Sequential and Parallel Algorithms for Frontier A* with Del ayed Duplicate
Detection

Robert Niewiadomski* and Jose Nelson Amaral and Robert C. Holte
Department of Computing Science
University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

Email: {niewiado, amaral,

Abstract

We present sequential and parallel algorithms for Fron-
tier A* (FA*) algorithm augmented with a form of De-
layed Duplicate Detection (DDD). The sequential algo-
rithm, FA*-DDD, overcomes the leak-back problem as-
sociated with the combination of FA* and DDD. The
parallel algorithm, PFA*-DDD, is a parallel version of
FA*-DDD that features a novel workload distribution
strategy based on intervals. We outline an implementa-
tion of PFA*-DDD designed to run on a cluster of work-
stations. The implementation computes intervals at run-
time that are tailored to fit the workload at hand. Be-
cause the implementation distributes the workload in a
manner that is both automated and adaptive, it does not
require the user to specify a workload mapping func-
tion, and, more importantly, it is applicable to arbi-
trary problems that may be irregular. We present the
results of an experimental evaluation of the implemen-
tation where it is used to solve instances of the multiple
sequence alignment problem on a cluster of worksta-
tions running on top of a commodity network. Results
demonstrate that the implementation offers improved
capability in addition to improved performance.

Introduction

Best-first search algorithms that record the states theg hav
visited in order to avoid expanding the same states multiple

holtt@cs.ualberta.ca

has prevented these two important ideas from being com-
bined together with the heuristic best-first search alporit

A* (Hart, Nilsson, & Raphael 1968). The first contribution
of this paper is to overcome this obstacle and provide a Fron-
tier A* algorithm that uses a form of DDD, FA*-DDD.

This paper’s main contribution is a parallel version,
PFA*-DDD, of the new FA*-DDD algorithm, designed to
run in the aggregate memory available on a cluster of work-
stations. The key difficulty that the parallel algorithm mus
overcome is distributing the workload evenly among the
workstations without incurring a large overhead. The basic
idea behind PFA*-DDD’s workload distribution is to par-
tition the current set of open states intadisjoint groups,
wheren is the number of workstations in the cluster. All
work involving states in theé-th group is assigned to the
th workstation. In particular, each state is representearby
integer, and the partition of the states is defined by divid-
ing the full integer range-{co to oo) into n intervals. On
each iteration the algorithm dynamically chooses between
two different methods for defining these intervals. The sim-
ple method is to use the same intervals on the current itera-
tion as were used on the previous iteration. Used repeatedly
this method can lead to imbalanced workload distribution,
but it is a very low-cost method, so is ideal when the num-
ber of states to be processed is relatively small. When there
are a large number of states to be processed on the current it-

times are necessary in problems, such as finding the optimal eration, a more costly method is used. This method inspects

alignment of multiple biological sequences, where theee ar

a sample of the states to be processed and computes inter-

many paths to each state. These algorithms are inherently vals that will balance the workload. By judiciously choagin

limited by their memory requirements, but two recent ad-
vances have extended their applicability considerablynfr
tier Search (Korf 1999) reduces the memory required by sig-
nificantly shortening the list of expanded states. Delayed
Duplicate Detection (DDD) reduces the memory needed per
node, and is expected to improve locality of reference (Korf
2004). DDD also can allow an algorithm to use disk in-
stead of RAM, but we do not exploit this aspect of DDD in
this paper. A technical obstacle, described in (Korf 2004),

*This research is supported by the Nationals Science and En-
gineering Research Council of Canada through the Collgibera
Research and Development grant, by the Canadian Foundation
Innovation, and by IBM Corporation.

Copyright © 2006, American Association for Artificial Intiglence
(www.aaai.org). All rights reserved.

between these two methods, PFA*-DDD maintains a bal-
anced workload with a minimum of overhead, even when
the number of states to be processed, and the distribution
of the integers that represent them, varies enormously be-
tween iterations. PFA*-DDD copes well with the large net-
work latencies encountered in clusters of workstationsstvio

of the inter-workstation data-movement is sequential in na
ture and can be done with a double-buffered communication
technique that hides network latency.

PFA*-DDD differs significantly from the disk-based par-
allel Frontier Breadth-First Search with Delayed Duplcat
Detection (FBFS-DDD) algorithm, described in (Korf &
Schultze 2005). Their parallelization strategy depends on
a user-specified hashing function. Thus the applicability
and efficiency of their method depends on the quality and

availability of hashing functions for each specific problem
By contrast, PFA*-DDD automatically defines a state par-
tition function and adapts it dynamically as the search pro-
gresses. The user only supplies one parameter value, defin-
ing “sampling intensity”. Moreover the parallelizatiomest

egy in (Korf & Schultze 2005) targets a shared-memory sys-
tem and relies on centralized storage whereas PFA*-DDD
targets a distributed-memory system, thereby making it ap-
plicable to a shared-memory system, and is oblivious to
whether or not storage is centralized or distributed.

We examine the performance of our implementation on
a cluster of workstations running on a commodity network
by using it to solve two large instances of the multiple-
sequence alignment problem. This is a problem well-suited
for frontier-search algorithms. Traditional best-firsaseh
algorithms, such as A*, cannot solve large instances of this
problem because of space constraints, and IDA* cannot han-
dle them because of time constraints.

Experimental results demonstrate that our implementa-
tion: (1) attains excellent performance and scalabili); (
efficiently uses the aggregate memory capacity of a cluster
of workstations to solve problems that could not be solved
using a single workstation. Thus this implementation affer
improved capability in addition to improved performance.

Algorithms

We present a sequential algorithm called Frontier A* with
Delayed Duplicate Detection (FA*-DDD) and a parallel al-
gorithm called Parallel Frontier A* with Delayed Duplicate
Detection (PFA*-DDD). The algorithms combine the Fron-
tier A* (FA*) algorithm (Korf 1999) with a form of Delayed
Duplicate Detection (DDD) (Korf 2004).

Overview

Given a graphG(V, E) that is directed and weighted, a
pair of verticess,t € V, and a heuristic functioh that
is admissible and consistent fgrthe algorithms compute
the minimum-cost of a path from to ¢. The algorithms
maintain Open, the list of open vertices, ClosedIn, the list
of edges from non-closed vertices to closed vertices, and
ClosedOut, the list of edges from closed vertices to non-
closed vertices. The algorithms begin with Open, ClosedIn,
and ClosedOut being consistent withbeing open and there
being no closed vertices. While Open is non-empty the al-
gorithms perform &earch step

The algorithms execute a search step as follows. Check
if ¢ is in Open and thef-value oft is fmin. If so, termi-
nate and return the-value of¢ as the minimum-cost of a
path froms to t. Otherwise, expand every vertex in Open
whosef-value isfmin and collect the generated vertices and
their g and f-values. Update Open, ClosedIn, and Closed-
Out to make them consistent with the expanded vertices be-
ing made closed and each distinct non-open and non-closed

of the vertex equal the minimum of these values in all du-
plicates. To update ClosedIn remove edges that start at the
expanded vertices and add edges that end at the expanded
vertices but are not in the pre-update ClosedOut. To update
ClosedOut remove edges that end at the expanded vertices
and add edges that start at the expanded vertices but are not
in the pre-update ClosedIn. If Open is empty at the end of
a search step then terminate and retsrras the minimum-

cost of a path frons to ¢.

In (Korf 2004) Korf suggests that there is no obvious way
to combine FA* with DDD due to the potential of the result-
ing algorithm to suffer from a “leak-back problem” where
a previously expanded vertex is re-expanded. In order for
our algorithms to suffer from a leak-back problem a gener-
ated vertex that is closed or is to be closed would have to
be added to Open during the update of Open. This does not
happen because during the update of Open the use of the pre-
update ClosedIn filters-out generated vertices that asedlo
while the use of the pre-update Open filters-out generated
vertices that are to be closed.

Whend is either undirected or bidirected the algorithms
can be simplified by eliminating ClosedOut. The simplifi-
cation is possible because wh@ris undirected ClosedIn is
equivalent to ClosedOut and whéhis bidirected the trans-
pose of ClosedIn is equivalent to ClosedOut.

Records and Record Operations

A record is a 5-tuple(v, g, f, In,Out) wherev € V is
thev-value,g € Z is the g-value, f € Z is the f-value,
In C {(u,v) € E}is In-set, andOut C {(v,u) € E}
is the Out-set. Given a set of recordR we reduceR
by computing a set of record®’ such thatR’ contains as
many records as there are distinevalues of the records
in R and such that for each suehvalueu, R’ contains
the recordr where:r.v = w; r.f = mingerjp =y . f;
7.9 = My eR|r pmy .9 T IN = Ur/eR\r/.v:u r’.In; and
r.0ut = U, err.pmy 7'-Out. If a set of records is equal to
its reduced version then it ioncise Given a record we
expand- by computing:

* a recordr’ for eachu € V where (r.v,u) € E and
(u,rv) € Eand(r.v,u) ¢ r.Out, such thatr’'.v = u,
r.g = r.g+ cro,u), r.f = rg+ clro,u) + h(u),
r'.In = {(r.v,u)}, andr’.Out = {(u,r.v)};

a recordr’ for eachu € V where(r.v,u) € E and

(u,rv) ¢ Eand(r.v,u) ¢ r.Out, such thatr’'.vo = u,

r.g = rg+ clro,u), r.f = rg+ clro,u) + h(u),

r'.In = {(r.v,u)}, andr’ .Out = ;

 a recordr’ for eachu € V where (r.v,u) ¢ E and
(u,rv) € E and(u,r.v) ¢ r.In, such thatr’.v = u,

.9 oo, 1'.f oo, r'.In 0, andr".Out =

{(u,rv)}.

generated vertex being made open. To update Open removeRecords that are computed in the expansion of a record are

the expanded vertices and add each distinct generated ver-
tex that neither is in the pre-update Open nor is an end-point
of an edge in the pre-update ClosedIn. If a vertex in the
post-update Open has a duplicate, makegtlaad f-values

generatedecords. Given two sets of recorisandR’, we
reconcileR with R’ by computing a set of record®” such
thatR” is the set of records produced by reducing the union
of the set of the records iR that have not been expanded

and of the set of the records &’ whosev-value is not the
v-value of any of the records iR that have been expanded.

The Sequential Algorithm

The algorithm computes a concise set of recotgdor in-
creasing values of. EachX; encapsulates the information
in Open, ClosedIn, and ClosedOut aftesearch steps. Let
fmin, be the minimumyf-value of any record inty. Let

X(fmmd be the set of the records if; whose f-value is
fming. Ford =0, Xg = {(s,0,h(s),0,0)}. Ford > 0, the
algorithm computest,;,; as follows. IfXj"””d contains

a record whose-value ist then execution terminates and
the g-value of that record is returned as the minimum-cost
of a path froms to t. Otherwise, the algorithm expands the

records ianmmd to compute)); as the set of the records
produced by the expansions. Nexf, is reconciled with
YV, to computet,; as the set of records produced by the
reconciliation. If eitherY; 1, is empty orfmin, is co then
execution terminates ang is returned as minimum-cost of
a path froms to ¢.

The Parallel Algorithm

The parallel algorithm is a parallel version of the sequanti
algorithm that distributes the workload of the sequential a
gorithm amongn workstations. Lev,,in, Vmaez € V such
thatv,,in < U < Vg foranyu € V. An n-interval list
is a list ofn + 1 vertices where the first vertex s, ;,, the
last vertex isv,,q., and each vertex is less-than or equal-to
the vertex following it in the list. During the computation
of X, records are assigned to workstations according to an
n-interval listA 4. All records assigned to workstatiohave
av-valueu such that\4[i] < u < Ag[i + 1]. Xg,; represents
the records at workstatianat the beginning of iteratiod.
Ford = 0, XQ7O = {(S,O7h(8)7®,@)} andXQi = () for
i # 0. Let fmin,, be the minimumyf-value of any record
in X4, and letfmin, be the global minimunyf-value for

any record inX,; ; in any WorkstationsXC’l‘Z”"d is the set of
records the records ift; ; that have arf-value offmin ;.

The algorithm proceeds by expanding the records in all
Xﬂmd’s. To ensure proper load balance, before this expan-
sion takes place, the records have to be redistributed among
the workstations. Therefore, phase lall workstations ex-
change the sizes of their local]”"""* to obtain the total
number of records to be expanded. Workstati@an then
determine the indexes of the first and last records that it has
to expand. If not all records that are to be expanded by work-
stationi are stored in its local memory, remote records are
transferred to workstation

In phase 2workstationi expands the records of each

X('fmmd assigned to it by the partition in phase 1 to compute
YVa,; as the set of the records produced by the expansions.
Ya,; may contain duplicate records, thus once the expansion
is complete, workstationsorts and reducek; ; in place.

If during the expansion workstatiarencounters a record

rin X" whosev-value ist, it raises a termination flag
and records thg-value ofr. At the end of phase 2, if any

Dictionary for Xy ;
[4] 8[12]10]26]12] 27] & [31]14] 32[10] 43] 8 [4o] 8 [54]14] 61] 20] 6] 24] 70] & [73] 24 82 12] 00[14]

Priority queue for Xy ;
4] 8]27] 8]43[8]4o[8] 0] 8]

BB EN
(=[]

31] 14] 54] 14] 60 14] 73] 14] 00[14]

Figure 1: Dictionary and priority queue data structure for
Xa:. Assume that a record consists of only the vertex
(white) and thef-value (gray).

workstation has raised the termination flag, executioniterm
nates and thg-value ofr is returned as the minimum-cost
of a path froms to ¢.

Next all records in all¥; ;’s must be reconciled with all
recordsin allVg,;'s.

Phase 3chooses between two reconciliation strategies.
With strategyA, the same partition oft; from the previ-
ous iteration is used and the records of edigh are sent
to their home workstation as determined by that partition.
StrategyB relies on a sampling technique to re-partition the
records inX; and),;. To compute thesampling strideall
workstations send the sizes &f; ; and)/; ; to workstation
0. Once the sampling stride is broadcast, each workstation
sends a list of samples from ifs; ; and)y; to worksta-
tion 0. Workstation 0 computes a new interval lisi and
broadcasts this list to all workstations. The decision leet
strategiesA and B for reconciliation is based on an estima-
tion of the maximum amount of work by each workstation
for each strategy.

The goal of the reconciliation iphase 4is to obtain
Xat1,; in each workstation such that the union of &l ; ;
form Xy41. X441 contains one record for each vertex in
X, and)),; that was not in)(j’m"*. If strategy A is used
in phase 4, all records ot;;; are reconciled locally. The
records in each),,; that represent a vertex such that
Aqli] < v < Ag[i + 1] are sent to workstation for rec-
onciliation. If strategyB is used in phase 4, the new interval
list Ay, computed in phase 3, is used to re-partition both the
Yai's and X, ;’s before reconciliation. At the end of phase
4, the workstations exchange the information to determine
the value offmin , If fminj, , = oo the algorithm termi-
nates andw is returned ag(s, t).

In phase Sworkstation: deletesty ;, incrementsi and
proceeds to phase 1.

Efficiency Issues
Dictionaries and Priority Queues

The reconciliation strategies in the parallel algorithiopiee
techniques to efficiently find a record representing a given
vertexv in Xy ;; to find a record with a giverf-value in
Xq,i; and to eliminate from¥,; all the records that have
an f-value of fmin. Our solution is to maintain two rep-
resentations oft; ;: a dictionary indexed by vertex, and a
bucket-based priority queue orderedfyalue, as shownin
Figure 1. The combination of these two data structures has

the following advantages: (1) during expansion, a constant cost-effective. Strategyl is the best choice when the num-
time operation finds the recordsAy) ; that have a minimum ber of records to be reconciled in a given iteration is small.
f-value in the priority queue; (2) because records are sorted StrategyA only updates, as opposed to rebuilding, the dic-
in the dictionary, the computation of sampling points ig-tri tionary and the priority queue. Thus stratedymplements
ial, and the number of data transfers between workstations binary searches of both the dictionary and the record lists i

after repartitioning is reduced; (3) when strate)ys used, the priority queue.

a search for existing records that represent the same vertex When the number of records to be reconciled is large,

in the dictionary requirebg(k) time, wherek is the num- then it is cost-effective to apply strate@ StrategyB uses

ber of records in the dictionary; (4) the elimination of &lét the sampling technique to compute nevinterval list, thus

records withf-value equafmin from the priority queue can adaptively re-balancing the workload through data move-

be done in constant time; (5) the traversaﬂfjf?md during ment. In this case both the priority queue and the dictionary

reconciliation is sequential, thus improving data logalit in each workstation are rebuilt from scratch. Stratégin-
creases the algorithm’s memory requirement because each

Interval-Based Sampling workstation must store the original; ; and), ;while it is

computing the new versions of these based on the new par-
tition. To enable problems that generate many records to be
solved, we delete portions &, ; and);; as soon as they
are sent to their destinations.

The parallel algorithm relies on an interval-based sangplin
technique. The goal of sampling is to produce a list of ver-
tices that can then be used to partition several ordered list
of vertices. These vertices define the intervals of records
assigned to each workstation after the partition. Optimal i . .
tervals would distribute the total number of records in the Experimental Evaluation
Xy:'s and)g ;'s evenly. Our implementation approximates Setup

these optimal intervals using the following strategy: We implemented PFA*-DDD in ANSI C and used the

« all workstations send the sizes &f,; and)a,; to work- MPICH implementation of the MPI-2 communication li-
station O. brary for communication and synchronization. Each work-
- using a user-specified sample intensityworkstation 0 station executes two processes, a worker and a server. The

determines the sampling stride to be broadcast to all work- Worker executes the PFA*-DDD algorithm. The server facil-
Station' The Va|ue Of the Samp“ng Stride iS adjusted to Itates access to records I‘ESIdIng on its WOI‘kStatlon totemo

ensure that the total number of samples computed by all Workers. We implemented lists of records as a blocked-and-
workstations will be as close as possiblerto indexed linked lists. This data structure is akin to &-Bee

with all but the two bottommost levels absent. We used a
trivial n-interval list asA,. We used ar of 3n2. Though

not discussed in the text, we established that, in general,
when startegyB is used no workstation reconciles more than

1+ 22 times the average number of records reconciled by
a workstation. A double-buffered and non-blocking scheme
is used for the streaming of records in phases 2 and 4 as
Data Streaming a means of hiding communication latency. We also imple-
mented the sequential algorithm FA*-DDD in ANSI C in the
same manner as PFA*-DDD but without its parallel aspects,
such as phases 1 and 3, communication and synchronization,
and the server process.

We ran our experiments on two clusters of workstations:
C-AMD and C-IBM. C-AMD has32 dual-processor work-
stations with2.4 GHz AMD Opteron 250 processors run and
8 GB of RAM of which 6.8 GB is available to user pro-
cesses. C-IBM consists a2 dual-processor workstations

» Each workstatiors computes samples frodi; ; and Yy ;
and sends the vertices to workstation 0. These values are
merged into a single sorted list. This list is then divided
into n equal-sized intervals to generate the list of vertices
used to partition all thety ; and), ;. This list of vertices
is then broadcast.

Once workstation receives the list of vertices that defines
the intervals to processed by each workstation it startd-sen
ing its records to the appropriate workstations. The commu-
nication is efficiently set-up as a series of data streams be-
tween the workstations. An advantage of the interval-based
partitioning combined with data streaming is that thereois n
need for the consumer to request records.

At the receiving end, records arrive from each workstation

in increasing order of their.v value. Theref(_)re, fetching a _with 1.6 GHz IBM PPC970 processors an@B of RAM of
record from each stream and comparing with the records in

fmin, _) o which 3.4 GB is available to user processes. Both C-AMD
&, * and with the records in the dictionary representa- anq C-1BM run on top of a dedicated Gigabit Ethernet net-
tion of X, ; is an efficient way to implement duplicate de- work and a Linux-based operating system.
tection and reconciliation with the expanded vertices in a We performed experiments using the exact multiple se-
parallel environment. A detailed description of the separa quence alignment problem. We adopt the formulation of the
tion of X ; andY,,; into runs and subruns to enable efficient problem from a work on the use of A* on the problem (Mc-

data streaming will be published in a future work. Naughtonet al. 2002). We focused our experiments on
- . two problem instances drawn from the BAIIBASE problem
Deciding Between Strategies A and B set (Thompson, Plewniak, & Poch 1999), gal4 and 1pama.

The motivation for the two separate partition strategies in gal4 has five sequences with lengths varying from 335 to
phase 3 is to only use adaptive load balancing when it is 395. 1pama has fives sequences with lengths varying from

Time Speedup | Speedup
" (hours) | (vs.n =1) | Efficiency
1 | 13.63
2 6.07 2.2 112%
3 4.12 3.3 110%
4 3.17 43 108%
5 2.55 5.3 107%
6 2.14 6.4 106%
7 1.86 7.3 105%
8 1.62 8.4 105%
9 1.45 9.4 104%
10| 134 10.2 102%
11| 1.23 11.1 101%
12| 115 11.9 99%
13| 1.07 12.8 98%
14 | 1.00 13.7 98%
15| 0.95 14.3 95%
16 | 0.89 15.3 96%
17| 0.84 16.2 95%
18 | 0.80 17.0 94%
19| 0.74 18.4 97%
20 | 0.69 19.8 99%
21| 0.66 20.7 99%
22 | 0.65 21.0 95%
23| 0.65 21.0 91%
24 | 0.65 20.9 87%
25| 0.66 20.7 83%
26 | 0.67 20.4 78%
27 | 0.68 20.1 74%
28 | 0.67 20.2 72%
29 | 0.69 19.9 69%
30| 0.70 19.4 65%
31| 0.70 19.4 63%
32| 0.70 195 61%

Table 1: gal4 on C-AMD.

435 to 572. The implictly-defined graphs of both problems
are weighted and directed with edge costs ranging frdm

to 8 and an average in-degree and out-degree of approxi-
mately31. The graph of gal4 ha&20 x 10'2 vertices. The
graph of 1pama has82 x 10*? vertices. For both problems
the heuristic is computed using two exact 3-way alignments
and four exact 2-way alignments, with the longest sequence
being involved in the both 3-way alignments. These align-
ments require approximate®p0 MB for gal4 and approxi-
mately480 MB for 1pama.

Results and Analysis
For gal4,3.11 x 10® records are expanded,03 x 10'°

Time Speedup | Speedup
" (hours) | (vs.n = 2) | Efficiency
2 12.19
3 7.18 17 113%
4 5.42 2.2 112%
5 4.45 2.7 109%
6 3.80 3.2 107%
7 3.26 3.7 107%
8 2.85 4.3 107%
9 2.56 48 106%
10| 2.32 5.3 105%
11| 2.12 5.8 105%
12| 1.94 6.3 105%
Table 2: gal4 on C-IBM.
Time Speedup Speedup
" (hours) | (vs.n = 16) | Efficiency
16 | 24.43
17| 21.91 11 105%
18 | 20.77 12 105%
20 | 19.27 1.3 101%
24 | 15.86 15 103%
32| 11.92 2.0 102%

Table 3: 1pama on C-AMD.

Table 1 reports execution time, speedup, and speedup
efficiency for gal4 on C-AMD. Table 2 reports execution
time, speedup, and speedup efficiency for gal4 on C-IBM.
Speedup efficiency compares the speedup obtained by in-
creasing frommg ton; processors to the rati%. A speedup
efficiency of 100% means the speedup is exaétly a
greater efficiency indicates super-linear speedup. Indke c
of C-IBM results, speedup and speedup efficiency are mea-
sured using the results for PFA*-DDD far = 2 as a base-
line (ng = 2). On C-AMD speedup efficiency is above lin-
ear untiln reaches 11, and then becomes sublinear. On C-
IBM, speedup efficiency is above linear for all the values of
n we usedf < 12). The decrease in speedup efficiency on
C-AMD is the result of the workload being spread too thin,
asn increases, to mitigate the increasing overhead of syn-
chronization and communication initiation. Table 3 report
execution time, speedup, and speedup efficiency for 1pama
on C-AMD. Speedup and speedup efficiency are measured
using the results for PFA*-DDD fon = 16 as a baseline.
Speedup efficiency starts at above linear and stays above lin
ear regardless of the number of workstations that are used.

Phases 2 and 4 accounted for the majority of the execution

records are generated, and the peak memory requirementtime in both problems. The amount of execution time spent

was4.6 GB. For 1pamay.95 x 10° records are expanded,
2.57 x 10'! records are generated, and the peak memory
requirement was5.8 GB. The peak memory requirements
vary depending on the value afbut are very close to these

in phases 2 and 4, which gradually droppingidacreases,
are approximately as follows: in gal4 the amo@&¥; for

n = 2 and65% for n = 32; in 1pama84% for n = 16
and67% for n = 32. We assessed workload distribution us-

values. Because of the peak memory requirement we were ing the Relative Deviation From the Average (RDFA) met-

unable to obtain execution times for the sequential algorit
for gal4 on C-IBM, for the sequential algorithm for 1pama
on either cluster, and for the parallel algorithm for 1 pama o
C-AMD for values ofn less thani6 and on C-IBM for any
value ofn.

ric. RDFA is the ratio of the maximum amount of work per-
formed by any workstation over the average amount of work
performed by a workstation. Thus, the lower the RDFA the
better, with1 being the minimum value, in which case all
workstations performed an equal amount of work, arz-

ing the maximum value, in which case a single workstation Conclusion
performed all the work. For both problems, phase 2 RDFA |n this paper we presented the Frontier A* with Delayed
was nearly alwayd. For both problems, phase 4 RDFA pyplicate Detection (FA*-DDD) and Parallel Frontier A*
ranged from1.9 to n when strategyd was used and from with Delayed Duplicate Detection (PFA*-DDD) algorithms.
1.0 and1.2 when strategyB was used. Even though strat- FA*.DDD is a version of the Frontier A* (FA*) algorithm
egy A was used almost times as frequently as strategy augmented with a form of Delayed Duplicate Detection
the amount of execution-time spent in phase 4 when strat- (DDD). FA*-DDD overcomes the leak-back problem asso-
egy A was used is negligible compared to the amount of cjated with combining FA* with DDD. The novel workload
execution-time spent in phase 4 when stratBgyas used. distribution in PFA*-DDD is based on intervals. Experi-
mental results on the multiple sequence alignment problem
demonstrate that the implementation offers improved capa-

Related Work bility as well as improved performance.

The Frontier A* (FA*) algorithm is due to Korf (Korf 1999)
and is an extension of the A* algorithm (Hart, Nilsson, &
Raphael 1968). FA* has been shown to be as time efficient
as A* while being more space efficient than A* (Kaf al.
2005). The Delayed Duplicate Detection technique is also
due to Korf (Korf 2003).

The space-efficiency advantage of FA* over A* stems
from it not storing closed vertices. Because of this pragtic
however, FA* computes only the minimum-cost of a path
from s to t. Fortunately, FA* can be extended to also com-
pute a minimum-cost path fromto ¢ without sacrificing its
space efficiency advantage over A* while rendering its time
efficiency to be only marginally worse than that of A*. The
extension computes one or more vertices on a minimum-
cost path froms to ¢ and constructs a minimum-cost path
from s to ¢ using a divide-and-conquer strategy (Korf &
Zhang 2000). Both FA*-DDD and PFA*-DDD can be mod-
ified to compute one or more vertices on a minimum-cost
path. However, the parallelization of the divide-and-aaoeg
strategy that uses the modified instance of PFA*-DDD is
non-trivial. After the initial call to the modified instanoé
PFA*-DDD, up to two calls can be executed in parallel, with
the number of additional calls that can be executed in paral-
lel potentially growing by two with each subsequent call.
The issue at hand is whether to allocate all processors to
each call and execute them sequentially or to allocate the
processors among the calls and execute them in parallel. In
addition, if the former approach is to be taken, then thedssu
of how to allocate the processors among the calls also arises

Existing parallel formulations of A* often assume that the
graph is a tree (Dutt & Mahapatra 1994; Kumar, Ramesh, &
Rao 1988; Kumaet al. 1994). When the graph is a tree,
there is no need to keep a closed list or to check if a gen-
erated vertex is in the open or closed list. Moreover, in a
tree there is no need to perform reconciliation, which tssul
in negligible communication. In instances where the graph
is not a tree the use of a static hashing function is typically
recommended as a means of distributing the reconciliation
workload, an approach that is limited.

Our sampling-based workload distribution method is akin
to that of the parallel sorting algorithm Parallel Soring by
Regular Sampling (PSRS) (Shi & Schaeffer 1992). We ex-
tend the use of sampling in PSRS by handling arbitrarily
sized lists of keys as well as by computing the sampling in-
terval at runtime based on a sampling intensity.

References

Dutt, S., and Mahapatra, N. R. 1994. Scalable load balanc-
ing strategies for parallel a* algorithm#ournal of Parallel

and Distributed Computing2(3):488-505.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
neticsSSC-4(2):100-107.

Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. IRroceedings of the National Con-
ference on Atrtificial Intelligence (AAAI-05)380-1385.

Korf, R. E., and Zhang, W. 2000. Divide-and-conquer
frontier search applied to optimal sequence alignment. In
Proceedings of the National Conference on Atrtificial Intel-
ligence (AAAI-200Q0)910-916.

Korf, R. E.; Zhang, W.; Thayer, |.; and Hohwald, H. 2005.
Frontier searchJournal of the ACMb2(5):715-748.

Korf, R. E. 1999. A Divide and Conquer Bidirectional
Search: First Results. International Joint Conference on
Artificial Intelligence (IJCAI) 1184-1189.

Korf, R. E. 2003. Delayed duplicate detection: Extended
abstract. InProceedings of the Eighteenth International
Joint Conference on Atrtificial Intelligenc&539-1541.

Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection. IfProceedings of the National Con-
ference on Atrtificial Intelligence (AAAI-04950-657.

Kumar, V.; Grama, A.; Gupta, A.; and Karypis, G. 1994.
Introduction to parallel computing: design and analysis of
algorithms Benjamin-Cummings Publishing Co., Inc.
Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel best-
first search of state-space graphs: A summary of results. In
National Conference on Artificial Intelligenc&22—-127.
McNaughton, M.; Lu, P.; Schaeffer, J.; and Szafron, D.
2002. Memory-efficient A* heuristics for multiple se-
guence alignment. IMNational Conference on Artificial
Intelligence (AAAI-02)737-743.

Shi, H., and Schaeffer, J. 1992. Parallel Sorting by Regular
Sampling. Journal of Parallel and Distibuted Computing
14(4):361-372.

Thompson, J. D.; Plewniak, F.; and Poch, O. 1999. BAI-
iBASE: a benchmark alignment database for the evaluation
of multiple alignment program®ioinformatics15(1):87—

88.

