance of István Hernádvölgyi is also warmly appreciated.

Avg. Avg. Fail %
sec Steps % Opt.

CATS-regions (100 problems)
ESG��
��� �
� �
� 7.2 1416 4.1 99.93
ASG������ � �
� 12.7 2457 7.9 99.86
ESG��
��� ��� �
� 64.7 7948 77 88.11
ASG���
� � �
� 48.1 9305 90 93.96

Table 3: Comparison of subgradient optimization methods

Avg. Avg. Fail %
sec Steps % Opt.

CATS-regions (100 problems)
CPLEX 6.7 64117 0 100
Casanova���� �
�� 4.2 1404 3.4 99.95
ESG��
��� �
� �
� 7.2 1416 4.1 99.93
ASG������ � �
� 12.7 2457 7.9 99.86

CATS-arbitrary (100 problems)
CPLEX 22 9510 0 100
Casanova���� �
�� 9 2902 0.47 99.98
ESG����
� ��� ��� 33 7506 4.21 99.95
ASG����� � �
� 30 6492 4.87 99.87

CATS-matching (100 problems)
CPLEX 1.30 499 0 100
Casanova���� �
�� .17 109 0 100
ESG��
��� ��� � .16 215 0 100
ASG����� � ��� .73 1248 0 100

CATS-paths (100 problems)
CPLEX 25 1 0 100
Casanova���� �
�� 26 49 0 100
ESG��
��� ��� ��� 28 2679 2.5 99.99
ASG���
� � �
�� 75 5501 6.8 99.96

CATS-scheduling (100 problems)
CPLEX 15 1426 0 100
Casanova���� ��� 44 7017 19.9 99.87
ESG��
���� ��� �
�� 65 11737 41 99.68
ASG���
�� � �
��� 58 12925 44.2 99.51
Decay-200-200-.75 (100 problems)

CPLEX 1.1 2014 0 100
Casanova���� �
�� 0.5 2899 2 99.97
ESG��
���� ���� ���� 1.8 24466 96.3 96.91
ASG����� � ��� 1.7 24939 99.6 91.49

Table 4: Results on CATS and synthetic problems

Avg. Avg. Fail %
sec Steps % Opt.

SAT(uf50)�CA (10 problems)
CPLEX 42 754 0 100
Casanova���� �

� 468 9.6	
� 90 99.36
ESG���� ��� �
� 31 1.7	
� 10 99.95
ASG���� � ��� 173 8.6	
� 80 99.40
SAT(uf75)�CA (10 problems)
CPLEX 666 5614 0 100
Casanova���� �

� 800 1.0	
	 100 98.46
ESG���
� ��� �
� 165 6.2	
� 60 99.81
ASG��
� � ��� 291 1.0	
	 100 99.17

Table 5: Results on hard SAT�CA encoded problems

References
[Andersson et al., 2000] A. Andersson, M. Tenhunen, and

F. Ygge. Integer programming for combinatorial auction
winner determination. In Proceedings ICMAS-00, 2000.

[Beacham et al., 2001] A. Beacham, X. Chen, J. Sillito, and
P. van Beek. Constraint programming lessons learned from
crossword puzzles. In Proc. Canadian AI Conf., 2001.

[Bertsekas, 1995] D. Bertsekas. Nonlinear Optimization.
Athena Scientific, 1995.

[Davenport et al., 1994] A. Davenport, E. Tsang, C. Wang,
and K. Zhu. GENET: A connectionist architecture for
solving constraint satisfaction problems. In Proceedings
AAAI-94, pages 325–330, 1994.

[Everett, 1963] H. Everett. Generalized Lagrange multiplier
method for solving problems of the optimal allocation of
resources. Operations Res., 11:399–417, 1963.

[Fisher, 1981] M. Fisher. The Lagrangian relaxation method
for solving integer programming problems. Management
Sci., 27:1–18, 1981.

[Frank, 1997] J. Frank. Learning short-tem weights for
GSAT. In Proceedings IJCAI-97, pages 384–391, 1997.

[Fujishima et al., 1999] Y. Fujishima, K. Leyton-Brown, and
Y. Shoham. Taming the computational complexity of com-
binatorial auctions: optimal and approximate approaches.
In Proceedings IJCAI-99, pages 548–553, 1999.

[Glover, 1989] F. Glover. Tabu search Part 1. ORSA Journal
on Computing, 1(3):190–206, 1989.

[Gomes, 2000] C. Gomes. Structure, duality, and random-
ization: Common themes in AI and OR. In Proceedings
AAAI-00, pages 1152–1158, 2000.

[Held and Karp, 1970] M. Held and R. Karp. The travelling
salesman problem and minimum spanning trees. Opera-
tions Res., 18:1138–1162, 1970.

[Holte, 2001] R. Holte. Combinatorial auctions, knapsack
problems, and hill-climbing search. In Proceedings Cana-
dian AI Conference, 2001.

[Hooker et al., 1999] J. Hooker, G. Ottosson, E. Thorsteins-
son, and H.-K. Kim. On integrating constraint propaga-
tion and linear programming for combinatorial optimiza-
tion. Proceedings AAAI-99, pages 136–141, 1999.

[Hoos and Boutilier, 2000] H. Hoos and C. Boutilier. Solv-
ing combinatorial auctions using stochastic local search.
In Proceedings AAAI-00, pages 22–29, 2000.

[Hoos and Stützle, 2000] H. Hoos and T. Stützle. Local
search algorithms for SAT: An empirical evaluation. J.
Automat. Reas., 24:421–481, 2000.

[Hoos, 1999] H. Hoos. On the run-time behavior of stochas-
tic local search algorithms for SAT. In Proceedings AAAI-
99, pages 661–666, 1999.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing
the envelope: Planning, propositional logic, and stochastic
search. In Proceedings AAAI-96, pages 1194–1201, 1996.

[Kautz and Walser, 1999] H. Kautz and J. Walser. State-
space planning by integer optimization. Proceedings
AAAI-99, pages 526–533, 1999.

[Kivinen and Warmuth, 1997] J. Kivinen and M. Warmuth.
Exponentiated gradient versus gradient descent for linear
predictors. Infor. Comput., 132:1–63, 1997.

[Larsson et al., 1996] T. Larsson, M. Patriksson, and A.-B.
Stromberg. Conditional subgradient optimization—theory
and applications. Euro. J. Oper. Res., 88:382–403, 1996.

[Lau et al., 2000] H. Lau, A. Lim, and Q. Liu. Solving a
supply chain optimization problem collaboratively. Pro-
ceedings AAAI-00, pages 780–785, 2000.

[Leyton-Brown et al., 2000] K. Leyton-Brown, M. Pearson,
and Y. Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proc. EC-00, 2000.

[Magazine and Oguz, 1984] M. Magazine and O. Oguz. A
heuristic algorithm for the multidimensional knapsack
problem. Euro. J. Oper. Res., 16:319–326, 1984.

[Martin, 1999] R. Martin. Large Scale Linear and Integer
Optimization. Kluwer, 1999.

[McAllester et al., 1997] D. McAllester, B. Selman, and
H. Kautz. Evidence for invariants in local search. In Pro-
ceedings AAAI-97, pages 321–326, 1997.

[Parkes and Walser, 1996] A. Parkes and J. Walser. Tuning
local search for satisfiability testing. In Proceedings AAAI-
96, pages 356–362, 1996.

[Resende and Feo, 1996] M. Resende and T. Feo. A GRASP
for satisfiability. In Cliques, Coloring, and Satisfiability,
DIMACS series v.26, pages 499–520. AMS, 1996.

[Sandholm, 1999] T. Sandholm. An algorithm for optimal
winner determination in combinatorial auctions. In Pro-
ceedings IJCAI-99, pages 542–547, 1999.

[Schuurmans and Southey, 2000] D. Schuurmans and
F. Southey. Local search characteristics of incomplete
SAT procedures. In Proc. AAAI-00, pages 297–302, 2000.

[Selman et al., 1994] B. Selman, H. Kautz, and B. Cohen.
Noise strategies for improving local search. In Proceed-
ings AAAI-94, pages 337–343, 1994.

[Thornton and Sattar, 1999] J. Thornton and A. Sattar. On
the behavior and application of constraint weighting. In
Proceedings CP-99, pages 446–460, 1999.

[Vossen et al., 1999] T. Vossen, M. Ball, A. Lotem, and
D. Nau. On the use of integer programming models in AI
planning. Proceedings IJCAI-99, pages 304–309, 1999.

[Voudouris and Tsang, 1996] C. Voudouris and E. Tsang.
Partial constraint satisfaction problems and guided local
search. In Proceedings PACT-96, pages 337–356, 1996.

[Walser, 1999] J. Walser. Integer Optimization by Local
Search. Springer-Verlag, 1999.

[Wu and Wah, 2000] Z. Wu and W. Wah. An efficient global-
search strategy in discrete Lagrangian methods for solv-
ing hard satisfiability problems. In Proceedings AAAI-00,
pages 310–315, 2000.

