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Abstract

Geometrical symmetries are commonly exploited to improve the efficiency of search algorithms. A new type of symmetry in
permutation state spaces, duality, is introduced. Each state has a dual state. Both states share important attributes such as their
distance to the goal. Given a state S, it is shown that an admissible heuristic of the dual state of S is an admissible heuristic
for S. This provides opportunities for additional heuristic evaluations. An exact definition of the class of problems where duality
exists is provided. A new search algorithm, dual search, is presented which switches between the original state and the dual state
when it seems likely that the switch will improve the chance of reaching the goal faster. The decision of when to switch is very
important and several policies for doing this are investigated. Experimental results show significant improvements for a number of
applications, for using the dual state’s heuristic evaluation and/or dual search.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and overview

The states of many combinatorial problems (e.g., Rubik’s cube, 15-puzzle) are defined as placements of a set of
m objects into a set of n locations (where n � m). All the different ways to put the objects into the locations with at
most one object per location defines a state space which is called a permutation state space in this paper.1 Given two
states in a permutation state space, start and goal, and a set of operators that transform one state into another, search
algorithms such as A∗ [8] and IDA∗ [12] can be used to find the shortest sequence of operators that transform start
into goal. These algorithms use a cost function f (n) = g(n) + h(n), where g(n) is the cost to reach state n from start
and h(n) is an admissible (i.e. is always a lower bound) heuristic function estimating the cost from n to goal.

* Corresponding author.
E-mail addresses: zahaviu@cs.biu.ac.il (U. Zahavi), felner@bgu.ac.il (A. Felner), holte@cs.ualberta.ca (R.C. Holte), jonathan@cs.ualberta.ca

(J. Schaeffer).
1 Strictly speaking, a permutation would require n, the number of locations, to be exactly the same as m, the number of objects. We have relaxed

this requirement and only demand that n � m. We use the term strict permutation state space to refer to state spaces in which the states are
permutations in the strict sense (m = n).
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The effectiveness of the search is greatly influenced by the accuracy of h(n). When h(n) is more accurate, the
number of nodes generated in a search decreases and the goal state is reached sooner [16]. There is a tradeoff for this
reduction, however. More accurate heuristics usually consume a larger time overhead per node generated and therefore
the percentage reduction in the actual time needed to solve a problem is smaller in practice than the percentage
reduction in the total number of generated nodes. Usually, the reduction in the number of generated nodes dominates
the constant time per node and therefore a time reduction is seen as well [4,17].

In this paper a new type of symmetry is discussed—duality. It is based on the observation that in strict2 permutation
state spaces, i.e., when m = n, the roles played by objects and locations are interchangeable. By reversing these roles,
a state, S, can be mapped to its dual representation, Sd . Given an admissible heuristic, h, the value h(Sd) is a lower
bound on the distance from S to the goal. Taking the maximum of h(S) and h(Sd) can result in a better heuristic
value for S and, hence, less search. Further, if h(Sd) > h(S), this can be exploited by using a search algorithm that
switches representations when it appears likely to be beneficial. The dual search algorithm searches in the original or
dual search space, switching representations to whichever has a higher heuristic value.

The contributions of this paper are as follows:

• A formal definition of duality is given, along with precise conditions for it to be applicable. The dual of a state, S,
is another state, Sd , that is easily computed from S and shares key search-related properties with S, such as being
the same distance from the goal. Therefore any admissible heuristic for Sd can be used as an admissible heuristic
for S.

• A new type of search algorithm, dual search, is introduced. It has the unusual feature that it does not necessarily
visit all the states on the solution path that it returns. Instead, it constructs its solution path from path segments
that it finds in disparate regions of the state space. The jumping from region to region is effected by choosing to
expand Sd instead of S whenever doing so improves the chances of achieving a cutoff in the search.

• Using the heuristic evaluation of the dual state (h(Sd)) in the search shows a significant performance improvement
for a number of domains. Adding the dual search algorithm further improves the results. For all the domains
studied, the results represent the best in the published literature.

The idea of duality is also used in the constraint satisfaction problems (CSP) literature, where flipping the roles
of variables and constraints produces a dual version of the problem. Independent of our work, Hnich et al. discuss
methods to use duality in CSP applications [9]. For example, they exploit duality by choosing to solve the variation
of the problem that appears to be faster to solve. By contrast, in this paper we introduce duality ideas in the context of
heuristic state-space search.

The paper is organized as follows. Sections 2 and 3 present background material. In Section 4, the notion of simple
duality is defined. Simple duality is a special case of duality that only applies to strict permutation states spaces.
Section 5 discusses the properties of the dual heuristic. Section 6 presents a new search algorithm based on duality,
DIDA∗ (Dual IDA∗). Section 7 provides experimental evidence for the benefits of using the heuristic evaluation of the
dual state and for the dual search algorithm. Section 8 provides generalization of the duality notion to a wider variety
of permutation state spaces that are not necessarily strict. Experimental results for the general case are then provided
in Section 9. A summary and suggestions for future work are provided in Section 10. Preliminary versions of this
paper appeared in [7,20].

2. Problem domains and permutation state spaces

This section introduces the three application domains used in this paper and gives a formal definition of permutation
state spaces. Pattern databases, used as the heuristic evaluation function for our application domains, are described.

2.1. The sliding-tile puzzles

One of the classic examples in the AI literature of a single-agent path-finding problem is the sliding-tile puzzle.
Three versions of this puzzle are the 3 × 3 8-puzzle, the 4 × 4 15-puzzle and the 5 × 5 24-puzzle. They consist of a

2 We also provide generalization of this idea to permutation state spaces that are not necessarily strict.
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Fig. 1. The 8-, 15- and 24-puzzle goal states.

Fig. 2. 3 × 3 × 3 Rubik’s cube.

square frame containing a set of numbered square tiles, and an empty position called the blank. The legal operators
are to slide any tile that is horizontally or vertically adjacent to the blank into the blank position. The problem is
to rearrange the tiles from some random initial configuration into a particular desired goal configuration. The state
space grows exponentially in size as the number of tiles increases, and it has been shown [19] that finding optimal
solutions to the sliding tile problem is NP-complete. The 8-puzzle contains 9!/2 (181,440) reachable state, the 15-
puzzle contains about 1013 reachable states, and the 24-puzzle contains almost 1025 states. The goal states of these
puzzles are shown in Fig. 1.

The classic heuristic function for the sliding-tile puzzles is called Manhattan distance. It is computed by counting
the number of grid units that each tile is displaced from its goal position, and summing these values over all tiles,
excluding the blank. Since each tile must move at least its Manhattan distance to its goal position, and a legal move
only moves one tile, the Manhattan distance is a lower bound on the minimum number of moves needed to solve a
problem instance.

2.2. Rubik’s cube

Rubik’s cube was invented in 1975 by Erno Rubik of Hungary. It is one of the most famous combinatorial puzzle
of our time. The standard version consists of a 3 × 3 × 3 cube (Fig. 2), with different colored stickers on each of the
exposed squares of the sub-cubes, or cubies. Any 3 × 3 × 1 edge plane of the cube can be rotated 90, 180, or 270
degrees relative to the rest of the cube. In the goal state, all the squares on each side of the cube are the same color. The
puzzle is scrambled by making a number of random moves, and the task is to restore the cube to its original goal state.
There are about 4 × 1019 different reachable states. There are 20 movable cubies and 6 stable cubies in the center of
each face. The movable cubies can be divided into eight corner cubies, with three faces each, and twelve edge cubies,
with two faces each. Corner cubies can only move among corner positions, and edge cubies can only move among
edge positions.

2.3. The pancake puzzle

The pancake puzzle is analogous to a waiter navigating a busy restaurant with a stack of n pancakes [2]. To avoid
disaster, the waiter wants to sort the pancakes ordered by size. Having only one free hand, the only available operation
is to lift a top portion of the stack and reverse it. In this domain, a state is a permutation of the values 0 . . . (N − 1).
A state has N − 1 successors, with the kth successor formed by reversing the order of the first k + 1 elements of the
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Fig. 3. The 5-pancake puzzle.

permutation (1 � k < N ). For example, if N = 5 the successors of state 〈0,1,2,3,4〉 are 〈1,0,2,3,4〉, 〈2,1,0,3,4〉,
〈3,2,1,0,4〉 and 〈4,3,2,1,0〉, as shown in Fig. 3. From any state it is possible to reach any other permutation, so the
size of the state space is N !. In this domain, every operator is applicable to every state. Hence its branching factor is
N − 1.

2.4. Permutation state spaces

A state space is a set of states, and a set of operators that map states to states. A specific problem instance is a state
space together with a particular initial state and goal state. The task is to find an optimal path from the initial state to
the goal state.

Permutation state spaces are a special type of combinatorial problems, consisting of a set of m objects and n

locations (n � m). The states in such problems are all the different ways of placing the objects in the locations with at
most one object per location.

Strict permutation state spaces are a special case of permutation state spaces where the number of objects is exactly
the same as the number of locations, i.e., n = m.

An operator in permutation state spaces changes the locations of some of the objects. This is a very rich and
interesting class of problems, including, for example, all finite mathematical groups. The puzzles defined above are
all permutation state spaces, as are many of the classic benchmark problems for planning, such as the Blocks World.

Note that general permutation problems even if solved by heuristic search do not necessarily span a permutation
state space. For example in the Travailing Salesman Problem (TSP) the task is to find the permutation of cities with
the optimal cost. However, this problem does not span a permutation state space as defined here. In TSP, there is no
predefined goal state and there is no meaning of finding a path from a given initial state to the goal state via other
permutation states.

3. Heuristics

The efficiency of a single-agent search algorithm is usually dominated by the quality of the heuristic used. The
best known heuristics for the application domains in this paper all take the form of a pattern database (defined below).
Pattern databases are therefore used in all the experimental studies, and the purpose of this section is to give the
background details on pattern databases. However, it is important to note that none of this paper’s key ideas (duality,
dual heuristic evaluations, and dual search) depend on the heuristic being a pattern database, these ideas apply to
heuristics of all forms.

3.1. Pattern databases

A powerful approach for obtaining admissible heuristics is the use of pattern databases (PDBs) [1]. The state space
of a permutation state space problem is all the different ways to placing the given set of objects into the locations.
A subproblem is an abstraction of the original problem defined by only considering some of these objects while
treating the others as “don’t care”. A pattern (abstract state) is a specific assignment of locations to the objects of the
subproblem. The pattern space or abstract space is the set of all the different reachable patterns of a given abstract
problem.
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Fig. 4. Example of regular lookups.

Each state in the original state space is abstracted to a pattern of the pattern space by only considering the pattern
objects, and ignoring the others. The goal pattern is the abstraction of the goal state.

There is an edge between two different patterns p1 and p2 in the pattern space if there exist two states s1 and s2 of
the original problem, such that p1 is the abstraction of s1, p2 is the abstraction of s2, and there is an operator of the
original problem space that connects s1 to s2.

A pattern database (PDB) is a lookup table that stores the distance of each pattern to the goal pattern in the pattern
space. A PDB is built by running a breadth-first search3 backwards from the goal pattern until the whole pattern space
is spanned. A state S in the original space is mapped to a pattern S′ by ignoring details in the state description that are
not preserved in the subproblem. The value stored in the PDB for S′ is a lower bound (and thus serves as an admissible
heuristic) on the distance of S to the goal state in the original space since the pattern space is an abstraction of the
original space.

Pattern databases have proven very useful for finding lower bounds for combinatorial puzzles [1,5,6,14,15].
Furthermore, they have proved useful for other search problems (e.g., multiple sequence alignment [18,22] and plan-
ning [3]).

3.1.1. Pattern databases example
PDBs can be built for the sliding-tile puzzles, as illustrated in Figs. 4(a) and (b). Assume that the subproblem only

includes tiles 2, 3, 6 and 7. Patterns are created by ignoring all the tiles except for 2, 3, 6 and 7. Each pattern contains
tiles 2, 3, 6 and 7 in a unique combination of positions. The resulting {2–3–6–7}-PDB has an entry for each pattern
containing the distance from that pattern to the goal pattern (shown in the lower part of Fig. 4(b)). Fig. 4(b) depicts
the PDB lookup in this PDB for estimating a distance from a given state S to the goal (Fig. 4(a)). State S is mapped to
a 2–3–6–7 pattern by ignoring all the tiles other than 2, 3, 6 and 7. Then this pattern’s distance to the goal pattern is
looked up in the PDB. To be specific, if the PDB is represented as a 4-dimensional array, PDB, with the array indexes
being the locations of tiles 2, 3, 6, and 7 respectively, the lookup for state S is PDB[8][12][13][14] (tile 2 is in location
8, tile 3 is in location 12, etc.). The value retrieved by a PDB lookup for state S is a lower bound (and thus serves as
an admissible heuristic) for the distance from S to the goal state in the original space. In this paper, accessing the PDB
for a state S will be referred to as a regular lookup, and the heuristic value will be referred to as a regular heuristic.

3.1.2. Additive pattern databases
Additive pattern databases provide the current best admissible heuristic for the sliding-tile puzzles [5,15]. The tiles

are partitioned into disjoint sets (patterns) of tiles and a PDB is built for each set. The PDB stores the cost of moving

3 This description assumes all operators have the same cost. The techniques easily extend to the case when operators have different costs.
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Fig. 5. Partitionings and reflections of the tile puzzles.

Fig. 6. Both S and G are reflected about the main diagonal to get another possible PDB lookup.

the tiles in the given subproblem from any given arrangement to their goal positions. If for each set of tiles only the
moves of tiles from the given set are counted, then values from different disjoint PDBs can be added and the result
is still admissible. An x–y–z partitioning is a partition of the tiles into disjoint sets with cardinalities of x, y and z.
Fig. 5 presents the two 7–8 partitionings for the 15-puzzle and the two 6–6–6–6 partitionings for the 24-puzzle which
were first used in [5,15].

3.2. Geometric symmetries

It is common practice to exploit special properties of a state space to enable additional lookups to be done in a
PDB. In [1] several alternative lookups that can be made in the same PDB based on the physical symmetries of the
15-puzzle are described. For example, because of the symmetry about the main diagonal, the PDB built for the goal
pattern in Fig. 4(b) can also be used to estimate the number of moves required to get tiles 8, 9, 12 and 13 from their
current positions in state S to their goal locations. As shown in Fig. 6, both S and G are reflected about the main
diagonal yielding Sr and Gr . The 2–3–6–7 PDB can be used to get a lower bound on the number of moves required to
get tiles 8, 9, 12, and 13 from their current positions in state Sr to their locations in Gr . This is identical to the number
of moves required to move them from their current positions in state S to their goal locations in G.

This idea of reflecting the domain about the main diagonal for having another set of PDBs was also used to solve
the 15-puzzle and 24-puzzle with additive PDBs [5,15]. It is easy to see that the two 7–8 partitionings for the 15-puzzle
(and similarly those of the 24 puzzle) in Fig. 5 are reflections of each other about the main diagonal and only one PDB
is needed in practice. For another example of geometric symmetry, consider Rubik’s cube and assume there is a PDB
for the blue face which gives values for all cubies with blue colors. Reflecting and rotating this puzzle will enable
similar lookups for any other face with a different color (e.g., yellow, red, etc.) since any two faces are symmetric.

Because all valid, alternative PDB lookups provide lower bounds on the distance from state S to G, their maximum
can be taken as the value for h(S). Of course, there is a tradeoff for doing this—each PDB lookup increases the time
it takes to compute h(S). Because additional lookups provide diminishing returns in terms of the reduction in the
number of nodes generated, it is not always best to use all possible PDB lookups [1]. A number of methods exist for
reducing the time needed to compute h(S) by making inferences about some of the values without actually looking
them up in a PDB [10].
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4. Simple duality

In this paper, two types of duality are presented. This section introduces simple duality, which applies to strict
permutation state spaces (the number of objects and locations is the same, as in Rubik’s cube) in which the operators
have no preconditions (every operator is applicable to every state). Section 8 generalizes the notion of duality to state
spaces in which there may be more locations than objects and operators may have preconditions.

4.1. Assumptions for simple duality

Before defining the dual state, we first present four assumptions which are preconditions for simple duality:

(1) Every state is an arrangement of m objects into n locations, with m = n and exactly one object per location. In
other words, for simple duality we require that the state space is a strict permutation state space. For example,
the most natural representation of the 8-puzzle has 9 objects, eight representing the individual tiles and one
representing the blank. This assumption will be relaxed in Section 8 to allow n � m and at most one object per
location.

(2) A set of operators is given that change the locations of some of the objects. We assume that the operators’ actions
are location-based permutations, meaning that an operator re-arranges the contents of a certain set of locations
without any reference to specific objects. For example, an operator could swap the contents of locations A and B .

(3) The operators are invertible, and an operator and its inverse cost the same. Consequently, if operator sequence O

can be applied to state S1 and transform it into S2, then its inverse, O−1, can be applied to state S2 and transform
it into S1 at the same cost as O .

(4) Operators have no preconditions. That is, every operator is applicable to every state. This assumption is only
assumed for simple duality. In Section 8 assumption 4 is dropped, resulting in the notion of general duality where
the operators are not necessarily applicable to every state but have internal preconditions.

Example domains where assumption 4 is violated are the sliding tile puzzle and the Towers of Hanoi. In the former
there is a precondition which refers to the location of the blank. In the latter, there is a precondition which refers to
the topmost discs on the operator’s source and destination pegs.

Two definitions for the dual state follow, and a proof that they are equivalent.

4.2. Simple duality: Definition 1

For any given pair of states, S1 and S2, there is a unique location-based permutation, π , that transforms S1 to S2.
For example, π in Fig. 7(a) describes how the objects move from their locations in the 4-pancake state S to their goal
locations in G. The letters a, b, c and d denote the locations. π maps a to c in Fig. 7(a) because the object (3) that is
in location a in S is in location c in G. The permutation π is entirely determined by the state descriptions of S and G,
it does not depend on the operators that define the state space. In particular, π is defined whether or not there exists a
sequence of operators that transforms S into G.

Dual state (Definition 1). For state S and goal state G, let π be the location-based permutation such that π(S) = G.
Then Sd , the simple dual of S for goal G, is defined to be π(G).

Fig. 7. Location-based permutation π that maps S to G (a) and G to Sd (b).
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Fig. 8. Simple duality, G = π(S) and Sd = π(G).

Dual(State S)
1 let G be the goal state
2 for each location x

2.1 let o be the object located in x in S

2.2 let y be the location of o in G

2.3 define πx = y

3.3 endfor
3 Sd = π(G)

4 return Sd

Algorithm 1. Dual-Calculating the dual state according to Definition 1.

This definition is illustrated in Fig. 8. As will be shown below, with the assumptions, the cost of reaching G from S

and from Sd is the same, and therefore max(h(S),h(Sd)) is an admissible heuristic for S for any admissible heuristic
h. For example, if PDBs are being used and h(S) = PDB[S], for some given PDB for G, then h(Sd) = PDB[Sd ] is
also admissible for S.

In practice Sd is calculated by constructing π from the descriptions of S and G and then applying π to G as shown
in Algorithm 1. Therefore, Sd can be calculated from the description of S without the need to know any actual path
from S to G as illustrated in Fig. 7(b).

4.3. Simple duality: Definition 2

The advantage of our first definition is that it properly motivates the location of the dual state in the search space.
We now provide an alternative definition for the dual state analogous to the dual concept in the constraint satisfaction
field (e.g., [9]). We then prove that the two definitions are equivalent.

In strict permutation state spaces, the roles played by objects and locations in representing a state are interchange-
able. Usually in the vector containing the state description, the locations are the variables and the objects are the
values. This is called the regular representation of the state. Flipping the roles of objects and locations in the vector
that describes S yields the dual representation. Here, objects are the variables and locations are the values. Given a
vector of size K that represents a state, the regular representation treats it as the objects that occupy locations {1 . . .K}.
The dual representation will treat them as the locations that are occupied by objects {1 . . .K}. For example, if the rep-
resentative vector is 〈3,1,4,2〉 then the regular representation refers to a state S = 〈3,1,4,2〉 (object 3 in location 1,
object 1 in location 2, etc.). The dual representation of this vector corresponds to the dual state Sd where object 1 is
in location 3, object 2 is in location 1, etc. The dual state in its regular representation is Sd = 〈2,4,1,3〉.

In this section, we assume a canonical definition of the goal state G. That is, given an enumeration of both the ob-
jects and the locations, then in G object i is located in location i. For the goal state, the regular and dual representation
are identical.

Dual state (Definition 2). Given a vector representation V of a state S, the dual state, Sd , is defined to be the state
which is described by V in the dual representation.

Algorithm 2 is based on Definition 2 and calculates the regular representation of the dual state Sd from the regular
representation of S.
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Dual(State S)
1. For each object x ∈ S

1.1. Let y be the location of object x in S

1.2. In Sd place object y in location x

2. Return Sd

Algorithm 2. Dual-Calculating the dual state based on Definition 2.

Fig. 9. The relation between a state S and its dual state Sd . Given a representative vector 〈3,1,4,2〉, then its regular representation corresponds to
S while its dual representation corresponds to Sd .

4.4. Analysis

A number of theorems concerning duality are now given. The following terminology is used. LocS(x) = y indicates
that object y is located at location x in state S. Therefore, in the goal state G, ∀i LocG(i) = i. Copt(X,Y ) denotes the
cost of an optimal path from state X to state Y .

Theorem 4.1. Definitions 1 and 2 are equivalent.

Proof. Let G be the canonical goal state, S be a state, π be the permutation such that π(S) = G, and Sd be the dual
of state S obtained by Definition 1. It needs to be shown that if in S an arbitrary object j is located in location i, then
in Sd object i will be located in location j . Assume that π moves the content of location i to location j . Applying π

for the first time (on S) will move object j from location i to location j (its home location in G). Applying π for the
second time (on G) will move object i from its home location to location j . �

Fig. 9 shows the relation between state vector S (Fig. 9(a)) and its dual Sd (Fig. 9(d)) according to both definitions.
Fig. 9(a,b) shows S being mapped to G by the permutation π , with the definition of π written beneath the arrow
((1,3) means that the object in location 1 in S is mapped to location 3 in G, etc.). In the lower part of the figure, π is
applied to G to produce Sd . The vector that describes S, 〈3,1,4,2〉, means that location 1 is occupied by object 3, 2
by 1, etc. In the dual representation (where objects are the variables and locations are the values) this vector means
that object 1 is in location 3, object 2 is in location 1, etc. The state that corresponds to the dual representation is Sd

in Fig. 9(d).

Theorem 4.2. (Sd)
d = S.

Proof. Show that these states have the same objects in the same location. We will show that ∀Location y: (LocS(y) =
x) �⇒ (Loc(Sd )d (y) = x).

And indeed,

∀Location y: (LocS(y) = x)
def 2�⇒ (LocSd (x) = y)

def 2�⇒ (Loc(Sd )d (y) = x). �
Theorem 4.3. If O = {o1, o2, . . . , on} is a legal path from S to G then O−1 = {o−1

n , . . . , o−1
2 , o−1

1 } is a legal path from
Sd to G and has the same cost as O .

Proof. If O = {o1, o2, . . . , on} is a legal path from S to G then O is also a legal path from G to Sd (Definition 1).
Because all operators can be reversed (Assumption 3) the sequence of operators O−1 = {o−1

n , . . . , o−1
2 , o−1

1 } is a legal
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path from Sd to G. Since operators and their inverses cost the same (Assumption 3) the cost of O and O−1 is the
same. �
Theorem 4.4. Copt(S,G) = Copt(S

d,G).

Proof. There are two cases to consider. If there does not exist an operator sequence transforming S into G, then
there cannot exist an operator sequence transforming Sd into G and therefore Copt(S,G) = Copt(S

d,G) = ∞. Al-
ternatively, if there does exist an operator sequence transforming S into G, let O be a minimum-cost sequence of
n operators that transforms S into G. According to Theorem 4.3, O−1 is a legal path from Sd to G of the same
cost and therefore Copt(S,G) � Copt(S

d,G). Applying the same reasoning to any minimum-cost path from Sd to

G implies Copt(S
d,G) � Copt((S

d)d ,G)
Theorem 4.2�⇒ Copt(S

d,G) � Copt(S,G). These two inequalities together imply
Copt(S,G) = Copt(S

d,G). �
As a result, any admissible heuristic for state Sd is also admissible for state S, and vice versa. Therefore, given

a heuristic h for each state S, its dual heuristic hd(S) can also be calculated (the regular heuristic of the dual state,
h(Sd)). If PDBs are being used, then a PDB lookup for the dual state Sd is used as a heuristic bound for S. Such a
PDB lookup for Sd , is called the dual PDB lookup for S.4

5. Attributes of the dual heuristic

In this section different attributes of the dual heuristic are discussed.

5.1. When the regular and dual heuristics provide different values

Admissible heuristics for permutation problems can be divided into two types. Let π be the permutation that
transforms S to G. The first type of heuristic calculates its value by considering the effect of π (the current location)
for all the objects of the state. For example, Manhattan distance provides a heuristic bound for moving each of the
tiles. The second type of heuristic considers the effect of π for only a subset of the objects. PDBs, for example, provide
full solutions to the relaxed problem that contains only a subset of the objects.

For the first type of heuristic (e.g., Manhattan distance), the dual and regular heuristics are equal. This is because
both states are reached from the goal state by applying the same permutation π (in reverse directions) and the heuristic
considers a similar effect of π for all the objects of the state for both S and Sd . Consider state S and Sd as provided in
Fig. 10. For each tile in S a unique tile can be found in Sd with the same Manhattan distance (the same effect of π ).
For example, in S, tile 1 (located in location 5) has to move one up—the Manhattan distance of this tile is 1. Similarly,
in Sd tile 5 (located in location 1) has to move one step down. Note that this is only true when all the objects in the
state are considered.

Fig. 10. 15-puzzle duality and Manhattan distance.

4 In [7], the same idea of flipping the roles of objects and locations is used to produce dual patterns and dual PDB lookups. The dual representation
presented in this paper generalizes this principle to the entire state and allows any heuristic of the dual state Sd (not just PDBs) to be used for S.
The definition of dual PDB lookups of [7] is different but is equivalent to the regular lookup of the dual state (i.e., to PDB[Sd ]) which is defined
here.
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For the second type, the regular and dual heuristics are not necessarily equal. Using only a subset of objects might
cause a different heuristic result. For example, assume that only tile 1 is being considered by Manhattan distance. In
Fig. 10 tile 1’s Manhattan distance heuristic in S is 1 while in Sd it is 4. For PDBs, only a subset of the objects is
considered and therefore the heuristic of the dual state can be different. For example, assume that in Fig. 10, the PDB
based on tiles {2,3,6,7} is used. The PDB lookup for S has these tiles in locations {8,12,13,14}. The PDB lookup
for Sd has these tiles in locations {9,5,15,12}. These tiles now have to travel different paths to get to the goal state
and therefore S and Sd have completely different entries in the PDB with completely different values.

5.2. Inconsistency of the dual heuristic

A heuristic h is consistent if for any two states, x and y, |h(x) − h(y)| � dist(x, y) where dist(x, y) is the optimal
distance between them. In other words, the difference between the heuristic values of two states is never greater then
the cost of a path between them. When moving from a parent node to a child node, using the heuristic of the dual
state might produce inconsistent [21] values even if the heuristic itself (in its regular form) is consistent. In a standard
search, a parent state, P , and any of its children, S, are neighbors by definition. Thus a consistent heuristic must
return consistent values when applied to P and S. However, the heuristic values obtained for P d and Sd might not be
consistent because P d and Sd are not necessarily neighbors. This is a consequence of the following corollary.

Corollary 5.1. Let P and S be two states and let c be the actual distance between them. The distance between P d

and Sd is not necessarily c. In particular it might be larger.

Proof. An example is sufficient. Consider the 9-pancake puzzle states shown in Fig. 11. State G is the goal state of
this puzzle. State S1 is the neighbor of G obtained by reversing the tokens at locations 1–3 (shown in the bold frame),
and state S2 obtained by further reversing the tokens in locations 1–6. States Gd , Sd

1 and Sd
2 are the dual states of G,

S1 and S2 respectively. Observe that while states S1 and S2 are neighboring states, Sd
1 and Sd

2 (their duals) are not
neighbors. Reversing any consecutive k first tokens of state Sd

1 will not arrive at node Sd
2 .5

A consistent heuristic might return values for Sd
1 and Sd

2 which differ by more than 1. Using these values for S1
and S2 would be inconsistent since they are neighbors. This can be shown by the following PDB example. Suppose
patterns for the 9-pancake puzzle are defined by only considering tokens 4–6 while ignoring the rest of the tokens. The

Fig. 11. 9-pancake states.

5 Note that in this particular example S1 and Sd
1 are identical. In this domain applying a single operator twice in a row will reach the same state

and state S1 is a single move away from the goal.
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Fig. 12. Geometrical and dual symmetries.

Fig. 13. Propagation of values with inconsistent heuristics.

resulting PDB provides distances to the goal pattern from all reachable patterns. The right column of Fig. 11 shows
the corresponding pattern for each state obtained by using the ∗ symbol to represent a “don’t care”.

Regular PDB lookups produce consistent heuristic values during search [11]. Indeed, since states S1 and S2 are
neighbors, their PDB heuristic values differ by at most 1. In state S1, tokens 4–6 are in their goal locations and
therefore h(S1) = 0. In state S2 tokens 4–6 are not in their goal locations and we need to apply one operator to reach
the goal pattern and thus h(S2) = 1. Dual PDB lookups are admissible, but not necessarily consistent. The dual PDB
lookup for state S1, i.e., the PDB lookup for state Sd

1 returns 0 since tokens 4–6 are in their goal location for state
Sd

1 . However, the pattern projected from state Sd
2 is two moves away from the goal pattern. Thus, performing the dual

lookup for states S1 and S2 (i.e., PDB lookups for states Sd
1 and Sd

2 ) will produce heuristics that are inconsistent (0
and 2). Thus when moving from S1 to S2 (or vice versa), even though g was changed by 1, h was changed by 2. �
5.3. Geometrical symmetries versus dual symmetries

There is a major difference between states obtained by a dual symmetry and states obtained by a geometrical
symmetry. This difference is illustrated in Fig. 12. As derived from Corollary 5.1 above, given a state S and its dual
Sd the neighbors of Sd are not necessarily the dual states of the neighbors of S. This is shown in Fig. 12b. For
geometrically reflected states (such as Sg of Fig. 12a), however, exactly the opposite of Corollary 5.1 is true. That is
if the distance between states P and S is c then the distance between P g and Sg (the geometrical reflected state of P

and S) is exactly c. Geometrical symmetries only transform the domain without changing its internal structure. As a
result, neighbors of a reflected state Sg are also reflections of the neighbors of S. Therefore, using heuristics of the
reflected states (that is, using the PDB lookup towards the reflection of the goal as described above in Section 3.2)
also produce consistent heuristics.

5.4. Bidirectional pathmax

In [7,21], the bidirectional pathmax (BPMX) method for propagating inconsistent heuristic values during search
was introduced, and experiments showed that it can be effective in pruning subtrees that would otherwise be explored.

The bidirectional pathmax method is illustrated in Fig. 13. The left side of the figure shows the (inconsistent)
heuristic values for a node and its two children. When the left child is generated, its heuristic (h = 5) can propagate
up to the parent and then down again to the right child. To preserve admissibility, each propagation reduces h by the
cost of traversing that path (1 in this example). This results in h = 4 for the root and h = 3 for the right child. When
using IDA∗, this bidirectional propagation can cause many nodes to be pruned that would otherwise be expanded. For
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example, suppose the current IDA∗ threshold is 2. Without the propagation of h from the left child, both the root node
(f = g + h = 0 + 2 = 2) and the right child (f = g + h = 1 + 1 = 2) would be expanded. Using the propagation just
described, the left child will increase the parent’s h value to 4, resulting in a cutoff without even generating the right
child. BPMX should be regarded as an integral part of any search algorithm when the heuristic is inconsistent and the
operators are invertible, and it is used in all the experiments reported in this paper.

6. Dual search

Traditionally, heuristic search algorithms find optimal solutions by starting at the initial state and traversing the
state space until the goal state is found. The various traditional search algorithms differ in their decision as to which
state to expand next, but in all of them a solution path is found only after all the states on the path have been traversed.
Dual search has the remarkable property of not necessarily visiting all the states on the solution path. Instead, it
constructs its solution path from path segments that it finds in disparate regions of the state space. In this paper, the
focus is on DIDA∗, the dual version of IDA∗. Dual versions for other algorithms can be similarly constructed.

6.1. Dual IDA∗ (DIDA∗)

Recall that the distance to the goal G from both S and Sd is identical and therefore the inverse, O−1, of any optimal
path, O , from Sd to G is an optimal path from S to G. This fact presents a choice, which DIDA∗ exploits, for how
to continue searching from S. For each state S, DIDA∗ computes h(S) and h(Sd). Suppose that max(h(S),h(Sd))

does not exceed the current threshold. DIDA∗ can either continue from this point using S, as IDA∗ does, or it can
switch and continue its search from Sd . Switching from S to Sd is called jumping. A simple policy for making this
decision is to jump if Sd has a larger heuristic value than S—larger heuristic values suggest that the dual side has a
better chance of achieving a cutoff sooner (due to the locality of the heuristic values). This is referred to as the jump if
larger (JIL) policy. Deciding when to jump is an important part of the algorithm, and alternatives to JIL are discussed
later. Of course, later on in the search, DIDA∗ might decide to jump back to the regular side (e.g., when that heuristic
value is better). Once the goal state is reached an optimal solution path can be reconstructed, as described below, from
the sequence of dual and regular path segments that led to the goal from the start.

Fig. 14 illustrates the difference between IDA∗ and DIDA∗. In Fig. 14(a), IDA∗ finds a path from S0 to G. In
Fig. 14(b), the DIDA∗ search starts the same: starting at regular state S0 moves 1 and 2 are made, leading to state
S1. Then, because of its jumping policy, DIDA∗ switches to the dual state Sd

1 . No further switches occur, and DIDA∗
continues on the dual side until the goal G is reached. In Fig. 14(c), the DIDA∗ search starts out the same as in
Fig. 14(b) but at state Sd

2 a jump is made back to the regular side and DIDA∗ continues from S2 to G.

6.2. Constructing the solution path

The correctness of DIDA∗ is best seen by considering how the path segments it finds are joined together to create
a path from start to goal. IDA∗ constructs its solution path by backtracking from the goal state to the start state,
recovering the path in reverse order. This will not work in DIDA∗ since some of the moves are on the regular side
(i.e., the forward search) while some are on the dual side (i.e., the backward search). The solution is to maintain an

Fig. 14. Dual IDA∗ search (DIDA∗).
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1 DIDA∗(initial_state S) (returns an optimal solution)
2 let threshold = max(h(S),h(Sd ))

3 let Path = NULL
4 repeat{
4.1 GoalFound = DDFS(S,NULL,NULL,0,REGULAR,Path,threshold)
4.2 threshold = next threshold
4.3 } until GoalFound
5 return Path

Algorithm 3. DIDA∗.

additional bit per state during the search, the side bit, indicating whether the search at that point is on the regular or
the dual side. At the start of the search, the side bit is set to REGULAR. A child inherits the bit value of its parent, but
if a jump occurs, the value of the side bit is flipped. To construct the solution path, DIDA∗ backtracks up the search
tree to recover the moves made to reach the goal. If the side bit for the current move, o, has the value REGULAR,
then o is added to the f ront of the partially built path as usual. However, if the side bit indicates that o is on the dual
side, then its inverse, o−1, is added at the end of the partially built path.

It is important to note that (based on Theorem 4.3) only the operators are taken from the dual side to the regular
side. The exact states visited by the path in the dual side are not necessarily the duals of the states of the actual solution
path.

In Fig. 14(a), when IDA∗ backtracks, the solution path is reconstructed by adding the moves to the front of the
partially built path, resulting in the path being built in the order {6}, {5,6}, . . . , {1,2,3,4,5,6}. Fig. 14(b) illustrates
how this works in DIDA∗. Backtracking from G will lead to the following pairs of values (corresponding to the move
and the side bit) in the order {(3−1,D), (4−1,D), (5−1,D), (6−1,D), (2,R), (1,R)}. Since the side bit of the first
four moves indicates that they belong to the dual side, the inverses of those moves are added to the end of the partially
built path, yielding the partially built paths of {3}, {3,4}, {3,4,5}, {3,4,5,6}. Now the side bit indicates that the search
occurred in the regular side. Hence the next two moves are inserted at the front of the path, obtaining {2,3,4,5,6} and
{1,2,3,4,5,6}. The dashed line in Fig. 14(b) shows how to concatenate the solution path from Sd

1 to G in its correct
place.

Algorithm 3 presents the pseudocode for DIDA∗. DIDA∗ mirrors IDA∗ by iteratively increasing a solution cost
threshold until a solution is found. Each iteration calls DDFS (dual depth-first search) which is presented in Algo-
rithm 4. DDFS recurses until a solution is found or the cost threshold is exceeded. DIDA∗ differs from a standard
IDA∗ search in several respects. First, each call to DDFS includes extra parameters: a side_bit (indicating if the search
is currently on the REGULAR or DUAL side) and the last move made on the regular and dual sides (used for operator
pruning, as explained in Section 6.4). Second, a jump decision is included in DDFS, possibly resulting in a jump
(lines 5–5.4). Finally, when the goal has been found, the reconstruction of the solution path distinguishes between the
regular and dual sides (lines 6.3.1–6.3.2).

6.3. The benefit of jumping

The regular and dual states are different and, hence, there can be large differences in the (admissible) heuristic
values between states S and Sd .6 By using the side that has the highest heuristic value (for the current context), one
is increasing the chances of moving into a region of the search space with values high enough to create a cutoff.
Of course, the decision to switch sides is a heuristic and not guaranteed to improve the search every time a jump is
made.

Consulting the heuristic of the dual state introduces diversity into the heuristic values obtained during the search;
information is obtained from a different area of the search space. DIDA∗ introduces a stronger diversity since it is not
only peeking but is physically jumping into that area.

6 For example, experiments on the 17-pancake problem with a heuristic which has a maximum value of 14, the difference observed was up to 8.
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6.4. The penalty for jumping

Usually, depth-first search algorithms avoid generating duplicate nodes by disallowing operators that can be shown
to be irrelevant based on the previous sequence of operators. The simplest example of this is disallowing the inverse
of the previous operator. More sophisticated techniques enforce an ordering on the operators, disallowing redundant
sequences. Such mechanisms are referred to as operator pruning in this paper. Operator pruning can significantly
reduce the branching factor. For example, the branching factor of Rubik’s cube at the root node is 18, but the average
branching factor below the root can be reduced by operator pruning to 13.34 [14].

There can be no operator pruning at the start state, because there is no search history. Let its branching factor be b.
Subsequent nodes in a normal search have a smaller branching factor, at most b − 1, because of operator pruning. By
contrast, DIDA∗ sometimes pays a branching-factor penalty for jumping to a dual state. As before, the start state has
a branching factor of b, and subsequent nodes on the regular side have a lower branching factor. However, on every
branch of the search tree, when a jump is made to the dual side for the first time only, the dual state has no search
history and will have a branching factor of b. On subsequent jumps on a branch, the history on that side can be used
to do operator pruning. In Algorithm 4, the previous moves from the regular and dual sides are passed as parameters,
allowing DIDA∗ to prune the inverse of the previously applied operator on a given side.

To illustrate this, consider Fig. 14(c). DIDA∗ has to consider all operators at the start state, S0. Moves 1 and 2 are
made on the regular side, reaching S1. Here DIDA∗ decides to jump to Sd

1 ; a completely new state with no history.
Thus, operator pruning is not possible here and all the operators must be considered. DIDA∗ makes moves 6−1, 5−1

and 4−1 on the dual side until state Sd
2 is reached. DIDA∗ then jumps to the dual state of Sd

2 , S2, back on the regular
side. Because it is returning to the regular side, a history of the previous moves is known and operator pruning can
be used in expanding S2. For example, the previous operator on this side is operator 2, so its inverse, 2−1, can be
ignored. To understand why operator pruning can be applied, even though S1 bears no apparent relation to S2, recall
how DIDA∗ constructs its final solution path. If a path is found leading from S2 to the goal, the first operator on this
path will be placed immediately after the operator that leads to S1 in the final solution path. Since this path is optimal,
it cannot possibly contain an operator followed immediately by its inverse. The same reasoning justifies the use of
more sophisticated operator pruning techniques as well. In IDA∗, operator pruning can be used at all nodes except the
root. In DIDA∗, the first time a jump is made, on any given branch, no history is available and operator pruning is
unavailable. For example, in Rubik’s cube, when performing the first jump, on any branch, DIDA∗ has 18 children to
consider, as opposed to the average of 13.34 that would be seen by IDA∗.

1 boolean DDFS(state S, previous_move pmr ,
previous_dual_move pmd , depth g, bool side_bit, List Path,int threshold)

2 let h = max(h(S),h(Sd ))

3 if (h + g) > threshold return false
4 if S = goal_state return true
5 if should_jump(S,Sd ){
5.1 S = Sd

5.2 swap(pmr , pmd )
5.3 side_bit = ¬side_bit
5.4 } endif
6 for each legal_move m {
6.1 if m = pmr

−1 continue /*operator pruning*/
6.2 generate child C by applying m to S

6.3 if DDFS(C,m,pmd , g + 1, side_bit,Path, threshold) = true{
6.3.1 if (side_bit = REGULAR) then Path = m :: Path
6.3.2 else Path = Path :: m−1

6.3.3 return true
6.3.4 } endif
6.4 } endfor
7 return false

Algorithm 4. DDFS “::” adds an element to a list.
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To avoid the penalty of jumping, a degenerate jumping policy, which only allows a jump at the root node, can be
used (JOR). If h(root) > h(rootd) then the search is conducted on the regular side, otherwise it is conducted on the
dual side. No further jumps are allowed for JOR.

7. Experimental results for simple duality

This section provides experimental results that show the benefit of performing dual lookups and using the dual
search algorithm. Pattern databases are used in all the experimental domains because they represent the state-of-the-
art heuristics.

7.1. Rubik’s cube

Korf first solved the 3 × 3 × 3 Rubik’s cube with PDBs [14]. As discussed above, the cubies of Rubik’s cube can
be divided to corner cubies and edge cubies. As a first experiment to test the duality ideas, a 7-edge-cubies PDB was
built, the largest that can be stored in 1 GB of memory. There are 510,935,040 possible permutations of the seven
edge cubies. At four bits per entry, 255 MB are needed for this PDB. The heuristics used in this set of experiments
were based on this 7-edges PDB.

Table 1 presents results for this set of experiments. The experiments above were on 100 instances with length � 14.
The table columns are as follows:

Heuristic: Which heuristic was used for the PDB lookups: r stands for the regular state and d for its dual state.
Similarly, 4r (4d) means that we took the maximum of 4 regular (dual) heuristics.

OP—operator pruning: “+” means that the operator leading to a node’s parent is pruned; “−” means no operators
are pruned.

Search: Search algorithm (IDA∗ or DIDA∗).
Policy: The jumping policy used by DIDA∗.
Nodes and Time: Average number of generated nodes and the average time needed to solve a problem with 3.0 GHz

Pentium 4 machine with 2 GB of memory.
Jumps: Average number of times that DIDA∗ jumped between the regular and dual sides.

The first line of this table shows the results of IDA∗ using a regular PDB lookup. These searches generated an
average of 90 million nodes. Intuitively, one might think that performing only a dual lookup should produce the same
results since the exact same PDB is being queried. Surprisingly, however, line 2 shows that when using the dual
heuristic the number of generated nodes decreases to only 8 million nodes, an improvement factor of 11. The reason
for this dramatic improvement is as follows. While values in a PDB are locally correlated, the dual lookup frequently
looks in (“jumps” to) different areas of the PDB. Thus, the general flow of the search benefits from a large diversity
of areas in a PDB and a “bad” area can be quickly escaped from. Since the dual heuristic is inconsistent, BPMX was

Table 1
Rubik’s cube (7-edges PDB) results

# Heuristic OP Search Policy Nodes Time Jumps

1 r + IDA∗ – 90,930,662 28.18 –
2 d + IDA∗ – 8,315,116 3.24 –
3 max(r, d) + IDA∗ – 2,997,539 1.34 –

4 max(r, d) + DIDA∗ JIL 2,697,087 1.16 15,013
5 max(r, d) + DIDA∗ JOR 2,464,685 1.02 0.23

6 max(r, d) − IDA∗ – 29,583,452 30.27 –
7 max(r, d) − DIDA∗ JIL 19,022,292 20.44 3,627,504

8 max(4r,4d) + IDA∗ – 615,563 0.51 –
9 max(24r,24d) + IDA∗ – 362,927 0.90 –
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Table 2
Rubik’s cube results

Heuristics Nodes Time Memory

max(8,6,6) 352,656,042,894 102,362 130,757
max(8,6,6,6d,6d) 253,863,153,493 91,295 130,757
max(8,7,7,7d,7d) 54,979,821,557 44,201 299,757

also used.7 In line 3, the maximum of both the regular and the dual heuristics is used. This further reduced the number
of generated nodes to roughly 3 million, an improvement of a factor of 30 over the benchmark of line 1.

Lines 4–5 shows the results for DIDA∗ using different jumping policies. DIDA∗ with JIL (line 4) yields a modest
improvement over line 3. Applying the JOR policy (line 5) further improves the results by a modest amount. The
Jump value reveals that in 23 of the cases the dual heuristic at the start state was better and the search was performed
in the dual side; the other 77 cases had ties or a better regular heuristic.

To better understand the penalty incurred by the first jump of DIDA∗, operator pruning was disabled and the results
for IDA∗ and DIDA∗ compared. Results are provided in lines 6–7. Here, the operator that leads to a node’s parent is not
pruned. In both cases, the maximum of the PDB lookups for the regular and dual states was used. Disabling operator
pruning increases the search effort by a factor of 10 when compared to line 3 where operator pruning was enabled.
Results show that in this setting DIDA∗ with JIL reduced the number of generated nodes by one third compared to
IDA∗. The improvement factor of DIDA∗ over IDA∗ was more significant than those reported in lines 4 and 5 since
now the penalty of the first DIDA∗ jump was minor because the operator pruning was disabled.

Due to geometrical symmetries in this domain there are multiple possible regular and dual lookups. Many com-
binations of geometrical reflected regular lookups and geometrical reflected dual lookups were tried. Since DIDA∗
does not seem to produce significant improvements for this domain, only IDA∗ was used here (no jumping). The best
results achieved reduced the number of nodes generated (when taking 24r + 24d) by a factor of 250, and the time
(4r + 4d) by a factor of 55. All this was possible with just one 7-edge-cubies PDB stored in memory.

The results obtained for this set of experiments yield the following insights. First they show that dual lookups are
effective and using them reduces the search effort by an order of magnitude. Second, these results show that operator
pruning is important and using it reduced the search effort by an order of magnitude. Third, it shows that in this
domain, the penalty of DIDA∗ almost offsets the benefits and using DIDA∗ only improves IDA∗ by a modest amount.

Korf’s original 1997 Rubik’s cube experiments on 10 random instances were repeated [14]. Again, since DIDA∗
does not seem to produce significant improvement in this domain, only IDA∗ was used with dual PDB lookups for
this set of experiments. Korf used three PDBs for this domain: one PDB for the eight corner cubies and two PDBs
for two sets of six edge cubies. Since a legal move in this domain moves eight cubies, the only way to combine these
three PDBs is by taking their maximum. Note that there are eight corner cubies and all eight are used by the 8-corner
PDB. Thus, performing a dual lookup for this particular PDB is irrelevant. Here, the entire space of corner cubies is
in the database and both lookups give the same result.8

Results for the same set of 10 random instances used in [14] were obtained and are provided in Table 2. The
results for Korf’s set of 8 + 6 + 6 PDBs were improved by a modest amount by adding the dual lookups for both
6-edge PDBs (from 353 billion nodes to 253 billion). Increasing the edges PDB from six to seven cubies and using
a 8 + 7r + 7r + 7d + 7d setting reduced the search to 54 billion nodes—an improvement of a factor of 6.4 over
Korf’s initial setting. The improvements of adding dual lookups for the 6- and 7-edges PDBs are modest since most
of the time the 8-corner PDB has the maximum value; this PDB is larger and contains more cubies than the 6- and
7-edge PDBs. This can be seen in the following rates, which were measured over 10 million random instances. For
the 8 + 6r + 6r + 6d + 6d setting, the 8-corner PDB had the maximum value for 73.5% of the instances while one of
the lookups in the 6-edges cubies was the maximum for only 7.3% of the instances (the rest of the instances were a
tie). These numbers changed to 40.8% and 21.3% respectively for the 8 + 7r + 7r + 7d + 7d setting.

7 In fact, we observed that a significant part of the 11-fold improvement (a 2.3-fold improvement) is due to activating BPMX. See [7,21] for a
deeper treatment of BPMX.

8 Since corner cubies can switch locations only with corner cubies and the entire space corner cubies is in the database then the heuristic always
returns the optimal cost. The regular state and the dual state share the same optimal distance to the goal state thus both evaluations will return the
exact value (which is the real cost).
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7.2. Pancake puzzle

Unlike the other puzzles discussed in this paper, the pancake puzzle does not have geometrical symmetries [2].
This is a consequence of the special structure of the problem; each location has different attributes (such as how many
operators are applicable to a location and where the location can be permuted to). Therefore, the dual heuristic is
important because it provides the only additional possibility for obtaining another heuristic “for free”.

Table 3 presents results averaged over 10 random instances of the 17-pancake puzzle. The heuristic used was a
PDB based on the rightmost tokens 10,11, . . . ,16 (which gives slightly better average heuristic values than a PDB
based on tokens 0,1, . . . ,6). Here again, the phenomenon is observed that the dual heuristic is much better than the
regular heuristic and the improvement factor is 23.8 in terms of generated nodes.9 When taking the maximum of the
regular and dual heuristic, an improvement was obtained over the simple case of the regular heuristic: a factor of 138
in nodes generated and a factor of 92 in time.

The last line of the table shows the results when DIDA∗ was used. DIDA∗ with the JIL policy produces a roughly
10-fold performance improvement over IDA∗ (from 2,478 million to 260 million nodes) when using the same heuris-
tic. In this domain there are no obvious redundant operator sequences, so a depth-first search cannot prune any of the
operators based on the previous operators. Only the trivial pruning of the parent is possible, making the branching
factor below the root N − 2. When performing the first jump to the dual side, on any particular branch, the branching
factor increases by only one, from N − 2 to N − 1.

Note that, while using the exact same PDB, the total improvement of DIDA∗ over the simple case is by three orders
of magnitude and the time to solve a problem was reduced from more than three days to only six minutes.

Table 4 compare results averaged over 100 random instances of the pancake puzzle for sizes 11 to 15. For the last
lines of the 16-pancake and the 17-pancake problems (which demand days of computations) only results over 50 and
10 instances were compared respectively. The heuristic used was a PDB based on the seven rightmost tokens. The first
column indicates the size of the pancake puzzle. The second column indicates the average optimal solution cost for
each set of random instances. The following columns presents the average number of generated nodes using different
heuristics and different search methods. The table shows that the larger the problem space (i.e., the bigger the IDA∗
search needed), the larger the improvement for the various methods of using duality.

Fig. 15 shows the improvement factor of the different variations over the basic regular lookup (column 3 of Table 4).
The figure shows that the improvement factor of DIDA∗ steadily increases with the size of the problem. For the
problem of size 11, it is a factor of 59. An improvement of 1314-fold is seen for a problems of size 17. For the smaller

Table 3
17-pancake puzzle results over 10 random instances

Heuristic Algorithm Nodes Time

r IDA∗ 342,308,368,717 284,054
d IDA∗ 14,387,002,121 12,485
max(r, d) IDA∗ 2,478,269,076 3086

max(r, d) DIDA∗ (JIL) 260,506,693 362

Table 4
Pancake puzzle results for different sizes of problems

Size Ave. IDA∗ h = r IDA∗ h = d IDA∗ h = max(r, d) DIDA∗ (JIL) h = max(r, d)

11 9.83 16,407 867 404 275
12 10.50 148,380 6414 2538 1597
13 11.88 4,268,700 98,605 29,423 15,291
14 12.67 66,213,088 2,143,328 474,082 229,348
15 13.78 864,968,140 38,953,014 6,259,061 2,306,745
16 14.72 18,184,871,249 608,590,928 95,124,495 18,469,496
17 15.60 342,308,368,717 14,387,002,121 2,478,269,076 260,506,693

9 Since the dual heuristic is inconsistent, BPMX was also used. Again, part of the 23.8-fold improvement is due to activating BPMX.
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Fig. 15. Improvement on IDA∗ with regular lookup.

Fig. 16. General duality.

problems, the regular lookup in the 7-token PDB is more accurate and provides tighter bounds on the solution, limiting
the opportunities for large performance improvements. When the problem is large the PDB is less accurate, enabling
other search and heuristic methods to find large performance improvements. Note that the other variations are also
always better than the simple version (regular lookup only) but the improvement of these systems does not seem to
increase as dramatically as DIDA∗.

8. General duality

The simple definition of duality used so far assumes that any operator sequence that can be applied to any given
state S can also be applied to the goal G. This only applies to search spaces where operators have no preconditions
(assumption 4 in Section 4.1). In the sliding-tile puzzles, for example, operators have preconditions (the blank must
be adjacent to the tile that moves) and an operator sequence that applies to S will not be applicable to G if the blank is
in different locations in S and G. A more general definition of duality, allowing preconditions on operators, will now
be given. Assumption 4 is dropped but assumptions 1–3 are still needed, although assumption 1 is relaxed to allow
n, the number of locations, to be greater than m, the number of objects. With this general definition, dual heuristic
evaluations and dual search are possible for a much wider range of state spaces, including the sliding-tile puzzles, the
Blocks World, and the Towers of Hanoi.

Duality (general definition). The dual of a given state, S, for goal state G, can be defined with respect to any state X

such that any sequence of operators that can be applied to state S can also be applied to state X and vice versa. If π is
the location-based permutation such that π(S) = G, then Sd

X , the dual of S with respect to X, is defined to be π(X).
This idea is illustrated in Fig. 16. The same path that transforms S to G also transforms X to Sd

X . As a special case, if
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Fig. 17. General duality Sd
X

= π(β(S)) = β(π(S)).

Dual(State S, Goal G, State X)
1 for each location p {
1.1 let o be the object located in p in S

1.2 let y be the location of o in G

1.3 define πp = y

1.4 } endfor
2 Sd

X
= π(X)

3 return (Sd
X

)

Algorithm 5. Calculation of the general dual state of S with respect to X.

X = G (this is possible if any operator sequence applicable to S is also applicable to G) then this definition becomes
the simple definition given earlier.

The 8-puzzle state S and the goal state G of Fig. 17 do not have the same applicable operators. For example, the
operator “move up the tile in the middle” is applicable to S but not to G. A state X needs to be found such that all
operator sequences applicable to S will be applicable to X. This is done with the mapping β , which renames the tiles
to transform S into X. For the given S this X could be any state having the blank in the same position as S. Sd

X can be
derived in two ways, either by applying π to X (as shown in Algorithm 5) or by renaming the tiles in G according to
β . π (shown in Fig. 17), for example, maps the tile in the upper left location in S, or in X, to the lower left location in
G, or Sd

X , respectively. By contrast, β renames object 6 in S, or in G, to object 1 in X, or Sd
X , respectively.

By definition, any legal sequence of operators that produces Sd
X when applied to X can be legally applied to S to

produce G, and vice versa. Because an operator and its inverse cost the same, duality provides an alternative way to
estimate the distance from S to G: any admissible estimate of the distance from Sd

X to X is also an admissible estimate
of the distance from S to G. If PDBs are being used, general duality suggests using a PDB, PDBX (with X as the
goal state), in addition to the usual PDB, PDBG (with G as the goal). Given a state S, in addition to the standard
heuristic value, PDBG[S], a heuristic value for the dual state can be used by computing π for S and then looking up
PDBX[π(X)].

It is possible to have multiple states, {Xi}, each playing the role of X in the definition. In this case, a state S could
have more than one dual—it will have a dual with respect to each Xi that has the all-important property that any
sequence of operators applicable to S is also applicable to Xi and vice versa. A PDB, PDBXi

would be built for each
Xi (with Xi as the goal). Lookups for the dual state of S could be made in PDBXi

for each Xi for which a dual of S

is defined.
For the sliding-tile puzzles, we define Xi to be a state in which the blank is in position i, and build a PDB for

each Xi . Then, given a state S with the blank in position i, the dual of S with respect to Xi is calculated and its value
is looked-up in PDBXi

. For example, in the 8-puzzle there are nine different locations that the blank could occupy.
Define nine different states, X0 . . .X8, with Xi having the blank in position i, and compute nine PDBs, one for each
Xi . Of course, geometric symmetries can be used to reduce the number of distinct PDBs that must actually be created
and stored. For example, below only four 7-tile PDBs are needed to cover all possible blank locations in the 15-puzzle.
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8.1. Other domains

To convey the generality of general duality, we will briefly describe how it applies to two additional domains, the
Blocks World, and the Towers of Hanoi.

In the Blocks World, there are B objects (blocks), each of which may be placed on a “table” or on another
block.There may be at most one block on a block, so towers are formed of various heights when blocks are stacked
upon each other.10 The size of the state space is approximately p(B) ∗ (B!), where p(B) is the number of ways of
partitioning the integer B . The standard Block World operators allow any block to be picked up (by a “hand” that then
holds the picked-up block) if it has no block on top of it, and to put the block being held down onto the table or onto
any block that has nothing on top of it. Two states can have the same set of operator sequences applied to them only
if they have the same “structure”, i.e. they partition B the same way (e.g. into two towers, one of height 3, the other
of size B − 3). In order for each state to have a non-trivial dual, we need one Xi for each different structure – in other
words we need p(B) different Xi states. This number grows fairly quickly as B increases but it is not excessively
large for the values of B typically used in experiments. For example, for B = 12 blocks the number of structures,
p(12), is 77. If practical considerations force only some of the 77 Xi PDBs to be computed, duals will exist for the
states that have the same structure as one of Xi ’s for which a PDB was built.

The Towers of Hanoi is the same as the Blocks World except for these differences: (1) there are a limited number of
locations on the table (called “pegs”), typically three or four, and each peg has an identity; and (2) each block (called
a “disc”) has a distinct “size”, and a larger disc cannot be placed on top of a smaller one. The latter constraint causes
the number of distinct structures to explode exponentially—two states can have the same set of operator sequences
applied to them only if they contain exactly the same towers of discs, which means they can differ only in which pegs
the various towers are on. General duality applies in this case, but it is of no benefit.

8.2. Dual search for the general case

Suppose dual search is proceeding on the “regular side” (with G as the goal) and decides at state S to jump to Sd
i ,

the dual of S with respect to Xi . Search now proceeds with Xi playing the role of the goal in all respects. In particular:
(1) if Xi is reached, the search is finished and the final solution path can be reconstructed; and (2) the permutation π

is calculated using Xi instead of G. The latter point has an important implication for the sliding-tile puzzles: the dual
of any state generated when the search goal is Xi will have the blank in location i.

9. Experimental results for the sliding-tile puzzles (general duality)

General duality has been implemented for the 15-puzzle and 24-puzzle. In this section, results for both using dual
heuristics and using the dual search algorithm are given for these domains.

9.1. 15-puzzle

For the 15-puzzle, the same 7–8 PDB partitioning from [15] was used (as shown in Fig. 5). As explained in
Section 8, for each possible blank location a unique PDB has to be built to be able to perform a lookup for the dual
state and calculate the dual heuristic. However, the number of unique PDBs that must be built can be reduced. Given
the location of the blank, then a horizontal line (or a symmetric vertical line) across the middle of the puzzle divides
it into two regions of eight locations. One region (call it A) has 8 locations which are occupied by eight real tiles, and
another region of 8 locations (B) which are occupied by seven real tiles and the blank. The 8-tile group is not affected
by the blank since it has exactly 8 location with exactly eight tiles in it and therefore, the regular 8-tile PDB can be
used for the dual state.

This is not the case for the 7-tile PDB which is affected by the location of the blank. However, as shown in Fig. 18
there are only four different unique blank locations for the 7–8 partitioning. A unique 7-tile PDB should be built for

10 Note that there could be B different stacks, each with up to B objects. A location is any possible location in any of these stacks. Of course,
many of the locations are empty. But, notionally, the number of distinct locations is O(B2).
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Fig. 18. Four different (dual) 7-tile pattern databases.

Table 5
Results for the 15-puzzle

# Heuristic Algorithm Jump Av. H Nodes Time

One PDB lookup

1 r IDA∗ – 44.75 136,289 0.081
2 d IDA∗ – 44.39 247,299 0.139

Two PDB lookups

3 max(r, r∗) IDA∗ - 45.63 36,710 0.034
4 max(r, d) IDA∗ - 44.40 65,349 0.069
5 max(r, d) DIDA∗ JIL 44.40 51,633 0.066
6 max(r, d) DIDA∗ J15 44.40 36,937 0.047

Four PDB lookups

7 max(r, r∗, d, d∗) IDA∗ - 46.12 18,601 0.022
8 max(r, r∗, d, d∗) DIDA∗ J15 46.12 13,687 0.019

each of these cases. Any state S of the 15-puzzle can be mapped into one of these cases in order to calculate the
relevant PDB for its dual state Sd . The frame on the left of Fig. 18 indicates the relevant PDB for the dual lookup of
each possible blank location. In those locations where two PDBs are given, then the right label indicates the PDB to
use for a horizontal partition while the left corresponds to a vertical partition.

The amount of memory needed is 519 KB for the 8-tile PDB and 57.5 KB for a 7-tile PDB. Thus the total memory
needs (the 8-tile and 4 7-tile PDBs) is 749 KB. The three extra PDBs needed to handle all the dual cases correctly,
represent a small increase of memory.

Table 5 presents results of the different heuristics averaged over the same 1000 instances used in [15]. The average
solution for this set of instances is 52.52. The first column indicates the heuristic used, with ‘r∗’ and ‘d∗’ representing
the reflected regular and dual PDB lookups.

Line 1 presents the results when only the regular PDB is used, while line 2 presents the results when only the dual
heuristic is used. An interesting phenomenon is that unlike the other domains, in the 15-puzzle the pure dual PDB
lookup was worse than the pure regular lookup (it generated almost twice as many nodes). The reason for this is the
location of the blank. Note that while the regular PDB lookup always consults the 8-tile PDB and the 7-tile PDB
labeled a in Fig. 18, the dual state might also consult one of the other 7-tile PDBs (labeled b, c and d). The current
state S always aims for a region B configuration such that the blank is located in a corner (the goal state) while the
dual state Sd needs to consider other possibilities for region B . It turns out that getting the blank to the corner is a
harder task and needs more moves. While the average value over all the entries of the PDB labeled a in Fig. 18 is
20.91, the average values of the PDBs labeled b, c and d are 20.81, 20.31 and 20.53 respectively. Thus, the values
obtained by the PDBs that correspond to b, c and d will be smaller than those obtained by the PDB of a.

Historically, the goal location of the blank is in the corner. However, if a goal state is set such that the blank is in
location 4 (as in Fig. 18(c)) then the regular heuristic will always look in the weakest PDB while the dual heuristic will
consult the other PDBs as well. Such experiments have been made and, indeed, the pure dual PDB lookup generated
nearly 40% regular PDB.
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Given one PDB lookup, one either performs a lookup on the regular or the dual PDB state. When two lookups
are allowed many other combinations are possible. Line 3 of Table 5 used the maximum of the regular and reflected
PDBs. Note that lines 1 and 3 are the same results obtained by [15], but on different (faster) hardware. Line 3 presents
the best published results for this puzzle [15]. Line 4 uses the maximum of the regular and the dual heuristic. For the
same reason as line 2, line 4 was worse than line 3 since it used all four PDBs and not just the best one.

DIDA∗ experiments included two jumping policies: JIL and J15. J15 works as follows. The sliding-tile puzzle
has two important attributes that did not arise in the previous domains, but should be taken into account in DIDA∗’s
jumping policy. First, the branching factor is not uniform. It varies from two to four depending on the location of
the blank, and will often be different for S and Sd . Second, as explained above, there will be several different PDBs,
each based on an Xi having the blank in a different position. The Xi are chosen to maximally exploit the geometrical
symmetries of the puzzle, so that although there are 16 positions the blank could be in, only four PDBs are needed.
The average heuristic value for each of these PDBs is different. Note that a small difference in average PDB value
can have a dramatic effect on the PDB’s pruning power. Because S and Sd

i will often have the blank in a different
location, and therefore draw their heuristic values from different PDBs, it is important for the jumping policy to take
the average value of the PDBs into account.

J15, considers both these attributes. It is a three-part decision process. First, the effective branching factor of the
regular and dual states is compared. This is done by considering the blank location and the history of the previous
moves, choosing to prefer the state with the smaller effective branching factor.11 Second, if there is a tie, then the
quality (average value) of the relevant PDB is considered. Preference is given to the PDB with the higher average. The
average values of the four PDBs were given above. Third, if there is still a tie, then the JIL policy is used.

The results for DIDA∗ with JIL and with J15 are presented in lines 5 and 6. DIDA∗ with J15 is almost twice
as efficient as IDA∗ using max(r, d) (line 4). However, as explained earlier the dual heuristic was inferior in this
particular domain because the regular heuristic used a PDB with higher average values. Thus, max(r, d) was almost
two times slower than the benchmark results from [15] (line 3). Using DIDA∗ with J15 can overcome this problem.
DIDA∗ with J15 (line 6) generated roughly the same number of nodes as the benchmark results when using only two
PDB lookups.

Finally, the lines 7 and 8 perform all four possible PDB lookups on this domain. This is achieved using both
regular and dual lookups and their reflections about the main diagonal. Line 7 presents the maximum over the four
PDB combinations. Using all four lookups reduces the number of generated nodes by more than a factor of two
and eliminated one third of the execution time compared to the best results of [15] (line 3 of Table 5). The time
improvement is smaller because in the new setting four PDB lookups are performed, as opposed to only two PDB
lookups for the previous benchmark.

To the best of our knowledge using the four regular/dual normal/reflected PDB lookups gives the best existing
heuristic for this puzzle.

It is important to note that the dual lookups for the sliding-tile puzzles are of great importance as there is only
one geometrical symmetry available for the state-of-the-art additive heuristic—the reflection about the main diagonal.
Thus, the dual idea doubles the number of possible lookups and achieved a speedup of a factor of two over the previous
benchmarks.

When performing all four possible lookups with DIDA∗ and J15, the result is a new state-of-the-art solver. The
number of nodes is now reduced to only 13,687 and the average time per problem is now 0.019. Of historical note
is that the number of generated nodes is now nearly 30,000 times smaller than when IDA∗ first solved the 15-puzzle
using only Manhattan distance [12].

Note from the table that the constant time per node is not significantly increased when moving from IDA∗ to
DIDA∗. The reason is that the most time consuming stage of these algorithms is the overhead of the PDB lookups

11 The reliance of J15 on the branching factor causes a subtle problem. Suppose the start state, S, has the blank in location 5. It will have a
branching factor of four but its dual, Sd

5 , calculated with respect to X5, will have a branching factor of 2, because, it will have the blank in the same

location as goal state G (the upper lefthand corner). Dual search with J15 will therefore jump to Sd
5 and proceed searching from there with X5 as

the goal. The states generated during this search will have branching factors of at most 3, but their duals will all have a branching factor of 4. They
will have the blank in the same location as the current search goal, X5, but without having any history on the other side (because the jump was
made at the root state). J15 will therefore never make another jump. To avoid this problem, jumps from states with the blank at interior locations
that are within a few moves of the start state are not permitted.
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which slow down the calculations because they perform queries into main memory. This overhead depends on the
number of PDB lookups and is similar in both IDA∗ and DIDA∗. The only additional overhead in DIDA∗ is activating
the jumping policy which is relatively very small.

9.2. 24-puzzle

Similar experiments were performed using the 24-puzzle. The original 6–6–6–6 partitioning from [15] (Fig. 5)
needed storage for only two 6-tile PDBs since all the 3 × 2 rectangles are symmetric. As before, additional PDBs are
needed to handle the blank. Eight 6-tile PDBs are used: one for all the 3×2 rectangles and their duals, and seven 6-tile
PDBs for the irregular shape in the top left corner (see Fig. 5). They are numbered 0,1,5,6,10,11,12 in Fig. 19, with
the number reflecting the location of the blank in the Xi that defined the PDB. Fig. 19(a) indicates which PDB is to be
used for each possible position of the blank, and Fig. 19(b) shows two different 6–6–6–6 additive PDB partitionings,
PDB12 and PDB0 (the PDB used in [15]). Fig. 19(c) shows the average heuristic value for each of the PDBs. Each
6-tile PDB needs 122 MB and the new system needs eight times as much memory. When using DIDA∗, the JIL and
J24 heuristics were used (J24 works exactly the same way as J15 but for the 24-puzzle).

In [15] 50 random instances were optimally solved. This data set was sorted in increasing order of their optimal so-
lutions. Table 6 presents the average results over the first 25 random instances for all the different variations. Table A.3
in Appendix A gives further results for the entire set of 50 instance for the best variations of DIDA∗. The first line
presents the benchmark results from [15] where the maximum between the regular PDB (r) and its reflection about
the main diagonal (r∗) were taken. The second line is IDA∗ with regular and dual PDB lookups. Line 3, is DIDA∗
with JIL. Finally, line 4 shows that DIDA∗ with J24 outperforms the benchmark results by a factor of 5.3. Detailed
results for each of the 50 instances from [15] with variations on the PDB lookups is provided in Appendix A.

The last two lines (5 and 6) present the case where all possible four PDB lookups were used. IDA∗ with all four
lookups improved the benchmark results by a factor of 3.2. DIDA∗ with all four lookups further improved this to a total
of improvement factor of 11.0 over the benchmark. Furthermore, note that DIDA with two lookups (r, d) outperform
IDA∗ with the entire set of four lookups by a factor of 1.65.

Fig. 19. 24-puzzle heuristic.

Table 6
DIDA∗ results on the 24-puzzle on the first 25 random instances

# Heuristic Search Policy Nodes Jumps

Two PDB lookups

1 max(r, r∗) IDA∗ – 43,454,810,045 –
2 max(r, d) IDA∗ – 31,103,112,895 –
3 max(r, d) DIDA∗ JIL 16,302,942,680 176,075,343
4 max(r, d) DIDA∗ J24 8,248,769,713 23,851,828

Four PDB lookups

5 max(r, r∗, d, d∗) IDA∗ – 13,549,943,868 –
6 max(r, r∗, d, d∗) DIDA∗ J24 3,948,614,947 13,083,286
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The versions with two PDB lookups ran at around 300,000 nodes per second while the versions with 4 PDB lookups
ran at around 220,000 nodes per second. Thus, as observed in the other domains the improvement in the total running
time was a little smaller.

10. Conclusions and future work

Duality is a new form of symmetry between states in permutation state spaces and it allows the usage of multiple
heuristics for a given state. DIDA∗ is a novel search algorithm which exploits this symmetry. DIDA∗ can switch
between state representations to maximize the overall quality of the heuristic values seen in the search. The algorithm
has several surprising properties, including no need for a search frontier data structure and solution path construction
from disparate regions of the search space. Using the dual heuristic significantly improves the heuristic value. Adding
the dual search algorithm provides additional performance gains (up to an order of magnitude) in several application
domains using a state-of-the-art heuristic search algorithm.

Future work can continue in the following directions:

Table A.1
DIDA∗ results on the 24-puzzle on the 50 random instances

# Heuristic Search Policy Nodes Jumps

Two PDB lookups

1 max(r, r∗) IDA∗ – 360,892,479,670 –
3 max(r, d) DIDA∗ J24 75,201,250,617 147,733,547

Four PDB lookups

5 max(r, r∗, d, d∗) DIDA∗ J24 37,674,826,649 78,134,424

Table A.2
24-puzzle first 25 instances. DIDA∗ uses the J24 jumping policy

No Sol Benchmark (r, r∗) IDA∗ (r, d) DIDA∗-J24 (r, d) DIDA∗-J24 (r, r∗, d, d∗)

1 (25) 81 292,174,444 547,754,446 152,941,190 86,623,738
2 (40) 82 65,099,578 78,265,289 13,720,424 8,027,134
3 (29) 88 4,787,505,637 29,093,280,876 2,811,214,623 1,052,360,568
4 (36) 90 2,582,008,940 3,128,723,824 1,209,506,402 569,488,356
5 (20) 92 312,016,177,684 50,287,497,984 29,036,511,649 4,464,625,873
6 (30) 92 1,634,941,420 1,950,647,389 2,484,991,641 1,225,111,000
7 (47) 92 30,443,173,162 18,915,533,169 6,421,296,555 4,151,834,900
8 (44) 93 867,106,238 373,833,955 37,432,750 27,828,310
9 (1) 95 2,031,102,635 815,220,874 114,270,740 60,208,978
10 (22) 95 3,592,980,531 4,006,328,755 1,762,446,935 814,538,591
11 (2) 96 211,884,984,525 149,827,435,325 22,818,488,960 14,893,883,061
12 (16) 96 3,803,445,934 1,829,307,204 174,895,012 125,947,856
13 (38) 96 38,173,507 45,976,055 8,435,471 5,298,259
14 (3) 97 21,148,144,928 49,550,582,547 29,121,290,662 9,394,905,290
15 (32) 97 428,222,507 1,707,750,974 1,685,362,622 623,772,078
16 (4) 98 10,991,471,966 14,523,612,651 2,480,394,914 1,500,144,838
17 (28) 98 2,258,006,870 2,106,454,886 543,149,059 360,755,098
18 (35) 98 116,131,234,743 74,794,747,604 6,553,916,243 3,763,906,855
19 (27) 99 53,444,360,033 34,150,080,391 3,447,475,095 1,999,173,109
20 (31) 99 26,200,330,686 19,627,677,414 20,768,799,210 14,456,575,816
21 (5) 100 2,899,007,625 3,785,640,311 484,549,876 178,355,244
22 (37) 100 1,496,759,944 1,471,627,382 1,563,432,726 1,014,271,808
23 (46) 100 65,675,717,510 57,066,411,687 32,733,564,072 18,191,427,181
24 (49) 100 108,197,305,702 56,056,805,705 9,106,414,744 5,362,475,537
25 (6) 101 103,460,814,368 201,836,625,690 30,684,741,238 14,383,834,203

Average 95 43,454,810,045 31,103,112,895 8,248,769,713 3,948,614,947
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• Obtaining a better understanding of the jumping policies. Given an application, how does one go about determin-
ing the best policy?

• Analysis to see if the duality concept can be generalized from permutation state spaces to encompass a wider set
of application domains and perhaps other forms of permutation problems or even general search problems.

• Integrating the idea of duality into other search algorithms (e.g., A∗ [8], RBFS [13], breadth-first heuristic
search [23]). Initial results with Dual-A∗ on the 15-pancake puzzle reduce search time by roughly 20%.
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Appendix A. Experimental results of the 24-puzzle

In this section, results for the entire set 50 random instances of the 24-puzzle are given. They are compared to the
results in [15]—IDA∗ with max(r, r∗)—and are referred to as the “Benchmark” in the following tables. Table A.1
summarizes the results on the entire set of 50 instances. The best version outperforms the benchmark by an order of
magnitude.

The 50 instances have been sorted by increasing order of length of the optimal solution. In Tables A.2 and A.3 the
instances are given according to this order. The number in the parenthesizes is the instance number given in [15]. The
Sol column gives the length of the optimal solution path. The next three columns provide the number of generated
nodes for the four different algorithms. The Benchmark column corresponds to the r + r∗ system from [15]. The next
column, IDA∗(r, d), uses IDA∗ but takes the maximum between the regular and dual heuristic. Finally the last two
columns present results obtained by DIDA∗ with the J24 jumping policy and using two and four PDB lookups. For all

Table A.3
24-puzzle the rest of the 50 instances

No Sol Benchmark (r + r∗) DIDA∗-J24 (r + d) DIDA∗-J24 (r + r∗ + d + d∗)

26 (13) 101 1,959,833,487 2,196,890,327 1,525,086,336
27 (45) 101 79,148,491,306 16,455,892,507 8,903,606,545
28 (34) 102 481,039,271,661 59,384,485,258 33,346,319,761
29 (15) 103 173,999,717,809 104,581,763,680 48,205,749,584
30 (21) 103 724,024,589,335 47,574,279,914 23,105,133,315
31 (7) 104 106,321,592,792 112,115,069,816 41,489,057,096
32 (23) 104 171,498,441,076 25,019,468,325 15,308,110,752
33 (39) 104 161,211,472,633 34,094,740,377 21,449,225,377
34 (43) 104 55,147,320,204 19,521,199,995 12,031,249,938
35 (26) 105 12,397,787,391 4,710,801,259 2,293,128,380
36 (11) 106 1,654,042,891,186 223,800,028,896 81,918,451,417
37 (19) 106 218,284,544,233 71,328,672,853 29,200,386,532
38 (33) 106 1,062,250,612,558 697,848,426,065 410,610,357,344
39 (41) 106 26,998,190,480 1,831,465,730 866,811,661
40 (24) 107 357,290,691,483 58,794,690,620 22,991,124,359
41 (48) 107 555,085,543,507 102,741,654,326 45,159,149,715
42 (8) 108 116,202,273,788 46,087,884,506 32,266,488,302
43 (42) 108 245,852,754,920 70,605,794,609 32,982,573,378
44 (12) 109 624,413,663,951 33,355,872,842 14,264,946,735
45 (17) 109 367,150,048,758 64,989,490,579 33,540,174,776
46 (18) 110 987,725,030,433 560,055,473,298 314,071,218,585
47 (14) 111 1,283,051,362,385 531,467,600,978 220,384,669,296
48 (9) 113 1,818,005,616,606 36,575,158,063 21,812,286,743
49 (50) 113 4,156,099,168,506 285,616,821,863 180,090,018,836
50 (10) 114 1,519,052,821,943 343,089,661,403 137,210,634,028

Average 107 678,330,149,297 142,153,731,524 71,401,038,351
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instances one can see the improved performance of the new methods. Table A.3 further gives results for DIDA∗ with
J24 and two and four PDB lookups for the rest of the 50 cases.
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