
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Artificial Intelligence 175 (2011) 2075–2098

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Learning heuristic functions for large state spaces

Shahab Jabbari Arfaee a, Sandra Zilles b,∗, Robert C. Holte a

a University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada T6G 2H8
b University of Regina, Department of Computer Science, Regina, Saskatchewan, Canada S4S 0A2

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2010
Received in revised form 27 July 2011
Accepted 1 August 2011
Available online 5 August 2011

Keywords:
Heuristic search
Planning
Learning heuristics

We investigate the use of machine learning to create effective heuristics for search
algorithms such as IDA∗ or heuristic-search planners such as FF. Our method aims to
generate a sequence of heuristics from a given weak heuristic h0 and a set of unsolved
training instances using a bootstrapping procedure. The training instances that can be
solved using h0 provide training examples for a learning algorithm that produces a
heuristic h1 that is expected to be stronger than h0. If h0 is so weak that it cannot solve
any of the given instances we use random walks backward from the goal state to create
a sequence of successively more difficult training instances starting with ones that are
guaranteed to be solvable by h0. The bootstrap process is then repeated using hi in lieu of
hi−1 until a sufficiently strong heuristic is produced. We test this method on the 24-sliding-
tile puzzle, the 35-pancake puzzle, Rubik’s Cube, and the 20-blocks world. In every case
our method produces a heuristic that allows IDA∗ to solve randomly generated problem
instances quickly with solutions close to optimal.
The total time for the bootstrap process to create strong heuristics for these large state
spaces is on the order of days. To make the process effective when only a single problem
instance needs to be solved, we present a variation in which the bootstrap learning of
new heuristics is interleaved with problem-solving using the initial heuristic and whatever
heuristics have been learned so far. This substantially reduces the total time needed to
solve a single instance, while the solutions obtained are still close to optimal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Modern heuristic search and planning systems require good heuristics. A popular approach to creating heuristics for
a state space is abstraction: from the state space description one creates a description of an abstract state space that is
easier to search; exact distances in the abstract space give admissible estimates of distances in the original space [4,5,16,
24,34,36]. One limitation of this approach is that it is often memory-intensive. This has led to the study of compression
schemes [3,7,42], disk-based methods [52], and distributed methods [8]. These methods extend the range of problems to
which abstraction is applicable, but since combinatorial problems grow in size exponentially it is easy to imagine problems
so large that, with the computers of the foreseeable future, even the best heuristics created by these systems will be too
weak to enable arbitrary instances to be solved reasonably quickly.

A second limitation of abstraction is that it can only be applied to state spaces given in a suitable declarative form.
There are situations in which there is no such state-space description, for example, if a planner is controlling a system or
computer game, or when such a description would be vastly less efficient than a “hard-coded” one, or when the state space
is described declaratively but in a different language than the abstraction system requires. We call such representations

* Corresponding author.
E-mail addresses: jabbaria@cs.ualberta.ca (S. Jabbari Arfaee), zilles@cs.uregina.ca (S. Zilles), rholte@ualberta.ca (R.C. Holte).

0004-3702/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2011.08.001

Author's personal copy

2076 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

opaque. With an opaque representation, a state space is defined by a successor function that can be called to compute a
state’s children but cannot otherwise be reasoned about. By definition, abstraction cannot be applied to create heuristics
when the state space is represented opaquely.

An approach to the automatic creation of heuristics that sidesteps both of these limitations is to apply machine learning
to a set of states whose distance-to-goal is known (the training set) to create a function that estimates distance-to-goal
for an arbitrary state, i.e., a heuristic function. This idea has been applied with great success to the 15-puzzle and other
state spaces of similar size (see Ernandes and Gori [9] and Samadi, Felner, and Schaeffer [41]), but could not be applied
to larger spaces, e.g., the 24-puzzle, because of the excessive time it would take to create a sufficiently large training set
containing a sufficiently broad range of possible distances to goal. To overcome this obstacle, Samadi et al. [41] reverted to
the abstraction approach: instead of learning a heuristic for the 24-puzzle directly they learned heuristics for two disjoint
abstractions of the 24-puzzle and combined them to get a heuristic for the 24-puzzle. This approach inherits the limitations
of abstraction mentioned above and, in addition, the crucial choices of which abstractions to use and how to combine them
are made manually.

Ernandes and Gori [9] proposed a different way of extending the machine learning approach to scale to arbitrarily
large problems, but never implemented it. We call this approach “bootstrap learning of heuristic functions” (bootstrapping,
for short). The contribution of the present paper is to validate their proposal by supplying the details required to make
automatic bootstrapping practical and showing experimentally that it succeeds on state spaces that are at or beyond the
limit of today’s abstraction methods.

Bootstrapping is an iterative procedure that uses learning to create a series of heuristic functions. Initially, this proce-
dure requires a heuristic function h0 and a set of states we call the bootstrap instances. Unlike previous machine learning
approaches to creating heuristics, there are no solutions given for any instances, and h0 is not assumed to be strong enough
to solve any of the given instances. A standard heuristic search algorithm (e.g., IDA∗ [29]) is run with h0 in an attempt to
solve the bootstrap instances within a given time limit. The set of solved bootstrap instances, together with their solution
lengths (not necessarily optimal), is fed to a learning algorithm to create a new heuristic function h1 that is intended to be
better than h0. After that, the previously unsolved bootstrap instances are used in the same way, using h1 as the heuristic
instead of h0. This procedure is repeated until all but a handful of the bootstrap instances have been solved or until a
succession of iterations fails to solve a large enough number of “new” bootstrap instances (ones that were not solved on
previous iterations).

If the initial heuristic h0 is too weak to solve a sufficient number of the given bootstrap instances within the given time
limit we use a random walk method to automatically generate bootstrap instances at the “right” level of difficulty (easy
enough to be solvable with h0, but hard enough to yield useful training data for improving h0).

As in the earlier studies by Ernandes and Gori [9] and Samadi et al. [41], which may be seen as doing one step of the
bootstrap process with a very strong initial heuristic, the learned heuristic might be inadmissible, i.e., it might sometimes
overestimate distances, and therefore IDA∗ is not guaranteed to find optimal solutions with the learned heuristic. With
bootstrapping, the risk of excessive suboptimality of the generated solutions is much higher than with the one-step methods
because on each iteration the learning algorithm might be given solution lengths larger than optimal, biasing the learned
heuristic to even greater overestimation. The suboptimality of the solutions generated is hence an important performance
measure in our experiments.

We test our method experimentally on four problem domains that are at, or beyond, the limit of what current abstraction
methods can solve optimally—the 24-sliding-tile puzzle, the 35-pancake puzzle, Rubik’s Cube, and the 20-blocks world—in
each case starting with an initial heuristic so weak that the previous, one-step methods would fail because they would not
be able to generate an adequate training set in a reasonable amount of time. In all the domains, bootstrapping succeeds in
producing a heuristic that allows IDA∗ to solve randomly generated problem instances quickly with solutions that are very
close to optimal. On these domains our method systematically outperforms Weighted IDA∗ [30] and BULB [15].

The time it takes for our bootstrap method to complete its learning on these large state spaces is on the order of days.
This is acceptable when the learned heuristic will be used to solve many instances, but a different approach is needed
in order to solve a single instance quickly. For this we introduce a method that interleaves the bootstrapping process for
creating a succession of ever stronger heuristics with a process that uses the set of heuristics that are currently available
(initially just h0) to try to solve the given instance. The total time required to solve a single instance using this method
is substantially less than the learning time for the bootstrap method, and the solutions it produces are of comparable
suboptimality. For example, with this method the total time to solve an instance of the 24-puzzle is just 14 minutes, on
average, and the solution found is only 6.5% longer than optimal. When applied to the blocksworld instances used in the
IPC2 planning competition, our interleaving method solves all the instances within the 30-minute time limit, and almost all
are solved optimally.

The remainder of the paper is organized as follows. Section 2 provides a full description of the Bootstrap and Ran-
domWalk methods, which are experimentally evaluated in Section 3. The interleaving method for quickly solving single
instances is described and evaluated in Section 4. Section 5 surveys previous work related to bootstrapping and Section 6
closes the paper with a summary and conclusions.

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2077

2. The Bootstrap and RandomWalk algorithms

This section describes the algorithmic approach and implementation of our method for learning heuristics. The input to
our system consists of a state space, a fixed goal state g , a heuristic function h0, a set Ins of states to be used as bootstrap
instances, and a set of state features to be used for learning. We do not assume that h0 is sufficiently strong that any of
the given bootstrap instances can be solved using it. In principle, h0 could be completely trivial (returning 0 for all states)
but in practice it is useful to include weak but non-trivial heuristics among the features used for learning. If that is done it
makes sense to use their maximum as h0 in the absence of any stronger heuristic.

In the first subsection, we focus on the bootstrap procedure, which incrementally updates the initial heuristic with the
help of a set of bootstrap instances. This procedure requires h0 to be strong enough to solve several of the given instances
at least suboptimally in the given time limit. If it is not, a set of easier instances is needed to improve the initial heuristic
to the point where the easiest bootstrap instances can be solved. This set of easier instances is generated by the random
walk method described in the second subsection.

2.1. The Bootstrap algorithm

Our bootstrap procedure, Algorithm 1, proceeds in two stages. In the first stage, for every instance i in Ins, a heuristic
search algorithm is run with start state i and the current heuristic hin (line 7). Every search is cut off after a limited period
of time (tmax). If i is solved within that time then the user-defined features of i, together with its solution length, are added
to the training set. In addition, features and solution lengths for all the states on the solution path for i are added to the
training set (lines 8 and 9). This increases the size of the training set at no additional cost and balances the training set to
contain instances with long and short solutions.

Algorithm 1
1: procedure Bootstrap(h0, hin , Ins): hout

2: uses global variables tmax, t∞ , insmin, g
3: create an empty training set TS
4: NumSolved := 0
5: while (NumSolved + size(Ins) � insmin) && (tmax � t∞) do
6: for each instance i ∈ Ins do
7: if Heuristic Search(i, g,hin, tmax) succeeds then
8: for each state s on i’s solution path Pi do
9: Add (feature vector(s), distance(s, g, Pi)) to TS

10: end for
11: remove i from Ins
12: NumSolved := NumSolved + 1
13: end if
14: end for
15: if (NumSolved � insmin) then
16: hlearn := learn a heuristic from TS
17: Define hin(x), for any state x, to be max(h0(x),hlearn(x))
18: clear TS
19: NumSolved := 0
20: else
21: tmax := 2 × tmax

22: end if
23: end while
24: return hin

The second stage examines the collected training data. If “enough” bootstrap instances have been solved then the heuris-
tic hin is updated by a learning algorithm (line 17) and the training set is reset to be empty. If not “enough” bootstrap
instances have been solved, the time limit is increased without changing hin (line 21). Either way, as long as the current
time limit (tmax) does not exceed a fixed upper bound (t∞), the bootstrap procedure is repeated on the remaining bootstrap
instances with the current heuristic hin . “Enough” bootstrap instances here means a number of instances above a fixed
threshold insmin (line 15). Variable NumSolved keeps track of the number of bootstrap instances solved in each iteration.
It increases whenever a new instance is solved (line 12) and it will be set to zero for the next iteration (line 19). The
procedure terminates if tmax exceeds t∞ or if the remaining set of bootstrap instances is too small.

Notice (line 17) that each heuristic hin created by bootstrap is the maximum of the heuristic returned by the learning
algorithm using the current training set (hlearn) and h0. This is not an essential requirement of the bootstrap process but
it is advisable when h0 is known to be an admissible heuristic since it can only make the heuristic more accurate. In all
the experiments reported below, this method was used. It is also possible to take the maximum over all previously learned
heuristics as well as hlearn and h0, or to add the previously learned heuristics to the set of features used for learning. We
did not do either of these because of the considerable increase in computation time they would have caused.

Table 1 shows each iteration of the bootstrap procedure on the 15-puzzle (defined in Section 3) when Ins contains 5000
randomly generated solvable instances, insmin is 75, and tmax is 1 second. The definition of the initial heuristic h0, the

Author's personal copy

2078 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Table 1
Bootstrap iterations for the 15-puzzle.

Iteration Number solved Average optimal cost
(solved instances)

Average nodes generated
(solved instances)

Average suboptimality
(test instances)

0 986 46.11 517,295 1.2%
1 3326 54.37 205,836 2.8%
2 519 58.52 353,997 5.5%
3 156 60.44 276,792 8.3%

learning method, and the features used for learning are the same as those for the 24-puzzle that are given in Section 3
below. The first row shows the result of the initial iteration. All 5000 instances in Ins were attempted but IDA∗ with h0
was only able to solve 986 of them in the time limit (column “Number solved”). The average optimal solution length for
the solved instances is shown in column “Average optimal cost”. The average number of nodes generated in solving these
instances is shown in column “Average nodes generated”. The states along these 986 solution paths, together with their
distances to the goal, form the training set to which a learning algorithm is applied to create a new heuristic, h1.1 The
suboptimality of the heuristic learned on this iteration (h1), measured on an independent test set, is shown in column
“Average suboptimality”.

An attempt is then made using h1 to solve each of the 4014 instances that were not solved using h0. The next row
(iteration 1) shows that 3326 of these were solved in the time limit. All the states along all these solution paths were used
to learn a new heuristic h2, which was then used in an attempt to solve each of the 688 instances that were not solved
on the first two iterations. The next row (iteration 2) shows that 519 of these were solved. The heuristic, h3, learned from
these solution paths solved 156 of the 169 instances not solved to this point, and those solution paths provide the training
data to create a new heuristic, h4. The bootstrap process ends at this point because there are fewer than insmin unsolved
instances, and h4 is returned as the final heuristic. In this example, there was no need for the bootstrap process to increase
the time limit tmax because each iteration solved insmin or more instances with the initial tmax value.

There are no strong requirements on the set Ins of bootstrap instances—it may be any set representative of the instances
of interest to the user. However, for the bootstrap process to incrementally span the gap between the easiest and hardest of
these instances, Ins must contain instances at intermediate levels of difficulty. At present this is simply an intuitive informal
requirement for which we have no proof of necessity.

2.2. The RandomWalk algorithm

It can happen that the initial heuristic h0 is so weak that the heuristic search algorithm is unable to solve enough
instances in Ins, using h0, to get a sufficiently large set of training data. For this case we need a procedure that generates
bootstrap instances that are (i) easier to solve than the instances the user provided but (ii) harder to solve than instances
solvable by simple breadth-first search in acceptable time (to guarantee a high enough quality of training data).

This is accomplished using random walks backward from the goal2 of a suitably chosen length to generate instances.
As described in Algorithm 2, we first test whether the initial heuristic is strong enough to solve a sufficient number (at
least insmin many) of the user-provided bootstrap instances (Ins) in the given time limit tmax (line 5). If so, the bootstrap
procedure can be started immediately (line 10). Otherwise, we perform random walks backward from the goal, up to depth
“length”, and collect the final states as special bootstrap instances (RWIns). The bootstrap procedure is then run on these
special instances (line 7) to create a stronger heuristic. This process is repeated with increasingly longer random walks
(line 8) until it produces a heuristic that is strong enough for bootstrapping to begin on the user-given instances or fails to
produce a heuristic with which sufficiently many instances in RWIns can be solved within time limit t∞ .

Algorithm 2 In a random walk we disallow the inverse of the previous move.
1: procedure RandomWalk (h0, Ins, lengthIncrement): hout

2: uses global variables tmax, t∞, insmin, g
3: length := lengthIncrement
4: hin := h0

5: while (hin is too weak to solve insmin many instances in Ins within time tmax) && (tmax � t∞) do
6: RWIns := 200 instances, each generated by applying “length” many random moves backward from g
7: hin := Bootstrap(h0,hin,RWIns)
8: length := length + lengthIncrement
9: end while

10: return Bootstrap(h0,hin, Ins)

1 As explained above, h1, and all other heuristics created by Bootstrap, are defined, for any state x, as the maximum of h0(x) and hlearn(x), where hlearn

is the heuristic created by the learning algorithm in the current iteration.
2 For spaces with uninvertible operators, this requires a predecessor function, not just the successor function provided by an opaque representation.

Hence the RandomWalk part of the process will not be applicable to certain opaque domains. Moreover, the RandomWalk procedure works only for single
goal states, not for sets of goal states. Neither of these restrictions applies to the Bootstrap procedure itself, since there the search progresses in the forward
direction.

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2079

Table 2
RandomWalk procedure applied to the 20-blocks world.

Row RW
length

Number
solved

Average
optimal cost

Time
limit

1 20 197 8.97 1
2 40 145 11.76 1
3 60 115 13.96 1
4 60 79 16.05 2
5 80 99 16.08 2
6 80 95 19.37 4
7 100 174 20.41 4
8 120 139 23.50 4

The choice of “lengthIncrement” is an important consideration. If it is too large, the instances generated may be too
difficult for the current heuristic to solve and the process will fail. If it is too small, a considerable amount of time will be
wasted applying the bootstrap process to instances that do not substantially improve the current heuristic. In our system,
the lengthIncrement parameter was set automatically as follows.

1. Run a breadth-first search backward from the goal state with a time limit given by the initial value of tmax. Let S be
the set of states thus visited.

2. Repeat 5000 times: do a random walk backward from the goal (always disallowing the inverse of the previous move)
until a state not in S is reached. Set lengthIncrement to be the floor of the average length of these 5000 random walks.

The intuition motivating this definition of lengthIncrement is as follows. Initially, it generates problem instances that, on
average, are just a little more difficult than can be solved using breadth-first search with a time limit of tmax. These are thus
expected to provide training examples that are solvable using h0 and cause a non-trivial heuristic function to be learned.
On subsequent iterations, we imagine that most of the instances created by random walks whose length is the next larger
multiple of lengthIncrement will be within a short breadth-first search of the instances that were solved on the previous
iteration—in other words, just slightly more difficult, on average, than the previous instances. By being slightly more difficult
they are easy enough to be solved using the current heuristic but provide training instances that allow a better heuristic to
be learned.

The RandomWalk approach is not guaranteed to succeed. It might fail to generate problems of a suitable level of difficulty
(easy enough to be solvable using the current heuristic but hard enough to help produce a better heuristic).

Table 2 illustrates the RandomWalk procedure on the 20-blocks world when Ins contains 5000 randomly generated
solvable instances, insmin is 75, tmax is 1 second, and 200 random walk instances are generated (RWIns) for each distinct
random walk length. The definition of this domain, the initial heuristic h0, the learning method, and the features used
for learning are given in Section 3 below. Random walks are necessary in this domain because h0 is too weak to solve
a sufficient number (insmin) of the bootstrap instances (Ins). The value of “lengthIncrement” was set automatically by our
method at 20.

The first row shows the result of the initial iteration. 200 instances (RWIns) have been generated by random walks of
length 20 (column “RW length”) and passed to the bootstrap procedure along with h0. IDA∗ using h0 as the heuristic was
able to solve 197 of these instances (column “Number solved”) within the time limit (column “Time limit”, in seconds) so
there is just one iteration of the bootstrap process, which returns a new heuristic, h1. This heuristic is then used to attempt
to solve the bootstrap instances in Ins. It is too weak to solve a sufficient number of them in the time limit so another
iteration of the RandomWalk process is needed.

The random walk length is increased by 20 (the value of lengthIncrement) and a set (RWIns) of 200 instances is gener-
ated by random walks of length 40 and passed to the bootstrap procedure along with h1. 145 of them are solved in the first
bootstrap iteration and the bootstrap procedure returns a new heuristic, h2, since fewer than insmin unsolved RandomWalk
instances remain. This heuristic is used to attempt to solve the bootstrap instances (Ins). It is too weak to solve a sufficient
number of them in the time limit so another iteration of the RandomWalk process is needed.

The random walk length is increased by 20 and a set of 200 instances (RWIns) are generated by random walks of
length 60 and passed to the bootstrap procedure along with h2. The bootstrap process (row 3) is only able to solve 115
of these instances using h2 in its first iteration. A new heuristic, h3, is learned from these but is not passed back to
the RandomWalk procedure because there are still more than insmin unsolved RandomWalk instances (RWIns). A second
iteration of the bootstrap procedure attempts to solve them with its new heuristic, h3, but fails to solve a sufficient number
(insmin) and therefore doubles the time limit and attempts them again with h3. Row 4 shows that this iteration of the
bootstrap procedure succeeds in solving 79 of them with the new time limit, and from these it learns a new heuristic,
h4. Since there are now fewer than insmin unsolved RandomWalk instances, the bootstrap procedure returns h4 to the
RandomWalk process. This heuristic is used in an attempt to solve the bootstrap instances (Ins). It is too weak to solve a
sufficient number of them in the time limit so another iteration of the RandomWalk process is needed.

As the table shows, in total 6 iterations of the loop in the RandomWalk process were executed (6 distinct values of the
RandomWalk length) and for each of these iterations either one or two bootstrap iterations were required to find a heuristic

Author's personal copy

2080 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Fig. 1. System overview.

that could solve the random walk instances. The time limit had to be increased twice. The RandomWalk process ended
because the heuristic, h8, created from the RandomWalk instances solved in the final row of the table, was able to solve a
sufficient number (insmin) of the bootstrap instances (Ins) that the bootstrap procedure could finally be started on the set
of bootstrap instances (Ins) with h8 as its initial heuristic.

Once the bootstrap process begins to operate on the bootstrap instances, the RandomWalk process will not be invoked
again. However, there is a role that it could play. If in some iteration the Bootstrap process fails to solve a sufficient number
of instances, instead of doubling its current time limit (line 21 of Algorithm 1) it could instead invoke the RandomWalk
process to generate instances of the appropriate level of difficulty. Preliminary experiments with this idea succeeded on
artificially contrived sets of bootstrap instances for the 15-puzzle and 17-pancake puzzle, but failed on Rubik’s Cube. Because
of the latter we abandoned this idea and all the experiments reported in this paper are based on using RandomWalk only
as an initial step, if needed, to create a heuristic strong enough to allow the bootstrap process to begin operating on the
bootstrap instances.

2.3. Summary: System overview

A summary of the overall system and its operation is depicted in Fig. 1. The key inputs from the user are an initial
heuristic h0 and a set of bootstrap instances. The RandomWalk procedure tests whether h0 is strong enough to solve a
sufficiently large number of the bootstrap instances. If it is not, RandomWalk internally generates its own instances through
random walks of a length that it determines automatically. These instances are passed to the Bootstrap procedure, which
returns a heuristic. This procedure repeats, with instances created by random walks of increasing lengths, until the current
heuristic is strong enough to solve a sufficiently large number of the bootstrap instances. At this point Bootstrap is invoked
one last time, with the bootstrap instances. The final heuristic it creates on these instances is the heuristic that is output by
the system.

3. Experiments with Bootstrap and RandomWalk

Except where explicitly stated otherwise, IDA∗ was the search algorithm used.

Domains. Because it is essential in this study to be able to determine the suboptimality of the solutions our method
produces, we chose as testbeds domains in which optimal solution lengths can be computed in a reasonable amount of
time, either by existing heuristic search methods or by a hand-crafted optimal solver for the domain. The following domains
met this criterion.3

• (n2 − 1)-Sliding-tile puzzle [46] – The sliding-tile puzzle consists of n2 − 1 numbered tiles that can be moved in an
n × n grid. A state is a vector of length n2 in which component k names what is located in the kth puzzle position
(either a number 1, . . . ,n2 − 1 for a tile or a symbol representing the blank). Every operator swaps the blank with a tile
adjacent to it. The left part of Fig. 2 shows the goal state that we used for the 24-puzzle while the right part shows a
state created from the goal state by applying two operators, namely swapping the blank with tile 1 and then swapping
it with tile 6.
The number of states reachable from any given state is (n2)!/2, cf. [1]. We report results on the 24-puzzle (n = 5), the
largest version of the puzzle that has been solved optimally by abstraction-based heuristic search methods [32]. This
domain has roughly 1025 reachable states.

• n-Pancake puzzle [6] – In the n-pancake puzzle, a state is a permutation of n numbered tiles and has n − 1 successors,
with the lth successor formed by reversing the order of the first l + 1 positions of the permutation (1 � l � n − 1).

3 Experiments on smaller versions of some of these domains (the 15-puzzle, the 17- and 24-pancake puzzles, and the 15-blocks world) can be found in
a previous publication [27].

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2081

Fig. 2. The goal state for the 24-puzzle (left) and a state two moves from the goal (right).

Fig. 3. The goal state for the 35-pancake puzzle (above) and a state one move from the goal (below).

Fig. 4. The goal state for Rubik’s Cube (left) and a state one move from the goal (right) (modified from Zahavi et al. [51]).

Fig. 5. The goal state for the 20-blocks world (left) and a state two moves from the goal (right).

The upper part of Fig. 3 shows the goal state that we used in our experiments, while the lower part shows the 3rd
successor of the goal (the first four positions have been reversed).
All n! permutations are reachable from any given state. We report results for n = 35 which contains more than 1040

reachable states. The largest version of the puzzle that has been solved optimally by general-purpose abstraction-based
methods is n = 19 [22].

• Rubik’s Cube [31] – Rubik’s Cube is a 3 × 3 × 3 cube made up of 20 moveable 1 × 1 × 1 “cubies” with coloured stickers
on each exposed face. Each face of the cube can be independently rotated 90 degrees clockwise or counterclockwise or
180 degrees. The left part of Fig. 4 shows the goal state for Rubik’s Cube while the right part shows the state produced
by rotating the right face 90 degrees counterclockwise.
We used the standard encoding of the puzzle, including the standard operator pruning methods that reduce the branch-
ing factor from 18 to approximately 13.34847 [31]. The number of states reachable from any given state is approximately
4.3252 × 1019 [31]. Rubik’s Cube is at the limit of today’s general-purpose heuristic search methods for finding optimal
solutions.

• n-Blocks world [45] – In the blocks world, each block can have at most one block on top of it and one block below it.
A block with no block below it is said to be on the table. A block with no block above it is said to be clear. A move
consists in moving a clear block to be on top of some other clear block or onto the table. We used n = 20 blocks in our
experiments; the number of reachable states is more than 1020 [45]. The left side of Fig. 5 shows the goal state that we
used; the right side of Fig. 5 shows the state produced from the goal state by moving block 20 to the table and then
moving block 19 to the top of block 20.

Learning algorithm and features. The learning algorithm used in all experiments was a neural network (NN) with one
output neuron representing distance-to-goal and three hidden units trained using standard backpropagation [40] and mean
squared error (MSE).4 Training ended after 500 epochs or when MSE < 0.005.

4 We do not consider the choice of the particular learning algorithm critical; we chose this neural network setting to be the same as previous work on
learning heuristics [9,41]. Using only three hidden units made sure that, for every domain we experimented with, the number of inputs was at least as
large as the number of hidden units. We experimented with various error measures that penalize overestimation, but found none that yielded substantially

Author's personal copy

2082 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

It is well known that the success of any machine learning application depends on having “good” features. The issue of
automatically creating good features for learning search control knowledge has been studied, in the context of planning,
by Yoon et al. [49]. In our experiments we did not carefully engineer the features used or exploit special properties of the
domain. Our intention was to show that the bootstrap learning approach is effective, even in the absence of carefully chosen
features and human insight into the domain. We did deliberately choose features that could be quickly calculated since their
values are all needed every time a heuristic value must be computed for a state.

The input features for the NN are described separately for each domain below; most of them are values of weak heuristics
for the respective problems.

Initial heuristics. The initial heuristic h0 for each domain was defined as the maximum of the heuristics used as features
for the NN. In all the domains other than Rubik’s Cube, h0 was too weak for us to evaluate it on the test instances in
a reasonable amount of time. After each iteration of our method, the new heuristic was defined as the maximum of the
output of the NN and the initial heuristic. No domain-specific knowledge, such as geometric symmetry or duality [51] was
used to augment the heuristics in any of the experiments reported.

One advantage that h0 has compared to the heuristics generated by bootstrapping is that it can be computed more
quickly, since the maximum of a set of feature values can be evaluated faster than a neural network output with the same
features as input. For example, the computation of each neural network heuristic in our experiments was between 1.25
(Rubik’s Cube) and 2.0 (24-puzzle) times slower than the computation of the corresponding h0 heuristics.

Bootstrap instances. Ins consisted of either 500 or 5000 solvable instances generated uniformly at random except for Rubik’s
Cube where they were generated by random walks of various lengths between 1 and 25.

Numeric parameters. In all experiments, insmin = 75, tmax = 1 second, t∞ = 512 seconds, and the size of the set RWIns was
200.

The tables below summarize the results on our test domains. All these results are based on a set of test instances
generated independently of the bootstrap instances, in contrast to Table 1, where some measurements were based on the
bootstrap instances solved in the respective Bootstrap iteration. In the tables with Bootstrap results, the “Iteration” column
indicates which Bootstrap iteration is being described in each row. The “No. solved” and “Total unsolved“ columns show,
respectively, the number of bootstrap instances solved in a particular iteration and the total number of bootstrap instances
that are not yet solved at the end of that iteration.

The “Avg. subopt.” column gives the average suboptimality of the solutions found for the test instances by the heuristic
produced at the end of an iteration, calculated as follows. We define the suboptimality for an instance as the cost of the
solution found for that instance divided by its optimal solution cost. We then compute the average over all the instances of
the individual suboptimalities and subtract one. For example, Avg. subopt. = 7% means that, on average, the solution found
for a test instance was 7% longer than its optimal solution.

“Avg. nodes gen.” is the average number of nodes generated to solve the test instances using the heuristic produced at the
end of an iteration. “Avg. solving time” is the average search time in seconds to solve the test instances. Unless specifically
stated, no time limit was imposed when systems were solving the test instances. “Learning time” in the row for iteration i
is the time used by our method to complete all iterations up to and including i, including all the RandomWalk processing
required before iteration 0 could begin. The letters “s”, “m”, “h”, and “d” represent units of time—seconds, minutes, hours,
and days, respectively.

Each row in the “Other methods” tables gives the data for a non-bootstrapping system that we tried or found in the
literature. The “h (Algorithm)” column indicates the heuristic used, with the search algorithm, if different from IDA∗ , given
in parentheses. The symbol #k indicates that the same heuristic is used in this row as in row k. The run-times taken from
the literature are marked with an asterisk to indicate they may not be strictly comparable to ours. Some suboptimalities
from the literature are computed differently than ours; these too are marked with an asterisk. All weighted IDA∗ (W-IDA∗)
and BULB results are for our own implementations of these algorithms, except for the BULB results on Rubik’s Cube, which
are from Furcy and König [15].

The last Bootstrap iteration shown in the tables represents the last successful iteration of the Bootstrap process. If there
were fewer than insmin unsolved bootstrap instances remaining after that iteration (24-puzzle, 35-pancake puzzle, and
Rubik’s Cube and the 20-blocks world using 5000 bootstrap instances), the Bootstrap process terminated as soon as that
iteration was done and the “Bootstrap completion time” shown in each table, which measures the entire time required by
the Bootstrap process, is equal to the “Learning time” reported for the final iteration. However, if there were insmin or more
unsolved bootstrap instances remaining after the last iteration shown in a table (Rubik’s Cube and 20-blocks world, each
with 500 bootstrap instances), another bootstrap iteration would have been attempted on those instances but Bootstrap
terminated it without creating a new heuristic because tmax exceeded t∞ . In such a case the “Bootstrap completion time”
includes the time taken by the final, unsuccessful iteration. For example, the “Learning time” for iteration 1 in Table 9 shows

better results than MSE. We also briefly experimented with linear regression instead of a neural network; the preliminary results were on a par with those
of the neural net.

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2083

Table 3
24-Puzzle, Bootstrap (500 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 141 359 5.1% 121,691,641 153.34 s 1 h 38 m
1 98 261 5.9% 156,632,352 205.68 s 2 h 16 m
2 112 149 5.6% 70,062,610 89.03 s 3 h 57 m
3 (final) 128 21 5.7% 62,559,170 81.52 s 11 h 43 m

Bootstrap completion time = 11 hours and 43 minutes

Table 4
24-Puzzle, Bootstrap (5000 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 413 4587 4.7% 1,798,903,624 2364.69 s 19 h
2 116 4060 4.9% 1,386,730,491 1776.41 s 23 h
4 84 3807 4.8% 1,051,748,928 1366.37 s 1 d 09 h
6 116 3521 5.0% 307,700,388 403.09 s 1 d 17 h
8 263 3029 5.1% 555,085,735 719.79 s 1 d 23 h

10 212 2534 5.7% 140,197,951 182.82 s 2 d 04 h
12 112 2188 6.2% 164,616,540 223.68 s 2 d 08 h
14 116 1850 6.4% 135,943,434 175.11 s 2 d 12 h
16 141 1573 6.4% 35,101,918 45.83 s 2 d 20 h
18 270 1057 7.2% 24,416,967 31.47 s 3 d 03 h
20 156 652 7.7% 18,566,788 24.60 s 3 d 09 h
22 147 393 7.3% 12,172,889 16.13 s 3 d 12 h
24 79 224 7.9% 10,493,649 13.65 s 3 d 22 h
26 (final) 137 12 8.1% 7,445,335 9.65 s 4 d 21 h

Bootstrap completion time = 4 days and 21 hours

that it takes 2 days to learn the final heuristic for Rubik’s Cube using 500 bootstrap instances, but the “Bootstrap completion
time” is reported as 2 days and 19 hours. The difference (19 hours) is the time required by an iteration after iteration 1,
which failed to solve insmin new instances within the time limit of t∞ .

3.1. 24-Puzzle

Tables 3 and 4 show our results on the 50 standard 24-puzzle test instances first solved by Korf and Felner [32], which
have an average optimal cost of 100.78. The input features for the NN were: Manhattan distance (MD), number of out-of-
place tiles, position of the blank, and five heuristics, each of which is a 4-tile pattern database (PDB [5]). The total memory
used to hold the PDBs was about 50 megabytes. The time to build the pattern databases and generate bootstrap instances,
which we call the pre-processing time, was about 2 minutes.

The initial heuristic is sufficiently weak that nine RandomWalk iterations were necessary before bootstrapping itself
could begin (ten iterations were required when there were only 500 bootstrap instances). Table 3 shows the results for all
bootstrap iterations when it is given 500 bootstrap instances. Table 4 is analogous, but when 5000 bootstrap instances are
given. In both cases, there is a very clear trend: search becomes faster in each successive iteration (see the “Avg. nodes gen.”
and “Avg. solving time” columns) but suboptimality becomes worse. The increase in suboptimality is most likely caused by
the fact that the solutions for the training instances become increasingly suboptimal on successive iterations. Suboptimal
training instances bias the system to learn new heuristics that overestimate to an even greater extent which, in turn, leads
to even more suboptimal solutions in subsequent iterations.

There is clearly a rich set of time-suboptimality tradeoffs inherent in the bootstrap approach. In this paper we do not
address the issue of how to choose among these options, we assume that a certain number of bootstrap instances are
given and that the heuristic produced by the final bootstrap iteration is the system’s final output. There is also clearly
an interesting relationship between “Learning time” and “Solving time”: the heuristics created later in the process solve
problems faster on average. In Section 4 we present one approach to exploiting this relationship when there is only one
problem instance to solve.

There are two key differences between using 500 and 5000 bootstrap instances. The most obvious, and in some settings
by far the most important, is the total time required for the combined RandomWalk and Bootstrap process. Because after
every iteration an attempt is made to solve every bootstrap instance, having 10 times as many bootstrap instances makes
the process roughly 10 times slower. The second difference is more subtle. The larger bootstrap set contains a larger number
of more difficult problems, and those drive the Bootstrap process through additional iterations (in this case seven additional
iterations), producing, in the end, faster search but worse suboptimality than when fewer bootstrap instances are used.

Fig. 6 shows the distribution of suboptimality values for iterations 0, 13, 26 of the Bootstrap process with 5000 bootstrap
instances. A data point (x, y) on the plot means that for y% of the test instances the solution was at most x% suboptimal.

Author's personal copy

2084 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Fig. 6. 24-Puzzle, distribution of suboptimality values.

Fig. 7. 24-Puzzle, distribution of solving times.

We see that there is an across-the-board degradation of the suboptimalities from early to later iterations: the curve for
iteration 26 is strictly below the curve for iteration 13 which, in turn, is strictly below the curve for iteration 0.

Fig. 7 shows the distribution of solving times in an analogous manner; the x-axis measures solving time in seconds. The
left plot is for the instances that are solved in 200 seconds or less and the right plot is for the remaining instances with
a different scale on the x-axis. There are a few test instances that take extremely long to solve using the heuristic learned
on the first iteration, but by iteration 13 all the instances can be solved in under 2500 seconds. Using the final heuristic, all
instances are solved in under 72 seconds. We see that there is an across-the-board improvement in solving times: the plot
for iteration 0 is strictly below the plot for iteration 13 which, in turn, is strictly below the plot for iteration 26. The same
general trends for suboptimality and solving time were seen in all other test domains unless specifically noted otherwise
below.

Table 5 shows the results of other systems on the same test instances. Row 1 reports on W-IDA∗ using our initial
heuristic (h0) multiplied by a weight (W) chosen so that Subopt is roughly equal to the Subopt value achieved by the final
bootstrap heuristic (Table 4, iteration 26). In Row 2, W is chosen so that Nodes gen. is roughly equal to the Nodes gen. value
achieved by the final bootstrap heuristic (Table 4, iteration 26). The results of analogous settings for BULB’s beam width (B)

when h0 is used are shown in Rows 3 and 4. Bootstrap (Table 4, iteration 26) dominates in all cases, in the sense that if W
and B are set so that W-IDA∗ and BULB compare to Bootstrap in either one of the values (Subopt or Nodes gen.), then the
heuristic obtained in the final Bootstrap iteration (Table 4, iteration 26) is superior in the other value. Note however, that
W-IDA∗ guarantees that the solution cost achieved is always within a factor of W of the optimal one—a guarantee that our
learned heuristics cannot provide. This has to be kept in mind for all subsequent comparisons of Bootstrap to W-IDA∗ .

Row 5 shows the results with the heuristic hsum , which is defined as the sum of the heuristic values among the NN’s
input features (h0 is the maximum of these values). Although hsum can, in general, be much greater than the actual distance
to goal, hsum might be quite an accurate heuristic when a moderate number of weak heuristics are used for NN features, as
in our experiments. By comparing its performance with Bootstrap’s we can see the return on investment for learning how
to combine the different heuristics as opposed to just giving them all equal weight as hsum does. As the results show, hsum ,
with our NN features for the 24-puzzle, performs very poorly in terms of suboptimality. It is superior to Bootstrap with 500
instances (Table 3, iteration 3) and Bootstrap with 5000 instances (Table 4, iteration 26), in terms of both nodes generated
and solving time.

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2085

Table 5
24-Puzzle, other methods.

Row h (Algorithm) Avg. subopt. Avg. nodes gen. Avg. solving time

1 h0 (W-IDA∗ , W = 1.5) 9.0% 39,356,250,896 28,770.8 s
2 h0 (W-IDA∗ , W = 2.6) 80.5% 7,579,345 5.5 s
3 h0 (BULB, B = 20,000) 13.8% 85,136,475 185.4 s
4 h0 (BULB, B = 10,000) 122.9% 7,624,139 13.4 s
5 hsum 181.4% 151,892 0.1 s

Results from previous papers

6 Add 6-6-6-6 0% 360,892,479,670 47 h∗
7 #6 (DIDA∗) 0% 75,201,250,618 10 h∗
8 #6, Add 8-8-8 0% 65,135,068,005 ?
9 #6, W = 1.4 (RBFS) 9.4%∗ 1,400,431 1.0∗ s

10 PE-ANN, Add 11-11-2 (RBFS) 0.7%∗ 118,465,980 111.0∗ s
11 #10, W = 1.2 (RBFS) 3.7%∗ 582,466 0.7∗ s

Rows 6–8 show the results of state-of-the-art heuristic search methods for finding optimal solutions. Row 6 shows the
results using the maximum of disjoint 6-tile PDBs and their reflections across the main diagonal as a heuristic, due to Korf
and Felner [32]. Row 7 shows the results for DIDA∗ , obtained by Zahavi, Felner, Holte, and Schaeffer [50] using the same
heuristic. In Row 8 the heuristic used is the maximum of the heuristic from Row 6 and a partially created disjoint 8-tile
PDB, see Felner and Adler [10] (solving time was not reported). The very large solving times required by these systems
shows that the 24-puzzle represents the limit for finding optimal solutions with today’s abstraction methods and memory
sizes. Row 9, due to Samadi et al. [41], illustrates the benefits of allowing some amount of suboptimality. Here, RBFS [30] is
used with the heuristic from Row 6 multiplied by 1.4. The number of nodes generated has plummeted. Although this result
is better, in terms of nodes generated and solving time, than Bootstrap (Table 4, iteration 26), it hinges upon having a very
strong heuristic since we have just noted that W-IDA∗ with our initial heuristic is badly outperformed by Bootstrap.

Rows 10 and 11 in Table 5 show the PE-ANN results by Samadi et al. [41]. As discussed in the introduction, this is not a
direct application of heuristic learning to the 24-puzzle because it was infeasible to generate an adequate training set for a
one-step method. Critical choices for abstracting the 24-puzzle were made manually to obtain these results. Row 10 shows
that our automatic method is superior to PE-ANN used in this way by a factor of more than 20 in terms of nodes generated.
The suboptimality values shown in Rows 10 and 11 are not directly comparable to those in Tables 3 and 4 because Samadi
et al. defined average suboptimality differently, as the total length of the solutions found divided by the total length of the
optimal solutions. The suboptimality of Bootstrap with 5000 instances, calculated in this way, happens to be the same (to
one decimal place) as in Table 4 (8.1%) and is inferior to PE-ANN’s. Row 11 shows that if PE-ANN’s learned heuristic is
suitably weighted it can outperform Bootstrap in both nodes generated and suboptimality.

To see how Bootstrap’s results would change if it were given a stronger initial heuristic, we reran the experiment with
h0 being the state-of-the-art admissible heuristic, namely Korf and Felner’s maximum of disjoint 6-tile PDBs and their
reflections across the main diagonal [32]. We adjusted the features used by the neural network accordingly: instead of 8
features, we now used 13, namely one for each of the four disjoint PDBs, one for each of the four reflected PDBs, one for
the sum of the first four PDB features, one for the sum of the four reflected PDB features, plus one each for Manhattan
Distance, position of the blank, and number of tiles out of place. Note that increasing the number of features might increase
Bootstrap’s completion time and its solving time.

The use of a stronger h0 decreased Bootstrap’s completion time by more than 50% when 500 bootstrap instances were
used but increased it by about 25% when 5000 bootstrap instances were used. The suboptimality of the solutions found
using the final Bootstrap heuristic were unaffected by the use of the stronger heuristic when 500 bootstrap instances were
used but increased from 8.1% to 11.2% when 5000 bootstrap instances were used. The most important consequence of using
a stronger h0 is a dramatic reduction of the number of nodes generated by the final heuristic Bootstrap produced. With 500
bootstrap instances only 5,087,295 nodes are generated on average, a 12-fold reduction compared to Table 3, and with 5000
bootstrap instances use of the stronger h0 produces more than a 6-fold reduction in nodes generated.

We also reran W-IDA∗ and BULB with this strong h0. W-IDA∗ is still outperformed by Bootstrap, but not as badly.
W = 1.45 yields an average suboptimality similar to Bootstrap’s with 5000 instances and the strong h0, but generates
roughly 3 times as many nodes. W = 1.5 generates a similar number of nodes but has a higher suboptimality (16% on
average, compared to 11.2%). BULB, using the strong heuristic, is more clearly outperformed by Bootstrap. When generating
a comparable number of nodes to Bootstrap with 5000 instances and the strong h0, BULB’s suboptimality is much higher
than Bootstrap’s (418.3% compared to 11.2%). B = 20,000 resulted in a suboptimality (13.3%) approaching Bootstrap’s, but at
the cost of generating 36 times more nodes on average.

3.2. 35-Pancake puzzle

For the 35-pancake puzzle the input features for the NN were seven 5-token PDBs, a binary value indicating whether the
middle token is out of place, and the number of the largest out-of-place token. Optimal solution lengths were computed us-

Author's personal copy

2086 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Table 6
35-Pancake puzzle, Bootstrap (500 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 134 366 10.4% 178,891,711 217 s 7 h
1 77 289 10.2% 181,324,430 219 s 9 h
2 81 208 11.4% 169,194,509 202 s 11 h
3 100 108 11.3% 191,333,354 228 s 16 h
4 (final) 77 31 12.3% 131,571,637 158 s 1 d 02 h

Bootstrap completion time = 1 day and 2 hours

Table 7
35-Pancake puzzle, Bootstrap (5000 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 102 4898 9.2% 2,766,675,135 4168 s 1 d 17 h
2 258 4394 9.7% 1,591,749,582 1923 s 2 d 07 h
4 128 4110 10.2% 586,345,353 687 s 2 d 20 h
6 265 3630 10.8% 295,187,243 345 s 3 d 08 h
8 216 3198 11.6% 134,075,802 157 s 3 d 18 h

10 95 2999 12.2% 65,290,479 102 s 4 d 04 h
12 150 2732 12.3% 47,998,040 76 s 4 d 20 h
14 128 2456 12.3% 45,571,411 71 s 5 d 15 h
16 250 2008 12.4% 39,128,839 45 s 5 d 23 h
18 118 1766 13.2% 38,126,208 43 s 6 d 05 h
20 102 1575 13.0% 39,440,284 44 s 6 d 16 h
22 210 1177 13.5% 36,423,262 52 s 7 d 00 h
24 170 814 14.2% 25,034,580 42 s 7 d 10 h
26 105 600 14.9% 26,089,593 43 s 7 d 23 h
28 170 279 15.1% 13,156,609 21 s 8 d 07 h
30 (final) 125 36 15.4% 14,506,413 21 s 8 d 11 h

Bootstrap completion time = 8 days and 11 hours

Fig. 8. 35-Pancake puzzle, distribution of solving times.

ing the highly accurate, hand-crafted “break” heuristic.5 50 randomly generated instances, with an average optimal solution
cost of 33.6, were used for testing. The pre-processing time to build pattern databases and bootstrap instances was about
18 minutes while the memory used to hold the pattern databases was about 272 megabytes.

The initial heuristic is so weak that seven RandomWalk iterations were necessary before bootstrapping itself could be-
gin (9 iterations were required when there were only 500 bootstrap instances). Table 6 has rows for all bootstrap iterations
with 500 bootstrap instances and Table 7 has rows for selected iterations with 5000 bootstrap instances. In both cases,
we see the same trends as in the 24-puzzle concerning suboptimality, solving time, and the influence of the number of
bootstrap instances.

Fig. 8 shows the distribution of solving times for iterations 0, 15, and 30 of the Bootstrap process with 5000 bootstrap
instances. Like the corresponding figure for the 24-puzzle (Fig. 7) we see that there are some instances that take a very long
time to solve using the heuristic learned in the first iteration and that by the middle iteration there are no such problematic

5 For details on “break”, see http://tomas.rokicki.com/pancake/ or Helmert [20].

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2087

Table 8
35-Pancake puzzle, other methods.

Row h (Algorithm) Avg. subopt. Avg. nodes gen. Avg. solving time

1 h0 (W-IDA∗ , W = 9) 108.9% 1,092,647,373 857 s
2 h0 (BULB, B = 20,000) 405.4% 426,578,146 1360 s
3 h0 (BULB, B = 500) 2907.9% 154,193,966 483 s
4 hsum 59.0% 71,081,642 69 s

instances: all instances are solved in 500 seconds or less. But unlike the 24-puzzle, here the speedup in solving the hardest
instances is accompanied by a slowdown in solving the easier instances: in the left side of Fig. 8 the plot for iteration 15 is
below that for iteration 0. By the final iteration, there is an across-the-board improvement in solving time compared to the
two other iterations shown.

Because of its large size, no previous general-purpose search system with automatically created heuristics has been
applied to this problem domain, so Table 8 includes results only for W-IDA∗ , BULB, and hsum . None of these methods was
able to achieve a “Nodes gen.” value similar to Bootstrap with 5000 instances. For W-IDA∗ and BULB Rows 1 and 3 show the
minimum number of nodes these two algorithms generated (we tried 15 values for W between 1.1 and 10, and 15 values for
B between 2 and 20,000). As can be seen, W-IDA∗ and BULB produce a very high degree of suboptimality when generating
the fewest nodes. Looking for settings for which W-IDA∗ or BULB can compete with Bootstrap in terms of suboptimality was
not successful. Allowing 10 times more time than IDA∗ with Bootstrap’s final heuristic (iteration 30 in Table 7) needed on
each test instance, W-IDA∗ did not complete any instances at all. Row 4 shows that hsum , like W-IDA∗ and BULB, is inferior
to Bootstrap (Table 7, iteration 30) in terms of both nodes generated and suboptimality.

As we did for the 24-puzzle, to see the effect of giving Bootstrap a strong initial heuristic, we reran the experiments with
h0 being the strongest general-purpose type of admissible heuristic that is known for the 35-pancake puzzle, the additive
heuristics defined by Yang et al. [48]. The particular h0 we used was a 5-5-5-5-5-5-5 additive PDB. The features used for
learning were the seven 5-pancake PDBs, their sum, and the same two non-PDB features used with the weak h0.

The use of the stronger h0 did not affect Completion times for either 500 or 5000 bootstrap instances. For 500 bootstrap
instances, use of the stronger h0 decreased suboptimality (from 12.3% to 5.5%) and reduced the number of nodes generated
by almost a factor of 5. For 5000 bootstrap instances, the stronger h0 decreased suboptimality even more (from 15.4% to
5.9%) but had little effect on the number of nodes generated.

3.3. Rubik’s Cube

For Rubik’s Cube, the input features for the NN were the three PDBs used by Korf [31], namely, one PDB based on the
eight corner cubies and two PDBs each based on six edge-cubies. 333 megabytes of memory is used for the PDBs and the
pre-processing took about 16 minutes.

Korf’s 10 standard Rubik’s Cube instances [31] were used for testing. The average optimal solution cost for these in-
stances is 17.5. The initial heuristic was sufficient to begin the Bootstrap process directly, so no random walk iterations
were necessary.

Tables 9 and 10 show the results for each bootstrap iteration when 500 and 5000 bootstrap instances are given. In either
case, bootstrapping produces very substantial speedup over search using h0. For instance, using 500 bootstrap instances
produces a heuristic that reduces the number of nodes generated by a factor of 43 compared to h0 while producing solutions
that are only 4% longer than optimal. The trends across bootstrap iterations are the same as those observed in previous
experiments.

The results of other systems are shown in Table 11. Rows 1 and 2 are when the initial heuristic (h0) is used with W-
IDA∗ on the same set of test instances. Row 3 shows the results with hsum . As in the Pancake puzzle, Bootstrap (Table 10,
iteration 14) outperforms hsum in both suboptimality and nodes generated.

Rows 4–6 show the results of state-of-the-art heuristic search methods for finding optimal solutions. Row 4 shows the
results using the initial heuristic (h0) [31]. Row 5 shows the results by Zahavi et al. [51] when dual lookups [11] for both
6-edge PDBs were used in conjunction with the heuristic of Row 4. In Row 6 [51], the edge PDBs used in Row 5 are
increased from 6-edge to 7-edge and dual lookup is used. Bootstrap outperforms all of these optimal systems in terms of
nodes generated and solving time.

For BULB, we compared our results to those of Furcy and König [15], which were obtained using h0. However, Furcy
and König used a different set of test instances: they created 50 solvable instances by doing random walks of length 500
backward from the goal state. This set of instances is currently unavailable, making it impossible to do a precise comparison
with our method. With that in mind, an inspection of Furcy and König’s results shows that with an appropriate setting of
B , BULB’s performance in terms of nodes generated is similar to Bootstrap’s; the average number of nodes generated on
Furcy and König’s 50 instances, using B = 50,000, was 189,876,775, compared to 192,012,863 for Bootstrap on Korf’s 10
instances (see iteration 14 in Table 10). Because the optimal solution costs for Furcy and König’s instances are not known, a
comparison of suboptimalities is not possible.

Author's personal copy

2088 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Table 9
Rubik’s Cube, Bootstrap (500 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 256 244 2.8% 67,264,270,264 78,998 s 5 m
1 (final) 76 178 4.0% 8,243,780,391 10,348 s 2 d

Bootstrap completion time = 2 days 19 hours

Table 10
Rubik’s Cube, Bootstrap (5000 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

0 (first) 2564 2436 3.4% 69,527,536,555 86,125 s 43 m
1 355 2081 4.6% 7,452,425,544 10,477 s 10 h
2 126 1955 5.8% 3,314,096,404 3976 s 1 d 06 h
3 82 1873 9.7% 3,722,365,147 4444 s 2 d 16 h
4 166 1707 12.6% 974,287,428 1119 s 5 d 08 h
5 149 1558 16.0% 748,608,645 848 s 7 d 05 h
6 162 1396 21.8% 599,503,676 823 s 9 d 09 h
7 166 1230 20.1% 614,676,983 842 s 11 d 07 h
8 76 1154 21.8% 465,772,443 626 s 13 d 04 h
9 256 898 22.9% 552,259,662 624 s 16 d 14 h

10 85 813 22.9% 518,980,590 577 s 19 d 10 h
11 136 677 25.3% 624,542,989 686 s 23 d 20 h
12 218 459 24.7% 422,066,562 464 s 27 d 06 h
13 206 253 27.5% 251,228,458 280 s 30 d 02 h
14 (final) 192 61 29.3% 192,012,863 208 s 31 d 15 h

Bootstrap completion time = 31 days and 15 hours

Table 11
Rubik’s Cube, other methods.

Row h (Algorithm) Avg. subopt. Avg. nodes gen. Avg. solving time

1 h0 (W-IDA∗ , W = 1.9) 30.4% 5,653,954,001 6632 s
2 h0 (W-IDA∗ , W = 3.3) 76.4% 217,463,103 245 s
3 hsum 54.5% 246,235,226 256 s

Results from previous papers

4 h0 0% 360,892,479,670 102,362 s∗
5 #4 with dual lookup 0% 253,863,153,493 91,295 s∗
6 max{8,7,7} with dual lookup 0% 54,979,821,557 44,201 s∗

3.4. 20-Blocks world

We used 9 input features for the NN: seven 2-block PDBs, the number of out of place blocks, and the number of stacks of
blocks. Optimal solutions were computed using the hand-crafted blocks world solver PERFECT [45]. We used 50 random test
instances in which the goal state has all the blocks in one stack. The average optimal solution length of the test instances
is 30.92. The total amount of memory required for this experiment was less than 3 kilobytes while the pre-processing took
a few seconds.

The initial heuristic is so weak that six RandomWalk iterations were necessary before bootstrapping could begin (eight
iterations for 500 bootstrap instances). Tables 12 and 13 show the bootstrap iterations for the 20-blocks world. The heuristics
used in the feature vector were so weak that solving the test instances using the early heuristics produced by Bootstrap
was infeasible; therefore, iteration 0 is not shown in Table 12 and iterations 0 through 2 are not shown in Table 13. The
completion time of Bootstrap using 500 bootstrap instances is much longer than the total time to learn the final heuristic
(iteration 3 in Table 12) because “enough” instances were not solved in the last iteration of the Bootstrap and the process
terminated due to tmax exceeding t∞ . The trends in these results are the same as for the domains discussed previously.

The results of BULB on the same set of test instances are shown in Table 14. For suboptimality, BULB could not compete
with Bootstrap; we tried 15 values for B between 2 and 20,000. The best suboptimality achieved by BULB is shown in
Row 1. It shows that even with much greater suboptimality, BULB is inferior to Bootstrap in terms of nodes generated and
solving time. BULB’s results when B is set so that BULB is approximately equal to Bootstrap (Table 13, iteration 13) in terms
of nodes generated is shown in Row 2. Again Bootstrap dominates.

W-IDA∗ with time limits 10 times larger than the solving time using Bootstrap’s final heuristic for each test instance
failed to solve more than half the test instances (W was varied between 1.2 and 10). In the best case (W = 9) W-IDA∗
solved 24 of the test instances. An attempt to compare our results to hsum failed because the heuristics used in the feature

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2089

Table 12
20-Blocks world, Bootstrap (500 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

1 75 338 1.8% 13,456,726,519 55,213 s 11 h
2 95 243 2.4% 8886,906,652 35,692 s 1 d 02 h
3 (final) 90 167 3.8% 615,908,785 2763 s 1 d 10 h

Bootstrap completion time = 2 days

Table 13
20-Blocks world, Bootstrap (5000 bootstrap instances).

Iteration No. solved Total unsolved Avg. subopt. Avg. nodes gen. Avg. solving time Learning time

3 275 2781 2.2% 12,771,331,089 52,430 s 3 d 06 h
4 290 2491 3.2% 8,885,364,397 35,636 s 4 d 04 h
5 450 2041 3.5% 941,847,444 3828 s 5 d 21 h
6 556 1485 4.0% 660,532,208 2734 s 7 d 03 h
7 162 1323 4.1% 789,515,580 3240 s 8 d 05 h
8 117 1206 5.4% 191,696,476 791 s 9 d 05 h
9 508 698 6.5% 22,413,312 93 s 9 d 22 h

10 377 321 8.0% 11,347,282 47 s 10 d 18 h
11 98 223 8.7% 17,443,378 72 s 10 d 10 h
12 83 140 8.9% 7,530,329 31 s 10 d 20 h
13 (final) 89 51 9.6% 5,523,983 23 s 11 d 01 h

Bootstrap completion time =11 days and 1 hour

Table 14
20-Blocks world, other methods.

Row h (Algorithm) Avg. subopt. Avg. nodes gen. Avg. solving time

1 h0 (BULB, B = 20,000) 28.8% 278,209,980 2482 s
2 h0 (BULB, B = 2400) 58.8% 5,809,791 32 s

vector were so weak that even the sum of these values is still a weak heuristic for this domain. hsum failed to solve any
instance given a time limit of one day per instance.

4. Solving single instances quickly

The preceding experiments demonstrate that bootstrap learning can help to speed up search dramatically with relatively
little degradation in solution quality. An inherent and non-negligible expense is the time invested in learning the heuristic
function. The Bootstrap completion times reported are on the order of days. Such a lengthy process would be warranted if
the final heuristic was going to be used to solve numerous problem instances that were distributed in the same way as the
bootstrap instances, since one would expect most of the new instances would be solved as quickly with the final heuristic
as the bootstrap instances were, i.e., within the time limit used in the last iteration of the bootstrap process.

However, many planning problems require just a single instance to be solved—a task for which our bootstrapping ap-
proach may seem ill-suited because of the large total time required. In this section we investigate whether a variation of
our bootstrapping method can quickly solve a single instance of a given problem domain. Instead of minimizing solving
time at the expense of requiring very large learning times, as in the previous sections, we are now looking for a balance
in the learning and solving times so that the sum of the learning and solving times is made as small as can be. With this
goal in mind, we present a method that involves interleaving the learning and solving processes. The method is fully au-
tomatic once the ratio of solving time to learning time is specified. We present experimental results on the 24-puzzle, the
35-pancake puzzle, Rubik’s Cube, the 20-blocks world and the IPC2 blocksworld instances. In all domains other than Rubik’s
Cube, interleaving bootstrap learning and problem-solving proves very effective at solving single instances.

4.1. Method and implementation

An important factor influencing the total time for the bootstrap process in the previous experiments is the number of
bootstrap instances. For instance, Tables 3 and 4 show that increasing this number from 500 to 5000 increases the total
time from 12 hours to 5 days for the 24-puzzle. In fact, a very large portion of the training time is spent on trying to solve
bootstrap instances that are still too difficult for the current heuristic. This suggests that considerable time could be saved
if we ran our system without any initial bootstrap instances given at the outset, just using random walks to create training
instances at successive levels of difficulty until a heuristic was created with which the one and only target instance ins∗
could be quickly solved. Following Algorithm 2, this procedure would basically work as follows, starting with h being the
initial heuristic.

Author's personal copy

2090 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

If h is too weak to solve ins∗ within a time limit of tmax, generate a set RWIns of instances by random walks backward
from the goal. Improve h by applying the bootstrap procedure (Algorithm 1) to (h0,h,RWIns), where h0 = h. Repeat this
process, increasing the length of the random walks in each iteration, until ins∗ can be solved using the current heuristic
h within a time limit of tmax.

The total time required by this procedure, including training time and solving time, would be the measure for evaluation.
The obvious problem with this approach is the use of the parameter tmax, because the total time will strongly depend

on the value of this parameter. If tmax is too low, we might need many iterations. If tmax is too high, we force the solver,
when using too weak a heuristic, to spend the full amount of tmax in vain while it would be advantageous to invest more in
learning. Automatic adjustment of tmax involves the time-consuming process of attempting to solve a non-negligible number
of instances created by RandomWalk, and hence the naive method just described is expected to be infeasible.

Avoiding tmax completely by fixing a training time and then trying to solve ins∗ with the heuristic learned after the fixed
amount of training is not any more promising. Here the training time is the critical parameter that cannot be set without
prior knowledge.

Our approach to an automated process that does not hinge critically on such parameters is to interleave learning and
solving as follows. We alternate between the execution of two threads, a learning thread and a solving thread. The learning
thread runs the RandomWalk process in the manner just described to produce a sequence of stronger and stronger heuris-
tics. The solving thread uses the heuristics generated by the RandomWalk process to solve ins∗ . Initially this thread uses
the initial heuristic. When a new heuristic is produced, the solving thread is updated to take into account the existence of
a new, probably stronger, heuristic.

There are many possible ways of updating the solving thread when a new heuristic becomes available; here we examine
just three.

1. The simplest approach to updating the solving thread is to abort the current search and start a new search from scratch
using the new heuristic. We call this approach “Immediate Restart”.

2. The second approach is to finish the current IDA∗ iteration but using the new heuristic instead of the previous one. If
that iteration ends without solving ins∗ it will have computed the IDA∗ bound, DB, to use on the next iteration. The next
iteration uses the new heuristic, h, and IDA∗ bound max(DB,h(ins∗)). We call this approach “Heuristic Replacement”.

3. The third approach is to subdivide the solving thread into a set of solving sub-threads, one for each heuristic that is
known. As soon as a new heuristic is learned in the learning thread, this approach starts an additional solving sub-
thread, which uses the new heuristic to try to solve ins∗ . In this approach no thread is ever stopped completely until
ins∗ is solved in one of the solving sub-threads. We call this approach “Independent Solvers”.6

Regardless of the approach, the total time by which we evaluate the interleaved learning and solving process is the sum of
the times used by both threads (including all the sub-threads) up to the point when ins∗ is solved in one sub-thread.

Pseudocode for the interleaved learning and solving processes for the Immediate Restart and Heuristic Replacement
approaches is shown in Algorithm 3. We use a fixed ratio, ts : tl , of the time allocated to solving (ts) and the time allocated
to learning (tl).7 Line 3 calls “continue” with the Solver thread and a time limit ts . This executes the solver until it has
solved ins∗ or until ts seconds have elapsed. If ins∗ is not yet solved the loop (lines 4–10) is executed until it is. Line 5 calls
“continue” with the RandomWalk procedure described above and a time limit tl . This resumes execution of the RandomWalk
process at the point where it was previously suspended, runs it for time tl , suspends it, and returns whatever its current
heuristic is at the time of suspension. If the heuristic returned is new, the solving thread is updated, as described above, to
take into account the new heuristic (line 7). Line 9 resumes the (updated) solving thread. The entire process stops when a
solution for ins∗ is found.

Algorithm 3
1: procedure Interleaving(ins∗ , hin , ts , tl): solution
2: Create a solving thread, Solver, using hin .
3: solved := continue(Solver, ts)

4: while (!solved) do
5: h := continue(RandomWalk, tl)

6: if (h is a new heuristic) then
7: UPDATE(Solver,h)
8: end if
9: solved := continue(Solver, ts)

10: end while
11: return the solution from the solving thread

6 As opposed to the other two approaches, Independent Solvers has the advantage that it can easily be parallelized.
7 Technically, not only is the ratio of solving time to learning time given, but also the actual time units. Using a “ratio” of 100:200 will in practice yield

different results than a “ratio” of 1:2. For simplicity, and since we always set ts = 1 second in our experiments, we still use the term “ratio” to refer to the
setting of ts and tl .

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2091

Determining the best ratio ts : tl for each domain is beyond the scope of this paper; in the current system the ratio has
to be set manually. Generally, the weaker the initial heuristic the more the ratio should allocate time to the learning thread.
We ran experiments with ratios of 1:1 to 1:10 and, if necessary, for larger values of tl; see Section 4.2 for details. Since the
initial heuristics in our experiments are always rather weak, we did not use ratios favouring the solving thread.

Pseudocode for the interleaved learning and solving processes for the Independent Solvers approach is shown in Algo-
rithm 4. It follows exactly the same general pattern as Algorithm 3, but there is a growing list of Solvers instead of just
one Solver. When a new heuristic is learned a new solving sub-thread using this heuristic is added at the beginning of the
list. The procedure IndependentSolvers divides the available time for solving, ts , among the set of available solving threads—
exactly how this is done is described in the next paragraph. No thread is terminated until ins∗ is solved in one of the
solving sub-threads.

Algorithm 4
1: procedure Interleaving(ins∗,hin, ts, tl): solution
2: Create a list, Solvers, containing just one solving sub-thread using hin .
3: solved := IndependentSolvers(Solvers, ts)

4: while (!solved) do
5: h := continue(RandomWalk, tl)

6: if (h is a new heuristic) then
7: add a solving sub-thread using h to the beginning of Solvers
8: end if
9: solved := IndependentSolvers(Solvers, ts)

10: end while
11: return the solution from the independent solving sub-threads

For the allocation of solving time among the various solving sub-threads, many strategies are possible. The one we
report here we call “Exponential”. When a new heuristic is learned, this strategy halves the time allocated to the solving
sub-threads using previous heuristics and allocates ts

2 seconds to the sub-thread using the new heuristic. Thus the solving
sub-thread for the new heuristic gets half the total time available for solving on each round until another heuristic is
created. The motivation for this strategy is that heuristics created later in the learning process are expected to be stronger
than those created at early stages, so the more recently created heuristics may be more likely to quickly solve the target
instance. It therefore seems reasonable to invest more time in solvers using the heuristics learned in later iterations. The
reason not to suspend solving sub-threads with weak heuristics completely is that there is still a chance that they are
closer to finding a solution than the solving sub-thread using the most recently created heuristic. This may be (i) because
more time has already been invested in the sub-threads using weaker heuristics or (ii) because a weaker heuristic may
occasionally still behave better on one particular target instance than an overall stronger heuristic.

Other strategies, such as Röger and Helmert’s alternation technique [39], are certainly possible.8

Algorithm 5
1: procedure IndependentSolvers (exponential) (Solvers, time): status
2: t := time
3: for i = 1 to |Solvers| do
4: S := ith sub-thread in Solvers
5: if i �= |Solvers| then
6: t := t/2
7: end if
8: if continue(S, t) succeeds then
9: return true

10: end if
11: end for
12: return false

Pseudocode for the Exponential time allocation strategy is shown in Algorithm 5. The time invested in the solving sub-
thread using the best available heuristic (the first in the Solvers list) is twice as large as that invested in the sub-thread
using the second best heuristic, which again is a factor of two larger than the time for the next “weaker” sub-thread, and
so on. The weakest two sub-threads will always be allocated the same amount of time, so that the total time spent on the
sub-threads sums up to the time allocated to the solving thread overall.

This strategy for allocating the total solving time into time budgets for the currently available heuristic solvers borrows
from the hyperbolic dove-tailing approach to interleaved search introduced by Kirkpatrick [28]. Kirkpatrick proved his ap-
proach to be average-case optimal and worst-case optimal for a certain variation of the so-called cow path problem, which
was first studied by Baeza-Yates, Culberson, and Rawlins [2]. However, this variation of the cow path problem does not

8 Not reported here are the results of using a uniform strategy, which allocates the same amount of time to all solving sub-threads. We found its
performance inferior to that of the “Exponential” strategy. See Jabbari Arfaee’s thesis [26] for details.

Author's personal copy

2092 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Table 15
Solving a single instance of the 24-puzzle.

Row Ratio (ts : tl) min max mean med std Subopt.

Immediate restart
1 1:1 5 m 30 s 62 m 05 s 18 m 49 s 17 m 25 s 8 m 45 s 6.3%
2 1:2 4 m 24 s 47 m 04 s 15 m 54 s 14 m 18 s 6 m 54 s 6.4%
3 1:5 (best) 4 m 04 s 51 m 00 s 15 m 24 s 15 m 18 s 7 m 58 s 6.5%

Heuristic replacement
4 1:1 5 m 30 s 61 m 54 s 18 m 19 s 17 m 03 s 8 m 29 s 6.2%
5 1:2 4 m 16 s 36 m 30 s 15 m 06 s 13 m 52 s 5 m 48 s 6.3%
6 1:5 4 m 04 s 37 m 32 s 14 m 28 s 14 m 08 s 5 m 57 s 6.3%
7 1:6 (best) 3 m 58 s 36 m 34 s 14 m 05 s 13 m 56 s 5 m 48 s 6.5%

Independent solvers (exponential)
8 1:1 20 m 48 s 44 m 54 s 23 m 36 s 21 m 54 s 4 m 07 s 6.4%
9 1:2 15 m 36 s 43 m 36 s 18 m 03 s 16 m 30 s 4 m 15 s 6.7%

10 1:5 12 m 30 s 42 m 42 s 15 m 50 s 14 m 30 s 5 m 53 s 6.9%
11 1:10 (best) 11 m 31 s 53 m 46 s 15 m 48 s 14 m 14 s 6 m 55 s 7.0%

exactly model the search problem we are facing. Hence we do not have any formal guarantees on the efficiency of our
method.

4.2. Experiments

We ran experiments comparing the three versions of our interleaving approach, with different ts : tl ratios, on the same
domains used in Section 3. The experimental settings for each domain, i.e., the features, and the neural network settings
were the same as those described in Section 3, and we used the same computer. The test instances used for each domain in
Section 3 are here used as individual target instances for testing. We also report results on the IPC2 blocksworld instances,
along with comparisons to state-of-the-art planners on those instances. In all our experiments, the parameter ts used in
Algorithm 4 was set to 1 second, while tl was varied from 1 to 10 seconds in steps of 1. Whenever the ratio 1:10 resulted
in a lower mean total time than the ratios 1:1 to 1:9, we also tested the ratios 1:11, 1:12, etc. until the mean total time
started increasing again. The ratio resulting in the lowest total time is marked in the tables below as the “best” ratio. The
tables only show the results for ratios 1:1, 1:2, 1:5, and the best ratio.

4.2.1. 24-Puzzle
Table 15 shows the results for our three interleaving strategies for the solvers. The “min”, “max”, “mean”, “med” and

“std” columns, respectively, show the minimum, maximum, mean, median, and standard deviation, of the total times on the
50 instances of the 24-puzzle that were used for this experiment. The “subopt.” column shows the average suboptimality of
the solutions found, calculated in the same manner as in Section 3. The trends apparent in these results are:

• The average suboptimality increases as the ts : tl ratio increases in favour of the learning thread. This can be explained
by the trends observed in Section 3. There we have seen that more bootstrap iterations result in larger suboptimality.
Since more bootstrap iterations also result in stronger heuristics, the target instance is more likely to be solved first by
one of the strongest heuristics created in the interleaving process. A solver using this stronger heuristic, though solving
the target instance faster, provides a solution that has a higher cost than the solutions that solvers using the weaker
heuristics would have eventually provided.

• The mean and median values initially decrease with growing tl , i.e., when the ts : tl ratio favours the learning thread.
It turns out that, on average, the heuristic that solves the target instance requires only a few seconds of solving time.
Therefore, most of the solving time is spent on unsuccessful trials using other heuristics. Increasing the learning time
makes the system produce stronger heuristics faster. This in turn decreases the total solving time for most instances
(mean and median decreases). However, the mean and median values eventually start to increase at some point. This
happens for the following reason. As just noted, the heuristic that solves the target instance requires a few seconds of
solving time. Since ts is one second, this means that the solving thread must be suspended and resumed a few times in
order for this heuristic to completely solve an instance. As tl increases this heuristic gets created sooner but the delays
between suspending and resuming the solving thread also get longer (they are length tl), and for a sufficiently large tl
the increase in the delays between solving episodes outweigh the advantage of creating the heuristic sooner.

• The mean total times for the best ratio of all three strategies is similar (less than 10% difference).

The mean total time spent on a target instance (including the learning time)—under 16 minutes (960 seconds)—is
substantially lower than the total time spent by our bootstrap system using a large set of bootstrap instances but no inter-
leaving. According to Tables 3 and 4, the latter requires more than 11 hours when using 500 bootstrap instances and almost
5 days when using 5000 bootstrap instances. Alternatively, to minimize learning time one could consider using the heuristics

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2093

Table 16
Solving a single instance of the 35-pancake puzzle.

Row Ratio (ts : tl) min max mean med std Subopt.

Immediate restart
1 1:1 2 h 36 m 6 h 48 m 3 h 41 m 3 h 24 m 46 m 7.5%
2 1:2 2 h 07 m 5 h 18 m 2 h 54 m 2 h 39 m 40 m 8.0%
3 1:5 1 h 45 m 5 h 57 m 2 h 38 m 2 h 26 m 48 m 8.2%
4 1:6 (best) 1 h 37 m 4 h 29 m 2 h 07 m 2 h 07 m 33 m 8.3%

Heuristic replacement
5 1:1 2 h 34 m 6 h 45 m 3 h 36 m 3 h 24 m 42 m 7.6%
6 1:2 2 h 06 m 5 h 15 m 2 h 50 m 2 h 39 m 38 m 8.0%
7 1:5 1 h 45 m 5 h 00 m 2 h 34 m 2 h 19 m 42 m 8.2%
8 1:8 (best) 1 h 39 m 4 h 54 m 2 h 29 m 2 h 14 m 42 m 8.1%

Independent solvers (exponential)
9 1:1 7 h 13 m 9 h 48 m 7 h 36 m 7 h 28 m 30 m 7.8%

10 1:2 5 h 24 m 7 h 28 m 5 h 45 m 5 h 32 m 24 m 8.0%
11 1:5 4 h 19 m 6 h 42 m 4 h 45 m 4 h 39 m 28 m 8.3%
12 1:9 (best) 1 h 50 m 7 h 01 m 3 h 23 m 3 h 28 m 50 m 8.9%

created by the first bootstrap iteration. With 5000 bootstrap instances, this heuristic solves instances considerably slower, on
average, than the interleaving methods (2364.9 seconds, or about 39 minutes—see iteration 0 in Table 4—compared to under
16 minutes). The heuristic created on the first iteration of bootstrapping with 500 bootstrap instances solves instances faster
than interleaving (153.34 seconds, or about 2.5 minutes—see iteration 0 in Table 3), but it takes 98 minutes to learn this
heuristic (see the “Learning time” column for iteration 0 in Table 3). Therefore, our method to solve a target instance has
substantial speedup over the normal bootstrap method. Our method also fares well in comparison to the systems reported
in Table 5. It dominates W-IDA∗ (W = 1.5) and has a suboptimality superior to BULB (B = 20,000) and far superior to hsum .
Its total time (under 960 seconds) is less than that of any of the optimal methods. Its time is inferior to that of the weighted
RBFS system reported in line 9 of Table 5 but its suboptimality is superior. Comparisons with the PE-ANN system in lines
10 and 11 of Table 5 are not possible because the training times for that system are unknown.

If Bootstrap is given a strong initial heuristic h0 (the maximum of disjoint 6-6-6-6 PDBs and their reflections), the
total times are similar to those reported in Table 15, but the suboptimality reduces to roughly 4% for all the interleaving
strategies.

4.2.2. 35-Pancake puzzle
Table 16 provides detailed results for the 35-pancake puzzle. The trends observed in this experiment are similar to those

observed for the 24-puzzle except here the Independent Solvers strategy has mean and median times that are considerably
higher than those of the other two strategies.

The suboptimality of the heuristics produced by any of the interleaving strategies is superior to any of the suboptimalities
reported for basic bootstrapping in Tables 6 and 7, and the mean total solving time for the interleaving strategies are less
than half the time required to finish the first bootstrapping iteration with 500 bootstrap instances (7 hours—see Table 6). In
Table 8 we see that instances are solved much more quickly using hsum , W-IDA∗ (W = 9), or BULB (B � 20,000), than using
any of our interleaving methods, but with much greater suboptimality.

If Bootstrap is given a strong initial heuristic h0 (a 5-5-5-5-5-5-5 additive PDB), the total times are slightly smaller than
in Table 16 and suboptimality decreases to around 4.5% for all the interleaving strategies.

4.2.3. Rubik’s Cube
Table 17 shows the experimental results for Rubik’s Cube. As for the 35-pancake puzzle, the Independent Solvers strategy

has mean and median times that are considerably higher than the other two strategies.
The reason the suboptimality is the same for all variations tested is that in all cases, almost all the instances are solved

using the third heuristic created by bootstrapping. This happens because h0 and the first two learned heuristics are very
weak, and too much time (25 hours) is needed to learn the fourth heuristic. This may also explain why the best ratio here
is smaller than for the other domains.

Although interleaving is very much superior to the basic bootstrapping process when there is only a single Rubik’s Cube
instance to solve, the best mean total time in Table 17 (10 hours and 54 minutes, or 39,240 seconds) is only 11% better
than the time required to solve an average instance optimally using the best known heuristic for Rubik’s Cube (44,201
seconds, see Row 6 of Table 11). However, all the interleaving strategies shown in Table 17 outperform simply using our
initial heuristic to solve each instance, which requires 102,362 seconds (28 hours and 26 minutes) on average (see Row 4
of Table 11). Heuristic Replacement with a 1:5 ratio dominates W-IDA∗ which, with W = 1.4, requires more time to solve
an instance (12 hours and 36 minutes on average) and produces a greater suboptimality (13.3% compared to 6.4%).

Author's personal copy

2094 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

Table 17
Solving a single instance of Rubik’s Cube.

Row Ratio (ts : tl) min max mean med std Subopt.

Immediate restart
1 1:1 0 h 41 m 19 h 27 m 13 h 29 m 13 h 50 m 4 h 54 m 6.4%
2 1:2 (best) 1 h 01 m 19 h 48 m 11 h 42 m 11 h 18 m 4 h 45 m 6.4%
3 1:5 2 h 01 m 28 h 01 m 13 h 08 m 11 h 10 m 7 h 02 m 6.4%

Heuristic replacement
4 1:1 0 h 41 m 18 h 43 m 13 h 21 m 13 h 28 m 4 h 59 m 6.4%
5 1:2 1 h 01 m 17 h 54 m 11 h 18 m 10 h 42 m 4 h 45 m 6.4%
6 1:5 (best) 2 h 01 m 19 h 41 m 10 h 54 m 9 h 16 m 5 h 24 m 6.4%

Independent solvers (exponential)
7 1:1 1 h 22 m 26 h 16 m 15 h 36 m 15 h 02 m 6 h 34 m 6.4%
8 1:2 (best) 2 h 02 m 29 h 54 m 14 h 51 m 13 h 04 m 4 h 45 m 6.4%
9 1:5 4 h 03 m 29 h 29 m 17 h 23 m 14 h 45 m 4 h 30 m 6.4%

Table 18
Solving a single instance of the 20-blocks world.

Row Ratio (ts : tl) min max mean med std Subopt.

Immediate restart
1 1:1 17 m 25 h 38 m 5 h 18 m 1 h 22 m 7 h 28 m 1.3%
2 1:2 17 m 19 h 24 m 4 h 28 m 1 h 28 m 5 h 53 m 1.3%
3 1:5 10 m 15 h 58 m 4 h 15 m 1 h 24 m 5 h 15 m 1.3%
4 1:9 (best) 26 m 15 h 48 m 4 h 01 m 2 h 00 m 4 h 40 m 1.3%

Heuristic replacement
5 1:1 17 m 25 h 35 m 5 h 00 m 1 h 23 m 7 h 17 m 1.3%
6 1:2 17 m 19 h 22 m 4 h 16 m 1 h 16 m 5 h 46 m 1.3%
7 1:5 (best) 10 m 15 h 55 m 4 h 06 m 1 h 22 m 5 h 12 m 1.3%

Independent solvers (exponential)
8 1:1 17 m 25 h 52 m 6 h 04 m 2 h 03 m 7 h 38 m 1.3%
9 1:2 17 m 19 h 44 m 4 h 52 m 1 h 52 m 5 h 58 m 1.3%

10 1:5 (best) 10 m 15 h 48 m 3 h 49 m 1 h 24 m 4 h 45 m 1.3%

4.2.4. 20-Blocks world
Table 18 shows the experimental results for the 20-blocks world. In each case the solutions were only 1.3% longer than

optimal, on average, and at least 37 of the 50 instances were solved optimally. Unlike the previous domains, here the
Independent Solvers strategy slightly outperforms the others in terms of mean total time.

In this experiment, our initial heuristic is so weak that it takes a few iterations of RandomWalk until the heuristic
becomes sufficiently strong that the solver using it can solve the instance in a reasonable amount of time. After this point,
for a few iterations, the learned heuristics enable the instances to be solved more quickly without changing the solution
quality. For this reason, we observe a constant suboptimality of 1.3% for all different strategies.

The speedup compared to the initial bootstrap method (which needed 2 days when using 500 bootstrap instances and
11 days when using 5000 bootstrap instances) is again remarkable. In addition, the solution lengths are much closer to
optimal than before (cf. Tables 12 and 13 for Bootstrap results on the 20-blocks world).

BULB with B � 20,000 would solve a single instance faster than our method (see Table 14), but even for B = 20,000 the
suboptimality would be more than 20 times higher than that of Bootstrap. For W-IDA∗ we were unable to find a value of W
that can solve all the test instances in a reasonable amount of time with a suboptimality close to our interleaving method
so we base our comparison on the instances solved using a 2-hour time limit per instance. Heuristic Replacement with a
ratio of 1:5 solved 27 of the 50 instances with this time limit and its solutions were just 2.4% suboptimal. With this time
limit W-IDA∗ (W = 4) also solved 27 instances but its suboptimality was 150%.

4.2.5. IPC2 blocks world instances
We further tested our interleaving technique on the 35 instances of blocks world domains of varying size used in

Track 1 of the IPC2 planning competition.9 This version of the blocks world has a “hand” that is used to pick up and put
down blocks, as opposed to the “handless” version we have used in the 20-blocks world experiments elsewhere in this
paper. Despite this difference we used the same features and initial heuristic here as in the previous experiments with the
“handless” 20-blocks world.

9 See http://www.cs.toronto.edu/aips2000/ for more details.

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2095

Table 19
IPC2 blocks world instances, results for interleaving using the exponential allocation strategy.

Instance Optimal Ratio (1:1) Ratio (1:2) Ratio (1:5)

Time Subopt. Time Subopt. Time Subopt.

9-0 30
9-1 28
9-2 26
10-0 34 22 33 65
10-1 32 2
10-2 34 13 19 38
11-0 32 73 58 47
11-1 30 58 42 46
11-2 32 2 3 6
12-0 34 12 18 37
12-1 34 3 4 9
13-0 42 1451 4.8% 1102 4.8% 914 4.8%
13-1 44 170 1024 861
14-0 38 23 51 67
14-1 36 62 73 176
15-0 40 313 5% 310 5% 242 5%
15-1 52 627 475 393
16-1 54 1347 1271 1105
16-2 52 1001 751 603
17-0 48 331 258 230

Table 19 shows the results on the hardest 20 instances of the IPC2 set. The first column names the instances, where x–y
refers to the yth instance that consists of x blocks. The other columns show the total time (in seconds) and suboptimality
achieved by our interleaving method using the exponential allocation strategy. In this table, empty “Time” entries indicate
that the total time was below 0.1 seconds and empty “Subopt.” entries indicate the instance was solved optimally. The 15
instances with the fewest blocks (between 4 and 8) are not shown; all were solved optimally by our system in less than
0.1 seconds. Table 19 shows that our interleaving method is capable of solving all the instances in less than 30 minutes (the
time limit for solving an instance in the IPC2 competition) while the solutions are almost always optimal, and those that
are not optimal are very close to optimal.

The Fast Downward planner [19], with the setting10 that uses multi-heuristic best-first search11 and preferred operators,
also solved all 35 of these blocks world instances. It took Fast Downward, on average, less than a second to solve each
instance, and its solutions are 200% suboptimal.12 Our interleaving approach required much more time (about 138 seconds,
on average) but found solutions that were only 0.3% suboptimal.

The FF planner [23] solved 29 of the 35 instances in the time limit of 30 minutes. The solutions generated for the solved
instances were 2.3% suboptimal and it took less than 6 seconds, on average, for FF to solve one of these 29 instances.
These 29 instances were all solved optimally by our interleaving approach but in a greater amount of time (25 seconds) on
average. Of course, our method was also able to solve the 6 problems in 30 minutes that FF could not.

The best performing optimal planners from IPC5 such as Gamer and HSP∗
F

13 solved 30 of the 35 instances within a time
limit of 30 minutes [21].14 Furthermore, the landmark cut heuristic [21], which is competitive with the state-of-the-art
optimal planners in overall performance, solved 28 of the 35 instances within the same time limit. Its average solving time
on these 28 instances was 76 seconds. Our interleaving approach also solved these 28 instances optimally, and did so in
less than 19 second on average.

Yoon, Fern, and Givan [49] report two sets of results on these blocks world instances. One set is for a method they
present for learning a heuristic function to guide planning, the other is for a method they present for learning a decision
list policy to guide planning. In both cases they learned from the solutions found by solving the easiest 15 instances (the
ones not shown in Table 19) with FF’s heuristic and then solved the remaining 20 instances with the learned heuristic/policy
in conjunction with FF’s heuristic. Their methods are therefore “one step” methods, they are not methods aimed at solving
single instances quickly. The learning phase for the method that learned a heuristic took 600 seconds. They then took
12.94 seconds, on average, to solve each of the 20 test instances (all 20 were solved within the 30-minute time limit). The
solutions found had an average suboptimality of 120%.15 Our interleaving method solved the same instances in 242 seconds,

10 This setting is referred to as “M + P” in Helmert’s paper [19].
11 This search algorithm is a best-first search algorithm that alternates between expanding nodes from different open lists that are sorted based on

different heuristics [39]. Here, the casual graph heuristic [19] and FF’s relaxed plan heuristic [23] are used.
12 All results for the planning systems discussed here are taken from the papers cited.
13 See http://ipc.informatik.uni-freiburg.de/ for more details about the competition and the planners.
14 Neither the solving time nor the instances solved is reported for these two planners.
15 Fern et al. computed average suboptimality differently than we have defined it in this paper. They defined average suboptimality as the total length

of the solutions found divided by the total length of the optimal solutions. In this paragraph, we use their method to compute the suboptimality of our
systems to allow a comparison to be made.

Author's personal copy

2096 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

on average, with almost optimal solutions (the average suboptimality was 0.5%). Our single-instance method could therefore
solve approximately 3 problems from scratch in the same time that their method could perform learning once and solve
3 problems. Their method for learning a decision list policy took less time to learn and solve a single instance than our
method (100.05 seconds, on average) but produced longer solutions (their average suboptimality was 17%).

5. Related work

Bootstrap learning to iteratively improve an initially weak evaluation function for single-agent search is an idea due to
Rendell [37,38], who used it to enable unidirectional search to solve random instances of the 15-puzzle for the first time.
Our method differs from Rendell’s in several key details, the most important being that Rendell assumed the user would
provide a set of bootstrap instances for each iteration, at least one of which was required to be solvable using the current
evaluation function. We, on the other hand, assume that the entire set of bootstrap instances is given at the outset, and if
the initial system cannot solve any of them it generates its own instances.

The only other study of bootstrap learning of heuristics is due to Humphrey, Bramanti-Gregor, and Davis [25]. Their SACH
system learns a heuristic to solve a single instance, and the bootstrapping is done over successive failed attempts to solve
the instance. Impressive results were obtained on the fifteen most difficult standard 100 instances of the 15-puzzle. On
average these instances were solved by A* with only 724,032 nodes generated in total over all of SACH’s iterations, and the
solutions found were only 2% suboptimal.

Hauptman et al. [17,18] use genetic programming [33] to iteratively improve an initial population of heuristic functions.
The key difference between this and bootstrapping is that it creates new heuristics by mutating and recombining heuristics
in its current population rather than learning a new heuristic from solved instances. Training instances in their system
(the analog of our bootstrap instances) are used only for evaluating the fitness of the newly created heuristics. The main
application to date has been to the standard 6 × 6 Rush Hour puzzle, which is sufficiently small (3.6 × 1010) that most
instances can be solved quickly even without a heuristic, hence guaranteeing that the evaluation of fitness will succeed
in distinguishing better heuristics from worse ones. The heuristic learned by their system reduced the number of nodes
generated by an IDA∗ variant by a factor of 2.5 compared to search with no heuristic. The time required for learning and
the suboptimality of the solutions generated were not reported. They have also used FreeCell as testbed [17], but in that
application a policy was evolved to guide search, not a heuristic function.

The online learning of heuristics as studied by Fink [13] is also related to bootstrapping. Fink proves his learning algo-
rithm has certain desirable properties, but it has the practical shortcoming that it requires optimal solution lengths to be
known for all states that are generated during all of the searches.

Thayer, Dionne, and Ruml [47] used online learning to update an initial heuristic function during a greedy best-first
search that aims at solving a specific instance of a search problem. They computed the error of the heuristic after each node
is expanded by the search algorithm. The error is defined as the difference between the heuristic value of the state and the
sum of the heuristic value of the child with the largest heuristic estimate and the cost of the action that generates the child.
This error estimate is then used to update the heuristic function during search. Their experimental results showed that when
such an update is used with the greedy best-first search, it can improve the performance of the initial heuristic in terms of
both solution quality and solving time. For example, the heuristic created by this system improves over Manhattan Distance
in the 15-puzzle by a factor of about 3 in terms of solution cost and by factor of about 2 in terms of time needed to solve
each problem instance. In their experiments, Thayer et al. included a system, “ANN-offline, which learns a heuristic in a
one-step manner resembling the system of Ernandes and Gori [9]. This produced a heuristic that was much more accurate
than the heuristic learned by their online method but, interestingly, much poorer at guiding greedy best-first search. As
they observe, this highlights the different requirements for heuristics that are used for pruning unpromising paths, which is
the focus of our paper, compared to heuristics that are used to determine the order in which paths are to be explored.

Other systems for learning heuristics limit themselves to just one step of what could be a bootstrapping process [9,35,41,
43,44,49]. Such systems typically assume the initial heuristic (h0) is sufficiently strong that arbitrary instances can be solved
with it, and use learning to create a better heuristic, i.e., one that allows instances to be solved more quickly than with h0
although perhaps with greater suboptimality. If our bootstrap method is given an initial heuristic as strong as these systems
require, it performs the same as they do, i.e., it performs only one iteration and produces an improved heuristic without
introducing much suboptimality. For example, on the 15-puzzle Samadi et al.’s one-step system [41] creates a heuristic that
allows solutions to random solvable instances to be found by RBFS after generating only 2241 nodes, on average, and the
solutions found are only 3.3% longer than optimal. Our system, if supplied with an initial heuristic comparable in strength
to Samadi et al.’s initial heuristic, terminates after one iteration with a heuristic that allows solutions to the same instances
to be found by RBFS after generating only 9402 nodes, and the solutions found are only 0.5% longer than optimal [27]. Of
course, our bootstrapping method has the advantage over these systems that it does not require a strong initial heuristic;
it will succeed even if given an initial heuristic so weak that it cannot solve any of the bootstrap instances in a reasonable
amount of time.

Two previous systems have used random walks to generate successively more difficult instances to bootstrap the learning
of search control knowledge in a form other than a heuristic function. Fern, Yoon, and Givan [12] used random walks in
learning policies to control a Markov Decision Process, and Finkelstein and Markovitch [14] used them in the context of

Author's personal copy

S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098 2097

learning macro-operators to augment a heuristic-guided hill-climbing search. In both cases the initial random walk length
and the increment were user-specified.

6. Conclusions

This paper gives experimental evidence that machine learning can be used to create strong heuristics from very weak
ones through an automatic, incremental bootstrapping process augmented by a random walk method for generating succes-
sively more difficult problem instances. Our system was tested on four problem domains that are at or beyond the limit of
current abstraction methods and in each case it successfully created heuristics that enable IDA∗ to solve randomly generated
test instances quickly and almost optimally. The total time needed for this system to create these heuristics strongly depends
on the number of bootstrap instances it is given. Using 500 bootstrap instances, heuristics are produced approximately 10
times faster than using 5000 bootstrap instances. Search is slower with the heuristics produced using fewer bootstrap in-
stances, but the solutions found are closer to optimal. This work significantly extends previous, one-step methods that fail
unless they are given a very strong heuristic to start with.

The total time for the bootstrap process to create strong heuristics for these large state spaces is on the order of days.
This is acceptable when the learning time can be amortized over a large number of test instances. To make heuristic learning
effective when only a single problem instance needs to be solved, we presented a variation in which the bootstrap learning
of new heuristics is interleaved with problem-solving using the initial heuristic and whatever heuristics have been learned
so far. When tested on the same four domains, this method was shown to substantially reduce the total time needed to
solve a single instance while still producing solutions that are very close to optimal. When applied to the blocksworld
instances used in the IPC2 planning competition, our interleaving method solved all the instances within the 30-minute
time limit, and almost all were solved optimally.

Acknowledgements

Thanks to Neil Burch, Richard Valenzano, Mehdi Samadi, Fan Yang, Uzi Zahavi, and Ariel Felner for sharing their code,
Jonathan Schaeffer for suggesting the ideas of heuristic replacement and immediate restart, reviewers for their insightful
comments, the Alberta Ingenuity Centre for Machine Learning, and NSERC.

References

[1] Aaron F. Archer, A modern treatment of the 15-puzzle, American Mathematical Monthly 106 (1999) 793–799.
[2] Ricardo A. Baeza-Yates, Joseph C. Culberson, Gregory J.E. Rawlins, Searching in the plane, Information and Computation 106 (2) (1993) 234–252.
[3] Marcel Ball, Robert C. Holte, The compression power of symbolic pattern databases, in: Proceedings of the 18th International Conference on Automated

Planning and Scheduling (ICAPS 2008), 2008, pp. 2–11.
[4] Blai Bonet, Héctor Geffner, Planning as heuristic search, Artificial Intelligence 129 (2001) 5–33.
[5] Joseph C. Culberson, Jonathan Schaeffer, Searching with pattern databases, in: Proceedings of the Canadian Conference on Artificial Intelligence, in:

LNAI, vol. 1081, Springer, 1996, pp. 402–416.
[6] Harry Dweighter, Problem E2569, American Mathematical Monthly 82 (1975) 1010.
[7] Stefan Edelkamp, Symbolic pattern databases in heuristic search planning, in: Proceedings of the 6th International Conference on Artificial Intelligence

Planning Systems (AIPS 2002), 2002, pp. 274–283.
[8] Stefan Edelkamp, Shahid Jabbar, Peter Kissmann, Scaling search with pattern databases, in: Proceedings of the 5th International Workshop on Model

Checking and Artificial Intelligence (MoChArt), in: LNCS, vol. 5348, Springer, 2009, pp. 49–65.
[9] Marco Ernandes, Marco Gori, Likely-admissible and sub-symbolic heuristics, in: Proceedings of the 16th European Conference on Artificial Intelligence

(ECAI 2004), 2004, pp. 613–617.
[10] Ariel Felner, Amir Adler, Solving the 24 puzzle with instance dependent pattern databases, in: Proceedings of the 6th International Symposium on

Abstraction, Reformulation and Approximation (SARA 2005), in: LNCS, vol. 3607, Springer, 2005, pp. 248–260.
[11] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, Robert C. Holte, Dual lookups in pattern databases, in: Proceedings of the 19th International Joint Confer-

ence on Artificial Intelligence (IJCAI, 2005), pp. 103–108.
[12] Alan Fern, Sungwook Yoon, and Robert Givan, Learning domain-specific control knowledge from random walks, in: Proceedings of the 14th Interna-

tional Conference on Automated Planning and Scheduling (ICAPS 2004), 2004, pp. 191–199.
[13] Michael Fink, Online learning of search heuristics, in: Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS

2007), 2007, pp. 114–122.
[14] Lev Finkelstein, Shaul Markovitch, A selective macro-learning algorithm and its application to the N × N sliding-tile puzzle, Journal of Artificial Intelli-

gence Research 8 (1998) 223–263.
[15] David Furcy, Sven König, Limited discrepancy beam search, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI

2005), 2005, pp. 125–131.
[16] Patrik Haslum, Héctor Geffner, Admissible heuristics for optimal planning, in: Proceedings of the 5th International Conference on Artificial Intelligence

Planning Systems (AIPS 2000), 2000, pp. 140–149.
[17] Ami Hauptman, Achiya Elyasaf, Moshe Sipper, Evolving hyper heuristic-based solvers for Rush Hour and FreeCell, in: Proceedings of the 3rd Annual

Symposium on Combinatorial Search (SoCS 2010), 2010, pp. 149–150.
[18] Ami Hauptman, Achiya Elyasaf, Moshe Sipper, Assaf Karmon, GP-rush: using genetic programming to evolve solvers for the Rush Hour puzzle, in:

Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), ACM, New York, NY, USA, 2009, pp. 955–962.
[19] Malte Helmert, The Fast Downward planning system, Journal of Artificial Intelligence Research 26 (2006) 191–246.
[20] Malte Helmert, Landmark heuristics for the pancake problem, in: Proceedings of the 3rd Annual Symposium on Combinatorial Search (SoCS 2010),

2010, pp. 109–110.
[21] Malte Helmert, Carmel Domshlak, Landmarks, critical paths and abstractions: What’s the difference anyway? in: Proceedings of the 19th International

Conference on Automated Planning and Scheduling (ICAPS 2009), 2009, pp. 162–169.

Author's personal copy

2098 S. Jabbari Arfaee et al. / Artificial Intelligence 175 (2011) 2075–2098

[22] Malte Helmert, Gabriele Röger, Relative-order abstractions for the pancake problem, in: Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), 2010, pp. 745–750.

[23] Jörg Hoffmann, Bernhard Nebel, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

[24] Robert C. Holte, Jeffery Grajkowski, Brian Tanner, Hierarchical heuristic search revisited, in: Proceedings of the 6th International Symposium on Ab-
straction, Reformulation and Approximation (SARA 2005), in: LNAI, vol. 3607, Springer, 2005, pp. 121–133.

[25] Timothy Humphrey, Anna Bramanti-Gregor, Henry W. Davis, Learning while solving problems in single agent search: Preliminary results, in: Proceed-
ings of the 4th Congress of the Italian Association for Artificial Intelligence (AI*IA 1995), in: LNCS, vol. 992, Springer, 1995, pp. 56–66.

[26] Shahab Jabbari Arfaee, Bootstrap learning of heuristic functions, Master’s thesis, Computing Science Department, University of Alberta, 2010.
[27] Shahab Jabbari Arfaee, Sandra Zilles, Robert C. Holte, Bootstrap learning of heuristic functions, in: Proceedings of the 3rd Annual Symposium on

Combinatorial Search (SoCS 2010), 2010, pp. 52–60.
[28] David G. Kirkpatrick, Hyperbolic dovetailing, in: Proceedings of the 17th Annual European Symposium on Algorithms (ESA 2009), in: LNCS, vol. 5757,

Springer, 2009, pp. 516–527.
[29] Richard E. Korf, Depth-first iterative-deepening: An optimal admissible tree search, Artificial Intelligence 27 (1) (1985) 97–109.
[30] Richard E. Korf, Linear-space best-first search: Summary of results, in: Proceedings of the 10th AAAI Conference on Artificial Intelligence (AAAI 1992),

1992, pp. 533–538.
[31] Richard E. Korf, Finding optimal solutions to Rubik’s Cube using pattern databases, in: Proceedings of the 14th AAAI Conference on Artificial Intelligence

(AAAI 1997), 1997, pp. 700–705.
[32] Richard E. Korf, Ariel Felner, Disjoint pattern database heuristics, Artificial Intelligence 134 (2002) 9–22.
[33] John R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, Cambridge MA, May 1994.
[34] Judea Pearl, Heuristics, Addison–Wesley, 1984.
[35] Marek Petrik, Shlomo Zilberstein, Learning heuristic functions through approximate linear programming, in: Proceedings of the 18th International

Conference on Automated Planning and Scheduling (ICAPS 2008), 2008, pp. 248–255.
[36] Armand Prieditis, Machine discovery of effective admissible heuristics, Machine Learning 12 (1993) 117–141.
[37] Larry A. Rendell, Details of an automatic evaluation function generator for state-space problems, Technical Report CS-78-38, Department of Computer

Science, University of Waterloo, 1978.
[38] Larry A. Rendell, A new basis for state-space learning systems and a successful implementation, Artificial Intelligence 20 (1983) 369–392.
[39] Gabriele Röger, Malte Helmert, The more, the merrier: Combining heuristic estimators for satisficing planning, in: Proceedings of the 20th International

Conference on Automated Planning and Scheduling (ICAPS 2010), 2010, pp. 246–249.
[40] David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning internal representations by error propagation, in: Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, MIT Press, Cambridge, MA, USA, 1986, pp. 318–362.
[41] Mehdi Samadi, Ariel Felner, Jonathan Schaeffer, Learning from multiple heuristics, in: Proceedings of the 23rd AAAI Conference on Artificial Intelligence

(AAAI 2008), 2008, pp. 357–362.
[42] Mehdi Samadi, Maryam Siabani, Ariel Felner, Robert Holte, Compressing pattern databases with learning, in: Proceedings of the 18th European Confer-

ence on Artificial Intelligence (ECAI 2008), 2008, pp. 495–499.
[43] Sudeshna Sarkar, Partha P. Chakrabarti, Sujoy Ghose, Learning while solving problems in best first search, IEEE Transactions on Systems, Man, and

Cybernetics, Part A 28 (1998) 535–541.
[44] Sudeshna Sarkar, Sujoy Ghose, Partha P. Chakrabarti, Learning for efficient search, Sadhana: Academy Proceedings in Engineering Sciences 2 (1996)

291–315.
[45] John Slaney, Sylvie Thiébaux, Blocks world revisited, Artificial Intelligence 125 (2001) 119–153.
[46] Jerry Slocum, Dic Sonneveld, The 15 Puzzle, Slocum Puzzle Foundation, 2006.
[47] Jordan Thayer, Austin Dionne, Wheeler Ruml, Learning inadmissible heuristics during search, in: Proceedings of the 21st International Conference on

Automated Planning and Scheduling (ICAPS 2011), 2011, pp. 250–257.
[48] Fan Yang, Joseph Culberson, Robert Holte, Uzi Zahavi, Ariel Felner, A general theory of additive state space abstractions, Journal of Artificial Intelligence

Research 32 (2008) 631–662.
[49] Alan Fern Sungwook Yoon, Robert Givan, Learning control knowledge for forward search planning, Journal of Machine Learning Research 9 (2008)

683–718.
[50] Uzi Zahavi, Ariel Felner, Robert Holte, Jonathan Schaeffer, Dual search in permutation state spaces, in: Proceedings of the 21st AAAI Conference on

Artificial Intelligence (AAAI 2006), 2006, pp. 1076–1081.
[51] Uzi Zahavi, Ariel Felner, Robert C. Holte, Jonathan Schaeffer, Duality in permutation state spaces and the dual search algorithm, Artificial Intelli-

gence 172 (4–5) (2008) 514–540.
[52] Rong Zhou, Eric A. Hansen, External-memory pattern databases using structured duplicate detection, in: Proceedings of the 20th AAAI Conference on

Artificial Intelligence (AAAI 2005), 2005, pp. 1398–1405.

