
1

Properties of Heuristics that
Guarantee A* Finds Optimal Paths

Robert Holte

this talk:
http://www.cs.ualberta.ca/~holte/CMPUT651/admissibility.ppt

Best-first Search

• Open list of nodes reached but not yet expanded

• Closed list of nodes that have been expanded

• Choose lowest cost node on Open list

• Add it to Closed, add its successors to Open

• Stop when Goal is first removed from Open

Dijkstra: cost, f(N) = g(N) = distance from start

A*: cost, f(N) = g(N) + h(N)

2

A* must re-open closed nodes

OPEN: (S,70)
CLOSED:

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

A* must re-open closed nodes

OPEN: (A,120), (B,40)
CLOSED: (S,70)

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

3

A* must re-open closed nodes

OPEN: (A,120), (C,110)
CLOSED: (S,70), (B,40)

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

A* must re-open closed nodes

OPEN: (A,120), (D,110)
CLOSED: (S,70), (B,40), (C,110)

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

4

A* must re-open closed nodes

OPEN: (A,120), (G,140), (subtreewith f=110)
CLOSED: (S,70), (B,40), (C,110), (D,110)

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

A* must re-open closed nodes

OPEN: (A,120), (G,140)
CLOSED: (S,70), (B,40), (C,110), (D,110), …

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

5

A* must re-open closed nodes

OPEN: (G,140), (C,90)
CLOSED: (S,70), (B,40), (C,110) , (D,110), …(A,120)

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

Today’s Question

When a node is first removed from Open,
under what conditions are we guaranteed
that this path to the node is optimal ?

Dijkstra: all edge-weights are non-negative

A*: the heuristic must have certain properties

6

Optimal Path to goal is the first
off the Open list

S-N-G optimal, <N, g* (N)+h(N) > is on Open
<G,P> on Open is suboptimal

g*(N)+h* (N) < P
⇔ h*(N) < P – g*(N)

S G

N

P

g*(N) h*(N)

Admissible Heuristic

Require <N, g* (N)+h(N) > lower cost than <G,P>
g*(N)+h(N) < P

⇔ h(N) < P – g*(N)

⇐ h(N) ≤ h*(N) (because h*(N) < P – g*(N))

A heuristic is admissible if h(N) ≤ h*(N) for all N.

Admissible���� first path to goal off Open is optimal

S G

N

P

g*(N) h*(N)

7

Optimal Path to X is the first off
the Open list, for all X

S-N-X optimal, <N, g* (N)+h(N) > is on Open
<X,P+h(X)> on Open, P is suboptimal

g*(N)+c(N,X) < P
⇔ c(N,X) < P – g*(N)

S X

N

P

g*(N) c(N,X)

Consistent Heuristic

Require <N, g* (N)+h(N) > lower cost than <X,P+h(X)>
g*(N)+h(N) < P+h(X)

⇔ h(N) – h(X) < P – g*(N)
⇐ h(N) – h(X) ≤ c(N,X) (because c(N,X) < P – g*(N))

A heuristic is consistent if h(N) ≤ c(N,X) + h(X)
for all X and all N.

Consistent ���� first path to X off Open is optimal for all X

S X

N

P

g*(N) c(N,X)

8

Transforming heuristics into
edge weights

Aim: replace the given edge weights and heuristics
values with a set of edge weights (and NO heuristic)
so that Dijkstra-costs on the new graph are identical
to A*-costs on the given graph+heuristic

S A B
a b

A* cost: h(S) a+h(A) a+b+h(B)

Transformation - goal

S A B
a b

A* cost: h(S) a+h(A) a+b+h(B)

S A B
?? ??

Dijkstracost: h(S) a+h(A) a+b+h(B)

9

Transformation (1)

S A B
a b

A* cost: h(S) a+h(A) a+b+h(B)

S A B
?? ??

Dijkstracost: h(S) a+h(A) a+b+h(B)

h(S)

Transformation (2)

S A B
a b

A* cost: h(S) a+h(A) a+b+h(B)

S A B
a+h(A)-h(S) ??

Dijkstracost: h(S) a+h(A) a+b+h(B)

h(S)

10

Transformation (3)

S A B
a b

A* cost: h(S) a+h(A) a+b+h(B)

S A B
a+h(A)-h(S) b+h(B)-h(A)

Dijkstracost: h(S) a+h(A) a+b+h(B)

h(S)

Transformation - general

The order in which nodes come off the Open list
using Dijkstraon the transformed graph is
identical to the order using A* on the original
graph+heuristic.

c(N,X)
N X + heur istic

is transformed into

c(N,X) – h(N) + h(X)
N X (no heur istic)

11

Local Consistency

If edge weights are non-negative, the first path to any node Z
that Dijkstra takes off Open is an optimal path to Z.

Non-negative edge weights requires:
For all N, and all successors, X, of N

0 ≤ c(N,X) – h(N) + h(X)

⇔ h(N) ≤ c(N,X) + h(X)

A heuristic is locally consistent if h(N) ≤ c(N,X) + h(X)
for all N and all successors X of N.

Locally consistent ⇔ consistent

c(N,X) – h(N) + h(X)
N X

Monotonicity
With Dijkstraand non-negative edge weights, cost

cannot decrease along a path since it is just the
sum of the edge weights along the path.

Because A* with a consistent heuristic is
equivalent to Dijkstra with non-negative edge
weights, it follows that A*costs along a path can
never decrease if the heuristic is consistent.

S A B

A* cost: f(S) ≤≤≤≤ f(A) ≤≤≤≤ f(B)

12

Admissibility � Monotonicity

Along path S-A-C, f-values are not monotonic
non-decreasing.

/

C D GS

A

B

10 10

10

20
20

90

h=20

h=110

h=70 h=70 h=60

f = 110

Enforced monotonicity
Can enforce monotonicity along a path by using

parent’s f-value if it is greater than the child’s f-
value.

(valid if h is admissible because the f values on a path never overestimate
the path’s true length)

But this does not solve the problem of having
to re-open closed nodes in our example.

use f = 8 from parent

f = 8 f = 4

13

Summary of definitions

• An admissible heuristic never overestimates
distance to goal

• A consistent heuristic obeys a kind of
triangle inequality

• With a locally consistent heuristic, h does
not decrease faster than g increases

• Monotonicity: costs along a path never
decrease

Summary of Positive Results

• Consistent ⇔ locally consistent

• Consistent � monotonicity

• Consistent � admissible

• Consistent � first path to X off Open is optimal,
for all X

• Admissible � first path to Goal off Open is
optimal (correctness of the A* stopping condition)

14

Summary of Negative Results

• Admissible � monotonicity

• Admissible � consistent

• Admissible � first path to X off Open is
optimal, for all X

/

/

/

