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Abstract

Topic analysis is a powerful tool that extracts “topics” from document col-
lections. Unlike manual tagging, which is effort intensive and requires expertise
in the documents’ subject matter, topic analysis (in its simplest form) is an
automated process. Relying on the assumption that each document in a collec-
tion refers to a small number of topics, it extracts bags of words attributable
to these topics. These topics can be used to support document retrieval or to
relate documents to each other through their associated topics. Given the vari-
ety and amount of textual information included in software repositories, in issue
reports, commit and source-code comments, and other forms of documentation,
this method has found many applications in the software-engineering field of
mining software repositories.

This chapter provides an overview of the theory underlying LDA (Latent
Dirichlet Allocation), the most popular topic-analysis method today. Next, it
illustrates, with a brief tutorial introduction, how to employ LDA on a textual
data set. Third, it reviews the software-engineering literature for uses of LDA for
analyzing textual software-development assets, in order to support developers’
activities. Finally, we discuss the interpretability of the automatically extracted
topics, and their correlation with tags provided by subject-matter experts.

Keywords: latent dirichlet allocation, topic modelling, software engineering,
tutorial

1. Introduction

Whether they consist of code, bug/issue reports, mailing-list messages, re-
quirements specifications, or documentation, software repositories include text
documents. This textual information is an invaluable source of information
and can potentially be used in a variety of software engineering activities. The
textual descriptions of bugs can be compared against each other to recognize
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duplicate bug reports. The textual documentations of software modules can
be used to recommend relevant source-code fragments. Email messages can be
analyzed to better understand the skills and roles of software developers, and
to recognize their concerns about the project status and their sentiments about
their work and teammates. This is why we are recently witnessing numerous
research projects investigating the application of text-analysis methods to soft-
ware text assets.

The simplest approach to analyzing textual documents is to use a vector-
space model (VSM), which views documents (and queries) as frequency vectors
of words. For example “the” occurred once, “my” occurred twice, “bagel” oc-
curred 0 times, and so on. Effectively, VSM views terms as dimensions in a
high-dimensional space, so that each document is represented by a point in that
space based on the frequency of terms it includes. This model suffers from two
major shortcomings. First, it makes the consideration of all words impractical:
since each word is a dimension, considering all words would imply expensive
computations in a very high-dimensional space. Second, it assumes that all
words are independent. In response to these two assumptions, methods for
extracting topic models, i.e., thematic topics corresponding to related bags of
words, were developed.

A thematic topic is a collection of words which are somehow related. For ex-
ample, a topic might consist of the words “inning,” “home,” “batter,” “strike,”
“catcher,” “foul,” and “pitcher,” which are all related to the game of baseball.
The most well known topic-model methods are Latent Semantic Indexing (LSI)
and Latent Dirichlet Allocation (LDA). LSI employs singular value decompo-
sition to describe relationships between terms and concepts as a matrix. LDA
arranges and re-arranges words into buckets, which represent topics, until it
estimates that it has found the most likely arrangement. In the end, having
identified the topics relevant to a document collection (as sets of related words)
LDA associates each document in the subject collection with a weighted list of
topics.

LDA has recently emerged as the method of choice for working with large
collections of text documents. There is a wealth of publications reporting its
applications in a variety of text-analysis tasks in general and software engineer-
ing in particular. LDA can be used to summarize, cluster, link, and preprocess
large collections of data because it produces a weighted list of topics for every
document in a collection dependent on the properties of the whole. These lists
can then be compared, counted, clustered, paired, or fed into more advanced
algorithms. Furthermore, each topic is comprised of a weighted list of words
which can be used in summaries.

This chapter provides an overview of LDA and its relevance to analyzing
textual software-engineering data. First, in Section 2, we discuss the math-
ematical model underlying LDA. In Section 3, we present a tutorial on how
to use state-of-the-art software tools to generate an LDA model of a software-
engineering corpus. In Section 4, we discuss some typical pitfalls encountered
when using LDA. In Section 5, we review the mining-software repositories liter-
ature for example applications of LDA. Finally, in Section 6, we conclude with a

2



summary of the important points one must be aware of when considering using
this method.

2. Applications of LDA in Software Analysis

The Latent Dirichlet Allocation (LDA) method was originally formulated by
Blei [4] and it soon became quite popular within the software engineering com-
munity. LDA’s popularity comes from the variety of its potential applications.

LDA excels at feature reduction and can employed as a pre-processing step
for other models, such as machine learning algorithms. LDA can also be used to
augment the inputs to machine learning and clustering algorithms by producing
additional features from documents. One example of this type of LDA usage is
described in Wang et al. [23], where it is employed in a recommender system.
Similarly, labelled LDA can be used to create vectors of independent features
from arbitrary feature sets such as tags.

An important use of LDA is for linking software artifacts. There are many
instances of such artifact-linking applications, such as measuring coupling be-
tween code modules [19] and matching code modules with natural-language
requirement specifications [20] for traceability purposes. Asuncion et al. [2] ap-
plied LDA on textual documentation and source-code modules and used the
topic document matrix to indicate traceability between the two. Thomas et
al. [22] focused on the use of LDA on yet another traceability problem, link-
ing email messages to source-code modules. Gethers et al. [8] investigated the
effectiveness of LDA for traceability-link recovery. They combined IR tech-
niques including Jenson/Shannon model, vector space model and the relational
topic model using LDA together. They concluded that each technique had its
positives and negatives yet, the integration of the methods together tended to
produce the best results. Typically steeped in the information retrieval domain,
Poshyvanyk et al. [21, 18, 16] have explored the use of IR techniques such as
LSI [15] and LDA to recover software traceability links in source code and other
documents. For a general literature survey related to traceability techniques
(including LDA), the interested reader should refer to De Lucia [7].

Baldi et al. [3] labelled LDA extracted topics and compared them to aspects
in software development. Baldi claims that some topics do map to aspects such
as security, logging and cross-cutting concerns, which was somewhat corrobo-
rated by Hindle et al. [12].

Clustering is frequently used to compare and identify (dis)similar documents
and code, or to quantify the overlap between two sets of documents. Clustering
algorithms can potentially be applied to topic probability vectors produced by
LDA. LDA has been used in a clustering context, for issue report querying and
de-duplication. Lukins et al. [14] applied LDA topic analysis to issue reports,
leveraging LDA inference to infer if queries, topics, and issue reports were re-
lated to each other. Alipour et al. [1] leveraged LDA topics to add context to
de-duplicate issue reports and found that LDA topics added useful contextual
information to issue/bug de-duplication. Campbell et al. [5] used LDA to ex-
amine the coverage of popular project documentation by applying LDA to two
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collections of documents at once: user questions and project documentation.
This was done by clustering and comparing LDA output data.

Often LDA is used to summarize the contents of large datasets. This is done
by manually or automatically labelling the most popular topics produced by
unlabelled LDA. Labelled LDA can be used to track specific features over time,
for example to measure the fragmentation of a software ecosystem as in Han et
al. [10].

Even though LDA topics are assumed to be implicit and not observable,
there is substantial work on assessing the interpretability of those summaries
by developers. Labelling software artifacts using LDA was investigated by De
Lucia et al. [6]. By using multiple IR approaches such as LDA and LSI, they
labelled and summarized source code and compared against human-generated
labels. Hindle et al. [11] investigated if developers could interpret and label
LDA topics. They report limited success with 50% being successfully labelled
by the developers and that non-experts tend to do poorly at labelling topics on
systems they have not dealt with.

Finally, there has been some research on the appropriate choice of LDA
hyper-parameters and parameters: α, β, K topics. Grant et al. [9] were con-
cerned about K where K is the number of topics. While Panichella et al. [17]
proposed LDA-GA, a genetic algorithm approach to searching for appropriate
LDA hyper-parameters and parameters. LDA-GA needs an evaluation measure,
thus Panichella et al. used software engineering specific tasks that allowed their
GA to optimize against the cost effectiveness.

3. How LDA Works

The input of LDA is a collection of documents and a few parameters. The
output is a probabilistic model describing (a) how much words belong to topics
and; (b) how associated topics are with documents. A list of topics, often
containing some topics repeatedly, is generated at random based on (b). That
list is the same length as the number of words in the document. Then, that list
of topics is transformed into a list of words by turning each topic into a word
based on (a).

LDA is a generative model. This means that it works with the probability of
observing a particular dataset given some assumptions about how that dataset
was created. At its core is the assumption that a document is generated by
a small number of “topics.” An LDA “topic” is a probability distribution,
assigning each word in the collection vocabulary a probability.

Topics are considered hypothetical and unobservable, which is to say that
they don’t actually exist in documents. This means that, first, we know that
documents are not actually generated from a set of topics. Instead, we are
using the concept of a topic as a simplified model for what must be a more
complicated process, the process of writing a document. Second, documents do
not come with information about what topics are present, what words those
topics contain, and how much of each topic is in each document. Therefore, we
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must infer the topic characteristics from a collection of collections of words. Each
document is usually assumed to be generated by a few of the total number of
possible topics. So, every word in every document is assumed to be attributable
to one of the document’s topics.

Though, of course words do a have a particular order in a document, LDA
does not consider their order. Each word is assigned an individual probability
of being generated. That is, the probability of a topic k generating a word v is
a value φk,v [24]. The sum of these probabilities for a topic k must be 1.

∑

v

φk,v = 1

Furthermore, the φk,v values are assumed to come from a random variable
φk, with a symmetric Dirichlet distribution (which is the origin of the name of
the LDA method). The symmetric Dirichlet distribution has one parameter,
β, which determines whether a topic is narrow, i.e., focuses on a few words, or
broad, i.e., covers a bigger spread of words. If β is 1, the probability of a topic
generating a word often is the same as the probability of a topic generating a
word rarely. If β is less than 1, most words will be extremely unlikely while a
few will make up the majority of words generated. In other words, larger values
of β lead to broad topics and smaller values of β lead to narrow topics.

In summary, words are assumed to come from topics with the probability of
a word coming from a specific topic coming from a Dirichlet distribution. Thus,
if we know that β is a very small positive integer, we know that a topic which
would generate any word with equal probability is itself very unlikely to exist.

The “document” is an important concept involved in understanding how
LDA works. A document is also a probability distribution. Every possible topic
has a probability from 0 to 1 of occurring, and the sum of these probabilities is
1. The probability that a document d will generate a word from a specific topic
k is θd,k. Again, the θd,k probabilities are probabilities, but the probabilities of
θd,k taking on a particular probability value comes from a Dirichlet distribution
of parameter α. The topics that a document is observed to generate are a vector,
Zd. This vector is Nd words long, representing every word in the document. If α
is near 1, we expect to see documents with few topics and documents with many
topics in equal proportion. If α is less than one, we expect most documents to
only use a few topics. If α is greater than one, we expect most documents to
use almost every topic.

To summarize, words come from topics. The probability of a word being
generated by a specific topic comes from a symmetric Dirichlet distribution. The
probability of a document containing a word from a specific topic is dictated
by a different symmetric Dirichlet distribution. The words that a document is
observed to generate are a vector, Wd, which is formed by observing the topic
indicated by the entries in the Zd vector.

Figure 1 shows the words present in each document coming from topic 1 in
9 different LDA models of varying parameters. Additionally, it shows α, β, θ,
φ, Z and W . By following the arrows we can see how each prior generates each
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Figure 1: 9 Example LDA models produced by varying α and β. Arrows show the relationship
between prior and posterior.
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observed posterior. Figure 1 shows the effects that α has on θ, that θ has on
Z, and that Z has on W . As we increase α, we observe that more documents
contain words from topic 1. Additionally, it shows the effect that β has on φ and
that φ has on W . As we increase β, we end up with topic 1 including a larger
variety of vocabulary words. For example, the plot in column 1 and row 1, of
Figure 1, shows that each document uses a much smaller subset of the possible
vocabulary than the plot in column 1 and row 3 below it. Similarly, the plot
in column 3 and row 1 shows that many more documents contain words from
Topic 1 than the plot in column 1 and row 1.

The LDA process consists of allocating and re-allocating weights (or proba-
bilities if normalized) in θ and φ until the lower bound of the total probability
of observing the input documents is maximized. Conceptually, this is accom-
plished by dividing up topics among words and by dividing up documents among
topics. This iterative process can be implemented in many different ways.

Technically, the generative process LDA assumes is, given a corpus of M
documents, each of length Ni [4]:

1. For every topic k ∈ {1, . . . ,K}:

(a) Choose ~φk ∼ Dir (β).

2. For every document d ∈ {1, . . . ,M}:

(a) Choose ~θd ∼ Dir (α).
(b) For every word j ∈ 1, . . . , Nd in document d:

i. Choose a topic zd,j ∼ Multinomial
(

~θd

)

.

ii. Choose a word wd,j ∼ Multinomial
(

~φzd,j

)

.

Thus, probability of a topic k generating a word v at a position j in a document
d is p (wd,j = v | α, β,K):

∫

Θ

K
∑

k=1

∫

Φ

p
(

wd,j = v | ~φk

)

p
(

zd,j = k | ~θd

)

p
(

~φk | β
)

p
(

~θd | α
)

d ~φkd~θd,

integrating over all possible probability vectors of length K (Θ) and of length
V (Φ). The goal of LDA software is to maximize the probability

p (θ, Z | W,α, β,K)

by choosing θ and Z given a corpus W and parameters α and β. Unfortunately,
this problem is intractable [4], so the θ and φ that maximize the above probabil-
ity are estimated by LDA software. The exact technique employed to estimate
the maximum varies between different pieces of software.

4. LDA Tutorial

In this tutorial, we illustrate the LDA method in the context of analyzing
textual data extracted from the issue-tracking system of a popular project.
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1. The first task involves acquiring the issue-tracker data and representing it
in a convenient format such as JSON.

2. Then we transform the text of the input data, namely we convert the text
to word counts, where words are represented as integer IDs.

3. We apply LDA software on the transformed documents to produce a topic-
document matrix and a topic-word matrix.

4. We then summarize the top words from the topic-word matrix to produce
topic-word summaries and store the topic-document matrix.

5. Finally, we analyze the document matrix and the topics. The objective
of this analysis step is to (a) examine the latent topics discovered; (b)
plot the topic relevance over time; and (c) cluster the issues (i.e., input
documents) according to their associated topics.

4.1. Materials

This tutorial will use source code that the authors have developed to run
LDA on issues collected in issues-tracking systems. For the sake of simplicity
the authors have provided a configured Ubuntu 64bit x86 virtual machine for
VirtualBox with all the software and appropriate data already loaded and avail-
able. The file is called LDA-Tutorial.ova and can be downloaded from
http://archive.org/details/LDAinSETutorial/ and
https://archive.org/29/items/LDAinSETutorial/.
Download the ova file and import it into VirtualBox 1. Alternatively use Virtu-
alBox to export it to a raw file to write directly to a USB stick or harddrive. The
username and password of this virtual image is tutorial. Upon boot-up the
virtual image will open to an Lubuntu 14.04 desktop. The source code for this
tutorial is located in the /home/tutorial/lda-chapter-tutorial directory,
which is also linked to from the desktop.

To access and browse the source code of the tutorial visit the following URL
http://bitbucket.org/abram/lda-chapter-tutorial/ and git clone that project,
or download a zip file of the tutorial data and source code from:
http://webdocs.cs.ualberta.ca/~hindle1/2014/lda-chapter-tutorial.zip. The
data directory contains the issue-tracker data for the bootstrap project. The
important source code files are lda from json.py which depends on lda.py.
We use lda from json.py to apply the LDA algorithm, implemented by Vowpal
Wabbit 2, on issue-tracker issues. It is highly recommended to use the virtual
machine as Vowpal Wabbit and other dependencies are already installed and
configured.

4.2. Acquiring Software Engineering Data

The data source for this tutorial will be the issues and comments of the Boot-
strap 3 issue tracker. Bootstrap is a popular JavaScript-based website front-end

1https://www.virtualbox.org/
2http://hunch.net/~vw/
3http://getbootstrap.com/
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framework that allows pre-processing, templating and dynamic-content man-
agement of web pages. Bootstrap is a very active project, and its developer
community is regularly reporting issues regarding web browser compatibility
and developer support. As of March 2014, Bootstrap had 13182 issues in its
issue tracker.

Our first task is to acquire the issue-tracker data for Bootstrap. To achieve
this result we have written a Github issue tracker-extractor that relies on the
Github API and the Ruby Octokit library. Our program github issues to-

json.rb (included in the chapter tutorial repository) uses the Github API to
download the issues and comments from the Github issue tracker. One must
first sign up to Github as a registered user and provide the GHUSERNAME and
GHPASSWORD in the config.json file in the root of the chapter repository. One
can also specify GHUSER (target Github user) and GHPROJECT (target Github
user’s project to mirror) in the config.json or as an environment variable.
github issues to json.rb downloads issue-tracker data and every page of is-
sues and issue comments. It saves this data to a JSON file, resembling the origi-
nal format obtained from the Github API. The JSON file created, large.json,
contains both issues and comments, stored as a list of JSON objects (issues),
each of which contains a list of comments. Mirroring Bootstrap takes a couple
of minutes due to the thousands of issues and thousands of comments within
Bootstrap’s issue tracker.

Once we have downloaded the Bootstrap issues (and comments) into large.json
we need to load and prepare that data for LDA. Most LDA programs will require
that documents are pre-processed.

4.3. Text Analysis and Data Transformation

In this section we will cover pre-processing the data for LDA. Generally those
who use LDA apply the following prepossessing steps:

• Loading text

• Transforming text

• Lexical analysis of text

• Optionally removing stop words

• Optionally stemming

• Optionally removing uncommon or very common words

• Building a vocabulary

• Transforming each text document into a word-bag

4.3.1. Loading Text

Loading the text is usually a matter of parsing a data file or querying a
database where the text is stored. In this case, it is a JSON file containing
Github issue-tracker API call results.
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4.3.2. Transforming Text

The next step is to transform the text into a final textual representation.
This will be the textual representation of the documents. Some text is structured
and thus must be processed. Perhaps section headers and other markup needs
to be removed. If the input text is raw HTML perhaps one needs to strip
HTML from the text before use. For the issue-tracker data we could include
author names in the comments and in the issue description. This might allow for
author-oriented topics, but might also confuse future analysis when we notice
there was no direct mention of any of the authors. In this tutorial we have
chosen to concatenate the title and the full description of the issue report, so
that topics will have access to both fields.

Many uses of LDA in software analysis include source code in the document
texts. Using source code requires lexing, parsing, filtering and often renaming
values. When feeding source code to LDA, some users do not want comments,
some do not want identifiers, some do not want keywords, and some want only
identifiers. Thus, the task of converting documents to a textual representation
is non-trivial, especially if documents are marked up.

4.3.3. Lexical Analysis

The next step is the lexical analysis of the texts. We need to split the words
or tokens out of the text in order to eventually count them.

With source code we apply lexical analysis, where one extracts tokens from
source code in a similar fashion to how compilers perform lexical analysis before
parsing.

With natural language text words and punctuation are separated where
appropriate. For example, some words, such as initialisms, contain periods
but most of the time a period indicates the end of a sentence and is not a part
of the word. With texts about source code, it might be useful to have some
tokens start with a period, for instance if you are analyzing CSS (cascading
style sheets) or texts with CSS snippets, where a period prefix indicates a CSS
class.

4.3.4. Stop Word Removal

Often words appear in texts which are not useful in topic analysis. Such
words are called stop words. It is common in Natural Language Processing
(NLP) and Information Retrieval (IR) systems to filter out stop words before
executing a query or building a model. Stop words are words that are not
relevant to the desired analysis. Whether a word is considered a stop word or
not depends on the analysis, but there are some sets of common stop words
available. Some users of NLP and LDA tools view terms such as “the”, “at”,
and “a” as unnecessary, where as other researchers, depending on the context,
might view the definitives and prepositions as important. We have included
stop words, a text file that contains various words that we do not wish to
include in topics in this tutorial. For each word extracted from the document
we remove those found within our stop word list.
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4.3.5. Stemming

Since words in languages like English have multiple forms and tenses it is
common practice to stem words. Stemming is the process of reducing words to
their original root. Stemming is optional and often used to reduce vocabulary
sizes. For instance, given the words act, acting, acted and acts, the stem for all
4 words will be act. Thus if a sentence contains any of the words upon stemming
it will resolve to the same stem. Unfortunately, sometimes stemming reduces
the semantic meaning of a term. For example, “acted” is in the past tense, but
this information will be lost if stemmed. Stemming is not always necessary.

Stemming software is readily available. NLTK 4 comes with an implementa-
tion of the Porter stemmer and Snowball stemmers. One caveat with stemmers
is they often produce word roots that are not words or conflict with other words.
Sometimes this leads to unreadable output from LDA unless one keeps the orig-
inal documents and their original words.

4.3.6. Common and Uncommon Word Removal

Since LDA is often used to find topics it is common practice to filter out
exceptionally common words and infrequent words. Words that appear in only 1
document are often viewed as unimportant, because they won’t form a topic with
multiple documents. Unfortunately if very infrequent words are left in, some
documents which do not contain the word will be associated with that word
via the topics that include that word. The common words are often skipped
because they muddle topic summaries and make interpretation more difficult.

Once the documents are pre-processed and prepared via lexing, filtering,
and stemming we can start indexing them for use as documents within a LDA
implementation.

4.3.7. Building a Vocabulary

In this tutorial, we use the Vowpal Wabbit software by Langford et al. [13].
Vowpal Wabbit accepts a sparse document word matrix format where each line
represents a document and each element of the line is an integer word joined by
a colon to its count within that document. We provide lda.py, found within
the lda-chapter-tutorial directory, a program to convert text to Vowpal
Wabbit’s input format, and parse its output format.

One difficulty encountered using LDA libraries and programs is that often
you have to maintain your own vocabulary or dictionary. We also have to
calculate and provide the size of the vocabulary as ⌈log2(|words|)⌉.

4.4. Applying LDA

We choose 20 for the number of topics for the sake reading and interpreting
the topics. The number of topics depends on the intent behind the analysis. If
one wants to use LDA for dimensionality reduction perhaps keeping the number

4NLTK: http://www.nltk.org/howto/stem.html
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of topics low is important. If one wants to cluster documents using LDA a larger
number of topics might be warranted. Conceptual coupling might be best served
with many topics over fewer topics.

We provide our parameters to Vowpal Wabbit: α set to 0.01, β set to 0.01
(called ρ in Vowpal wabbit), and K, the number of topics. 0.01 is a common
default for α and β in many pieces of LDA software. These parameters should
be chosen based on the desired breadth of documents and topics, respectively.

• If documents that only discuss a few topics and never mention all others
are desired, α should be set small, to around 1/K. With this setting,
almost all documents will almost never mention more than a few topics.

• Inversely, if documents that discus almost every possible topic but focus
on some more than others are desired, α should be set closer to 1. With
this setting, almost all documents will discuss almost every topic but not
in equal proportions.

• Setting β is similar to setting α except that it controls the breadth of
words belonging to each topic.

Vowpal Wabbit reads the input documents and parameters and outputs a
document-topic matrix and a topic-word matrix. predictions-00.txt where
00 is the number of topics, is a file containing the document-topic matrix. Each
document is on one line, and each row is the document-topic weight. If multiple
passes are used, the last M lines of predictions-00.txt, where M is the
number of documents, are the final predictions for the document-topic matrix.
The first token is the word ID and the remaining K tokens are the allocation
for each topic (topics are columns).

4.5. LDA Output Summarization

Our program lda.py produces summary.json a JSON summary of the top
topic words for each topic extracted, ranked by weight. 2 other JSON files are
created, document topic matrix.json and document topic map.json. The
first file (matrix) contains the documents and weights represented by JSON
lists. The second file (map) contains the documents by their ID mapped to a
list of weights. document topic map.json contains both the original ID and the
document weight where as the matrix uses indices as IDs. lda-topics.json

is also produced and it lists the weights of words associated with each topic,
as lists of lists. lids.json is a list of document IDs in the order presented to
Vowpal Wabbit and the order used in the document topic matrix.json file.
dicts.json maps words to their integer IDs. You can download the JSON and
CSV output of our particular run here:
https://archive.org/29/items/LDAinSETutorial/bootstrap-output.zip

4.5.1. Document and Topic Analysis

Since the topics are extracted, let’s go take a look! In Table 1 we see a
depiction of 20 topics extracted from the Bootstrap project issue tracker. The
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words shown are the top 10 ranking words from each of the topics, the most
heavily allocated words in the topic.

Each topic is assigned a number by LDA software, however the order in which
it assigns numbers is arbitrary and has no meaning. If you ran LDA again with
different seeds or different timing (depending on implementation) you would
get different topics or similar topics but in different orders. Nonetheless, we can
see in Table 1 that many of these topics are related to the Bootstrap project.
Topic summaries such as these are often your first canary in the coal mine:
they give you some idea of the health of your LDA output. If they are full of
random tokens and numbers one might consider stripping out such tokens from
the analysis. If we look to Topic 20 we see a set of terms: license org mit apache
copyright xl cc spec gpl holder. MIT, Apache, GPL and CC are all copyright
licenses and all of these licenses have terms and require attribution. Perhaps
documents related to Topic 20 are related to licensing? How do we verify if
Topic 20 is about licensing or not?

Using the document-topic matrix we can look at the documents that are
ranked high for topic 20. Thus we can load the CSV file, document topic map.csv

or JSON file, document topic map.json, with our favourite spreadsheet pro-
gram (libreOffice is included with the virtual machine), R, or Python, and sort
by descending order on the T20 (topic 20) column. Right at the top is is-
sue 2054. Browsing large.json or by visiting issue 2054 on Github 5 we can
see that the subject of the issue is “Migrate to MIT License”. The next is-
sues relate to licensing for image assets (#3942), JavaScript minification (un-
related, but still weighted heavily toward topic 20) (#3057), phantomJS error
(#10811) and two licensing issues (#6342 and #966). Table 4.5.1 provides
more detail about these 6 issues. The LDA python program also produces a
document topic map norm.csv that has normalized the topic weights, review-
ing the top weighted documents from the normalized CSV file reveals different
issues, but 4 of the 6 top issues are still licensing relevant (#11785, #216, #855,
and #10693 are licensing related but #9987, and #12366 are not). Table 4.5.1
provides more detail about these 6 normalized issues.

4.5.2. Visualization

Looking at the numbers and topics is not enough, usually we want to visually
explore the data to tease out interesting information. One can use simple tools
such as spreadsheets to make basic visualizations.

Common visualization tasks with LDA include:

• Plotting Document to Topic Association over Time

• Plotting the Document-Topic Matrix

• Plotting the Document-Word Matrix

5Bootstrap issue 2054 https://github.com/twbs/bootstrap/issues/2054
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Topic # Top 10 topic words
1 grey blazer cmd clipboard packagist webview kizer ytimg vi wrench
2 lodash angular betelgeuse ree redirects codeload yamlish prototypejs

deselect manufacturer
3 color border background webkit image gradient white default rgba

variables
4 asp contrast andyl runat hyperlink consolidating negatory pyg-

ments teuthology ftbastler
5 navbar class col css width table nav screen http span
6 phantomjs enforcefocus jshintrc linting focusin network chcp phan-

tom humans kevinknelson
7 segmented typical dlabel signin blockquotes spotted hyphens tax

jekyllrb hiccups
8 modal input button form btn data http tooltip popover element
9 dropdown issue chrome menu github https http firefox png browser
10 zepto swipe floor chevy flipped threshold enhanced completeness

identified cpu
11 grid width row container columns fluid column min media respon-

sive
12 div class li href carousel ul data tab id tabs
13 parent accordion heading gruntfile validator ad mapped errorclass

validclass collapseone
14 bootstrap github https css http js twitter docs pull don
15 left rtl support direction location hash dir ltr languages offcanvas
16 percentage el mistake smile spelling plnkr portuguese lokesh boew

ascii
17 font icon sm lg size xs md glyphicons icons glyphicon
18 tgz cdn bootstrapcdn composer netdna libs yml host wamp cdnjs
19 npm js npmjs lib http install bin error ruby node
20 license org mit apache copyright xl cc spec gpl holder

Table 1: The top 10 ranked words of the 20 topics extracted from Bootstrap’s issue tracker
issues.
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https://github.com/twbs/bootstrap/issues/2054 cweagans
Migrate to MIT License

I’m wanting to include Bootstrap in a Drupal distribution that I’m working on.
Because I’m using the Drupal.org packaging system, I cannot include Bootstrap
because the APLv2 is not compatible with GPLv2 ...

https://github.com/twbs/bootstrap/issues/3942 justinshepard
License for Glyphicons is unclear

The license terms for Glyphicons when used with Bootstrap needs to be clari-
fied. For example, including a link to Glyphicons on every page in a prominent
location isn’t possible or appropriate for some projects. ...

https://github.com/twbs/bootstrap/issues/3057 englishextra
bootstrap-dropdown.js clearMenus() needs ; at the end

bootstrap-dropdown.js when minified with JSMin::minify produces error in
Firefox error console saying clearMenus()needs ; ...

https://github.com/twbs/bootstrap/issues/10811 picomancer
”PhantomJS must be installed locally” error running qunit:files task

I’m attempting to install Bootstrap in an LXC virtual machine, getting ”Phan-
tomJS must be installed locally” error. ...

https://github.com/twbs/bootstrap/issues/6342 mdo
WIP: Bootstrap 3

While our last major version bump (2.0) was a complete rewrite of the docs,
CSS, and JavaScript, the move to 3.0 is equally ambitious, but for a different
reason: Bootstrap 3 will be mobile-first. ...

MIT License is discussed.

https://github.com/twbs/bootstrap/issues/966 andrijas
Icons as font instead of img

Hi
Any reason you opted to include image based icons in bootstrap which are
limited to the 16px dimensions?
For example http://somerandomdude.com/work/iconic/ is available as open
source fonts - means you can include icons in headers, buttons of various size
etc since its vector based. ...

License of icons is discussed.

Table 2: Issue texts of the top related documents to Topic 20 (Licensing) from
document topic map.csv
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https://github.com/twbs/bootstrap/pull/12366 mdo
Change a word

...
Blank + Documentation change

https://github.com/twbs/bootstrap/pull/9987 cvrebert
change ‘else if‘ to ‘else‘

...
Blank + Provided a patch changing else if to else

https://github.com/twbs/bootstrap/pull/10693 mdo
include a copy of the CC-BY 3.0 License that the docs are under

This adds a copy of the Creative Commons Attribution 3.0 Unported license
to the repo. /cc @mdo

https://github.com/twbs/bootstrap/issues/855 mistergiri
Can i use bootstrap in my premium theme?

Can i use bootstrap in my premium cms theme and sell it?

https://github.com/twbs/bootstrap/issues/216 caniszczyk
Add CC BY license to documentation

At the moment, there’s no license associated with the bootstrap documentation.
We should license it under CC BY as it’s as liberal as the software license (CC
BY). ...

https://github.com/twbs/bootstrap/issues/11785 tlindig
license in the README.md

At bottom of README.md is written:
Copyright and license
Copyright 2013 Twitter, Inc under the Apache 2.0 license.
With 3.1 you switched to MIT. It looks like you forgott to update this part
too.

Table 3: Issue texts of the top related normalized documents to Topic 20 (Licensing) from
document topic map norm.csv
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• Plotting the association between two distinct kinds of documents within
the same LDA run.

Given the CSV files, one can visualize the prevalence of topics over time.
Figure 2 depicts a chart of the proportional topic weights of the first 128 issues
over time against topics 15 to 20 from Table 1.

Based on the spreadsheet inspection the reader should notice that the doc-
ument topic weights are somewhat noisy and hard to immediately interpret.
For instance, it is hard to tell when a topic is popular and when it comes less
popular. Alternatively one might ask is a topic constantly referenced over time
or is it periodically popular? One method of gaining an overview is to bin or
group documents by their date (e.g., weekly, biweekly, monthly) and then plot
the mean topic weight of 1 topic per time bin over time. This allows one to
produce a visualization depicting peaks of topic relevance over time. With the
tutorial files we have included an R script called plotter.R, that produces a
summary of the 20 topics extracted combined with the dates extracted from the
issue tracker. This R script produces Figure 3, a plot of the average relevance of
documents per two week period over time. This plot is very similar to the plots
in Hindle et al. [11]. If one looks to the bottom right corner of the figure at the
plot of Topic 20 one can see that Topic 20 peaks up from time to time, but is not
constantly discussed. This matches our perception of the licensing discussions
found within the issue tracker: they occur when licenses need to be clarified
or change, but they do not change all the time. This kind of overview can be
integrated into project dashboards to give managers an overview of issue-tracker
discussions over time.

Further directions for readers to explore include using different kinds of doc-
uments, such as documentation, commits, issues and source code, and then
relying on LDA’s document topic matrix to link these artifacts. We hope this
tutorial has helped illustrate how LDA can be used to gain an overview of un-
structured data within a repository and infer relationships between documents.

5. Pitfalls and Threats to Validity

This section summarizes the threats to validity that practitioners may face
when using LDA. In addition, this section describes potential pitfalls and haz-
ards of using LDA.

One pitfall is that different pieces of LDA software output different types
of data. Some LDA software packages report probabilities while others report
word counts or other weights. While one can convert between probabilities and
word counts, it is important to consider whether each document receives equal
weight, or whether longer documents should receive more weight than shorter
documents.

5.1. Criterion Validity

Criterion validity relates to the ability of a method to correspond with other
measurements that are collected in order to study the same concept. LDA
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Figure 2: Example of using simple spreadsheet charting to visualize part of the document
topic matrix of Bootstrap (topics 15 to 20 of the first 128 issues).

Topic # 1 2 3 4 5
Topic #1 1 ∼ 1 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.22 ∼ 0.17 -0.16 ∼ 0.24
Topic #2 -0.22 ∼ 0.17 1 ∼ 1 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #3 -0.21 ∼ 0.18 -0.22 ∼ 0.17 1 ∼ 1 -0.22 ∼ 0.18 -0.22 ∼ 0.18
Topic #4 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.22 ∼ 0.18 1 ∼ 1 -0.23 ∼ 0.16
Topic #5 -0.16 ∼ 0.24 -0.23 ∼ 0.16 -0.22 ∼ 0.18 -0.23 ∼ 0.16 1 ∼ 1
Topic #6 -0.11 ∼ 0.28 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.22 ∼ 0.17 -0.21 ∼ 0.19
Topic #7 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #8 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.17 -0.23 ∼ 0.16
Topic #9 -0.23 ∼ 0.17 -0.24 ∼ 0.15 -0.19 ∼ 0.21 -0.23 ∼ 0.16 -0.24 ∼ 0.16
Topic #10 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.16 -0.11 ∼ 0.28

Topic # 6 7 8 9 10
Topic #1 -0.11 ∼ 0.28 -0.22 ∼ 0.17 -0.22 ∼ 0.17 -0.23 ∼ 0.17 -0.22 ∼ 0.17
Topic #2 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16 -0.24 ∼ 0.15 -0.23 ∼ 0.16
Topic #3 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.19 ∼ 0.21 -0.21 ∼ 0.18
Topic #4 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #5 -0.21 ∼ 0.19 -0.23 ∼ 0.16 -0.23 ∼ 0.16 -0.24 ∼ 0.16 -0.11 ∼ 0.28
Topic #6 1 ∼ 1 -0.2 ∼ 0.2 -0.22 ∼ 0.18 -0.22 ∼ 0.17 -0.22 ∼ 0.18
Topic #7 -0.2 ∼ 0.2 1 ∼ 1 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.23 ∼ 0.17
Topic #8 -0.22 ∼ 0.18 -0.21 ∼ 0.18 1 ∼ 1 -0.23 ∼ 0.16 -0.22 ∼ 0.17
Topic #9 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.23 ∼ 0.16 1 ∼ 1 -0.05 ∼ 0.33
Topic #10 -0.22 ∼ 0.18 -0.23 ∼ 0.17 -0.22 ∼ 0.17 -0.05 ∼ 0.33 1 ∼ 1

Table 4: Topic-topic correlation matrix. 95% confidence intervals of the correlation amount.
From the same LDA model as Figure 1.

18



Figure 3: Average Topic Weight for Bootstrap Issues in 2 week bins. The topics are clearly
described in Table 1
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topics are not necessarily intuitive ideas, concepts, or topics. Therefore, results
from LDA may not correspond with results from topic labelling performed by
humans.

A typical erroneous assumption frequently made by LDA users is that an
LDA topic will represent a more traditional topic that humans write about
such as sports, computers or Africa. It is important to remember that LDA
topics may not correspond to an intuitive domain concept. This problem was
explored in Hindle et al. [11]. Thus, working with LDA-produced topics has
some hazards: for example, even if LDA produces a recognizable sports topic it
may be combined with other topics or there may be other sports topics.

5.2. Construct Validity

Construct validity relates to the ability of research to measure what it in-
tended to measure. LDA topics are independent topics extracted from word
distributions. This independence means that correlated or co-occurring con-
cepts or ideas will not necessarily be given their own topic, and if they are the
documents might be split between topics.

One should be aware of the constraints and properties of LDA when trying
to infer if LDA output shows an activity or not. LDA topics are not necessarily
intuitive ideas, concepts or topics. Comparisons between topics in terms of
document association can be troublesome due to the independence assumption
of topics.

Finally, it is necessary to remember that LDA assumes that topic-word prob-
abilities and document-topic probabilities are Dirichlet distributions. Further-
more, many pieces of LDA software use symmetric Dirichlet distributions. This
implies the assumption that the Dirichlet parameters are the same for every
word (β) or topic (α), respectively, and that these parameters are known be-
forehand. In most software this means that α and β must be set carefully.

5.3. Internal Validity

Internal validity refers to how well conclusions can be made about casual
effects and relationships. An important aspect of LDA is that topics are inde-
pendent, thus if two ideas are being studied to see if one causes the other one
has to guard against LDA’s word allocation strategy.

This means that a word can only come from a single topic. Even if LDA
produced a recognizable “sports” topic and a recognizable “news” topic, their
combination is assumed never to occur. “Sports news,” may then appear as a
third topic, independent from the first two. Or, it may be present in other topics
whose focus is neither sports nor news. The independence of topics makes their
comparison problematic.

For example, it might be desirable to ask if two topics overlap in some way.
Table 4 depicts the correlation between every pair of topics as described by
the document-topic matrix. Due to their independence they are not allowed
to correlate: the output of LDA has topic-to-topic correlation values that are
never significantly different from 0, as shown within the confidence intervals of
Table 4.
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To show that an event caused a change in LDA output one should use a
different data source and manual validation. LDA output changes given different
α and β parameters, and sometimes given a test one could tune these parameters
to pass or fail this test. Thus one has to motivate the choice of α and β
parameters carefully.

5.4. External Validity

External validity is about generalization and how broadly findings can be
made. LDA topics are relevant to the corpora provided thus their topics and
words associated with the topics might not be generalizable. Alternatively LDA
can be applied to numerous collections of documents and thus external validity
can be addressed in some situations.

5.5. Reliability

Reliability is about how well one can repeat the findings of a study. With
LDA, the exact topics found will not be found again without sharing of initial
parameters or seeds. Thus all LDA studies should report their parameters.
Yet, even if parameters are reported LDA implementations will return different
results and the same implementation might produce different topics or different
topic orderings each time it is run. Others might not be able to replicate the
exact topics found or the ordering of the topics found.

Since LDA models are found iteratively, it is important to ensure that they
have had adequate time to converge before use. Otherwise, the model does
not correspond to the input data. The time required for convergence depends
on the number of topics, documents and vocabulary words. For example, given
Vowpal Wabbit with 100 topics and 20 000 documents, each pass takes a matter
of seconds on modest hardware, but at least 2 passes are recommended. In order
to choose the correct number of passes, the output should be examined and the
number of passes increased until the output stops changing significantly.

6. Conclusions

Latent Dirichlet Allocation is a powerful tool for working with collections of
structured, unstructured, and semi-structured text documents, of which there
are plenty in software repositories. Our literature review has documented the
abundance of LDA applications in software analysis, from document clustering
for issue/bug de-duplication, to linking for traceability between code, documen-
tation, requirements and communications, to summarizing association of events
and documents with software-lifecycle activities.

We have demonstrated a simple case of using LDA to explore the contents of
an issue tracker repository and showed how the topics link back to documents.
We also discussed how to visualize the output.

LDA however relies on a complex underlying probabilistic model and a num-
ber of assumptions. Therefore, even though off-the-shelf software is available
to compute LDA models, the user of this software must be aware of potential
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pitfalls and caveats. This chapter has outlined the basics of the underlying con-
ceptual model and discussed these pitfalls in order to enable the informed use
of this powerful method.
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