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Abstract

The heuristics used for planning and search often take the
form of pattern databases generated from abstracted versions
of the given state space. Pattern databases are typically stored
as lookup tables with one entry for each state in the abstract
space, which limits the size of the abstract state space and
therefore the quality of the heuristic that can be used with a
given amount of memory. In the AIPS-2002 conference Ste-
fan Edelkamp introduced an alternative representation, called
symbolic pattern databases, which, for the Blocks World, re-
quired two orders of magnitude less memory than a lookup
table to store a pattern database. This paper presents experi-
mental evidence that Edelkamp’s result is not restricted to a
single domain. Symbolic pattern databases, in the form of Al-
gebraic Decision Diagrams, are one or more orders of magni-
tude smaller than lookup tables on a wide variety of problem
domains and abstractions.

Introduction
Heuristic search planners (Bonet and Geffner 1999; Hoff-
mann and Nebel 2001) and single-agent search algorithms
(Hart, Nilsson, and Raphael 1968; Korf 1985) require a
heuristic function estimating the distance from any given
state to the nearest goal state. An effective method for
defining heuristics is to abstract the given state space and
to use exact distances in the abstract space as estimates of
the distances in the original space (Prieditis 1993). If all
the abstract distances are precomputed and stored so that
they can be efficiently looked up when a heuristic value is
needed during search, the data structure storing the heuristic
is called a pattern database (PDB) (Culberson and Schaeffer
1998). Edelkamp (2001) introduced PDBs, and an abstrac-
tion method for defining them, to the planning community.

PDBs are most often stored as hash tables, but alternative
data structures are possible. Edelkamp (2002) proposed us-
ing Binary Decision Diagrams (BDDs) to represent PDBs,
and called PDBs represented in this way “symbolic pattern
databases”. He reported that symbolic PDBs for the Blocks
World required two orders of magnitude less memory than
the conventional hash table representation.

This paper examines the generality of Edelkamp’s re-
sult using Algebraic Decision Diagrams (ADDs) instead of
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BDDs. We ask this question: does an ADD representation
for PDBs usually require significantly less memory than a
hash table? Our investigation is experimental: we com-
pare the memory required by the ADD representation with
the memory required for a hash table representation with
a perfect hashing function on a wide variety of problem
domains, problem instances, and abstractions; preliminary
performance evaluations of ADD-based PDBs are also con-
ducted. Our main finding is that ADDs are generally a much
more compact representation of a PDB than a hash table.

This paper focuses on reducing the memory needed to
store a PDB without changing its contents. This is called
lossless compression, in contrast to lossy compression,
which has been the primary focus of previous research on
PDB compression (Felner et al. 2007; Samadi et al. 2008).
Lossy techniques in conjunction with the ADD representa-
tion would very likely result in significantly improved com-
pression with only minor impact on the heuristic quality, but
that topic is beyond the scope of this paper.

Algebraic Decision Diagrams (ADDs)
An ADD (R.I. Bahar et al. 1993) is a directed acyclic graph
representing a numerical function over a set of boolean vari-
ables, and so is perfectly suited to store the contents of a
PDB when states are represented with binary variables, as
is done in planning domains. Conceptually the ADD can be
viewed as a tree with n + 1 layers if there are n variables.
Each internal node in the tree at level i tests the boolean vari-
able vi, and has two outgoing edges leading to nodes at level
i+1, one associated with the value true for vi, the other asso-
ciated with the value false. Each leaf node is associated with
an output value of the function being represented. Nodes in
the tree are then removed or merged together, and the vari-
ables can be reordered, to get a more compact ADD. The
function value is computed for a given input by traversing
the ADD from top to bottom following the appropriate edge
for the input’s values of each variable node encountered.

There are several software packages implementing
ADDs; we used the CUDD package (Somenzi 2005) aug-
mented with our own “read-only” ADD data structure to
reduce the number of bytes needed for each ADD node
from 20 to 10 for the final representation of the PDB. These
packages implement techniques for reducing the size of the
ADD, and methods for re-ordering the variables to improve



the effectiveness of the size-reducing methods. For the ex-
periments in this paper the size 3 window permutation re-
ordering method from the CUDD package was used, al-
though other reordering methods were similarly effective.

In order to save even more space we devised and applied
a final post-processing technique to remove nodes in the
ADD whose only purpose is to distinguish abstract states
that are reachable from the goal state from those that are
not. The technique removes every internal ADD node that
has one child that is a terminal node representing an un-
reachable state, pointing the parents of that node directly to
the other child node. While this technique can be safely
applied to the domains studied in this paper, and can re-
sult in significant savings, in domains that contain dead-
ends the state encodings that are modified could correspond
to dead-ends, or states that it is not possible to reach the
goal from, which are very useful to detect. In addition to
the nodes directly removed by this technique it often en-
ables further simplifications to be made, resulting in an even
smaller ADD. This simple technique often produces sub-
stantial memory savings, and in certain cases is required to
make the ADD smaller than the hash table. For example,
without this technique the ADD for the 13-disk Towers-of-
Hanoi with Abs=12 (see Table 3 and the related text) re-
quires 93,057,910 bytes, which is more than the 67,108,864
bytes required by the hash table, whereas with the technique
the ADD requires only 41,292,790 bytes.

Abstraction Technique
The technique used in this paper for creating abstrac-
tions is the standard one for PDDL domains introduced by
Edelkamp (2001; 2002). The first step is to identify groups
of atoms that are mutually exclusive, i.e., in each reachable
state at most one of the atoms in a group can be true. For
example, Table 1 shows the 6 groups of mutually exclu-
sive atoms for the 3-action (handless) Blocks World with 3
blocks (a, b, and c). Note that the groups are of two “types”.
Groups 1 to 3 are one type, representing the restriction that
a block can have at most one block on it at a time. Groups
4 to 6 are the other type, representing the constraint that in
a given state a block can be on top of one, and only one,
other thing (either the table or one of the other blocks). We
used the method in HSP for identifying mutually exclusive
groups of atoms automatically (Bonet and Geffner 1999).
The groups found by this technique are guaranteed to be mu-
tually exclusive, but there is no guarantee the technique will
find all pairs of mutually exclusive atoms.

Group atoms in the group
Group 1 (clear a), (on b a), (on c a)
Group 2 (clear b), (on a b), (on c b)
Group 3 (clear c), (on a c), (on b c)
Group 4 (on-table a), (on a b), (on a c)
Group 5 (on-table b), (on b a), (on b c)
Group 6 (on-table c), (on c a), (on c b)

Table 1: Blocks world groups of mutually exclusive atoms

Once the mutually exclusive groups have been identified,
an abstraction is defined by selecting some of the groups.
All atoms that are not in the selected groups are removed
from the state descriptions and operator definitions to cre-
ate the abstract states and operators. A PDB is then created
by applying the abstract operators, in retrograde fashion, to
the abstract goal state(s). For this we used an ADD version
of the symbolic search technique described by Edelkamp
(2002). The distance to each abstract state thus reached is
recorded in the PDB. It is possible for this retrograde pro-
cess to produce “spurious” abstract states, i.e., ones that do
not correspond to any reachable state in the original state
space. In general, there is no efficient method to determine
if an abstract state is spurious or not. This topic is beyond
the scope of this paper, but it is important to note that in our
experiments we have used automatic methods to eliminate
those spurious states that violate pairwise mutual exclusions.

Experimental Evaluation
The problem domains used in this study are as follows.
Blocks World, Logistics, Depots, Satellite, and Rovers
are standard domains that have been used in AIPS plan-
ning competitions (Long and Fox 2003). We used the basic
STRIPS version of Depots, Satellite, and Rovers because
the more sophisticated versions use fluents, which are not
readily handled by our ADD representation or abstraction
method. Two non-standard variations of the Blocks World,
and one of Satellites, are also used. The 4-peg Towers of
Hanoi puzzle, the Arrow puzzle, and the 4×4 Sliding Tile
Puzzle have been used as test domains in the single-agent
heuristic search community; here they are implemented in
PDDL and abstracted using the method described above. We
assume the reader is familiar with all these domains except
the Arrow puzzle, which is described in detail below. In all
the domains every action has a cost of 1.

The experimental results are presented in a uniform for-
mat for all the domains. The discussion of each domain be-
gins with an explanation of the types of mutually exclusive
groups of atoms that occur in the domain and the problem in-
stances used in the experiments. As described above, some
of the mutually exclusive groups will be used to define each
abstraction. The groups chosen are described in the Abs
column of the experimental results tables (see Table 2, for
example). The States column gives the number of abstract
states whose distances are stored in the PDB. The distances
in all the abstract spaces are small enough to require only
one byte of storage, so this number is also the number of
bytes required to store the PDB as a lookup table assuming
a perfect hashing function is known. The next column, ADD
Size, is the size in bytes of the PDB when it is represented as
an ADD. Note that the number of nodes in the ADD is one-
tenth of this size, because each node in the ADD requires 10
bytes of storage in the system we used. The rightmost col-
umn in the experimental results tables, Ratio, is the lookup
table size (States) divided by ADD Size. We call this the
compression ratio, and it indicates how effective the ADD
representation is at compressing the lookup table. A ratio
less than 1 indicates that the ADD representation is larger
than the lookup table (assuming a perfect hashing function



is known) and it is therefore inadvisable to use the ADD rep-
resentation. Finally, the leftmost column in the experimental
results tables provides key information about the problem in-
stance used to produce the results in the given row of the ta-
ble. The exact nature of this information varies from domain
to domain and will be described in each section. For exam-
ple, in the Blocks World (see Table 2) this column gives the
number of blocks in the problem instance.

# blocks Abs States ADD Size Ratio
10 1-8 4,596,553 786,710 5.84
10 1-9 17,572,114 3,168,940 5.55
13 1-7 11,109,337 152,860 72.68
13 1-8 76,751,233 839,160 91.46
13 1-9 472,630,861 4,939,510 95.68
15 1-6 4,010,455 29,600 135.49
15 1-7 38,398,641 152,780 251.33
15 1-8 335,262,313 832,420 402.76

Table 2: Blocks world

Blocks World
This study used the 3-action (handless) Blocks World and
problem instances with 10, 13, and 15 blocks in which the
goal state has all blocks stacked in one pile, in order, with
block 1 on top. As discussed above for the 3-blocks instance
of this domain, there are two types of mutually exclusive
groups of atoms. All the abstractions were defined by keep-
ing the groups that encoded what was on top of the blocks
listed in the Abs column. For example “1-8” in the Abs col-
umn of the first row of Table 2 means that the groups used
for the abstraction were those representing what was on top
of blocks 1 through 8. Abstractions keeping the groups of
mutually exclusive atoms that encode what a block is on top
of were not used because these abstractions resulted in poor
quality heuristics. This is probably because such abstrac-
tions do not keep any (clear ?b) atoms, allowing any block
and all the blocks above it to be moved in a single action.

The results in the last three rows of Table 2 are consistent
with Edelkamp’s finding that symbolic PDB representations
compress the lookup table for a 15-block instance by up to
two orders of magnitude (Edelkamp 2002). The results can-
not be compared exactly because Edelkamp used BDDs in-
stead of ADDs, used a different goal state, and did not report
precisely what groups he used to define the abstractions.

Two trends are evident in Table 2. First, as the problem
size increases the compression ratio tends to increase for
PDBs with similar numbers of states. The two rows high-
lighted in bold illustrate this. Second, as the abstraction is
made more fine-grained for a particular problem instance the
compression ratio tends to increase. One exception to this is
the two abstractions for the 10-blocks instance. Here the
more fine-grained abstraction has a slightly lower compres-
sion ratio (5.545 compared to 5.843). This may simply be
an artifact of different variable reordering by the ADD soft-
ware, but it might be systematic since it is also seen in the 4-
peg Towers-of-Hanoi and the Blocks World variant in which

there are a limited number of table positions.

4-peg Towers of Hanoi
The 4-peg Towers of Hanoi puzzle is a challenging extension
of the standard 3-peg puzzle (Korf and Felner 2007). The
groups of mutually exclusive atoms are exactly analogous to
those for the Blocks World: there are groups representing the
constraint that no disk or peg-bottom can have more than one
disk on top of it and other groups representing the constraint
that a disk must be on top of exactly one thing (other disk
or peg-bottom) in each state. The abstractions used in this
experiment keep the groups of mutually exclusive atoms that
encode what is at the bottom of each peg as well as those
indicating what is on each of the m largest disks (m is listed
in the Abs column of Table 3). Since nothing can ever be
placed on the smallest disk it does not serve any purpose to
include the group for what is on top of disk 1. The problem
instances tested had 11, 13, 14 and 15 disks. In all cases the
goal state has all of the disks stacked on the fourth peg.

The results for this domain are presented in Table 3. The
result for 14 disks and Abs=13 are directly comparable to
the lossless compression results for the PDB based on 14
disks reported by Felner et al. (2007, see the bottom row of
their Table 4). Our results are not quite as good—a compres-
sion ratio of 2.202 compared to their 2.67. The difference is
probably due to Felner et al. exploiting the fact that their
technique compresses cliques in the abstract space and the
difference in the distance to the goal from the states within
a clique cannot exceed one.

The first trend seen in the Blocks World results holds here
as well: for PDBs with a similar number of states the one for
the larger problem will tend to have a higher compression
ratio (e.g., compare the row for 13 disks and Abs=10 with
the row for 15 disks and Abs=8). However, the other trend
seen in the Blocks World doesn’t seem to be repeated here;
instead the compression ratio tends to increase and then de-
crease as the abstraction is made more fine-grained.

Blocks World Variants
The Towers of Hanoi can be seen as a variant of the Blocks
World in which the blocks (disks) all have distinct sizes that
restrict which blocks can be on a given block and in which
there are a limited number of positions on the table (the
pegs). Since we see much higher compression in the Blocks
World than in the Towers of Hanoi, it is of interest to study
the variants of the Blocks World that lie in between the two.

Blocks World with limited table positions
In this Blocks World variant there are a limited number of
named positions on the table on which a block can be placed.
The groups of mutually exclusive atoms that encode the re-
striction that a block can be on top of at most one thing
change to reflect the fact that they can be on specific table
positions as opposed to just being generically on the table.
In addition a new type of group is introduced that encodes
that at most one block can be on the table in each position.

Table 4 presents the compression results for this Blocks
World variant with four table positions. Two problem sizes
were used: one had eight blocks, the other had ten. In both



# disks Abs States ADD Size Ratio
11 5 557,056 73,530 7.58
11 6 1,196,032 119,470 10.01
11 7 2,228,224 228,490 9.75
11 8 3,487,872 431,290 7.90
11 9 4,194,304 824,540 5.09
11 10 4,194,304 1,481,680 2.83
13 6 3,751,936 496,570 7.56
13 7 8,912,896 987,800 9.02
13 8 19,136,512 2,108,020 9.08
13 9 35,651,584 5,478,370 6.51
13 10 54,525,952 11,262,840 4.84
13 11 67,108,864 22,272,850 3.01
13 12 67,108,864 41,292,790 1.63
14 6 5,865,472 630,200 9.31
14 7 15,007,744 1,252,520 11.98
14 8 35,651,584 2,594,840 13.74
14 9 76,546,048 5,810,420 13.17
14 10 142,606,336 17,380,290 8.25
14 11 218,103,808 37,930,360 5.75
14 12 268,435,456 70,932,920 3.78
14 13 268,435,456 121,927,650 2.20
15 7 23,461,888 1,550,940 15.13
15 8 60,030,968 3,200,650 18.76
15 9 142,606,336 6,992,120 20.40
15 10 306,184,192 24,380,420 12.56

Table 3: 4-peg Towers-of-Hanoi

cases the goal state has all blocks stacked in position four
in order with the lowest number block at the top. All ab-
stractions keep the groups encoding what is on top of the
table positions as well as the groups encoding what is on top
of the blocks listed in the Abs column (for example, “4-8”
means blocks 4 through 8 inclusive).

# blocks Abs States ADD Size Ratio
8 4-8 2,624,788 93,590 28.05
8 3-8 6,691,305 137,000 48.84
8 2-8 12,975,561 265,490 48.87

10 8-10 1,878,476 165,710 11.33
10 7-10 8,786,057 263,390 33.36
10 6-10 35,958,326 369,410 97.34
10 5-10 129,229,547 563,480 229.34

Table 4: Blocks world with four table positions

Overall this domain achieves high compression with com-
pression ratios tending to increase as the abstraction was
made more fine-grained; although compression ratios do not
tend to increase when moving to a larger problem instance
when the number of states in the pattern database is similar.

This domain is also of interest as it contains spurious
states that are not removed by the automated spurious-state
filtering that is performed. While hand-crafted filters are not
useful in an automated planning setting, it is still interest-

ing to study their effect upon the PDBs. In this domain the
removal of spurious states tends to have a negative effect
on compression. For example the pattern database for the
10 blocks instance with abstraction “5-10” with additional
hand-crafted spurious-state filtering has 122,995,840 entries
but requires 4,786,790 bytes to store, a compression ratio of
25.69. This is almost an order of magnitude less compres-
sion than for only automated filtering; although hand-crafted
filters are likely to generate a significantly better heuristic
(the average heuristic value is 11.15 compared to 10.41 in
the version with only automated filtering).

Blocks World with distinct block sizes
In this Blocks World variant the table is infinite, as in the
original Blocks World, but each block has a distinct size and
a larger block cannot be put on top of a smaller one. This
modification does not add or remove any types of mutually
exclusive atoms, but it does modify the existing ones to re-
flect which blocks can possibly be on top of a given block.

Table 5 presents the compression results for three in-
stances of this Blocks World variant, with 10, 13, and 15
blocks respectively. In each the goal state has all of the
blocks in one stack. The abstractions for this variant are
based on the mutually exclusive groups encoding what is on
top of the m largest blocks (m is given in the Abs column).

# blocks Abs States ADD Size Ratio
10 5 10,427 7,470 1.40
10 6 29,371 10,730 2.74
10 7 60,814 12,720 4.78
13 7 1,322,035 77,390 17.08
13 8 3,967,195 100,620 39.43
13 9 9,131,275 114,240 79.93
13 10 16,360,786 119,620 136.77
15 8 112,287,418 370,500 303.07
15 9 378,716,908 481,550 786.45
15 10 993,098,339 550,240 1804.85
15 11 2,046,540,334 589,320 3472.71
15 12 3,397,658,503 634,650 5353.59

Table 5: Blocks world with distinct block sizes

ADDs produce very good compression here, reducing
memory requirements by more than 3 orders of magnitude
for the PDBs based on 10 or more blocks in the 15-block in-
stance (bottom three rows). As in the original Blocks World,
the compression ratio increases for a given problem instance
as the abstraction becomes more fine-grained, but here the
rate of increase is much greater. For example, for the 15-
block instance the PDB based on 12 blocks has more than
30 times the number of states as the PDB based on 8 blocks,
but its ADD representation is less than twice the size.

Logistics
The logistics domain is a well-known planning domain; the
version used here is the STRIPS version of the domain from
the AIPS-98 planning competition. There are 3 types of mu-
tually exclusive groups of atoms in the domain, as follows:



• Airplane Locations – Groups of this type encode the con-
straint that an airplane may be in only one location, which
must be an airport, in any given state. There is one group
of this type for each airplane in the problem instance.

• Truck Location – Groups of this type encode the con-
straint that a truck may be in only one location, which
must be in the city the truck is located in, in any given
state. There is one group of this type for each truck.

• Package Location – Groups of this type encode the con-
straint that a package can only be in one place in any given
state; this can be one of the locations in the cities, or in one
of the trucks or airplanes. There is one group of this type
for each package.

Two instances of this puzzle are used. One with 4 cities
(each with 4 locations and 1 truck), 1 airplane and 3 pack-
ages (listed as “4/4/1/3” in the Prb column); the other has
4 cities (each with 5 locations and 1 truck), 2 airplanes and
5 packages (listed as “4/5/2/5” in the Prb column). In both
instances the goal location of the package was randomized,
as well as the initial locations of the packages, trucks and
airplanes. Pattern database with “A” in the Abs column keep
the airplane locations, “T” indicates presence of the truck lo-
cations in the abstraction, and “xP” indicates that the groups
for x packages were kept in the abstraction.

Prb Abs States ADD Ratio
Size

4/4/1/3 3P 9,261 4,010 2.31
4/4/1/3 A+T+1P 21,504 1,370 15.69
4/4/1/3 A+T+2P 451,584 18,540 24.36
4/4/1/3 A+T+3P 9,483,264 217,060 43.69
4/5/2/5 A+T+1P 260,000 2,160 120.37
4/5/2/5 5P 11,881,376 15,550 764.08
4/5/2/5 A+T+3P 1.76× 108 1,208,700 145.41

Table 6: Logistics

The results for the Logistics domain are shown in Table 6.
Overall this domain compresses quite well; with ratios eas-
ily reaching more than 2 orders of magnitude. For the most
part this domain follows the trend that as the abstraction
is made more fine-grained the compression ratio increases;
one exception to this is the PDB for problem “4/5/2/5”
with abstraction “5P”; despite being smaller than the pattern
database with abstraction “A+T+3P” it has a larger compres-
sion ratio. Additionally, this domain appears to follow the
trend that greater compression ratio tends to be achieved on
larger problem sizes if the number of entries is similar; this
is illustrated by the two entries in bold.

Depots
The Depots domain combines two other planning
domains—Logistics and the 4-action Blocks World
(with a hand)—in such a way that trucks move crates
around between locations at which hoists load and unload
the crates onto pallets. There are four types of mutually
exclusive groups of atoms in this domain, as follows:

• Truck location – Groups of this type encode the con-
straint that a truck may only be at one location in any
given state. There is one group of this type for each truck
in the problem instance.

• Hoist Information – Groups of this type encode the con-
straint that a hoist cannot be simultaneously unoccupied
and lifting something. There is one group of this type for
each hoist in the problem instance.

• Pallet information – Groups of this type encode the con-
straint that a pallet is either empty or has exactly one crate
sitting directly on it. There is one group of this type for
each pallet in the problem instance.

• Crate location – Groups of this type encode the con-
straint that the following types of atoms are mutually
exclusive for any given crate: (on ?crate ?pallet), (on
?crate1 ?crate2), (in ?crate ?truck), and (lifting ?crate
?hoist). There is one group of this type for each crate in
the problem instance.

The “No Truck” abstractions used in this experiment keep
all the atoms except those in the truck location groups. Sim-
ilarly, the “No Hoist”/“No Pallet” abstractions keep all the
atoms except those in the hoist/pallet information groups.
The “No Crate” abstractions leave out the crate location
groups for the crates that are listed in the Abs column. Fi-
nally, the “Complete” abstractions keep all groups.

Prb Abs States ADD Size Ratio
P02 No Hoist/Pallet 4,554 160 28.46
P02 No Trucks 4,480 5,550 0.81
P02 No Crate 1-3 15,138 6,190 2.45
P02 No Pallet 17,802 2,600 6.85
P02 No Crate 1, 2 22,518 11,200 2.01
P02 No Hoist 25,515 5,880 4.34
P02 No Crate 1 31,176 17,440 1.79
P02 Complete 40,320 15,850 2.54
P03 No Hoist/Pallet 194,409 24,300 8.00
P03 No Crate 1-5 271,143 62,930 4.31
P03 No Trucks 393,376 356,420 1.10
P03 No Pallet 811,458 136,430 5.95
P03 No Crate 1-3 983,007 365,400 2.69
P03 No Crate 1 2,494,683 711,850 3.5
P03 No Hoist 2,811,303 113,730 24.72
P03 Complete 3,540,384 1,491,070 2.37

Table 7: Depots

Overall, the compression in the Depots domain is poor;
often with ratios near 1 or even below 1 (highlighted in
bold). It is also hard to find any clear patterns in the com-
pression ratios. This may be because there are spurious
states in the pattern databases for the Depots domain that
are not being removed; these may affect the compression.

Satellite
The Satellite domain involves planning and scheduling a
collection of observation tasks for multiple satellites that are



each differently equipped. The following types of mutually
exclusive atom groups are used for abstraction.

• Direction information – Groups of this type encode the
constraint that in any given state a satellite is pointing in
exactly one direction. There is one group of this type for
each satellite in the problem instance.

• Power information – Groups of this type encode the con-
straints that in any given state a satellite either has power
or it doesn’t and that a satellite with power has at most
one of its instruments powered on. There is one group of
this type for each satellite in the problem instance.

• Calibration information – Groups of this type encode
the constraint that in any given state an instrument either
is calibrated or it is not. There is one group of this type
for each instrument in the problem instance.

• Observation information – Groups of this type encode
the constraint that an observation either has been made
or it hasn’t. There is one group of this type for each
direction-mode pair in the problem instance. Only groups
that contain a (have image ?direction ?mode) atom that is
present in the goal are used for creating abstractions.

Four problem instances from the AIPS 2002 problem set
were used; column Prb in Table 8 gives the problem num-
ber. Problem 3 has two satellites, four instruments and eight
directions. Problem 5 has three satellites, nine instruments
and ten directions. Problem 6 has three satellites, five instru-
ments, and eleven directions. Problem 7 has four satellites,
eight instruments and twelve directions. The relative size of
the problems is: 7 (largest), 5, 6, and 3 (smallest).

The abstractions used in this experiment (see the Abs col-
umn in Table 8) are as follows. The “No D” abstractions
use all of the groups except those relating to the direction a
satellite is pointing. The “No C” abstractions use all of the
groups except those relating to instrument calibration. The
“All” abstraction keeps all the groups of all types except for
the Observation Information groups that do not contain a
(have image ?direction ?mode) atom that is present in the
goal. This abstraction produces a perfect heuristic because
the only information it drops from the original problem in-
stance is irrelevant to solving the problem.

Prb Abs States ADD Size Ratio
3 No D 2,048 490 4.18
3 No C 8,192 2,870 2.85
3 All 131,072 4,020 32.60
6 No D 65,536 2,190 29.93
6 No C 2,725,888 28,210 96.65
6 All 87,228,416 39,760 2,193.87
5 No D 209,152 2,190 95.50
5 No C 4,096,000 86,330 47.45
5 All 2,097,153,000 130,020 16,129.46
7 No D 2,359,296 4,070 579.68
7 No C 191,102,976 406,320 470.33
7 All 48,922,361,856 949,450 51,527.05

Table 8: Satellite

Table 8 presents the compression results for this experi-
ment. Clearly, ADDs are very effective in this domain re-
ducing memory requirements by over 4 orders of magnitude
for the PDB based on the “All” abstraction for problem 7.
The two trends observed in the Blocks World domain are
also seen here: (1) within a problem instance the compres-
sion ratio increases as the abstraction is made more fine-
grained; and (2) if two PDBs for different problem instances
have a similar number of states the PDB for the larger prob-
lem instance compresses more (for example, compare the
rows highlighted in bold in Table 8).

An interesting variation on the Satellite domain imposes
restrictions on how a satellite’s direction can be changed in-
stead of allowing it to freely move from its current direction
to any other direction. For a given problem instance we ran-
domly generated a connected graph in which the nodes rep-
resented the directions, and a satellite could only move be-
tween two directions if there was an edge between the two
corresponding nodes in the graph.1

Table 9 lists the compressions results for this Satellite
variant. For each problem instance 8 different movement
topologies were created and the resulting ADD sizes were
averaged to produce the ADD Size shown in the table. The
“No D” abstraction is not reported here since it is the same
as in Table 8. While this modified version still compresses
well, its compression ratio is consistently lower than the
original version’s. One possible reason for this is that in the
movement-constrained variant the branching factor is lower
(fewer direction changes are allowed in any given state),
with the consequence that the maximum heuristic value is
greater because the PDBs still contain the same number of
states. A larger range of heuristic values means more leaf
nodes in the ADD. While this does not necessitate a larger
ADD overall, it could be a contributing factor.

Prb Abs States ADD Size Ratio
3 No C 8,192 6,320 1.30
3 All 131,072 11,280 11.62
5 No C 4,096,000 252,990 16.19
5 All 2,097,153,000 1,413,300 1,483.87
6 No C 2,725,888 150,690 18.09
6 All 87,228,416 317,610 274.64
7 No C 191,102,976 1,990,590 96.00
7 All 48,922,361,856 10,658,540 4,589.97

Table 9: Satellite with constrained motion

Rovers
The Rovers domain involves planning and scheduling tasks
for multiple rovers, as well as a lander, that are differently
equipped. This domain is similar to the Satellite domain

1The directions were placed at random positions in a 2-
dimensional coordinate system. Two directions were connected to
each other if the distance between their positions was less than or
equal to a threshold. The threshold was defined as the minimum
value needed to make the resulting graph connected.



with constrained motion but is more complex. The mutu-
ally exclusive atom groups that are used for abstraction in
the Satellite domain are of the following types. The abbre-
viation used for each type in the Abs column of Table 10 is
shown in brackets after the name of the type (the “Rock” and
“Soil” abbreviations each denote two types that are included
or excluded together in the abstractions we defined).

• Location Information (Loc) – Groups of this type en-
code the constraint that a rover can be at only one location
at a time. There is one group of this type for each rover in
the problem instance.

• Rock Analysis (Rock) – Groups of this type encode the
constraint that a rock sample is either at the waypoint
it starts at or has been analyzed by one of the rovers
equipped for rock analysis. There is one group of this
type for each rock sample in the problem instance.

• Rock Communication (Rock) – Groups of this type en-
code the constraint that a rock sample cannot be at the
waypoint it started at if the data for that rock sample has
been communicated to a lander. There is one group of this
type for each rock sample in the problem instance.

• Soil Analysis (Soil) – Groups of this type encode the con-
straint that a soil sample is either at the waypoint it starts
at or has been analyzed by one of the rovers equipped for
soil analysis. There is one group of this type for each soil
sample in the problem instance.

• Soil Communication (Soil) – Groups of this type encode
the constraint that a soil sample cannot be at the waypoint
it started at if the data for that soil sample has been com-
municated to a lander. There is one group of this type for
each soil sample in the problem instance.

• Storage Information (Stor) – Groups of this type encode
the constraint that a storage unit cannot be both full and
empty at the same time. There is one group of this type
for each storage unit in the problem instance.

Three types of atoms are independent of all other atoms
and therefore form groups of their own. Atoms of the form
(calibrated ?camera ?rover) are included in all abstractions.
Atoms of the forms (have image ?rover ?objective ?mode),
and (communicated image data ?objective ?mode) are re-
ferred to as “Img” in the Abs column of Table 10. The (com-
municated image data ?objective ?mode) atoms that do not
occur in the goal state are never included in an abstraction.

Three instances of the Rovers problem from the AIPS
2002 competition were tested. Problem 6 consists of 2
rovers, 6 waypoints, 3 cameras with 3 modes, 2 objectives,
4 soil samples, and 4 rock samples. Problem 7 has 3 rovers,
6 waypoints, 2 cameras with 3 modes, 2 objectives, 2 soil
samples and 4 rock samples. Problem 8 has 4 rovers, 6 way-
points, 4 cameras with 3 modes, 3 objectives, 3 soil samples,
and 4 rock samples. The relative sizes of these instances are:
8 (largest), 7, and 6 (smallest).

Table 10 presents the compression results for this exper-
iment. One trend that is observed is that larger PDBs tend
to compress better than smaller ones. In addition, if two
PDBs are of similar size the one with the larger range of

Prb Abs States ADD Ratio
Size

6 No Rock, 11,664 2,220 5.25
Img, or Cal

6 No Img 209,952 12,490 16.81
or Cal

6 No Rock, 294,912 1,680 175.54
Soil, or Stor

6 No Soil 5,308,416 6,700 729.30
6 No Loc 11,943,369 6,190 1,929.46
6 No Rock 23,887,872 15,730 1,518.62
6 No Cal 53,747,424 26,430 2,033.58
6 No Stor 1.07× 108 25,290 4,250.51
7 No Rock, 43,200 2,210 19.55

Img, or Cal
7 No Soil, 338,688 25,090 13.50

Img, or Cal
7 No Loc 1,254,400 2,000 627.20
7 No Rock 1,382,400 4,290 322.24
7 No Img 8,467,200 136,730 61.93

or Cal
7 No Soil 10,838,016 41,980 258.17
7 No Stor 33,868,800 48,970 691.62
7 No Cal 67,737,600 124,120 545.74
8 No Soil, 1,679,616 187,570 8.95

Img, or Cal
8 No Rock, 2,592,000 27,610 93.88

Img, or Cal
8 No Rock, 42,467,328 52,520 808.59

Soil, or Stor
8 No Img 2.10× 108 1,215,470 172.73

Or Cal

Table 10: Rovers

heuristic values tends to compress less than the one with the
smaller range of heuristic values. Consider, for example, the
two PDBs for Problem 6 highlighted in bold. The maximum
heuristic value for the abstraction “No Img or Cal” is 31,
while the maximum heuristic value for the abstraction “No
Rock, Soil, or Stor” is only 10.

Arrow Puzzle
In the arrow puzzle there is a set of arrows, each of which
can point either up or down, a symmetric adjacency relation
indicating which arrows are neighbours of one another, and
an operator for each adjacent pair of arrows that reverses
the direction each arrow is pointing (this is a generalization
of the original version (Korf 1980), which simply had the
arrows arranged in a line). Three parameterized predicates
are used to represent this puzzle in PDDL. (up ?x) is true
when arrow ?x is pointing up, (down ?x) is true when arrow
?x is pointing down, and the static predicate (adjacent ?x
?y) is true if arrow ?x is adjacent to arrow ?y. There is only
one type of mutually exclusive group of atoms, encoding the
fact that each arrow is either up or down. There is one such
group for each arrow in the problem instance.



The problem instances used in this experiment were rect-
angular arrangements of arrows, in either 2 or 3 dimensions,
in which an arrow was adjacent to its neighbours in the car-
dinal directions. Column Prb in Table 11 describes the ar-
rangement. The abstractions in this experiment are based on
the atom groups for the arrows in a subrectangle anchored at
a corner of the original puzzle of the size given in the Abs
column of Table 11.

Prb Abs States ADD Ratio
Size

3×3×2 3×2×1 4,096 2,170 1.89
3×3×2 3×2×2 131,072 11,820 11.09

5×5 4×4 65,536 4,380 14.96
5×5 5×4 1,048,576 13,040 80.41
5×5 5×5 16,777,216 24,090 696.44
3×9 2×4 256 310 0.83
3×9 3×6 262,144 2,820 92.96
3×9 3×9 67,108,864 42,440 1,581.26

3×3×3 2×2×2 256 510 0.50
3×3×3 3×3×2 262,144 15,430 16.99
3×3×3 3×3×3 67,108,864 278,890 240.63

6×6 5×5 33,554,432 36,430 921.07
6×6 5×6 1.07× 109 93,750 11,453.25
6×6 6×6 3.44× 1010 162,760 2.11× 105

4×3×3 3×3×2 262,144 11,910 22.01
4×3×3 4×3×2 16,777,216 66,990 250.44

Table 11: Arrow puzzle

The compression results for this experiment are shown in
Table 11. The two PDBs with the fewest states have a com-
pression ratio less than one (highlighted in bold) but, as in
most other domains, the compression ratio increases as the
abstractions become more fine-grained, with very impres-
sive ratios for the most fine-grained abstractions in the larger
problem instances. The rate of increase of the compression
ratio is sufficiently large that the ADD size grows extremely
slowly compared to the size of the lookup table. For exam-
ple, the 6×6 abstraction of the 6×6 problem instance has a
lookup table that is 1024 times larger than the lookup table
for the 5×5 abstraction, but an ADD that is only 4.5 times
larger. Unlike several other domains, the compression ratio
for similar size PDBs for different problem instances does
not increase with the problem size. For example, the best
compression ratio by far of the three PDBs with 262,144
states is for the smallest problem instance. The dimension-
ality of the puzzle might play a role in this (there are more
interactions between the arrows in a 3-dimensional arrange-
ment than in a 2-dimensional one).

4×4 Sliding Tile Puzzle
States of the sliding tile puzzle can be represented using
three parameterized predicates: (in ?tile ?position) is true if
?tile is located at ?position; (blank ?position) which is true
if the blank is located at ?position; and the symmetric static
predicate (adjacent ?position1 ?position2) is true if ?posi-
tion1 is adjacent to ?position2 in the physical puzzle. There

are two types of mutually exclusive groups with this rep-
resentation. One type encodes the constraint that only one
tile, or the blank, can be in a particular position at a time.
There is one of these groups for each position in the prob-
lem instance. The second type encodes the constraint that a
particular tile, and the blank, can only be in one position at a
time. There is one group of this type for each tile and blank
in the problem instance. The abstractions in this experiment
kept groups of the second type for the blank and for the tiles
listed in the Abs column of Table 12.

Prb Abs States ADD Size Ratio
4×4 B,1,2,4,5 524,160 1,619,900 0.32
4×4 B,1,2,4-6 5,765,760 13,431,610 0.43
4×4 B,1-6 57,657,600 102,510,700 0.56

Table 12: 4×4 Sliding-Tile puzzle

The compression results for the 4×4 sliding tile puzzle
with the standard goal state (blank in the top left corner) are
shown in Table 12. In no case did an ADD use less memory
than a lookup table. A similar result was obtained when a
different representation and method of abstraction was used
for this domain. This is in contrast with the results by Fel-
ner et al. (2007) whose lossless “edge” technique achieved a
compression ratio of 1.25 on this domain (see their Table 7).

Time Performance Evaluation
One important factor to consider when evaluating any com-
pression technique for PDBs is the computation time re-
quired by the technique. Two separate times need to be eval-
uated; the time required to build the pattern database and the
time required to evaluate the heuristic value which impacts
the time when performing a search using the heuristic.2

Prb Abs Hash ADD
Log. 4/4/1/3 A+T+2P 0.91 0.41
Log. 4/4/1/3 A+T+1P 22.36 3.83

Sat. P03 No D. 0.04 0.04
Sat. P03 No C. 0.31 0.16
Sat. P03 Comp 5.63 0.28
Sat. P06 No D. 2.48 0.10

Sliding 4×4 b 1 2 4 5 203.2 104.9

Table 13: Time required to build pattern databases

Table 13 lists times to build several pattern databases both
as a hash table (using an explicit retrograde search) and an
ADD (using a symbolic retrograde search).3 In the table Prb
is the domain and instance, Abs is the abstraction, and Hash
and ADD is the time in seconds required to build the hash
table based and the ADD-based PDBs respectively. Exam-
ining the results the symbolically built ADD-based PDB is

2Times reported in this section are from runs on 1 core of a Intel
2.2 GHz Core 2 Duo with 4 GB of RAM running Mac OS X 10.5.2.

3These methods were chosen as they are the typical methods
used to build pattern databases of these types.



consistently quicker to build than the explicitly built hash
table based PDB; therefore the time required to build the
pattern database is unlikely to be an obstacle to the use of
ADD based symbolic pattern databases.

Prb Abs Hash ADD
Log. 4/4/1/3 A+T+2P 16.73 17.42
Log. 4/4/1/3 A+T+1P 16.58 16.99

Sat. P03 No D. 12.33 12.20
Sat. P03 No C. 12.70 12.37
Sat. P03 Comp 12.84 12.65
Sat. P06 No D. 25.63 25.65

Sliding 4×4 B 1 2 4 5 18.62 20.84

Table 14: Time required to query pattern databases

Table 14 lists the time required to make 1,000,000 ran-
domly generated heuristic value look-ups into the PDBs that
were generated. Prb and Abs have the same meaning as the
previous table, and Hash and ADD is the time in seconds
required to do the 1,000,000 randomly generated heuristic
look-ups for the hash table-based and and ADD-based PDBs
respectively. In all cases the times required to perform in the
look-ups for the ADD-based PDBs were similar to those for
the hash table based PDB; with it being slightly faster for
Satellite P03, and slightly slower for Satellite P04, Logistics
4/4/1/3 and Sliding Tile 4×4. Since the look-up times re-
quired are quite similar it is unlikely that the look-up time
would be a problem for implementing ADD-based PDBs.
Additionally, since the ADD-based PDB is quite often sig-
nificantly smaller than the hash table-based implementation,
some of the memory saved by using the ADD representation
can be used for other memory-based techniques to speed-up
search resulting in actual search times that are quicker.

Factors Predicting Poor Compressibility
This paper mainly addresses the question “Does a symbolic
representation, in the form of an ADD, usually require sig-
nificantly less memory than a hash table representation?”.
The empirical results presented above indicate that ADD
representation is beneficial in a wide variety of domains.

One question that remains unanswered is why symbolic
representations work very well in some domains, but poorly
in others; a theoretical approach to answering this question
is taken by Edelkamp and Kissmann (2008). In completing
the experiments for this paper two trends were identified.
First, domains with low branching factors tend to compress
poorly compared to those with higher branching factors; sec-
ond, domains that have large changes to the state description
from a state to its successors tend to compress poorly.

Figure 1 plots the branching factor of the domain com-
pared to the compression achieved in PDBs for the domain,
and Figure 2 plots the state encoding disruption (as a percent
of the state encoding length) compared to the compression
achieved.4 Each point in these plots is the compression ratio

4These plots include data for domains that are not covered in
this paper because of space constraints.

Figure 1: Branching factor vs. compression achieved

of the PDB compared to the branching factor, or encoding
disruption, of the problem the PDB was built for. These plots
illustrate the trends observed between the branching factor
of a domain and the compression achieved and the changes
to the state encoding and the compression achieved respec-
tively. In particular domains with branching factors below 5
and/or encoding disruptions above 10% tend to have PDBs
that compress poorly. Further investigation into factors that
effect compression will be in (Ball 2008).

Figure 2: Encoding disruption vs. compression achieved

Conclusions
The primary goal of this paper was to test the generality of
the impressive memory reductions reported by Edelkamp
(2002) when ADD/BDDs are used to represent PDBs in-
stead of hash tables. Our results show that ADDs are indeed
a vastly superior representation for PDBs for a wide variety
of domains, problem instances, and abstractions. In a few
of the cases we studied ADDs required more memory than
hash tables, but in the vast majority ADDs required substan-



tially less memory, often several orders of magnitude less.
It is recommended to use some of the memory freed up

by using an ADD instead of a hash table to speed up search
because the time required to look up a heuristic value in an
ADD can be greater than a hash table lookup; although the
experiments conducted indicate only a minor slowdown, if
any, during evaluation of heuristic values. This can be done
in several ways. First, ADDs allow the use of PDBs that
are much bigger than would fit in memory if represented as
a hash table, and larger PDBs usually represent more accu-
rate heuristics (Hernádvölgyi and Holte 2000). Note that the
ADD representation is built up incrementally as the abstract
space is traversed so that at no time is the entire PDB, in its
uncompressed form, required to be stored in memory. Sec-
ondly, as an alternative to making a larger PDB, the mem-
ory freed up by using the ADD representation can be used
for multiple pattern databases, transposition tables, or other
memory-intensive methods for speeding up search (Holte et
al. 2006; Reinefeld and Marsland 1994).

Two trends were observed in many of the domains. First,
in most cases studied the compression ratio tends to increase
as the abstraction is made more fine-grained. Second, as
the problem size increases the compression ratio tends to
increase if the number of states in the PDB remains similar.

The instances where compression of PDBs is most needed
are those where the problem size is so large that it is impos-
sible to create high-quality PDBs based upon fine-grained
abstractions within the limited memory of today’s comput-
ers. Fortunately, this is the situation where symbolic PDBs
are most likely to be beneficial, as compression tends to in-
crease both as problem sizes increase and the abstractions
used are made more fine-grained.

Even in domains like the Towers of Hanoi, where com-
pression tends to decrease as abstractions become very fine-
grained, symbolic PDBs may still be beneficial because the
decrease began only when the abstractions were so fine-
grained that the size of the abstract state space was approach-
ing the size of the original state space. In practice such fine-
grained abstractions will rarely be used because the original
state space is so much larger than the available memory.
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