
A Parallel External-Memory Frontier Breadth-First
Traversal Algorithm for Clusters of Workstations

Robert Niewiadomski, José Nelson Amaral, Robert C. Holte
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

Email: {niewiado,amaral,holte}@cs.ualberta.ca

Abstract— This paper presents a parallel external-memory
algorithm for performing a breadth-first traversal of an implicit
graph on a cluster of workstations. The algorithm is a parallel
version of the sorting-based external-memory frontier breadth-
first traversal with delayed duplicate detection algorithm. The
algorithm distributes the workload according to intervals that are
computed at runtime via a sampling-based process. We present an
experimental evaluation of the algorithm where we compare its
performance to that of its sequential counterpart on the implicit
graphs of two classic planning problems. The speedups attained
by the algorithm over its sequential counterpart are consistently
near linear and frequently above linear. Analysis reveals that
the algorithm is proficient at distributing the workload and that
increasing the number of samples obtained by the sampling-based
process improves workload distribution. Analysis also reveals that
the algorithm benefits from the caching of external memory in
internal memory that is done by the operating system.

I. INTRODUCTION

A breadth-first traversal of an implicit graph can be used
to solve problems such as determining whether or not cer-
tain vertices are reachable from a vertex and computing the
minimum length of a path from one vertex to another. Appli-
cations for a breadth-first traversal of an implicit graph include
model checking [6] and pattern database computation [4].
The standard method for performing a breadth-first traversal
of an implicit graph involves using the Breadth-First Search
(BFS) algorithm [3]. A fundamental limitation of BFS is its
space requirement. The amount of space required by BFS
is proportional to the number of vertices that are reachable
from the starting vertex of the traversal. An alternative to BFS
is the Frontier Breadth-First Traversal (FBFT) algorithm [7].
The amount of space required by FBFT is proportional to the
maximum number of vertices found at any given distance from
the starting vertex of the traversal. In practice, the amount of
space required by FBFT is typically a fraction of the amount
of space required by BFS.

For sufficiently large implicit graphs FBFT must use ex-
ternal memory (secondary storage), in addition to using in-
ternal memory (primary storage). Under such circumstances
a FBFT variant called the Frontier Breadth-First Traversal
with Delayed Duplicate Detection (FBFT-DDD) algorithm is
recommended [8]. The sorting-based external-memory FBFT-
DDD algorithm can be used to tackle a graph using external
memory in a performance efficient manner [9].

The main contributions of this paper are:

• A parallel version of the sorting-based external-memory
FBFT-DDD algorithm that is designed to run on a cluster
of workstations. The algorithm distributes the workload
among the workstations according to intervals that are
computed at runtime via a sampling-based process.

• An experimental evaluation of the algorithm where we
compare its performance to that of its sequential counter-
part on the implicit graphs of two classic planning prob-
lems. The algorithm attains speedups that are consistently
near linear and frequently above linear.

• An analysis of runtime measurements relating to the
ability of the algorithm to distribute the workload. The
analysis reveals that increasing the number of samples
that are obtained by the sampling-based process improves
workload distribution. The analysis also reveals that the
algorithm benefits from the caching of external memory
in internal memory that is done by the operating system.

The remainder of this paper is structured as follows. We
begin by presenting core notations and definitions. We then
proceed to outline the sequential algorithm and the parallel
algorithm. We then present the results of an experimental
evaluation of the parallel algorithm. We end by presenting
related work and a conclusion of our findings.

II. PRELIMINARIES

Let G(V, E) be a directed graph where V is the set of
vertices and E is the set of edges. If (u, v) ∈ E then v is
a successor of u and u is a predecessor of v. We assume
that for any u, v ∈ V , u is a successor of v if and only if
u is a predecessor of v. A path from u ∈ V to v ∈ V is a
list of vertices where each vertex is a successor of the vertex
preceding it in the list. Given u, v ∈ V , v is reachable from u
if and only if there exists a path from u to v. The length of
a path is the number of vertices in the path minus one. Given
u, v ∈ V , the distance from u to v is the minimum length of
any path from u to v.
Definition 2.1: Given v ∈ V , a breadth-first traversal of G
starting at v is a traversal of G where each vertex that is
reachable from v is visited exactly once and where vertices
are visited in a non-decreasing order of their distance from v.

We assume that G is an implicit graph in the sense that each
vertex in V is described in some language, that we obtain the

description of every succcessor of a vertex by applying the
successor function to the description of the vertex, and that
we obtain the description of every predecessor of a vertex
by applying the predeccessor function to the description of
the vertex. We compare vertices in terms of the magnitudes
of their descriptions. Let vmin and vmax be dummy vertices
such that the magnitudes of the descriptions of vmin and vmax

are equivalent to −∞ and ∞, respectively.
Definition 2.2: A record is a pair (v, S) where v ∈ V and
S ⊆ {(v, u) ∈ E}. Given a record r, let r.v denote the v
element of r and r.S denote the S element of r.

Given a record r, we refer to r.v as the vertex of r and to
r.S as the successor edge-set of r.
Definition 2.3: Given a set of records R0, we reduce R0 by
computing a set of records R1 such that: (1) R1 consists of as
many records as there are vertices in the set of the vertices of
the records in R0, and (2) for each u in the set of the vertices
of the records in R0, R1 contains a record whose vertex is
u and whose successor edge-set is the set of the edges in the
successor edge-sets of the records in R0 whose vertex is u.

Given a set of records R, we refer to the set of records
obtained by reducing R as the reduced instance of R. Given
a set of records R, we say that R is concise if and only if
R is equal to the reduced instance of R. Given two sets of
records R0 and R1, we say that R0 is equivalent to R1 if
and only if the reduced instance of R0 is equal to the reduced
instance of R1.

A run is a list of records where the records appear in a non-
decreasing order of their vertices and where no record appears
more than once. An external-memory run is a run that resides
in external memory. A subrun maps a sublist of a run. A subrun
consists of the location of a run and the offsets of the first and
last records of the subrun in the run. An external-memory
subrun is a subrun that maps a sublist of an external-memory
run.

Given a list of records L we sort r by sorting the records
in L such that they appear in a non-decreasing order of
their vertices. Given a run R, we reduce R by making the
set of records in R concise. Given k runs, we merge the
runs by performing a k-way merge of the runs during which
records are merged in a non-decreasing order of their vertices.
Similarily, given k sorted lists of vertices, we merge the lists
by performing a k-way merge of the lists during which vertices
are merged in a non-decreasing order of their vertices.

III. THE SEQUENTIAL ALGORITHM

Given s ∈ V , the sorting-based External-Memory Fron-
tier Breadth-First Traversal with Delayed Duplicate Detection
(FBFT-DDDEM) algorithm performs a breadth-first traversal of
G starting at s.

The algorithm performs the traversal by computing a set of
records Xd for successive values of d from d = 0 to d = dmax

where dmax is the maximum distance from s of any vertex
that is reachable from s. An Xd is a concise set of records
where: the set of the vertices of the records in Xd is the set

of the vertices in V whose distance from s is d, and the set
of the edges in the successor edge-sets of the records in Xd is
the set of the edges in E that start at vertices whose distance
from s is d and end at vertices whose distance from s is d−1.
Definition 3.1: Given a record r, we expand r by computing
a record (u, {(u, r.v)}) for each u ∈ V that is successor of
r.v, i.e. (r.v, u) ∈ E, such that (r.v, u) /∈ r.S.

Given a record r, we refer to each record computed by
expanding r as a record that is generated by expanding r.
Let Yd be the set of the records generated by expanding the
records in Xd.
Definition 3.2: Given two sets of records R0 and R1, we
reconcile R0 with R1 by computing a set of records R2 such
that R2 is the reduced instance of the set of the records in
R0 whose vertex is not the vertex of any record in R1.

The algorithm stores each Xd as an external-memory run
Xd and each Yd as a list of external-memory runs Yd. The set
of the records in Xd is concise and is equal to Xd. The set of
the records in each run in Yd is concise and is disjoint from
the set of the records in every other run in Yd with the set of
the records in the runs in Yd being equivalent to Yd.

The algorithm uses two external-memory algorithms called
ExpandEM and ReconcileEM:

ExpandEM: Given an external-memory run R0, the algorithm
expands the records in R0 to produce a list of external-
memory runs R1 such that the set of records in each
run in R1 is concise and is disjoint from the set of the
records in every other run in R1, and such that the set
of the records in the runs in R1 is equivalent to the
set of the records generated by expanding the records
in R0. The algorithm commences execution by setting
R1 to empty and an internal-memory list of records T to
empty. The algorithm then executes a scan of the records
in R0 during which it expands all the records in R0 while
appending generated records to T . Whenever T becomes
full or every record in R0 has been expanded and T is
non-empty, the algorithm: sorts T in-place, reduces T in-
place, creates a new external-memory run by writing T
to external-memory, appends the newly created external-
memory run to R1, and sets T to empty.

ReconcileEM: Given two lists of external-memory runs R0

and R1, the algorithm reconciles the set of the records in
the runs in R0 with the set of the records in the runs in
R1 to produce an external-memory run R2 such that the
set of the records in R2 is concise and is equal to the set
of records obtained by reconciling the set of the records
in the runs in R0 with the set of the records in the runs in
R1. The algorithm commences execution by setting R2

to empty. The algorithm then executes a merge of the
runs in R0 and R1. Because records are merged in a non-
decreasing order of their vertices the set of the records in
the runs in R0 and R1 that have the same vertex appears
as a subsequence of the sequence of records produced
by the merge. While executing the merge, the algorithm

computes a record r and a boolean b for each such
subsequence such that r is the single record in the reduced
instance of the set of the records in the subsequence and
such that b is false unless the subsequence contains a
record from a run in R1. Whenever the algorithm obtains
the last record in a subsequence, the algorithm stops
executing the merge and completes the computation of
r and b for the subsequence. The algorithm then appends
r to R2 if and only if b is false. The algorithm then deletes
both r and b, and resumes executing the merge.

The algorithm commences execution by initializing d to
1. The algorithm then computes X0 such that the set of
the records in X0 is {(s, ∅)}. The algorithm proceeds with
execution by executing three phases of computation:

Phase 1: ExpandEM is executed to expand the records in
Xd−1 to obtain Yd−1.

Phase 2: If |Yd−1| = 0 then execution terminates. Other-
wise, ReconcileEM is executed to reconcile the set of the
records in the runs in Yd−1 with the set of the records in
the runs in 〈Xd−1〉 to obtain Xd.

Phase 3: If |Xd| = 0 then execution terminates. Otherwise,
Xd−1 and each run in Yd−1 are deleted, d is set to d+1,
and execution proceeds to phase 1.

The algorithm exhibits good spatial data-reference locality
in external-memory because ExpandEM and ReconcileEM ac-
cess external-memory in manner where consecutive accesses
map to consecutive external-memory addresses. As a result,
consecutive external-memory accesses made by ExpandEM and
ReconcileEM can be performed in a single external-memory
I/O operation. Furthermore, the manner in which ExpandEM
and ReconcileEM access external-memory permits the use
of double-buffered and non-blocking external-memory I/O
to hide external-memory I/O latency via the overlapping of
external-memory I/O with computation.

In ExpandEM the capacity of T determines the number of
runs in R1. The capacity of T should be large enough as
to ensure that the number of runs in R1 is managable. In
particular, if the number of runs produced by ExpandEM is
too large then the efficiency of ReconcileEM suffers because
ReconcileEM has to merge the runs produced by ExpandEM.
As the number of runs to be merged by ReconcileEM increases
so does its internal-memory requirement and the overhead it
incurs in conducting external-memory I/O.

IV. THE PARALLEL ALGORITHM

Given s ∈ V , the sorting-based Parallel External-Memory
Frontier Breadth-First Traversal with Delayed Duplicate De-
tection (P-FBFT-DDDEM) algorithm performs a breadth-first
traversal of G starting at s.

The algorithm is a parallel version of FBFT-DDDEM that
is designed to run on a cluster of workstations where each
workstation has its own internal memory and its own external
memory with neither being directly accessible by the other

workstations. Let n be the number of workstations to be used
by the algorithm. We label the n workstations from 0 to n−1.
Definition 4.1: Given a positive integer β and a list of vertices
I , I is an β-interval list if and only if: |I | = β+1, I [0] = vmin,
I [β] = vmax, and for each 0 ≤ j ≤ β − 1, I [j] ≤ I [j + 1].

Definition 4.2: Given a set of records R, an β-interval list I ,
and a non-negative integer j where 0 ≤ j ≤ β − 1, the j-th
subset of R defined by I is the set of the records in R whose
vertex is greater-than I [j] but less-than or equal-to I [j + 1].

Definition 4.3: Given a run R, an β-interval list I , and a non-
negative integer j where 0 ≤ j ≤ β − 1, the j-th subrun of R
defined by I is the subrun of R that consists of the records in
the j-th subset of the set of the records in R defined by I .

The algorithm represents each Xd with n sets of records
X 0

d ,X 1

d , . . . ,Xn−1

d and each Yd with n sets of records
Y0

d ,Y1

d , . . . ,Yn−1

d . Let Γd be an n-interval list. For each
0 ≤ i ≤ n − 1, X i

d is the i-th subset of Xd defined by Γd

and Y i
d is the set of the records generated by the expanding

the records in X i
d. Consequently, each X i

d is disjoint from the
other X i

d’s with the set of the records in the X i
d’s being equal

to Xd, and each Y i
d is disjoint from the other Y i

d’s with the
set of the records in the Y i

d’s being equal to Yd.
The algorithm stores each X i

d as an external-memory run
X i

d and each Y i
d as a list of external-memory runs Yi

d. The
set of the records in each X i

d is concise and is equal to X i
d.

The set of the records in each run in each Yi
d is concise and is

disjoint from the set of the records in every other run in Yi
d.

The set of the records in the runs in Yi
d is equivalent to Y i

d.
For each 0 ≤ i ≤ n− 1, X i

d and each run in Yi
d resides in the

external-memory of workstation i.
Definition 4.4: Given a positive integer α and a run R, the
stride-α sample list of R is the sorted list of j vertices 〈R[α−
1].v, R[2α − 1].v, . . . , R[jα − 1].v〉 were j = b|R|/αc.

Definition 4.5: Given a positive integer θ and a sorted list of
vetices L, S is an θ-splitter list of L if S is a sorted list of
θ − 1 vertices computed as:

• if |L| < θ−1 then S is formed by L followed by θ−1−|L|
copies of vmax;

• if |L| = θ − 1 then S = L;
• if |L| > θ − 1 then S = 〈L[j − 1], L[2j − 1], . . . , L[(k −

1)j − 1]〉 where j = b|L|/θc and k = b|L|/jc.

Figure 1 illustrates the location of runs, subruns, sample
lists, and splitter lists within the memory hierarchies of the
workstations during the execution of the parallel algorithm.
The elipse corresponds to the processor, the rectangle cor-
responds to the internal-memory, and the cylinder to the
external-memory.

The algorithm executes two proccesses on each workstation,
a worker process and a server process. We refer to the worker
process and the server processor of node i as worker i and
server i, respectively. All workers and servers execute six
phases of computation such that no worker or server proceeds
onto the next phase until all workers and servers are finished
executing the current phase.

0
1dX −

0
1d −Y

0
1dA −

0
1d −B

0
1dC −

1dD −

1dE −

0
1d −F

0
1d −G

0
dX

1
i
dX −

1
i

d −Y

1
i
dA −

1
i
d −B

1
i
dC −

1
i

d −F

1
i
d −G

i
dX

1
1

n
dX −

−

1
1

n
d

−
−Y

1
1

n
dA −

−

1
1

n
d

−
−B

1
1

n
dC −

−

1
1

n
d

−
−F

1
1

n
d

−
−G

1n
dX −

0 i 1n −

0
1dX −

0
1d −Y

0
1dA −

0
1d −B

0
1dC −

1dD −

1dE −

0
1d −F

0
1d −G

0
dX

1
i
dX −

1
i

d −Y

1
i
dA −

1
i
d −B

1
i
dC −

1
i

d −F

1
i
d −G

i
dX

1
1

n
dX −

−

1
1

n
d

−
−Y

1
1

n
dA −

−

1
1

n
d

−
−B

1
1

n
dC −

−

1
1

n
d

−
−F

1
1

n
d

−
−G

1n
dX −

0 i 1n −

Fig. 1. Location of runs, subruns, sample lists, and splitter lists within the
memory hierarchies of the workstations during the execution of the parallel
algorithm.

During initialization all workers and servers initialize d to
1, all workers initialize Γd−1 to the list consisting of vmin

followed by n copies of vmax, and all workers initialize a
positive integer α, called the sampling stride, to a predeter-
mined value. Worker i then computes X i

d−1
such that the set

of the records in X i
d−1

is the i-th subset of {(s, ∅)} defined
by Γd−1.

The algorithm proceeds with execution as follows. In phase
1, worker i expands the records in X i

d−1
to obtain Y i

d−1
. In

phase 2, all workers and servers compute the size of Yd−1.
If Yd−1 is empty then all workers and servers terminate
execution. Otherwise, worker i computes a sample, in a
manner that is dicated by α, of the vertices of the records
in X i

d−1
and Y i

d−1
. In phase 3, worker 0 computes Γd based

on the samples obtained by all workers in phase 2. In phase
4, worker i partitions X i

d−1
into the n subsets defined by

Γd and Y i
d−1

into the n subsets defined by Γd. In phase 5,
worker i reconciles the set of the records in the i-th subsets
of Y0

d−1
,Y1

d−1
, . . . ,Yn−1

d−1
defined by Γd with the set of the

records in the i-th subsets of X 0

d−1
,X 1

d−1
, . . . ,Xn−1

d−1
defined

by Γd to obtain X i
d. During this phase worker i obtains records

that reside in the external memory of remote workstations via
the servers of those workstations. In phase 6, all workers and
servers compute the size of Xd. If Xd is empty then all workers
and servers terminate execution. Otherwise, worker i deletes
Xd−1 and Yd−1, all workers and servers set d to d+1, and all
workers and servers proceed to phase 1. A detailed description
of each phase follows.

Phase 1: Worker i executes ExpandEM to expand the records

in X i
d−1

to obtain Yi
d−1. Worker i then sends |Yi

d−1| to
all workers and servers.

Phase 2: All workers and servers compute
∑n−1

i=0
|Yi

d−1
|.

If
∑n−1

d−1
|Yi

d−1| is zero then all workers and servers
terminate execution. Otherwise, worker i computes Ai

d−1
,

the stride-α sample list of X i
d−1

, and Bi
d−1

, a list of
|Yi

d−1| lists of vertices where for each 0 ≤ j ≤
|Yi

d−1
| − 1, Bi

d−1
[j] is the stride-α sample list of

Yi
d−1

[j]. Worker i then executes a merge of Ai
d−1

and
Bi

d−1[0], Bi
d−1[1], . . . , Bi

d−1[|B
i
d−1| − 1] to obtain Ci

d−1
.

Worker i then sends Ci
d−1

to worker 0.

Phase 3: Worker 0 executes a merge of
C0

d−1
, C1

d−1
, . . . , Cn−1

d−1
to obtain Dd−1. Worker

0 then computes Ed−1 as the n-splitter list
of Dd−1. Worker 0 then computes Γd as
〈vmin, Ed−1[0], Ed−1[1], . . . , Ed−1[n − 2], vmax〉.
Worker 0 then sends Γd to all workers.

Phase 4: Worker i executes n− 1 binary-searches on X i
d−1

to obtain Fi
d−1, a list of n external-memory subruns

where for each 0 ≤ j ≤ n − 1, Fi
d−1[j] is the j-

th subrun of Xi
d−1

defined by Γd, and n − 1 binary-
searches on each run in Yi

d−1
to obtain Gi

d−1
, a list

of |Yi
d−1

| lists of n external-memory subruns where for
each 0 ≤ j ≤ |Yi

d−1| − 1 and 0 ≤ k ≤ n − 1,
Gi

d−1[j][k] is the k-th subrun of Yi
d−1[j] defined by Γd.

For each 0 ≤ j ≤ n − 1, worker i sends the run
locations and the first and last record offsets of Fi

d−1[j]
and Gi

d−1[0][j], Gi
d−1[1][j], . . . , Gi

d−1[|G
i
d−1| − 1][j] to

worker j and server i.

Phase 5: Worker i executes ReconcileEM to
reconcile the set of the records in the subruns in
||n−1

j=0
〈Gj

d−1
[0][i], Gj

d−1
[1][i], . . . , Gj

d−1
[|Gj

d−1
| − 1][i]〉,

where || is the list concatenation operation,
with the set of the records in the subruns in
〈F0

d−1
[i], F1

d−1
[i], . . . , Fn−1

d−1
[i]〉 to obtain X i

d. In
executing ReconcileEM, worker i treats the subruns as
runs and obtains records in a subrun that resides in the
external-memory of node j via server j. Worker i then
sends |X i

d| to all workers and servers.

Phase 6: All workers and servers compute
∑n−1

i=0
|X i

d|. If∑n−1

i=0
|X i

d| is zero then all workers and servers terminate
execution. Otherwise, worker i deletes X i

d−1
and each run

in Yi
d−1. All workers and servers then set d to d + 1 and

proceed to phase 1.

In phases 2 and 3, the algorithm strives to compute Γd such
that the workers reconcile equal amounts of records in phase
5. The algorithm does so by computing Γd based on a sample
of the vertices of the records to be reconciled. The size of the
sample is inversely proportional to α. The larger the sample
the more information that the algorithm has at its disposal to
compute Γd. It can be shown that for a given value of α, the
difference between the average number of records reconciled

(a) STP. (b) TOH.

Fig. 2. Speedup attained by P-FBFT-DDDEM over FBFT-DDDEM. The dotted line corresponds to linear speedup.

by a worker in phase 5 and the maximum number of records
reconciled by a worker in phase 5 is bounded from above by
(n + x + y)α, where x is the number of non-empty X i

d−1
’s

and y is the number of runs in the Yi
d−1’s. Thus, the smaller

the α the smaller the largest possible imbalance between the
amounts of records reconciled by the workers in phase 5. A
caveat of using a small α is that the cost of phase 2 and 3 is
inversely proportional to α due to the number of samples that
are aquired and processed in phase 2 and 3 being inversely
proportional to α.

V. EXPERIMENTAL EVALUATION

This section presents the results of an experimental eval-
uation of the parallel algorithm. The main findings of the
evaluation are:

• The parallel algorithm achieves speedups over the se-
quential algorithm that are consistently nearly linear and
frequently above linear. In general, as the number of
workstations used by the parallel algorithm increases
so does the speedup efficiency attained by the parallel
algorithm.

• The use of a smaller sampling stride, i.e. α, improves
the degree of load balancing attained by the parallel
algorithm. When using a sampling stride that yields
approximately n2 samples per external-memory run, the
parallel algorithm attains a degree of load balancing that
is nearly perfect.

• Because the aggregate internal-memory capacity of a
cluster of workstations is larger than the internal-memory
capacity of a single workstation, the parallel algorithm
achieves above linear speedups over the sequential algo-
rithm due to the caching of external-memory in internal-
memory that is done by the operating system.

A. Algorithm Implementation

Both FBFT-DDDEM and P-FBFT-DDDEM are implemented
in ANSI C. Each run is stored in its own file. The MPICH

1.2.6 implementation of MPI is used for communication and
synchronization.

ExpandEM uses Quicksort to sort T in-place and the follow-
ing reduction algorithm to reduce T in-place. The reduction
algorithm executes two scans of T , a head scan and a tail scan.
The head scan proceeds first. As it moves across T , the head
scan computes consecutive records in the reduced instance of
T . Whenever the head scan computes a record that record is
written to T by the tail scan at the location of the tail scan.
Having written a record the tail scan moves one position to
the right. When the head scan is finished, the portion of T at
the location of the tail scan is deleted.

ReconcileEM uses a binary-heap to conduct the merge of
the runs in R0 and R1. Each element in the heap consists of a
record and a tag that indicates whether the record came from
a run in R0 or a run in R1.

ExpandEM and ReconcileEM use double-buffered and non-
blocking disk I/O to read from files and to write to files.
ReconcileEM uses non-blocking network I/O to read from
remote files.

B. Benchmarks

In our experiments we execute a breadth-first traversal of
the implicit graphs of two classic planning problems, Sliding-
Tile Puzzle (STP) and four-peg Towers Of Hanoi (TOH). For
an excellent overview of these problems we refer the reader
to [4]. A record for STP is stored as a 9-byte data structure
consisting of a 64-bit integer that encodes the vertex and an
8-bit integer that encodes the successor edge-set. A record
for TOH is stored as a 10-byte data-structure consisting of
a 64-bit integer that encodes the vertex and a 16-bit integer
that encodes the successor edge-set. The starting vertex in
STP experiments is the vertex that corresponds to the tiles
being positioned in the increasing order of their labels from
left to right and from top to bottom with the blank being in
the top left corner. The starting vertex in TOH experiments is
the vertex that corresponds to all the disks being arranged on

(a) α = γ/n. (b) α = γ/n2. (c) α = γ/n3.

Fig. 3. Phase 1 workload distribution for STP and n = 16.

(a) α = γ/n. (b) α = γ/n2. (c) α = γ/n3.

Fig. 4. Phase 5 workload distribution for STP and n = 16.

(a) α = γ/n. (b) α = γ/n2. (c) α = γ/n3.

Fig. 5. Phase 1 workload distribution for TOH and n = 16.

(a) α = γ/n. (b) α = γ/n2. (c) α = γ/n3.

Fig. 6. Phase 5 workload distribution for TOH and n = 16.

the first peg in the increasing order of their size from top to
bottom.

C. Hardware Setup

We run our experiments on a cluster of workstations con-
sisting of 16 dual AMD Opteron 248 workstations. Each
node comes equipped with approximately 5 GB of internal
memory and approximately 120 GB of external memory. The
workstations are connected to each other via a dedicated
1000Base-T Ethernet network running on top of a switch that
has a switching capacity of 48 Gb/s. On a per workstation
basis, the effective disk I/O bandwidth is approximately one-
half of the effective network I/O bandwidth.

The cluster runs the RedHat Enterprise 3.3 Linux operating
system. All compilation is done using GCC 3.2 with the -O3
optimization flag.

D. Results

We ran FBFT-DDDEM and P-FBFT-DDDEM on the implicit
graph of the 2 × 7 instance of STP and on the implicit
graph of the 18-disk instance of TOH. These were the largest
instances of either problem that we were able to tackle using
FBFT-DDDEM. For simplicity, we refer to the execution of the
breadth-first traversal of the implicit graph of the 2×7 instance
of STP simply as the STP problem and to the execution of
the breadth-first traversal of the implicit graph of the 18-disk
instance of TOH simply as the TOH problem. In the case of
STP, 4.36×1010 records are expanded and 5.92×1010 records
are generated. In the case of TOH, 6.87 × 1010 records are
expanded and 2.91× 1011 records are generated.

FBFT-DDDEM took 20.0 hours to solve STP and 47.9 hours
to solve TOH. Figure 2 reports the speedup attained by P-
FBFT-DDDEM over FBFT-DDDEM on the two problems for
all combinations of four values of n and three values of α
where n is either 2, 4, 8, or 16, and where α is either γ/n,
γ/n2, or γ/n3. The value of γ is 226 and corresponds to the
capacity of T in ExpandEM. We found this value of γ to yield

the best overall performance on the two problems in a series
of tests involving FBFT-DDDEM. The use of α = γ/nc results
in approximately nc samples per run.

In instances where n is either 2 or 4 speedup ranges from
near linear to linear. In instances where n is either 8 or
16 speedup ranges from near linear to above linear. In all
instances for a given value of n, the use of a smaller α leads
to a higher speedup.

E. Analysis of Load Balancing

Because P-FBFT-DDDEM is a parallel algorithm its profi-
ciency at distributing the workload is important. We assess the
proficiency of the algorithm at distributing the workload by
assessing its proficiency at distributing the disk I/O workload
in phases 1 and 5. This approach is prudent because phases
1 and 5 account for nearly all of the execution time in all
experiments — even in the experiments where n is 16 and α
is γ/n3 — and because all experiments are disk I/O bound.
Furthermore, the degree to which the disk I/O workload is
distributed in phases 1 and 5 is indicative of the degree to
which the computational workload is distributed in phases 1
and 5.

We focus on the experiments where n is 16. For each
experiment and for each of phase 1 and phase 5, we examine
the disk I/O distribution ratio for each workstation. The disk
I/O distribution ratio of a workstation is the number of disk I/O
operations performed by the workstation over the maximum
number of disk I/O operations performed by any workstation.
The closer that the disk I/O distribution ratios are to one the
better the workload distribution. Figures 3 through 6 report the
disk I/O distribution ratios. In these figures a circle is divided
into 16 equally sized wedges. Each wedge corresponds to one
of the 16 workstation. The ratio of the area of the wedge that is
gray over the area of the wedge is the disk I/O distribution ratio
for the workstation. Thus, the larger the portion of the circle
that is gray the better the workload distribution. From these
figures two things are evident: (1) the algorithm is proficient

(a) STP. (b) TOH.

Fig. 7. The ratio of the wall-time execution time over the process-time execution time (execution-time ratio) and the total number of disk-sector read
operations and write operations (total sector operations) in the P-FBFT-DDDEM experiments where α is γ/n3.

at distributing the workload, and (2) the use of a smaller α
results in better workload distribution.

The degree to which the speedup improves as a result of
using a smaller α correlates to the degree to which workload
distribution improves as a result of using a smaller α. Using a
α of γ/n2 instead of a α of γ/n results in a large improvement
in speedup while using a α of γ/n3 instead of a α of γ/n2

results in a marginal improvement in speedup. Concordantly,
using a α of γ/n2 instead of a α of γ/n results in a large
improvement in workload distribution while using a α of γ/n3

instead of a α of γ/n2 results in a marginal improvement in
workload distribution.

F. Analysis of Above Linear Speedups

An investigation of disk I/O sub-system activity reveals that
P-FBFT-DDDEM is able to achieve above linear speedups over
FBFT-DDDEM because of the caching of external memory
in internal memory that is done by the operating system.
Recall that X i

d−1
and each run in Yi

d−1
resides in the external

memory of workstation i. As n increases the size of these runs
becomes smaller while the portion of these runs that can be
cached in internal memory becomes larger. As a result, as n
increases the number of external-memory accesses that hit the
external-memory cache increases and the algorithm becomes
less disk I/O bound. Figure 7 reports total sector operations
and the execution-time ratio for the runs where α is γ/n3.
Total sector operations is the sum of the total number of
disk sector read operations and write operations performed
by all workstations. To obtain the execution-time ratio for
an execution with n workstations, we compute the ratio of
the wall-clock execution time over the process execution time
for each workstation and then take the maximum over the n
workstations. The figure illustrates the effect of the algorithm
becoming less disk I/O bound as n increases as a result of the
number of disk I/O operations that hit the external-memory
cache increasing as n increases. In particular, as n increases
both the total sector operations and the execution-time ratio
decrease.

VI. RELATED WORK

External-memory algorithms and data structures play an
important role in applications that process large amounts of
data [13]. Classic examples of such applications include file
systems and relational databases. Because of the importance
of these applications, external-memory algorithms and data
structures are a well researched area of computing science.
In a survey paper, Vitter uses the widely adopted parallel
disk model to perform asymptotic analysis of the efficiency
of external-memory versions of fundamental algorithms and
data structures [15].

The pioneering work on the frontier graph-search and graph-
traversal algorithms can be attributed to Korf [7]. In a work
addressing the efficient utilization of external memory in
frontier graph-search and graph-traversal algorithms Korf out-
lines the FBFT-DDD and FBFT-DDDEM algorithms [9]. Korf
and Zhang outline a method for dealing with non-bidirected
directed graphs in a frontier graph-traversal algorithm and a
method for obtaining a minimum-length path from one vertex
to another using a frontier graph-traversal algorithm [11]. Both
of these methods are readily applicable to P-FBFT-DDDEM.
Zhou and Hansen [17] outline a method for using a breadth-
first traversal algorithm to mimick the A* algorithm [5] in
graphs featuring uniform cost edges. Their method is also
readily applicable to P-FBFT-DDDEM.

The techniques of runtime data consumption patterns [16]
and informed internal-memory management [12] produce per-
formance gains that are orthogonal to the improvements gener-
ated by P-FBFT-DDDEM and thus these two techniques can be
incorporated in a future implementation of P-FBFT-DDDEM.
Phases 2 through 5 of P-FBFT-DDDEM can be classified as
an augmented instance of parallel two-pass disk-to-disk sorting
based on sample sorting [14]. Previous work on parallel two-
pass disk-to-disk sorting has been based on bucket sorting [1].
The use of the sample sorting approach instead of the bucket
sorting approach is motivated by the proficiency of sample
sorting to deal with large keys and arbitrary key distributions.
Whether the sample sorting or the bucket sorting approach is

used, performance is limited by the bandwidth available for
disk-to-disk data streaming [2].

Korf and Schultze present a P-FBFT-DDDEM algorithm that
is designed to run on a shared memory-system [10]. Their
algorithm employs a workload distribution strategy that relies
on a perfect-hashing function that is specified by the user. In
contrast, our algorithm employs a workload distribution strat-
egy that relies on intervals that are automatically computed by
the algorithm. As a result, our algorithm is a general-purpose
solution whereas theirs is not: perfect-hashing functions are
not always feasible or practical. In addition, because our
algorithm is based on sorting, it is readily extensible to support
variable length records. Finally, by virtue of our algorithm
being designed for a distributed-memory system, we believe
that our algorithm has better scalability.

VII. CONCLUSION

In this paper we present a parallel external-memory algo-
rithm for performing a breadth-first traversal of an implicit
graph on a cluster of workstations. The algorithm distributes
the workload according to intervals that are computed at run-
time via a sampling-based process. We present an experimental
evaluation of the performance of the algorithm where we
compare its performance to that of its sequential counterpart
on the implicit graphs of two classic planning problems. The
speedups attained by the algorithm are consistently near linear
and frequently above linear. Analysis reveals that the algorithm
is proficient at distributing the workload and that increasing
the number of samples obtained by the sampling-based process
improves workload distribution. Analysis also reveals that the
algorithm benefits from the caching of external memory in
internal memory that is done by the operating system.

The main strength of the algorithm is that its workload
distribution strategy is both adaptive and automated. Con-
sequently, the algorithm is readily applicable to arbitrary
implicit-graphs. In addition, the algorithm does not require
the user to specify the the manner in which the workload
is to be distributied, e.g. by specifying a workload-mapping
function. Another strength of the algorithm is its ability to
harness the aggregate external-memory capacity of a cluster
of workstations. The algorithm can be used to tackle implicit
graphs that are otherwise too large to be tackled on a single
workstation.

The performance attained by the algorithm on a cluster of
workstations consisting of sixteen nodes running on top of
a commodity network bodes well for the scalability of the
algorithm on larger clusters of workstations especially on those
running on top of more capable networks.

ACHNOWLEDGEMENTS

This research is supported by grants from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC),
the Canadian Foundation for Innovation (CFI), and by IBM.

REFERENCES

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M. Heller-
stein, and D. A. Patterson. High-performance sorting on networks of
workstations. In Proceedings ACM SIGMOD International Conference
on Management of Data, pages 243–254, 1997.

[2] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. The architectural costs of streaming
I/O: a comparison of workstations, clusters, and SMPs. In Proceedings
of the Fourth International Symposium on High-Performance Computer
Architecture, pages 90–101, 1998.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[4] A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics.
Journal of Artificial Intelligence Research, 22:279–318, 2004.

[5] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions of Systems
Science and Cybernetics, SSC-4(2):100–107, July 1968.

[6] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 1999.

[7] R. E. Korf. A divide and conquer bidirectional search: first results. In
Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1184–1189, 1999.

[8] R. E. Korf. Delayed duplicate detection: extended abstract. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, pages 1539–1541, 2003.

[9] R. E. Korf. Best-first frontier search with delayed duplicate detection.
In Proceedings of the Twentieth National Conference on Artificial
Intelligence, pages 650–657, 2004.

[10] R. E. Korf and P. Schultze. Large-scale parallel breadth-first search.
In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, pages 1380–1385, 2005.

[11] R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to
optimal sequence alignment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pages 910–916, 2000.

[12] P. Larson and G. Graefe. Memory management during run generation
in external sorting. In Proceedings ACM SIGMOD International
Conference on Management of Data, pages 472–483, 1998.

[13] U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory
Hierarchies, Advanced Lectures, volume 2625 of Lecture Notes in
Computer Science. Springer, 2003.

[14] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal
of Paralle and Distibuted Computing, 14(4):361–372, 1992.

[15] J. S. Vitter and E. A.M. Shriver. Algorithms for parallel memory I:
two-level memories. Technical report, Brown University, 1992.

[16] L. Zheng and P. Larson. Speeding up external mergesort. IEEE
Transactions on Data and Knowledge Engineering, 8(2):322–332, 1996.

[17] R. Zhou and E. A. Hansen. Breadth-first heuristic search. In Proceedings
of the Fourteenth International Conference on Automated Planning and
Scheduling, pages 92–100, 2004.

