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Abstract

This paper takes a new look at two sampling
schemes commonly used to adapt machine al-
gorithms to imbalanced classes and misclas-
sification costs. It uses a performance anal-
ysis technique called cost curves to explore
the interaction of over and under-sampling
with the decision tree learner C4.5. C4.5
was chosen as, when combined with one of
the sampling schemes, it is quickly becom-
ing the community standard when evaluat-
ing new cost sensitive learning algorithms.
This paper shows that using C4.5 with under-
sampling establishes a reasonable standard
for algorithmic comparison. But it is recom-
mended that the least cost classifier be part of
that standard as it can be better than under-
sampling for relatively modest costs. Over-
sampling, however, shows little sensitivity,
there is often little difference in performance
when misclassification costs are changed.

1. Introduction

In this paper, we experimentally study the two most
common sampling schemes which are used to adapt
machine algorithms to imbalanced classes and misclas-
sification costs. We look at under-sampling and over-
sampling that decrease and increase respectively the
frequency of one class in the training set to reflect the
desired misclassification costs. These schemes are at-
tractive as the only change required is to the training
data rather than to the algorithm itself. It is hard
to justify a more sophisticated algorithm if it cannot
outperform existing learners using one of these sim-
ple sampling schemes. Here, we study the sampling
schemes and how they affect the decision tree learner

C4.5 (Quinlan, 1993). We chose C4.5 not only be-
cause it is one of the most commonly used algorithms
in the machine learning and data mining communities
but also because it has become a de facto commu-
nity standard against which every new algorithm is
judged. More recently, as research into cost sensitiv-
ity and class imbalance have become more prevalent,
C4.5 combined with under-sampling or over-sampling
is quickly becoming the accepted baseline to beat
(Domingos, 1999; Pazzani et al., 1994).

Using our own performance analysis technique, called
cost curves (Drummond & Holte, 2000a), discussed
briefly in the next section, we show that under-
sampling produces a reasonable sensitivity to changes
in misclassification costs and class distribution. On
the other hand, over-sampling is surprisingly ineffec-
tive, often producing little or no change in performance
as the training set distribution is changed. We go on to
explore which aspects of C4.5 result in under-sampling
being so effective and why they fail to be useful when
over-sampling. We have previously shown that the
splitting criterion has relatively little effect (Drum-
mond & Holte, 2000b) on cost sensitivity. Breiman
et al. (1984, p.94) observed that costs and class dis-
tribution primarily affect pruning. Still, we did not
find that this was the main cause of the difference be-
tween the two sampling schemes. Over-sampling tends
to reduce the amount of pruning that occurs. Under-
sampling often renders pruning unnecessary. By re-
moving instances from the training set, it stunts the
growth of many branches before pruning can take ef-
fect. We find that over-sampling can be made cost-
sensitive if the pruning and early stopping parameters
are set in proportion to the amount of over-sampling
that is done. But the extra computational cost of us-
ing over-sampling is unwarranted as the performance
achieved is, at best, the same as under-sampling.



2. Cost Curves

In this section, we discuss cost curves at an intu-
itive level, hopefully sufficient for the reader to under-
stand the experimental results. We refer the interested
reader to our paper (Drummond & Holte, 2000a) for
a more in-depth discussion of these curves. The bold
continuous line in Figure 1 is an example of a cost
curve produced when under-sampling the training set.
Ignoring the outer (parenthetical) labels on the axes at
present, this represents the error rate of C4.5 for the
full range of class distributions. The x-value of each
point on the curve indicated by a black circle is the
fraction of the training set that is positive, P (+). The
y-value is the expected error rate of the decision tree
grown on each of these training sets. To estimate er-
ror rates for other class distributions, for intermediate
x-values, linear interpolation between points is used.

If a confusion matrix is generated for each training set
distribution, we can determine the error rate on the
positive and negative instances separately. Knowing
these error rates allows the performance for each de-
cision tree to be assessed across all class distributions.
The performance of each individual tree is represented
in Figure 1 by a dotted straight line. The performance
of the tree at the training set distribution is indicated
by a black circle. But this in just one point on the line,
other points give the classifier’s performance for quite
different distributions. From this perspective a learn-
ing algorithm’s cost sensitivity has two components:
(1) producing a good range of classifiers suitable for
different class distributions; (2) selecting the right clas-
sifier for the particular distribution. The dotted lines
in Figure 1 have a wide range of gradients, indicating
a wide variety of different trade-offs in the number of
positive and negative examples correctly classified. So
under-sampling has produced a good range of classi-
fiers. We can decide whether it has chosen the right
classifier by seeing if the line with the minimum error
rate at any particular probability has been chosen. 1

Generally this has happened, but we do notice that
there is a better classifier from a probability of 0 to 0.2
and another one from a probability of 0.8 to 1. The
first is the classifier that always predicts a negative,
so has zero error rate when the probability of positive
is zero (all instances are negative), and an error rate
of one when the probability of positive is one (all in-
stances are positive). It is represented by the diagonal

1as emphasized in Drummond and Holte (2000a) it is
not necessarily optimal to have the class distribution in the
training set identical to the class distribution that will be
used in testing. Although this paper ignores this important
issue, the conclusions drawn apply in the more general case.

continuous line going from (0,0) to (1,1). The sec-
ond is the classifier that always predicts positive and
forms the opposite diagonal. The triangle underneath
these two lines is the majority classifier that chooses
the most common class. We feel it is important to take
particular note of how the learning algorithm performs
with respect to this classifier. Using an algorithm with
a performance that is worse than such a trivial clas-
sifier is of doubtful merit. For this data set, C4.5 is
only useful when one class is less than four times more
frequent than the other class.
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Figure 1. An Example Cost Curve

It is now commonplace to deal with class imbalances
much more extreme than 4:1. But it is not class dis-
tribution alone which must be considered it is also the
cost of misclassification. By applying a different inter-
pretation to the x- and y-axes in the cost curve plot, it
can be seen to represent the expected cost of a classifier
across all possible choices of misclassification costs and
class distributions. We begin by relabeling the y-axis
in Figure 1 so that instead of representing error rate it
represents expected cost. But like error rate it is nor-
malized so that the best performance is zero and the
worst performance is one. This we call the normalized
expected cost. The x-axis is also relabeled to include
misclassification costs. We multiply the original value,
P (+), by the cost of misclassifying a positive instance
as negative. and normalize so that x ranges from 0 to
1. We call the normalized version of C(−|+) ∗ P (+)
the “probability cost function”, PCF (+).

There are two simplifications worthy of note. When
misclassification costs are equal, C(−|+) = C(+|−),
this definition of x reduces to P (+) our original mea-
sure of class distribution. When the class frequencies
are equal, P (+) = P (−), this definition reduces to
C(−|+)/(C(−|+) + C(+|−)). Here the misclassifica-



tion costs are normalized so that, like the probabilities,
they sum to one. In the more general case, we must
consider variation in both costs and class frequencies
at the same time. So in Figure 1 even if the class dis-
tribution is worse than 4:1, if the misclassification cost
for the minority class is greater than that for the ma-
jority class this will tend to pull us back towards the
center of the diagram. If the misclassification costs ex-
actly balance the class distribution, we would be at the
center and have potentially the maximum advantage
over the majority, or least cost, classifier.

To explore the differences between the two sampling
schemes we generate curves based on decision trees
grown on training sets with the class distribution
changed by adding or deleting instances. For under-
sampling a fraction of the instances of one class are
randomly deleted to form the new training set. Under-
sampling is done on each training set produced by 10-
fold cross-validation, which is repeated 50 times to re-
duce sampling variance. For over-sampling, instances
of one of the classes are duplicated up to the floor
of the desired ratio. The remaining fraction is chosen
randomly without replacement from the training data.
Thus if we had a ratio of 4.35 to 1, the instances of one
class would be duplicated 4 times and then a random
sample would make up the remaining 0.35. For over-
sampling, 10-fold cross-validation is repeated only 10
times as the sampling variance is smaller.

3. Comparing the Sampling Schemes

In this section, we compare the performance of un-
der and over-sampling on 4 data sets, three from the
UCI Irvine collection (Blake & Merz, 1998) and one
from earlier work by one of the authors (Kubat et al.,
1997). We chose these data sets as they produced
cost curves that captured all the qualitative features
we observed in a larger set of experiments (including
other UCI data sets: vote, hepatitis, labor, letter-k
and glass2). For these data sets, under-sampling com-
bined with C4.5 is a useful baseline to evaluate other
algorithms. Over-sampling, on the other hand, is not
to be recommended when used with C4.5. Even with
large changes to the training set distribution it often
produced classifiers little different in performance to
the one trained on the original distribution. Thus it
largely fails to achieve its very purpose.

In the following figures, we have scaled the y-axis dif-
ferently for each data set to improve clarity and do
not show the performance of individual classifiers for
under-sampling only for over-sampling. We also in-
clude a vertical dashed line at the x-value correspond-
ing to the fraction of positive examples in the data

set. The bold dashed line in Figure 2 shows the per-
formance of C4.5 using under-sampling on the sonar
data set. Sonar has 208 instances, 111 mines and 97
rocks, with 60 real valued attributes. Under-sampling
produces a cost curve that is reasonably cost sensitive,
it is quite smooth and largely within the lower triangle
that represents the majority, or least cost, classifier.
The bold continuous curve represents over-sampling.
What is most striking about it is that it is almost
straight. The performance varies little from that at
data set’s original frequency, indicated by the vertical
dotted line. If we look at the dotted lines, represent-
ing the performance of the trees generated using over-
sampled training sets, we see remarkably little differ-
ence between them.
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Figure 2. Sonar: Comparing Sampling Schemes

Figure 3 shows the different sampling schemes for the
Japanese credit data set. It has 690 instances, 307
positive and 383 negative, with 15 attributes, 6 real
and 9 nominal. For under-sampling, again the curve is
reasonably smooth and this time remains completely
within the triangle representing the majority, or least
cost, classifier. It is still noticeable, however, for a
PCF(+) value of 0 to 0.1 and 0.9 to 1.0 that it is only
marginally better. So for class or cost ratios of greater
than 9:1 there is little to be gained over using a trivial
classifier. Here the bold curve for over-sampling shows
some sensitivity to costs. The dotted lines, represent-
ing individual trees, show a reasonable diversity. But
overall the expected cost, particularly when misclassi-
fication costs or class frequencies are severely imbal-
anced, is a lot worse than when under-sampling.

Figure 4 shows the under-sampling schemes for the
breast cancer data set from the Institute of Oncology,
Ljubljana. It has 286 instances, 201 non-recurrences
and 85 recurrences, with 9 nominal attributes. For this
data set, C4.5 only just outperforms the least cost clas-
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Figure 3. Credit: Comparing Sampling Schemes

sifier at the original frequency of the data set. There is
a reasonable diversity in the individual trees, but this
produces little real advantage in using C4.5, except
perhaps if the misclassification costs balance the dif-
ference in class frequencies. Still under-sampling does
not misbehave badly, the curve mainly stays within
the triangle for the least cost classifier.
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Figure 4. Breast Cancer: Under-sampling

Figure 5 compares the costs curves for under- and over-
sampling on this data set. The bold over-sampling
curve tracks that for under-sampling when PCF (+)
exceeds the frequency in the data set. However, when
PCF (+) is less than the original frequency the curve
quickly flattens out and the dotted lines representing
individual trees become bunched.

Figure 6 shows the different sampling schemes for the
sleep data set. It has 840 instances, 700 1’s and 140 2’s,
with 15 real valued attributes. Here, under-sampling
produces a reasonably cost sensitive curve, that is
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Figure 5. Breast Cancer: Comparing Sampling Schemes

smooth and stays within the triangle of the least cost
classifier. But there is little diversity in the individual
trees produced when over-sampling and the resulting
cost curve is quite straight. Interestingly though when
the costs or class frequencies become extremely imbal-
anced we suddenly start to see some improvement in
expected cost.
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Figure 6. Sleep: Comparing Sampling Schemes

4. Investigating Over-sampling Curves

In the previous section, it was apparent that the cost
sensitivity for over-sampling was much less than that
for under-sampling. At least with hindsight this is not
surprising. We might expect over-sampling to limit
the amount of pruning. Increasing the number of
instances of the already larger class on a particular
branch should make pessimistic pruning reluctant to
remove that branch. For the credit data set, though,
over-sampling did show some degree of cost sensitivity,



pruning and the early stopping criterion were still hav-
ing some effect. Figure 7 shows the cost curve and lines
for individual trees once pruning is disabled. There is
still some variability in the performance of individ-
ual trees but it is much reduced, resulting in a much
straighter cost curve. The variability is further re-
duced when the stopping criterion is decreased to 1,
as shown in Figure 8. The cost curve is now almost
straight except at the far right hand side where the
expected cost decreases appreciably.
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Figure 7. Credit: Disabling Pruning
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Figure 8. Credit: Disabling Stopping Criterion

The over-sampling cost curve for the sleep data set also
exhibited this same tendency, being largely straight
except when PCF (+) is much less than the original
frequency of the data set. This curvature was traced to
the special stopping criterion for continuous attributes
included in C4.5. The code for this criterion is shown
in Figure 9. As the number of known items increases,
the minimum number of instances allowed on each side
of the split increases from the normal stopping crite-

rion to a maximum of 25. As we are looking at two
class problems (MaxClass = 1) and we have set the
stopping criterion to 1 (MINOBJS = 1) this has no ef-
fect until the number of known items reached 20. But
as more and more samples are added through over-
sampling this minimum number increases, thus pre-
venting the growth of some branches of the tree. If
this feature is disabled, making the minimum number
1, we remove the down turn of the cost curve, as shown
for the sleep data set in Figure 10.

MinSplit = 0.10 * KnownItems / (MaxClass + 1);
if ( MinSplit <= MINOBJS ) MinSplit = MINOBJS;
else if ( MinSplit > 25 ) MinSplit = 25;

Figure 9. Special Stopping Criterion
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Figure 10. Sleep: Disabling Special Stopping Criterion

Generally, for data sets where there was appreciable
pruning on the tree at the original frequency oversam-
pling produced some overall cost sensitivity. This was
true for the both the credit and breast cancer data sets.
Turning off pruning and the standard stopping crite-
rion resulted in almost flat costs curves. For data sets
with continuous attributes (all bar the breast cancer
data set) disabling the special stopping criterion also
removed the small additional sensitivity shown at the
ends of the curves. Surprisingly though for the sonar
data set, where the cost curve was initially flat, remov-
ing this special stopping criterion actually caused the
curve to turn up at the end. In this case, with many
extra instances added by over-sampling, the trees ap-
peared to be much more complex but somewhat less
accurate across the whole distribution. Why this oc-
curred is the subject of future work.

Throughout this paper we have not shown end points
for the cost curves for over-sampling, values when
PCF(+) is one or zero. For under-sampling, the limit



at either end is to have a single class. In this case
C4.5 will simply choose that class and therefore have
a normalized expected cost of zero. For over-sampling,
the minority class never disappears entirely, the ratio
just gets larger and larger. Experiments increasing
the degree of over-sampling were stopped due to the
excessive size of the training set. Using very large in-
ternal weights (c. 100,000,000) does produce just the
majority classifier. All the instances appear to be of
one class, an error made by trying to add two numbers
with vastly different exponents but both represented
as floats.

5. Investigating Under-sampling Curves

If disabling pruning and the early stopping criterion re-
sulted in straighter curves for over-sampling, it would
be tempting to think it might have the same effect
when under-sampling. But this turns out not to be
the case.

Figure 11 shows cost curves for the sonar data set us-
ing under-sampling as the different features of C4.5 are
disabled. Surprisingly, we see no real change when we
disable pruning, nor do we see a change when the early
stopping criterion is reduced to one. All the curves are
indistinguishable from the original curve discussed in
Section 3. The apparently bold line, the lowest curve
in Figure 11, is these three curves overlapping. We do
get a change by disabling the special stopping crite-
rion, the dashed line, but it is very small. We get a
reasonably large change when we disable the threshold
for continuous attributes (log(# distinct instances)/#
instances) added in release 8 (Quinlan, 1996). But
the major change is observed within the triangle de-
fined by the least cost classifier. Although the curves
stray further outside this triangle, they still maintain
roughly the same shape and certainly do not become
as straight as those produced when over-sampling.

Pruning has a much larger effect on classifier perfor-
mance for the Japanese credit data set. When pruning
is turned off, we get the dashed line shown in Figure 12.
Setting the stopping criterion to one also has a sizeable
effect. But again both effects show up mainly while the
curve is inside the least cost classifier triangle and the
basic shape of the curves is maintained. For this data
set, disabling the special stopping criterion and the
release 8 threshold produce no appreciable effect. So
disabling these features did not produce the same per-
formance for under-sampling as over-sampling. But
if we represent misclassification costs and class fre-
quencies by means of internal weights within C4.5, dis-
abling these features does seem to make the difference.
Up-weighting, analogous to over-sampling, increases
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Figure 11. Sonar: Under-sampling

the weight of one of the classes keeping the weight
of the other class at one. Down-weighting, analogous
to under-sampling, decreases the weight of one of the
classes keeping the weight of the other class at one.
Figure 13 compares the performance of the sampling
schemes (the continuous lines) to the weighting (the
dashed lines) for the sonar data set. The curve for
up-weighting is very close to that for over-sampling,
perhaps not surprising as in over-sampling we dupli-
cate instances. The curve for down-weighting is close
but sometimes better than that for under-sampling.
This was also true for the other data sets.
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Figure 14 shows the effect of disabling various factors
using the down-weighting scheme. To produce this
set of curves we first disabled the threshold added in
release 8 as this had a strong interaction with down-
weighting. Now we can see that for the sonar data set
turning off pruning and then the stopping criterion
does produce a curve that is very straight. Although,
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Figure 13. Sonar: Comparing Weighting and Sampling

as we noted before when over-sampling the sonar data
set, if the special stopping criterion is removed the line
curves up at the ends.

If the performance curves of under-sampling and
down-weighting are similar and these internal factors
have the required effect when down-weighting why do
they seem not to have the same effect when under-
sampling? The answer seems to be that much of the
cost sensitivity when under-sampling comes from the
actual removal of instances. When we turned off many
of the factors when down weighting, the branch was
still grown and the region still labeled. When the in-
stances are removed from the training set this cannot
happen.
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Figure 14. Sonar: Disabling Factors when Weighting

6. Improving Over-sampling

We have seen that pruning and the stopping criterion
often have a large impact on cost sensitivity. But

simply disabling these factors did not make under-
sampling as ineffective as over-sampling. Here we show
that increasing the amount of pruning and the influ-
ence of the early stopping criterion in relation to the
number of duplicates in the training set when over-
sampling does have a strong effect. Figure 15 illus-
trates the effect on the sonar data set.
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Figure 15. Sonar: Changing Defaults for Over-sampling

Our change to the default values are based on the ratio
used when over-sampling the training set. The early
stopping criterion (the -m switch in C4.5) is set to
2 times this ratio and the pruning confidence factor
(the -c switch in C4.5) is set to 0.25 divided by the
ratio. So, if one class is over-sampled by 2.5 times then
the stopping criterion is 5 and the confidence factor is
0.1. This produces the bold continuous curve in Figure
15 for the sonar data. This is remarkably similar to
the dashed curve for under-sampling, although there
is some difference on the right hand side of the figure.
On the other data sets the difference in much smaller.
In fact, on the credit data set as shown in Figure 16
the difference in negligible.

7. Discussion

Generally we found that using under-sampling estab-
lished a reasonable baseline for algorithmic compar-
ison. However, one problem with under-sampling is
that it introduces non-determinism into what is other-
wise a deterministic learning process. The values ob-
tained from cross-validation give the expected perfor-
mance of a classifier based on a random subsample of
the data set. With a deterministic learning process any
variance from the expected performance that occurs
when deploying the classifier is largely due to testing
on a limited sample of the true data. But for under-
sampling there is also variance due to non-determinism
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Figure 16. Credit: Changing Defaults for Over-sampling

of the under-sampling process. If our measure of suc-
cess is purely the difference in the expectations then
this not important. But the choice between two classi-
fiers might also depend on the variance and then using
under-sampling might less desirable.

8. Related Work

Most relevant to this paper are previous works com-
paring under-sampling and over-sampling. This sur-
vey will focus on the results for variants of C4.5
since they are most closely related to the present pa-
per. Domingos (1999) reports that, on 2-class prob-
lems, C4.5-Rules produces lower cost (better) clas-
sifiers using under-sampling than it did using over-
sampling. Ling and Li (1998) compare over-sampling
and under-sampling for boosted C4.5 (with certainty
factors added) on three different direct-marketing data
sets and report that under-sampling produces a larger
(better) lift index, although extreme over-sampling
performs almost as well.

Japkowicz and Stephen (2002) compare random and
systematic methods of over-sampling and under-
sampling. In the artificial domains studied, under-
sampling was ineffective at reducing error rate. Over-
sampling was effective, but most effective was supply-
ing an appropriate misclassification cost matrix. The
reason for this study coming to the opposite conclusion
of all other studies is not clear.

9. Conclusions

In this paper, we have used cost curves to explore the
interaction of over and under-sampling with the de-
cision tree learner C4.5. We have shown that under-
sampling produces a reasonable sensitivity to changes

in misclassification costs and class distribution. On
the other hand, over-sampling is surprisingly ineffec-
tive, often producing little or no change in perfor-
mance. But it is noteworthy that representing these
changes internally by down-weighting gives the best
performance overall.
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