
Maximizing over Multiple Pattern Databases
Speeds up Heuristic Search

Robert C. Holte a Ariel Felner b Jack Newton a Ram Meshulam c

David Furcy d

a University of Alberta, Computing Science Department, Edmonton, Alberta, T6G 2E8,
Canada email: {holte,newton}@cs.ualberta.ca

b Department of Information Systems Engineering, Bar-Gurion University of the Negev,
Beer-Sheva, Israel 85105 email: felner@bgu.ac.il

c Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel 92500
email: meshulr1@cs.biu.ac.il

d Computer Science Department, University of Wisconsin Oshkosh, 800 Algoma
Boulevard, Oshkosh, WI 54901-8643, USA email: furcyd@uwosh.edu

Abstract

A pattern database (PDB) is a heuristic function stored as a lookup table. This paper con-
siders how best to use a fixed amount (m units) of memory for storing pattern databases.
In particular, we examine whether using n pattern databases of size m/n instead of one
pattern database of size m improves search performance. In all the state spaces considered,
the use of multiple smaller pattern databases reduces the number of nodes generated by
IDA*. The paper provides an explanation for this phenomenon based on the distribution of
heuristic values that occur during search.

1 Introduction and overview

1.1 Problem Statement

Heuristic search algorithms such as A* [9] and IDA* [16] find optimal solutions to
state space search problems. They visit states guided by the cost function f(s) =
g(s) + h(s), where g(s) is the actual distance from the initial state to the current
state s and h(s) is a heuristic function estimating the cost from s to a goal state.

Pattern databases [2] provide a general method for defining a heuristic function,
which is stored as a lookup table. They are the key breakthrough enabling various

Preprint submitted to Elsevier Science 29 August 2006

combinatorial puzzles such as Rubik’s Cube [17], the sliding tile puzzles [6,19] and
the 4-peg Towers of Hanoi problem [6,7] to be solved optimally. They have also led
to significant improvements in the state of the art in heuristic-guided planning [4],
model checking [5,22], and sequencing ([10], and Chapter 5 of [11]).

The method used to define pattern databases (see Section 2) is simple and has three
important properties. First, it guarantees that the resulting heuristic functions are
admissible and consistent [15]. Second, it gives precise control over the size of
the pattern databases, so that they can be tailored to fit in the amount of memory
available. Third, it makes it easy to define numerous different pattern databases
for the same search space. The significance of the third property is that it enables
multiple pattern databases to be used in combination. Two (or more) heuristics, h1

and h2, can be combined to form a new heuristic by taking their maximum, that is,
by defining hmax(s) = max(h1(s), h2(s)). We refer to this as “maximizing over”
the two heuristics. Heuristic hmax is guaranteed to be admissible (or consistent) if
h1 and h2 are. In special circumstances (see Section 4), it is possible to define a set
of pattern databases whose values can be added and still be admissible [6,19].

With the large memory capacity that is available on today’s computers, the gen-
eral question arises of how to make the best use of available memory to speed up
search? In this paper we address the memory utilization question by considering
whether it is better to use all the available memory for one pattern database or to
divide the memory among several smaller pattern databases. Many successful ap-
plications of pattern databases have used multiple pattern databases. For example,
the heuristic function used to solve Rubik’s Cube in [17] is defined as the maximum
of three pattern database heuristics. However, the study presented in this paper is the
first 1 to systematically examine whether using multiple smaller pattern databases
is superior to using one large pattern database, and to systematically compare how
performance varies as the number of pattern databases is changed.

1.2 Contributions and Outline of the Paper

Our first set of experiments compares maximizing over n pattern databases of size
m/n for various values of n and fixed total size of the pattern databases, m. These
experiments show that large and small values of n are suboptimal – there is an in-
termediate value of n that reduces the number of nodes generated by as much as
an order of magnitude over n = 1 (one pattern database of size m). Our second set
of experiments investigates maximizing over additive groups of pattern databases.
The performance of one additive group of maximum-size pattern databases is com-
pared to the performance obtained by maximizing over a number of different ad-
ditive groups of smaller pattern databases. Here again the use of several, smaller

1 An early version of this paper appeared in [14].

2

pattern databases reduces the number of nodes generated. A third experiment, re-
ported in detail in [13] and summarized here, demonstrates the same phenomenon
in the framework of hierarchical heuristic search.

The phenomenon exhibited in these experiments, namely that the number of nodes
generated during search can be reduced by using several, smaller pattern databases
instead of one maximum-size pattern database, is the paper’s main contribution.

An equally important contribution is the explanation of this phenomenon, which is
based on the distribution of heuristic values that occur during search. In particular,
we demonstrate that if heuristics h1 and h2 have approximately equal mean values,
but h1 is more concentrated around its mean, then h1 is expected to outperform h2.

A final contribution is the observation that IDA*’s performance can actually be
degraded by using a “better” heuristic. We give an example that arose in our exper-
iments in which heuristics h1 and h2 are consistent and h1(s) ≥ h2(s) for all states,
but IDA* expands more nodes using h1 than it expands using h2. The underlying
cause of this behavior is explained.

The paper is organized as follows. Section 2 defines pattern databases and provides
motivation for maximizing over multiple heuristics. Sections 3 and 4 describe ex-
periments with maximizing over multiple pattern databases on various state spaces.
Section 6 explains the phenomena that were obtained in the experiments. Section
7 describes an unusual circumstance in which the methods described in this paper
fail. Finally, Section 8 gives our conclusions.

2 Pattern Databases

2.1 Basic Concepts

The basic concepts of pattern databases are best illustrated with the classic AI
testbed, the sliding-tile puzzle. Three versions of this puzzle are the 3× 3 8-puzzle,
the 4×4 15-puzzle and the 5×5 24-puzzle. They consist of a square frame contain-
ing a set of numbered square tiles, and an empty position called the blank. The legal
operators are to slide any tile that is horizontally or vertically adjacent to the blank
into the blank position. The problem is to rearrange the tiles from some random
initial configuration into a particular desired goal configuration. The 8-puzzle con-
tains 181,440 reachable state, the 15-puzzle contains about 1013 reachable states,
and the 24-puzzle contains almost 1025 states. These puzzles in their goal states are
shown in Figure 1.

The “domain” of a search space is the set of constants used in representing states.

3

15

20 21

16

2

7

12 13

8

3

22

4

9

14

2423

5 6

1

10 11

191817

14 15

6

10 11

7

321

5

9

1312

8

4

876

3 4 5

1 2

Fig. 1. The 8-, 15- and 24-puzzle goal states

For example, the domain of the 8-puzzle might consist of constants 1 . . . 8 repre-
senting the tiles and a constant, blank, representing the blank. 2

5 8 6

2 3

1 7 4

5 8 6

x 3

x x 4

1

Fig. 2. Abstracting a state makes a pattern.

In the original work on pattern databases [3] a pattern is defined to be a state with
one or more of the constants replaced by a special “don’t care” symbol, x. For
example, if tiles 1, 2, and 7 were replaced by x, the 8-puzzle state in the left part
of Figure 2 would be mapped to the pattern shown in the right part of Figure 2.
The goal pattern is the pattern created by making the same substitution in the goal
state. 3

The rule stating which constants to replace by x can be viewed as a mapping from
the original domain to a smaller domain which contains some (or none) of the
original constants and the special constant x. Such a mapping is called a “domain
abstraction.” Row φ1 of Table 1 shows the domain abstraction just described, which
maps constants 1, 2, and 7 to x and leaves the other constants unchanged. A simple
but useful generalization of the original notion of “pattern” is to use several distinct
“don’t care” symbols. For example, in addition to mapping tiles 1, 2, and 7 to x, one
might also map tiles 3 and 4 to y, and tiles 6 and 8 to z. Row φ2 in Table 1 shows
this domain abstraction. Every different way of creating a row in Table 1 with 8 or
fewer constants defines a domain abstraction. These can be easily enumerated to
create the entire set of possible domain abstractions for a domain.

2 The definitions given for “domain” and “domain abstraction” assume that all state vari-
ables range over the same set of values and that it is desirable to apply the same abstraction
to all state variables. These assumptions suffice for the studies in this and previous pattern
database papers, but richer definitions might be needed in other circumstances.
3 We assume that a single, fully-specified goal state is given.

4

original 1 2 3 4 5 6 7 8 blank

φ1 x x 3 4 5 6 x 8 blank

φ2 x x y y 5 z x z blank

Table 1
Examples of 8-puzzle domain abstractions.

The patterns are connected to one another so as to preserve the connectivity in the
original state space. 4 If an operator transforms state s1 into state s2 then there must
be a connection from φ(s1), the pattern corresponding to s1, to φ(s2), the pattern
corresponding to s2. The resulting set of patterns and their connections constitute
the pattern space. The pattern space is an abstraction of the original state space in
the sense that the distance between two states in the original space is greater than or
equal to the distance between the corresponding patterns. Therefore, the distance
between the two patterns can be used as an admissible heuristic for the distance
between the two states in the original space.

A pattern database is a lookup table with one entry for each pattern in the pattern
space. It is indexed by an individual pattern, and the value stored in the pattern
database for pattern p is the distance in the pattern space from p to the goal pattern.
A pattern database is most efficiently constructed by running a breadth-first search
backwards from the goal pattern until the whole pattern space is spanned. The time
to construct a pattern database can be substantially greater than the time to solve a
single search problem instance with the pattern database (hours compared to frac-
tions of a second), but can be amortized if there are many problem instances with
the same goal to be solved. If there is only a small number of instances with the
same goal to be solved, it is possible to build, on demand, the portion of the pattern
database that is needed [13,15].

Given a state, s, in the original space, and a pattern database defined by the ab-
straction φ, h(s) is computed as follows. First, the pattern φ(s) is computed. This
pattern is then used as an index into the pattern database. The entry in the pattern
database for φ(s) is looked up and used as the heuristic value, h(s).

2.2 Maximizing over Multiple Pattern Databases

2.2.1 Motivation

To motivate the use of multiple pattern databases, consider the two abstractions
for the 15-puzzle, φ7 and φ8, defined in Table 2. The pattern database based on φ7

will be quite accurate in states where the tiles 8 − 15 (the tiles it maps to x) are
in their goal locations. On the other hand, it will be grossly inaccurate whenever

4 Like most previous pattern database studies, we assume all operators have the same cost.

5

these tiles are permuted among themselves and tiles 1 − 7 and the blank are in
their goal locations. All such states map to the φ7 goal pattern and therefore have
a heuristic value of 0 according to the φ7 pattern database. Domain abstraction φ8

has analogous strengths and weaknesses.

Because φ7 and φ8 are based on complementary set of tiles, the states where one of
these pattern databases returns a very poor value might be precisely the states where
the other pattern database is fairly accurate. Consulting both pattern databases for
any given state and taking the maximum of the values they return is therefore likely
to produce much more accurate values than either pattern database used alone. For
example, when φ7 and φ8 are used together no state other than the goal will have a
heuristic value of zero.

original 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 blank

φ7 1 2 3 4 5 6 7 x x x x x x x x blank

φ8 x x x x x x x 8 9 10 11 12 13 14 15 blank

Table 2
7-tile and 8-tile abstractions of the 15-puzzle.

2.2.2 Early stopping

Given a set of pattern databases, h(s) is computed by looking up a value in each
pattern database and taking the maximum. In order to reduce the overhead of per-
forming a number of lookups the loop over the pattern databases that computes
the maximum can terminate as soon it encounters a heuristic value that makes
f(s) = g(s) + h(s) exceed the current IDA* threshold. State s can be pruned im-
mediately without the need to finish computing the maximum. To make this early
stopping even more effective, the pattern database that had the largest value when
computing h(parent(s)) is consulted first when computing h(s).

Early stopping can potentially increase the number of nodes generated by IDA*
compared to plain maximization. For example, suppose that the current threshold is
10, and a large tree has been searched without finding the goal. IDA* will increase
the threshold to the smallest f -value exceeding 10 among the nodes generated in
this iteration. For simplicity, suppose that all f -values that exceeded 10 in this it-
eration were 12 or greater with the possible exception of a single state, c. There
are two pattern databases, PDB1, which has the value 1 for c, and PDB2, which
has the value 2 for c. If we take the plain maximum over the two pattern databases
the maximum will be 2 and the next threshold will be f(c) = g(c) + h(c) = 12.
However, early stopping would stop as soon the value 1 was retrieved from PDB1,
because it makes f(c) = g(c)+ 1 = 11 exceed the current threshold 10. Therefore,
the next threshold becomes 11. This constitutes an iteration that was not present in
the plain version, and it is entirely a waste of time because no new nodes will be
expanded, not even c itself. The only effect of this iteration is to do the full max-

6

imum computation for h(c), which raises the depth bound to 12 once the useless
iteration finishes. Thus, in certain circumstances early stopping can increase the
number of iterations, and therefore potentially increase the number of nodes gen-
erated by IDA*. In some cases, however, the sequence of IDA* thresholds is fully
determined by the state space and the abstraction used, and early stopping cannot
lead to extra iterations. For example, the IDA* thresholds of the sliding tile puzzles
increase by exactly two in the standard setting [6].

3 Experimental Results - Rubik’s Cube

3.1 Overview

In this section we compare the performance of IDA* with heuristics defined using
n pattern databases of size m/n for various values of n and fixed m, where m is
the size of the memory, measured as the number of pattern database entries. Our
testbed in these experiments is Rubik’s Cube, a standard benchmark domain for
heuristic search that was first solved optimally using general-purpose techniques by
Korf [17]. Shown in Figure 3, Rubik’s Cube is made up of 20 movable sub-cubes,
called cubies: eight corner cubies, with three faces each and twelve edge cubies,
with two faces each. The operators for this puzzle are defined to be, for each face of
the cube, any 90 degree twist of the face clockwise or counterclockwise and a 180
degree twist. The state space for Rubik’s Cube contains roughly 4× 1019 reachable
states, and the median solution length, with this set operators, is believed to be 18
[17]. Two different state encodings have been used for Rubik’s Cube in the past.
We report experiments with both.

Fig. 3. Rubik’s Cube

7

3.2 First Encoding Tested on “Easy” Instances

In this section, the state encoding has separate sets of constants and separate vari-
ables for representing a cubie’s identity and for representing its orientation. 5 This
allows the orientation of a cubie to be abstracted while keeping its identity distinct.

All the abstractions in this experiment mapped all eight corner cubies to the same
abstract constant c, effectively eliminating the corner cubies from the heuristic es-
timation of distance, they differ only in how they abstract the edge cubies. 6

The large pattern database in this experiment is of size m = 106, 444, 800. The
abstraction defining this pattern database, PDB1, mapped four arbitrarily chosen
edge cubies to the abstract constant a, and mapped three other arbitrarily chosen
edge cubies to the abstract constant b. The remaining five edge cubies were kept
unchanged.

We then experimented with maximizing over n pattern databases of size m/n for
even values of n ranging from 2 to 8. The abstractions for the two pattern databases
for n = 2 mapped the same cubies to a and to b as in PDB1 and, in addition, each
abstracted away the orientation of one of the remaining edge cubies. The abstrac-
tions for the four pattern databases for n = 4 were defined in exactly the same way,
except that each abstraction abstracted away the orientations of two edge cubies in-
stead of just one. The abstractions for n = 6 each mapped three arbitrarily chosen
edge cubies to the abstract constant a, three others to the abstract constant b, and
three others to the constant d. The abstractions for n = 8 each mapped four edge
cubies to the abstract constant a, and mapped four others to the abstract constant b.

PDB Nodes Ratio Ratio

Size n Generated (Nodes) Seconds (Seconds)

106,444,800 1 61,465,541 1.00 141.64 1.00

53,222,400 2 5,329,829 11.53 14.35 9.87

26,611,200 4 3,096,919 19.85 10.55 13.43

17,740,800 6 2,639,969 23.28 9.90 14.31

13,305,600 8 2,654,689 23.15 11.72 12.09
Table 3
Rubik’s Cube - results of the first experiment. “Easy” problem instances (solution length
12).

The various heuristics were evaluated by running IDA* on 10 problem instances

5 An almost-identical encoding is described in detail in Section 4.4 of [11].
6 While abstracting all corners may not yield the most informed heuristic function, our
experimental comparisons remain meaningful since all abstractions shared this property.

8

whose solution length is known to be exactly 12. Table 3 shows the results of this
experiment. The “Ratio” columns give the ratio of the number of nodes generated
(or CPU time) using one large pattern database to the number of nodes generated
(or CPU time) using n pattern databases of size m/n. A ratio greater than one
indicates that one large pattern database is outperformed by n smaller ones.

The table shows that the number of nodes generated is smallest when n = 6, and is
more than 23 times smaller than the number of nodes generated using one large pat-
tern database. Similar experiments with thousands of states whose solution lengths
ranged from 8 to 11 also exhibited reductions in nodes generated by a factor of
20 or more. These results show that maximizing over n > 1 pattern databases of
size m/n significantly reduces the number of nodes generated compared to using a
single pattern database of size m. The same phenomenon has been observed con-
sistently in smaller domains as well [14]. CPU time is also reduced substantially,
although not as much as the number of nodes generated because consulting a larger
number of pattern databases incurs a larger overhead per node.

3.3 Second Encoding Tested on “Easy” Instances

In this section, the state encoding is the same as in [17], with a single state variable
for each cubie, encoding both its position and orientation. Similar to the first exper-
iment, the pattern databases in this experiment ignore the corner cubies altogether
and are compared on “easy” problem instances. In particular, we compare a heuris-
tic defined by a single pattern database based on 7 edge cubies to a heuristic defined
by taking the maximum over 12 pattern databases based on 6 edge cubies each.
Similar to the pattern databases built in [17] each of the 7 (or 6) edge cubies was
mapped to a unique abstract constant while the rest cubies were mapped to a don’t
care constant x. Both heuristics require 255MB of memory in total. The heuris-
tics were evaluated by running IDA* on 1000 problem instances, each obtained
by making 14 random moves from the goal configuration (their average solution
length is 10.66).

Table 4 presents the number of nodes generated and CPU time taken averaged over
the 1000 test instances. Here we see again that using several small pattern databases
outperforms one large pattern database: the number of nodes generated is reduced
by a factor of 25 and CPU time is reduced by a factor of 10.

PDB Nodes Time

1 7-edges 90,930,662 19.6

12 6-edges 3,543,331 1.9
Table 4
Average results on the 1000 easy Rubik’s cube instances

9

Problem 8-corners + 7-edges 8-corners + 10 x 6-edges Ratio Ratio

Nodes Time Nodes Time (Nodes) (Seconds)

1 2,429,682,430 1,001 1,963,186,855 1,180 1.24 0.85

2 7,567,751,202 3,106 5,760,163,887 3,512 1.31 0.88

3 43,654,279,480 17,838 32,158,568,494 19,817 1.36 0.90

4 73,430,867,260 30,045 62,069,600,698 37,792 1.18 0.80

5 173,968,664,319 71,239 134,315,351,151 81,782 1.29 0.87

6 225,013,506,957 92,298 168,656,393,535 103,946 1.33 0.89

7 353,526,995,416 145,087 245,501,414,566 151,106 1.44 0.96

8 388,781,336,359 159,142 279,310,095,079 171,810 1.39 0.93

9 407,020,154,409 167,477 321,622,523,772 196,125 1.27 0.85

10 638,981,633,107 262,044 511,466,031,382 314,127 1.25 0.83
Table 5
Random instances for Rubik’s cube

3.4 Second Encoding Tested on Random Instances

In this experiment we use the same set of 10 random test instances as in [17], which
have an average solution length of 16.4. We use the same 7-edge and 6-edge pattern
databases as in the preceding experiment, but with each combined, by taking the
maximum, with the pattern database based on 8 corner cubies used in [17], which
requires an additional 255MB of storage.

The results are presented in Table 5 for each of these 10 instances. In terms of
nodes generated, we again see that taking the maximum over several smaller pat-
tern databases results in fewer nodes generated than using a single large pattern
database. Here, however, the reduction is modest (between 18% and 44%) due to
the fact that both heuristics also used the 8-corner pattern database, which had the
maximum value in many cases. This modest reduction in nodes generated is not
sufficient to compensate for the additional overhead required to access multiple
pattern databases instead of just one, and therefore the better CPU time is obtained
by using just one large pattern database for the edge cubies.

10

4 Maximizing after Adding

4.1 Additive Pattern Databases

It is sometimes possible to add the heuristics defined by several pattern databases
and still maintain admissibility. When this is possible, we say that the pattern
databases are “additive.”

For the sliding tile puzzles, pattern databases are additive if two conditions hold:

• The domain abstractions defining the pattern databases are disjoint [6,19]. A
set of domain abstractions for the sliding tile puzzles is disjoint if each tile is
mapped to x (“don’t care”) by all but one of the domain abstractions. In other
words, a disjoint set of domain abstractions for the sliding tile puzzles is defined
by partitioning the tiles. A partition with b groups of tiles, B1, ..., Bb, defines a
set of b domain abstractions, A1, ..., Ab, where domain abstraction Ai leaves the
tiles in group Bi unchanged and maps all other tiles to x.

• The moves of a tile are only counted in the one pattern space where the tile is not
mapped to x (“don’t care”). Note that this condition is not satisfied in the way
pattern databases have been defined in previous sections. Previously, a pattern
database contained the true distance from any given pattern to the goal pattern.
All tile movements were counted, no matter what the tile was. Now only the
movements of certain tiles are counted. This means the entries in additive pattern
databases will often be smaller than the entries in normal pattern databases based
on the same domain abstractions. It is hoped that the disadvantage of having
slightly smaller entries is overcome by the ability to add them instead of merely
taking their maximum.

If both the conditions are met, values from different pattern databases can be added
to obtain an admissible heuristic. See [6,19] for more details on this method.

Given several different disjoint partitions of the tiles, the sum can be computed
over the disjoint pattern databases defined by each partition, and then the maximum
over these sums can be taken. We refer to this as “maximization after adding.” The
experiments in this section explore the usefulness of maximization after adding for
the 15-puzzle and the 24-puzzle. As in the previous section, the experiments in this
section compare the performance of IDA* obtained using several sets of smaller
disjoint pattern databases with the performance obtained using one set of larger
disjoint pattern databases.

11

Nodes Ratio Ratio
Heuristic Memory Generated (Nodes) Seconds (secs)

one 7-7-1 115,315 464,977 0.29 0.23 0.48

max-of-five(7-7-1) 576,575 57,159 2.38 0.10 1.10

one 8-7 576,575 136,288 1.00 0.11 1.00
Table 6
15-puzzle results.

4.2 Fifteen Puzzle

Define an x − y − z partitioning of the tile puzzle as a partition of the tiles into
disjoint sets with cardinalities of x, y and z. Consider an 8-7 partitioning for the
15-puzzle. The heuristic obtained is the sum of two pattern databases defined by
partitioning the tiles into two groups, one with 8 tiles and the other with the other 7
tiles. The blank is considered a “don’t care” in both the 7-tile and 8-tile databases.
Roughly speaking, the 8-tile database has 8 real tiles and 8 blanks, because moves
of the “don’t care” tiles are not counted in this setting. 7 This is the best existing
heuristic for this problem and was first presented in [19]. 8 We compare this with
a heuristic we call the max-of-five(7-7-1) heuristic. This heuristic is defined by
maximizing over 5 sets of disjoint pattern databases, where each set partitions the
tiles into 3 groups, two of which contain 7 tiles while the third contains just one
tile. Figure 4 shows the partition defining the 8-7 heuristic and one of the five 7-7-1
partitions used to define the max-of-five(7-7-1) heuristic.

 8-7 partition 7-7-1 partition

Fig. 4. Different partitions of the 15-puzzle tiles. The grey square represents the blank.

We ran these two heuristics on the 1000 random initial states used in [6,19]. Re-
sults for the different heuristics are provided in Table 6. Each row corresponds to a
different heuristic. The first row gives the results for using only the 7-7-1 heuristic

7 The exact way that the blank is treated is beyond the scope of this paper. A better discus-
sion of the role of the blank in this setting can be found in [6].
8 In [19], symmetries of the space are exploited so that the same pattern database can
be used when the puzzle is reflected about the main diagonal. They took the maximum
of the corresponding two heuristics without the need to store them both in memory. The
experiments in this paper do not take advantage of these domain-dependent symmetries.

12

from Figure 4. The second row is for the max-of-five(7-7-1) heuristic. Finally, the
bottom row gives the results for the 8-7 heuristic from Figure 4. The Memory col-
umn shows the memory requirements for each heuristic, which is the total number
of entries in all the pattern databases used to define the heuristic. The Nodes Gen-
erated column gives the average number of nodes IDA* generated in solving the
1000 problem instances. The Seconds column provides the time in seconds it took
to solve a problem, on average. The Ratio columns give the ratio of the number of
nodes generated (or CPU time) by the 8-7 heuristic to the number of nodes gener-
ated (or CPU time) by the heuristic in a given row. A ratio greater than one means
that the 8-7 heuristic is outperformed.

The results confirm the findings of the previous experiments. Maximizing over five
different 7-7-1 partitionings generates 2.38 times fewer nodes than the 8-7 heuris-
tic 9 and over 8 times fewer nodes than just one 7-7-1 heuristic. Note that the mem-
ory requirements for the 8-7 heuristic and the max-of-five(7-7-1) heuristic are iden-
tical. As was seen with Rubik’s Cube, the CPU time improvement is smaller than
the improvement in nodes generated.

The CPU time for solving the 15-puzzle with multiple sets of additive pattern
databases can be reduced by the following observation. Since every operator only
influences the tiles in one particular pattern database, for a given set of partition-
ings (e.g., five 7-7-1 partitionings), only one pattern database needs to be checked
when moving from a parent node to a child node. The values of the other pattern
databases within the same partitioning cannot change and need not be checked.
Implementing this technique might need additional parameters to be passed from
a parent node to a child node in IDA*. These parameters are the pattern database
values of the unchecked pattern databases. The time and memory they require are
negligible. This technique reduced the CPU time for the max-of-five(7-7-1) heuris-
tic to 0.06 seconds and the time for the 8-7 heuristic to 0.07 seconds.

4.3 Twenty-Four Puzzle

We have performed the same set of experiments on the larger version of this puzzle
namely the 5x5, 24-puzzle. Here we tested two heuristics. The first one is called the
6-6-6-6 heuristic. This heuristic partitions the tiles into four groups of 6 tiles each.
We used the same partitioning into groups of sixes that was used in [19]. We then
partitioned the 24 tiles into 4 groups of five tiles and one group of four tiles. We call
this the 5-5-5-5-4 heuristic. We have generated eight different 5-5-5-5-4 heuristics
and combined them by taking their maximum. We call this heuristic the max-of-
eight(5-5-5-5-4) heuristic. Note that the 6-6-6-6 heuristic needs 4×256 = 976, 562

9 Note that taking the maximum of two 8-7 partitioning by using the 8-7 partitioning of
Figure 4 and its reflection about the main diagonal generated only 36,710 nodes in [19].
This provides additional evidence in favor of maximizing over several pattern databases.

13

Kbytes while the max-of-eight(5-5-5-5-4) heuristic needs 8 × (4 × 255 + 254) =
315, 625 Kbytes which is roughly a third of the 6-6-6-6 heuristic. 10

Table 7 shows the number of generated nodes and CPU time required by IDA*
using each of these heuristics to solve the first six problem instances from [19]
with IDA*. The Ratio columns give the ratio of the number of nodes generated
(or CPU time) for the 6-6-6-6 heuristic to the number of nodes generated (or CPU
time) for the max-of-eight(5-5-5-5-4) heuristic. A ratio greater than one means that
the max-of-eight(5-5-5-5-4) heuristic outperforms the 6-6-6-6 heuristic.

one 6-6-6-6 max-of-eight(5-5-5-5-4) Ratio Ratio
Instance Nodes Seconds Nodes Seconds (Nodes) (Seconds)

1 9,728,172,650 1,198 5,991,782,489 2,495 1.62 0.48

2 663,157,799,297 81,666 276,161,457,963 110,359 2.40 0.74

3 247,605,992,067 30,495 97,940,394,079 37,645 2.53 0.81

4 54,556,763,234 6,718 33,157,258,292 13,995 1.64 0.48

5 38,520,070,174 4,505 6,261,389,344 2,576 6.15 1.74

6 932,251,470,113 107,014 37,039,640,318 14,160 25.10 7.55
Table 7
24-puzzle results.

As can be seen, the number of nodes generated is always reduced by using the max-
of-eight(5-5-5-5-4) heuristic. The amount of reduction varies among the different
problem instances from 1.62 to 25.1. 11 In two instances CPU time is reduced by
using multiple, smaller pattern databases, but in the other four it is increased.

5 Multiple Abstractions in Hierarchical Heuristic Search

Instead of building an entire pattern database before starting to solve any prob-
lem instances, it is possible to build the portion of the pattern databases needed to
solve the instance on demand. This technique, called hierarchical heuristic search
[13,15], is preferable to building the entire pattern database when there is only one
or a small batch of problem instances to be solved.

10 Using symmetric attributes of this domain such as reflection of the databases about the
main diagonal as done in [19] could decrease these numbers for both heuristics. In this
paper we decided not to exploit this domain-dependent property.
11 For case 6 the number of generated nodes is better by a factor of 3 than the number of
generated nodes reported by [19] (103,460,814,356), which used the 6-6-6-6 partitioning
and its reflection about the main diagonal. For this particular instance we have the best
published solution.

14

The results from the preceding experiments suggest that it might be advantageous,
within the hierarchical heuristic search framework, to use multiple coarse-grained
abstractions, corresponding to several smaller pattern databases, instead of using
one fine-grained abstraction, corresponding to one large pattern database. How-
ever, the conclusion does not immediately carry over because in traditional pattern
database studies the cost of building the pattern database(s) is not counted in the
CPU time required to solve a problem, but in hierarchical heuristic search it must
be. This means that it is possible, in hierarchical heuristic search, that the cost-per-
node during search might be considerably higher using multiple abstractions than
using a single abstraction. An experimental comparison of these two alternatives on
four different state spaces was reported in [13]. The reader is referred to that paper
for the definitions of the state spaces, the abstractions used, and other details.

Table 8 shows the total CPU time required by Hierarchical IDA* to solve a batch
of 100 randomly generated test problems for each state space. As can be seen,
using multiple coarse-grained abstractions has indeed proved useful for hierarchi-
cal heuristic search. Search with multiple coarse-grained abstractions is faster than
using one fine-grained abstraction in all cases, almost twenty times faster for the
15-puzzle.

State Space One Abstraction Multiple Abstractions Ratio

15-puzzle 59,600 3,100 19.2

Macro-15 10,100 1,700 5.9

(17,4)-TopSpin 16,200 8,800 1.8

14-Pancake 3,100 1,000 3.1
Table 8
Total time (in seconds) for Hierarchical IDA* to solve a batch of 100 problems.

6 Why the Number of Nodes Generated is Reduced by Maximization

When using just one pattern database, search performance in domains with
uniform-cost operators is roughly proportional to the size of the pattern database,
with larger pattern databases tending to outperform smaller ones [12]. The experi-
ments in the previous sections have shown that this trend can be reversed by max-
imizing over several smaller pattern databases, provided they are not too small.
Although individually inferior to a larger pattern database, they are collectively su-
perior to it. Our explanation of this phenomenon is based on two conjectures, as
follows.

Conjecture 1: Maximizing over several smaller pattern databases can make the
number of states that are assigned low h-values significantly smaller than the num-
ber of states assigned low h-values using one larger pattern database.

15

This conjecture is intuitively clear. While small values exist in every pattern
database, maximizing over the smaller pattern databases will replace small h-values
by larger ones (unless all pattern database return small values for the specific state).
This can substantially reduce the number of states that are assigned very small h-
values. By contrast, if the large pattern database returns a small value, this small
value is used.

Conjecture 2: Eliminating low h-values is more important for improving search
performance than retaining large h-values.

This is not immediately obvious. To see why it is likely to be true, consider the
formula developed in [20] to predict the number of nodes generated by one iteration
of IDA* to depth d:

d∑

i=0

N(i) · P (d − i) (1)

Here, N(i) is the number of nodes at depth i and P (h) is the fraction of nodes with
a heuristic value less than or equal to h. If two pattern databases differ only in that
one has a maximum h-value of 11, while the other has a maximum value of 10, this
has very little effect on the sum, since it only affects P (11), P (12), etc. and these
are multiplied by N values (N(d−11), N(d−12), etc.) that are typically relatively
small. On the other hand, if two pattern databases differ in the fraction of nodes
that have h = 0, this would have a large effect on the formula since this fraction is
part of every P (h), including P (0) which is multiplied by N(d), usually by far the
largest N value.

Conjecture 2 was first noted in [17]. Nodes with small h-values were observed to
recur much more frequently in an IDA* search than nodes with high h-values. This
is because if small h-values occur during search they do not get pruned as early as
large values, and, if the heuristic is consistent, they give rise to more nodes with
small h-values.

Together these two conjectures imply that the disadvantage of using smaller pattern
databases – that the number of patterns with large h-values is reduced – is expected
to be more than compensated for by the advantage gained by reducing the number
of patterns with small h-values.

To verify these conjectures we created histograms showing the number of occur-
rences of each heuristic value for each of the heuristics used in our experiments.
Figure 5 presents the histograms for the 15-puzzle heuristics.

Figure 5(a) shows the “overall” distribution of heuristic values for the 8-7 heuristic
for the 15-puzzle (dashed line) and for the max-of-five(7-7-1) heuristic (solid line).
These two histograms were created by generating 100 million random 15-puzzle

16

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 10 20 30 40 50 60 70

o
f o

ccu
rre

nc
es

Heuristic Value

max-of-five(7-7-1) heuristic
8-7 heuristic

(a) Overall distribution

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 10 20 30 40 50 60 70

o
f o

ccu
rre

nc
es

Heuristic Value

max-of-five(7-7-1) heuristic
8-7 heuristic

(b) Runtime distribution
Fig. 5. Distributions of heuristic values for the 15-puzzle.

17

states and counting how many states had each different value for each heuristic.
The two distributions are very similar, with averages of 44.75 for the 8-7 heuristic
and 44.98 for the max-of-five(7-7-1) heuristic. As can be seen, the 8-7 heuristic
has a greater number of high and low heuristic values (which confirms Conjecture
1 above) while the max-of-five(7-7-1) heuristic is more concentrated around its
average.

Figure 5(b) shows the “runtime” distribution of heuristic values for IDA* using
each of these two heuristics. This histogram was created by recording the h-value
of every node generated while running IDA* with the given heuristic on many start
states and counting how many times each different heuristic value occurred in to-
tal during these searches. We kept on solving problems until the total number of
heuristic values arising in these searches was 100 million, the same number used
to generate the overall distributions in Figure 5(a). Unlike the overall distributions,
there is a striking difference in the runtime distributions. Both distributions have
shifted to the left and spread out, but these effects are much greater for the 8-7
heuristic than for the max-of-five(7-7-1) heuristic, resulting in the 8-7 heuristic
having a significantly lower average and much greater percentage of low heuristic
values. For example, IDA* search with the 8-7 heuristic generates twice as many
states with a heuristic value of 36 or less than IDA* search with the max-of-five(7-
7-1) heuristic. What seemed to be a relatively small difference in the number of
low values in the overall distributions has been amplified during search to create
a markedly different runtime distribution. This is empirical confirmation of the ef-
fects predicted by the above conjectures.

Figure 6 presents the analogous histograms for the Rubik’s Cube experiment re-
ported in Section 3.2. Exactly the same pattern can be seen. The overall distri-
bution for a single large pattern database (the dashed line in Figure 6(a)) has a
slightly higher average than the overall distribution for the max-of-6 smaller pat-
tern databases (7.825 compared to 7.744) but is slightly less concentrated around
the mean and has more low values. This causes its runtime distribution to be shifted
much further to the left (Figure 6(b)).

Making the pattern databases too small has a negative impact on performance. This
is because as the individual pattern databases become smaller the overall heuristic
distribution shifts to the left, and eventually becomes shifted so far that the benefits
of maximizing over multiple smaller pattern databases are outweighed by the losses
due to the individual heuristics being extremely poor. For example, in the absolute
extreme case of having m pattern databases each of size 1, a heuristic value of zero
would be returned for all states.

18

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 2 4 6 8 10 12

of

 o
cc

ur
re

nc
es

Heuristic Value

max of 6 heuristics
one heuristic

(a) Overall distribution

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 2 4 6 8 10 12

of

 o
cc

ur
re

nc
es

Heuristic Value

max of 6 heuristics
one heuristic

(b) Runtime distribution
Fig. 6. Distributions of heuristic values for Rubik’s Cube.

7 Why Maximization can Fail

Table 9 shows the number of nodes generated by IDA* for each depth bound it uses
when solving a particular 8-puzzle problem using three different heuristics, h1, h2,
and max(h1, h2). Heuristic h1 is based on a domain abstraction that leaves the
blank unique. These abstractions have the special property that distances in pattern
space have the same odd/even parity as the corresponding distances in the original
space. This has the consequence, well-known for Manhattan distance, that IDA*’s
depth bound will increase by 2 from one iteration to the next. This can be seen in
the h1 column of Table 9 – only even depth bounds occur when using h1.

Heuristic h2 is different. The domain abstraction on which it is based maps a tile
to the same abstract constant as the blank. Patterns in this pattern space have two
blanks, which means distances in this pattern space are not necessarily the same

19

depth bound h1 h2 max(h1, h2)

8 19 17 10

9 - 36 16

10 59 78 43

11 - 110 53

12 142 188 96

13 - 269 124

14 440 530 314

15 - 801 400

16 1,045 1,348 816

17 - 1,994 949

18 2,679 3,622 2,056

19 - 5,480 2,435

20 1,197 1,839 820

TOTAL 5,581 16,312 8,132
Table 9
Nodes generated for each depth bound. (“-” indicates the depth bound did not occur using
a given heuristic)

odd/even parity as the corresponding distances in the original space. Heuristic h2

is still admissible (and consistent), but because it does not preserve distance parity,
IDA*’s depth bound is not guaranteed to increase by 2 from one iteration to the
next. In fact, it increases by one each time (see the h2 column of Table 9).

If h1(s) ≥ h2(s) for all states s, max(h1, h2) would behave identically to h1. This
is clearly not the case in this example, since on the first iteration (depth bound = 8)
IDA* generates only 10 nodes using max(h1, h2) compared to 19 when using h1.

If there is a state, s, generated on the first iteration for which, g(s) + h1(s) = 8
and g(s) + h2(s) = 9, then the depth bound on the next iteration would be 9, as it
is in Table 9. This is an entire iteration that is skipped when using h1 alone. Thus,
although max(h1, h2) will never expand more nodes than h1 or h2 for a given depth
bound, it might use a greater set of depth bounds than would happen if using just
one of the heuristics on its own, and, consequently, might generate more nodes in
total, as seen here.

A similar phenomenon was noted in Manzini’s comparison of the perimeter search
algorithm BIDA* with IDA* [21]. Manzini observed that BIDA* cannot expand
more states than IDA* for a given depth bound but that BIDA* can expand more

20

states than IDA* overall because “the two algorithms [may] execute different iter-
ations using different thresholds” (p. 352).

8 Summary and Conclusions

In all our experiments we consistently observed that maximizing over n pattern
databases of size m/n, for a suitable choice of n, produces a significant reduction in
the number of nodes generated compared to using a single pattern database of size
m. We presented an explanation for this phenomenon, in terms of the distribution
of heuristic values that occur during search, and provided experimental evidence
in support of this explanation. We have also discussed the tradeoff between the
reduction in the number of nodes generated and the increase in the overhead per
node. Speedup in runtime can only be obtained when the node reduction is higher
than the increase in the overhead per node. These results have immediate practical
application – if node generation is expensive compared to pattern database lookups,
search will be faster if several smaller pattern databases are used instead of one
large pattern database. Finally, we showed that IDA*’s performance can actually
be degraded by using a better heuristic, even when the heuristic is consistent.

There are many ways to continue this line of research. For example, there may be
other ways to reduce the number of pattern databases consulted when multiple pat-
tern databases are available. One technique that did not produce significant speedup
in our experiments, but is worth further study, we call Consistency-based Bypass-
ing. Because pattern databases define consistent heuristics, the values in the pattern
databases for the children of state s cannot differ by more than one from their val-
ues for s, and therefore pattern databases that had values for s far below h(s) need
not be consulted in computing h for the children of s.

Also, further research is needed to develop a better understanding of how to choose
the best number and sizes of pattern databases. A first step towards this would be
to investigate sets of pattern databases that are different sizes, for example, one or
two larger pattern databases combined with several smaller pattern databases.

There are other approaches that were introduced in the past few years that improve
search and pattern databases. For example, pattern databases can be compressed
by only storing the minimum value among nearby entries. This compression sig-
nificantly reduces memory requirements without losing much information [7]. A
different method for reducing the memory needed for a pattern database is to store
only the entries that might be needed to solve a specific given problem instance
[25]. In some circumstances, it is possible to take the maximum over multiple
lookups in the same pattern database [8]. Also there have been improvements to
the basic search algorithms [1,18,23,24,26]. An important feature of these differ-
ent approaches is that they are roughly orthogonal to one another, suggesting they

21

can be used in combination to achieve a larger improvement than any of them in-
dividually. Future work can try to find the best way to combine them all or part of
them.

Acknowledgments

This research was supported in part by an operating grant and a postgraduate schol-
arship from the Natural Sciences and Engineering Research Council of Canada and
an iCore postgraduate fellowship. This research was also partly supported by NSF
awards to Sven Koenig under contracts IIS-9984827 and IIS-0098807. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
the sponsoring organizations, agencies, companies or the U.S. government.

References

[1] A. Auer and H. Kaindl. A case study of revisiting best-first vs. depth-first search. In
Proceedings of the Sixteenth European Conference on Artificial Intelligence (ECAI-
04), pages 141–145, August 2004.

[2] J. C. Culberson and J. Schaeffer. Efficiently searching the 15-puzzle. Technical report,
Department of Computer Science, University of Alberta, 1994.

[3] J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[4] S. Edelkamp. Planning with pattern databases. Proceedings of the 6th European
Conference on Planning (ECP-01), pages 13–34, 2001.

[5] S. Edelkamp and A. Lluch-Lafuente. Abstraction in directed model checking. In
Proceedings of the Workshop on Connecting Planning Theory with Practice, at the
International Conference on Automated Planning and Scheduling, pages 7–13, 2004.

[6] A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics. Journal of
Artificial Intelligence Research (JAIR), 22:279–318, 2004.

[7] A. Felner, R. Meshulam, R. C. Holte, and R. E. Korf. Compressing pattern databases.
In Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-
04), pages 638–643, July 2004.

[8] A. Felner, U. Zahavi, R. Holte, and J. Schaeffer. Dual lookups in pattern databases. In
IJCAI-05, pages 103–108, 2005.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

22

[10] I. T. Hernádvölgyi. Solving the sequential ordering problem with automatically
generated lower bounds. In Proceedings of Operations Research 2003, pages 355–
362, 2003.

[11] I. T. Hernádvölgyi. Automatically Generated Lower Bounds for Search. PhD thesis,
School of Information Technology and Engineering, University of Ottawa, 2004.

[12] I. T. Hernádvölgyi and R. C. Holte. Experiments with automatically created memory-
based heuristics. Proceedings of the Symposium on Abstraction, Reformulation and
Approximation (SARA-2000), Lecture Notes in Artificial Intelligence, 1864:281–290,
2000.

[13] R. C. Holte, J. Grajkowski, and B. Tanner. Hierarchical heuristic search revisited.
Proceedings of the Symposium on Abstraction, Reformulation and Approximation
(SARA-2005), Lecture Notes in Artificial Intelligence, 3607:121–133, 2005.

[14] R. C. Holte, J. Newton, A. Felner, R. Meshulam, and D. Furcy. Multiple pattern
databases. In Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (ICAPS-04), pages 122–131, June 2004.

[15] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical A*:
Searching abstraction hierarchies efficiently. Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 530–535, 1996.

[16] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97–109, 1985.

[17] R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases.
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-
97), pages 700–705, 1997.

[18] R. E. Korf. Best-first frontier search with delayed duplicate detection. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), pages
677–682, July 2004.

[19] R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelligence,
134(1-2):9–22, 2002.

[20] R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of Iterative-Deepening-A*.
Artificial Intelligence, 129(1-2):199–218, 2001.

[21] G. Manzini. BIDA*: an improved perimeter search algorithm. Artificial Intelligence,
75(2):347–360, 1995.

[22] K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction and
symbolic pattern databases. In Proceedings of the 10th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS-04), pages
497–511, 2004.

[23] U. Zahavi, A. Felner, R. Holte, and J. Schaeffer. Dual search in permutation state
spaces. In AAAI-06, pages 1076–1081, 2006.

23

[24] R. Zhou and E. A. Hansen. Breadth-first heuristic search. In Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-
04), pages 92–100, June 2004.

[25] R. Zhou and E. A. Hansen. Space efficient memory based heuristics. In Proceedings of
the Nineteenth National Conference on Artificial Intelligence (AAAI-04), pages 677–
682, July 2004.

[26] R. Zhou and E. A. Hansen. Structured duplicate detection in external-memory graph
search. In Proceedings of the Nineteenth National Conference on Artificial Intelligence
(AAAI-04), pages 683–688, July 2004.

24

