
Latent Dirichlet Allocation: Extracting Topics

from Software Engineering Data

Joshua Charles Campbell, Abram Hindle, and Eleni Stroulia

{joshua2,hindle1,stroulia}@ualberta.ca

July 16, 2014

Abstract

Topic analysis is a powerful tool that extracts “topics” from docu-
ment collections. Unlike manual tagging, which is effort intensive and
requires expertise in the documents’ subject matter, topic analysis (in its
simplest form) is an automated process. Relying on the assumption that
the document collection refers to a small number of topics, it extracts
bags of words attributable to these topics. These topics can be used to
support document retrieval or to relate documents to each other through
their associated topics. Given the variety and amount of textual infor-
mation included in software repositories, in issue reports, commit and
source-code comments, and other forms of documentation, this method
has found many applications in the software-engineering field of mining
software repositories.

This chapter provides an overview of the theory underlying LDA (La-
tent Dirichlet Allocation), the most popular topic-analysis method today.
Next it illustrates, with a brief tutorial introduction, how to employ LDA
on a textual data set. Third, it reviews the software-engineering litera-
ture for uses of LDA for analyzing textual software-development assets,
in order to support developers’ activities. Finally, we discuss the inter-
pretability of the automatically extracted topics, and their correlation
with tags provided by subject-matter experts.

1 Introduction

Whether they consist of code, bug/issue reports, mailing-list messages, require-
ments specifications, or documentation, software repositories include text doc-
uments. The simplest approach to analyzing textual document is using the
vector-space model (VSM), which views documents (and queries) as frequency
vectors of words. For example “the” occured once, “my” occured twice, “bagel”
occured 0 times, and so on. Effectively, VSM views terms as dimensions in a
high-dimensional space, so that each document is represented by a point in that
space based on the frequency of terms it includes. This model suffers from two
major shortcomings: (a) it makes the consideration of all works impractical and

1

(b) it assumes that all words are independent. In response to these two prob-
lematic assumptions, methods for extracting topic models, i.e., thematic topics
corresponding to related bags of words, were developed. The most well known
topic-model methods are Latent Semantic Indexing (LSI) and Latent Dirichlet
Allocation (LDA). LSI employs singular value decomposition to describe rela-
tionships between terms and concepts as a matrix.

LDA has recently emerged as the method of choice for working with large
collections of text documents. There is a wealth of publications reporting its
applications in a variety of text-analysis tasks in general and software engineer-
ing in particular. LDA can be used to summarize, cluster, link, and preprocess
large collections of data because it produces a weighted list of topics for every
document in a collection dependent on the properties of the whole. These lists
can then be compared, counted, clustered, paired, or fed into more advanced
algorithms. Furthermore, each topic is comprised of a weighted list of words
which can be used in summaries.

This chapter provides an overview of LDA and its relevance to analyzing
textual software-engineering data. First, in Section 2, we discuss the math-
ematical model underlying LDA. In Section 3, we present a tutorial on how
to use state-of-the-art software tools to generate an LDA model of a software-
engineering corpus. In Section 4, we discuss some typical pitfalls encountered
when using LDA. In Section 5, we review the mining-software repositories liter-
ature for example applications of LDA. Finally, in Section 6, we conclude with a
summary of the important points one must be aware of when considering using
this method.

2 How LDA Works

The input of LDA is a collection of documents and a few parameters. The output
is a model consisting of weights which can be normalized to probabilities. These
probabilities come in two types: (a) the probability that a specific document
generates a specific topic at a position, and (b) the probability that a specific
topic generates a specific word from the collection vocabulary. After step (a),
the document contains a list of topics (often repeated), which become words
after step (b).

LDA is a generative model. This means that it works with the probability of
observing a particular dataset given some assumptions about how that dataset
was created.

At its core is the assumption that a document is generated by a small number
of “topics.” An LDA “topic” is a probability distribution, assigning each pos-
sible word a probability. Topics are considered hypothetical and unobservable,
which is to say that they don’t actually exist in documents. Instead, we must
infer the topic characteristics from a collection of documents. Each document
is assumed to be generated by a few of these topics. So, every word in every
document is assumed to be attributable to one of the document’s topics.

In LDA, words are discrete objects and have no particular order, each word is

2

Figure 1: 9 Example LDA models produced by varying α and β. Arrows show
the relationship between prior and posterior.

3

assigned an individual probability of being generated. Though, of course words
do a have a particular order in a document, LDA does not consider their order.
That is, the probability of a topic k generating a word v is a value φk,v [24]. The
sum of these probabilities for a topic k must be 1, which is to say, that a topic
generates one word at time. However, most LDA software doesn’t work with
probabilities directly, but rather, weight vectors which require normalization.
This is a difference in the software’s internal representation of the distrubtion
only, and can be converted to standard probabilities by dividing each word
weight by the sum of all word weights.

∑

v

φk,v = 1

Furthermore, the φk,v values are assumed to come from a random variable
φk, with a symmetric Dirichlet distribution (which is the origin of the name of
the LDA method). The symmetric Dirichlet distribution has one parameter,
β, which determines whether a topic is narrow, i.e., focuses on a few words, or
broad, i.e., covers a bigger spread of words. If β is 1, the probability of a topic
generating a word often is the same as the probability of a topic generating a
word rarely. If β is less than 1, most words will be extremely unlikely while a
few will make up the majority of words generated. In other words, larger values
of β lead to broad topics and smaller values of β lead to narrow topics.

In summary, words are assumed to come from topics with the probability of
a word coming from a specific topic coming from a Dirichlet distribution. Thus,
if we know that β is a very small positive integer, we know that a topic which
would generate any word with equal probability is itself very unlikely to exist.

Another important concept involved in understanding how LDA works is
that of “document.” A document is also a probability distrubtion. Every pos-
sible topic has a probability from 0 to 1 of occuring, and the sum of these
probabilities is 1. The probability that a document will generate a word from
a specific topic k is θd,k. Again, the θd,k probabilities are real values, but the
probabilities of θd,k taking on a particular value comes from a Dirichlet distri-
bution of parameter α. The topics that a document is observed to generate
are a vector, Zd. This vector is Nd words long, representing every word in the
document. If α is near 1, we expect to see documents with few topics and doc-
uments with many topics in equal proportion. If α is less than one, we expect
most documents to only use a few topics. If α is greater than one, we expect
most documents to use almost every topic.

To summarize, words come from topics. The probability of a word being
generated by a specific topic comes from a symmetric Dirichlet distribution. The
probability of a document containing a word from a specific topic is dictated
by a different symmetric Dirichlet distribution. The words that a document is
observed to generate are a vector, Wd, which is formed by observing the topic
indicated by the entries in the Zd vector.

Figure 1 shows the words present in each document coming from topic 1 in
9 different LDA models of varying parameters. Additionally, it shows α, β, θ,

4

φ, Z and W . By following the arrows we can see how each prior generates each
observed posterior. Figure 1 clearly shows the effects that α has on θ, that θ has
on Z, and that Z has on W . As we increase α, we observe that more documents
contain words from topic 1. Additionally, it shows the effect that β has on φ
and that φ has on W . As we increase β, we end up with topic 1 including a
larger variety of vocabulary words.

The LDA process consists of allocating and re-allocating weights (or proba-
bilities if normalized) in θ and φ until the lower bound of the total probability
of observing the input documents is maximized. Conceptually, this is accom-
plished by dividing up topics among words and by dividing up documents among
topics. This iterative process can be implemented in many different ways.

2.1 Technical Details of LDA

The generative process LDA assumes is, given a corpus of M documents, each
of length Ni [4]:

1. For every topic k ∈ {1, . . . ,K}:

(a) Choose ~φk ∼ Dir (β).

2. For every document d ∈ {1, . . . ,M}:

(a) Choose ~θd ∼ Dir (α).

(b) For every word j ∈ 1, . . . , Nd in document d:

i. Choose a topic zd,j ∼ Multinomial
(

~θd

)

.

ii. Choose a word wd,j ∼ Multinomial
(

~φzd,j

)

.

Thus, probability of a topic k generating a word v at a position j in a document
d is p (wd,j = v | α, β,K):

∫

Θ

K
∑

k=1

∫

Φ

p
(

wd,j = v | ~φk

)

p
(

zd,j = k | ~θd

)

p
(

~φk | β
)

p
(

~θd | α
)

d ~φkd~θd,

integrating over all possible probability vectors of length K (Θ) and of length
V (Φ). The goal of LDA software is to maximize the probability

p (θ, Z | W,α, β,K)

by choosing θ and Z given a corpus W and parameters α and β. Unfortunately,
this problem is intractable [4], so the θ and φ that maximize the above proba-
bility are estimated by LDA software. The exact techniqe employed to estimate
the maximum varies between different pieces of software.

5

3 LDA Tutorial

In this tutorial, we illustrate the LDA method in the context of analyzing textual
data extracted from the issue-tracking system of a popular project.

1. The first task involves acquiring the issue-tracker data and representing it
in a convenient format.

2. Then we analyze the text of the input data, namely we format the text as
word counts, where words are represented as integer IDs.

3. Once we have filtered and transformed the text, we apply LDA software
to produce a topic-document matrix and a topic-word matrix.

4. We then summarize the top words from the topic-word matrix to produce
topic-word summaries and store the topic-document matrix.

5. Finally, we analyze the document matrix and the topics. The objective
of this analysis step is to (a) examine the latent topics discovered; (b)
plot the topic relevance over time; and (c) cluster the issues (i.e., input
documents) according to their associated topics.

3.1 Materials

This tutorial will use source code that the authors have developed to run LDA
on issue tracker issues. To access the source code of the tutorial visit the fol-
lowing URL http://bitbucket.org/abram/lda-chapter-tutorial/ and git clone
that project, or download a zipfile of the tutorial data and source code from
http://webdocs.cs.ualberta.ca/~hindle1/2014/lda-chapter-tutorial.zip. The
data directory contains the issue tracker data for the bootstrap project. While
the important source code files are lda from json.py which depends on lda.py.
We use lda from json.py to apply the LDA algorithm on issue tracker issues.

3.2 Acquiring Software Engineering Data

The data source for this tutorial will be the issues and comments of the Boot-
strap 1 issue tracker. Bootstrap is a popular JavaScript-based website front-end
framework that allows preprocessing, templating and dynamic-content man-
agement of web pages. Bootstrap is a very active project, and its developer
community is regularly reporting issues regarding web browser compatibility
and developer support. As of March 2014, Bootstrap had 13182 issues in its
issue tracker.

Our first task is to acquire the issue-tracker data for Bootstrap. To achieve
this result we have written a Github issue tracker extractor that relies on the
Github API and the Ruby Octokit library. Our program github issues to-

json.rb (included in the chapter tutorial repository) uses the Github API to

1http://getbootstrap.com/

6

http://bitbucket.org/abram/lda-chapter-tutorial/
http://webdocs.cs.ualberta.ca/~hindle1/2014/lda-chapter-tutorial.zip

download the issues and comments from the Github issue tracker. One must
first sign up to Github as a registered user and provide the GHUSERNAME and
GHPASSWORD in the config.json file in the root of the chapter repository. One
can also specify GHUSER (target Github user) and GHPROJECT (target Github
user’s project to mirror) in the config.json or as an environment variable.
github issues to json.rb downloads issue tracker data and every page of is-
sues and issue comments. It saves this data to a JSON file, resembling the origi-
nal format obtained from the Github API. The JSON file created, large.json,
contains both issues and comments, stored as a list of JSON objects (issues),
each of which contains a list of comments. Mirroring Bootstrap takes a couple
of minutes due to the thousands of issues and thousands of comments within
Bootstrap’s issue tracker.

Once we have downloaded the Bootstrap issues (and comments) into large.json
we need to load and prepare that data for LDA. Most LDA programs will require
that documents are preprocessed.

3.3 Preprocessing

In this section we will cover preprocessing the data for LDA. Generally those
who use LDA apply the following proprocessing steps:

• Loading text

• Mapping text into final textual representation

• Lexical analysis of the text

• Optionally removing stop words

• Optionally stemming

• Building a vocabulary

• Optionally removing uncommon or very common words

• Mapping each text document into a word-bag

3.3.1 Loading Text

Loading the text is usually a matter of parsing a data file or querying a database
where the text is stored. In this case, it is a JSON file containing Github issue
tracker API call results.

3.3.2 Mapping Text

The next step is to transform the text into a final textual representation. This
will be the textual representation of the documents. Some text is structured and
thus must be processed. Perhaps section headers and other markup needs to be
removed. If the input text is raw HTML perhaps one needs to strip HTML from

7

the text before use. For the issue tracker data we could include author names in
the comments and in the issue description. This might allow for author-oriented
topics, but might also confuse future analysis when we notice there was no direct
mention of any of the authors. In this tutorial we have chosen to concatenate
the title and the full description of the issue report, so that topics will have
access to both fields. Many uses of LDA in software analysis includes sourc
code in the document texts. Using source code requires lexing, parsing, filtering
and often renaming values. When feeding source code to LDA, some users do
not want comments, some do not want identifiers, some do not want keywords,
and some want only indentifiers. Thus, the task of converting documents to a
textual representation is non-trivial, especially if documents are marked up.

3.3.3 Lexical Analysis

The next step is lexical analysis of the texts. We need to split the words or
tokens out of the text in order to eventually count them. Once the texts have
been loaded and processed we need to split the texts into tokens. With source
code this requires lexical analysis, where one extracts tokens from source code
in a similar fasion to how compilers perform lexical analysis before parsing.
With natural language text one wants to separate words and punctuation where
appropriate. For example, some words, such as initialisms, contain periods but
most of the time a period indicates the end of a sentence and is not a part
of the word. With texts about source code, it might be useful to have some
tokens start with a period, for instance if you are analyzing CSS (cascading
style sheets) or texts with CSS snippets, where a period prefix indicates a CSS
class.

3.3.4 Stop Word Removal

Often words appear in texts that are not helpful to topic analysis. Such words
are called stop words. It is common in Natural Language Processing (NLP) and
Information Retrieval (IR) systems to filter out stop words before executing a
query or building a model. Stop words are words that are not relevant to the
desired analysis. Whether a word is considered a stop word or not is depen-
dant on the analysis, but there are some sets of common stop words available.
Some users of NLP and LDA tools view terms such as “the”, “at”, and “a” as
unnecessary, where as other researchers, depending on the context, might view
the definitives and prepositions as important. We have included stop words, a
text file that contains various words that we do not wish to include in topics
in this tutorial. For each word extracted from the document we remove those
found within our stop word list.

3.3.5 Stemming

Since words in languages like English have multiple forms and tenses it is com-
mon practice to stem words. Stemming is the process of reducing words to their

8

original root. Stemming is optional and often used to reduce vocabulary sizes.
For instance, given the words act, acting, acted and acts, the stem for all 4
words will be act. Thus if a sentence contains any of the words upon stemming
it will resolve to the same stem. Unfortunately, sometimes stemming reduces
the semantic meaning of a term. For example, “acted” is in the past tense, but
this information will be lost if stemmed. Stemming is not always necessary.

Stemming software is readily available. NLTK 2 comes with an implementa-
tion of the Porter stemmer and Snowball stemmers. One caveat with stemmers
is they often produce word roots that are not words or conflict with other words.
Sometimes this leads to unreadable output from LDA unless one keeps the orig-
inal documents and their original words.

3.3.6 Common and Uncommon Word Removal

Since LDA is often used to find topics it is common practice to filter out ex-
ceptionally common words and infrequent words. Words that appear in only 1
document are often viewed as unimportant, because they won’t form a topic with
multiple documents. Unfortunately if very infrequent words are left in, some
documents which do not contain the word will be associated with that word
via the topics that include that word. The common words are often skipped
because they muddle topic summaries and make interpretation more difficult.

Once the documents are preprocessed and prepared via lexing, filtering, and
stemming we can start indexing them for use as documents within a LDA im-
plementation.

3.4 Applying LDA

In this tutorial, we use Vowpal Wabbit by Langford et al. [13]. Vowpal Wabbit
accepts a sparse document word matrix format where one line represents a
document and each element of the line is an integer word joined by a colon to
its count within that document. We provide lda.py, a program to convert text
to Vowpal Wabbit’s input format, and parse its output format. One difficulty
encountered using LDA libraries and programs is that often you have to maintain
your own vocabulary or dictionary.

We provide our parameters to Vowpal Wabbit: α set to 0.01, β set to 0.01
(called ρ in vowpal wabbit), and K, the number of topics. 0.01 is a common
default for α and β in many pieces of LDA software. These parameters should
be chosen based on the desired breadth of documents and topics, respectively.
If documents that only discuss a few topics and never mention all others are
desired, α should be set small, to around 1/K. With this setting, almost all
documents will almost never mention more than a few topics. Inversely, if
documents that discus all topics but focus on some more than others are desired,
α should be set closer to 1. With this setting, almost all documents will discuss
almost every topic but not in equal proportions. Setting β is similar to setting
α except that it controls the variety words each topic will mention.

2NLTK: http://www.nltk.org/howto/stem.html

9

Wemust also calculate and provide the size of the vocabulary as ⌈log2(|words|)⌉.
We choose 20 for the number of topics for the sake reading and interpreting the
topics. The number of topics depends on the intent behind the analysis. If one
wants to use LDA for dimensionality reduction perhaps keeping the number of
topics low is important. If one wants to cluster documents using LDA a larger
number of topics might be warranted. Conceptual coupling might be best served
with many topics over fewer topics.

3.5 Vowpal Wabbit

Vowpal Wabbit reads the input documents and parameters and outputs a doc-
ument topic matrix and a topic word matrix. predictions-00.txt where 00

is the number of topics, is a file containing the document topic matrix. Each
document is on one line, and each row is the document topic weight. If multi-
ple passes are used, the last M lines of predictions-00.txt, where M is the
number of documents, are the final predictions for the document topic matrix.
The first token is the word ID and the remaining K tokens are the allocation
for each topic (topics are columns).

3.6 Tutorial LDA Output

Our program lda.py produces summary.json a JSON summary of the top topic
words for each topic extracted, ranked by weight. 2 other JSON files are cre-
ated, document topic matrix.json and document topic map.json. The first
file (matrix) contains the documents and weights represented by JSON lists.
The second file (map) contains the documents by their ID mapped to a list
of weights. document topic map.json contains both the original ID and the
document weight where as the matrix uses indices as IDs. lda-topics.json

is also produced and it lists the weights of words associated with each topic,
as lists of lists. lids.json is a list of document IDs in the order presented to
Vowpal Wabbit and the order used in the document topic matrix.json file.
dicts.json maps words to their integer IDs.

3.6.1 Semantic Topic Analysis

Since the topics are extracted, let’s go take a look! In Table 1 we see a depiction
of 20 topics extracted from the Bootstrap project issue tracker. The words
shown are the top 10 ranking words from each of the topics, the most heavily
allocated words in the topic.

Each topic is assigned a number by LDA software, however the order in
which it assigns numbers is arbitrary and has no meaning. If you ran LDA
again with different seeds or different timing (depending on implementation)
you would probably get different topics or similar topics but in different orders.
Nonetheless, we can see in Table 1 that many of these topics are definitely
related to the Bootstrap project. Topic summaries such as these are often your
first canary in the coal mine: they give you some idea of the health of your

10

LDA output. If they are full of random tokens and numbers one might consider
stripping out such tokens from the analysis. If we look to Topic 20 we see a set
of terms: license org mit apache copyright xl cc spec gpl holder. MIT, Apache,
GPL and CC are all copyright licenses and all of these licenses have terms
and require attribution. Perhaps documents related to Topic 20 are related to
licensing? How do we verify if Topic 20 is about licensing or not?

Using the document topic matrix we can look at the documents that are
ranked high for topic 20. Thus we can load the CSV file, document topic map.csv

or JSON file, document topic map.json, with our favorite spreadsheet pro-
gram, R, or Python, and sort by descending order on the T20 (topic 20) column.
Right at the top is issue 2054. Browsing large.json or by visiting issue 2054
on Github 3 we can see that the subject of the issue is “Migrate to MIT Li-
cense”. The next issues relate to licensing for image assets (#3942), javascript
minification (unrelated, but still weighted heavily toward topic 20) (#3057),
phantomJS error (#10811) and two licensing issues (#6342 and #966). The
LDA python program also produces a document topic map norm.csv that has
normalized the topic weights, reviewing the top weighted documents from the
normalized CSV film reveals different issues, but 4 of the 6 top issues are still
licensing relevant (#11785, #216, #855, and #10693 are licensing related but
#9987, and #12366 are not).

3.6.2 Visualization

Looking at the numbers and topics is not enough, usually we want to visually
explore the data to tease out interesting information. One can use simple tools
such as spreadsheets to make basic visualizations.

Common visualization tasks with LDA include:

• Plotting Document to Topic Association over Time

• Plotting the Document Topic Matrix

• Plotting the Document Word Matrix

• Plotting the association between two distinct kinds of documents within
the same LDA run.

Given the CSV files, one can visualize the prevalence of topics over time.
Figure 2 depicts a chart from LibreOffice’s spreadsheet that shows the propor-
tional topic weights of the first 128 issues over time against topics 15 to 20 from
Table 1.

Based on the spreadsheet inspection the reader should notice that the docu-
ment topic weights are somewhat noisy and hard to immediately interpret. For
instance, it is hard to tell when a topic is popular and when it comes less popu-
lar. Alternatively one might ask is a topic constantly referenced over time or is
it periodically popular? One method of gaining an overview is to bin or group

3Bootstrap issue 2054 https://github.com/twbs/bootstrap/issues/2054

11

https://github.com/twbs/bootstrap/issues/2054

Topic # Top 10 topic words
Topic 1 grey blazer cmd clipboard packagist webview kizer ytimg vi wrench
Topic 2 lodash angular betelgeuse ree redirects codeload yamlish prototypejs

deselect manufacturer
Topic 3 color border background webkit image gradient white default rgba

variables
Topic 4 asp contrast andyl runat hyperlink consolidating negatory pyg-

ments teuthology ftbastler
Topic 5 navbar class col css width table nav screen http span
Topic 6 phantomjs enforcefocus jshintrc linting focusin network chcp phan-

tom humans kevinknelson
Topic 7 segmented typical dlabel signin blockquotes spotted hyphens tax

jekyllrb hiccups
Topic 8 modal input button form btn data http tooltip popover element
Topic 9 dropdown issue chrome menu github https http firefox png browser

Topic 10 zepto swipe floor chevy flipped threshold enhanced completeness
identified cpu

Topic 11 grid width row container columns fluid column min media respon-
sive

Topic 12 div class li href carousel ul data tab id tabs
Topic 13 parent accordion heading gruntfile validator ad mapped errorclass

validclass collapseone
Topic 14 bootstrap github https css http js twitter docs pull don
Topic 15 left rtl support direction location hash dir ltr languages offcanvas
Topic 16 percentage el mistake smile spelling plnkr portuguese lokesh boew

ascii
Topic 17 font icon sm lg size xs md glyphicons icons glyphicon
Topic 18 tgz cdn bootstrapcdn composer netdna libs yml host wamp cdnjs
Topic 19 npm js npmjs lib http install bin error ruby node
Topic 20 license org mit apache copyright xl cc spec gpl holder

Table 1: The top 10 ranked words of the 20 topics extracted from Bootstrap’s
issue tracker issues.

12

Figure 2: Example of using simple spreadsheet charting to visualize part of the
document topic matrix of Bootstrap (topics 15 to 20 of the first 128 issues).

documents by their date (e.g., weekly, biweekly, monthly) and then plot the
mean topic weight of 1 topic per time bin over time. This allows one to produce
a visualization depicting peaks of topic relevance over time. Within the tutorial
distribution we have included an R script called plotter.R, that produces a
summary of the 20 topics extracted combined with the dates extracted from the
issue tracker. This R script produces Figure 3, a plot of the average relevance
of documents per two week period over time. This plot is very similar to the
plots in Hindle et al. [11]. If one looks to the bottom right corner of the figure
at the plot of Topic 20 one can see that Topic 20 peaks up from time to time,
but is not constantly discussed. This matches our perception of the licensing
discussions found within the issue tracker: they occur when licenses need to be
clarified or change, but they do not change all the time. This kind of overview
can be integrated into project dashboards to give managers an overview of issue
tracker discussions over time.

Further directions for readers to explore is using different kinds of documents,
such as documentation, commits, issues and source code, and then relying on
LDA’s document topic matrix to link these artifacts. We hope this tutorial has
helped illustrate how LDA can be used to gain an overview of unstructured data
within a repository and infer relationships between documents.

4 Potential Pitfalls and Hazards

A typical erroneous assumption frequently made by LDA users is that an LDA
topic will represent a more traditional topic that humans write about such as
sports, computers or Africa. It is important to remember that LDA topics may
not have a valid interpretation. This problem was explored in Hindle et al. [11].

13

Figure 3: Average Topic Weight for Bootstrap Issues in 2 week bins. The topics
are clearly described in Table 1

14

Topic # 1 2 3 4 5
Topic #1 1 ∼ 1 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.22 ∼ 0.17 -0.16 ∼ 0.24
Topic #2 -0.22 ∼ 0.17 1 ∼ 1 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #3 -0.21 ∼ 0.18 -0.22 ∼ 0.17 1 ∼ 1 -0.22 ∼ 0.18 -0.22 ∼ 0.18
Topic #4 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.22 ∼ 0.18 1 ∼ 1 -0.23 ∼ 0.16
Topic #5 -0.16 ∼ 0.24 -0.23 ∼ 0.16 -0.22 ∼ 0.18 -0.23 ∼ 0.16 1 ∼ 1
Topic #6 -0.11 ∼ 0.28 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.22 ∼ 0.17 -0.21 ∼ 0.19
Topic #7 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #8 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.17 -0.23 ∼ 0.16
Topic #9 -0.23 ∼ 0.17 -0.24 ∼ 0.15 -0.19 ∼ 0.21 -0.23 ∼ 0.16 -0.24 ∼ 0.16
Topic #10 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.21 ∼ 0.18 -0.23 ∼ 0.16 -0.11 ∼ 0.28

Topic # 6 7 8 9 10
Topic #1 -0.11 ∼ 0.28 -0.22 ∼ 0.17 -0.22 ∼ 0.17 -0.23 ∼ 0.17 -0.22 ∼ 0.17
Topic #2 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16 -0.24 ∼ 0.15 -0.23 ∼ 0.16
Topic #3 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.19 ∼ 0.21 -0.21 ∼ 0.18
Topic #4 -0.22 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.17 -0.23 ∼ 0.16 -0.23 ∼ 0.16
Topic #5 -0.21 ∼ 0.19 -0.23 ∼ 0.16 -0.23 ∼ 0.16 -0.24 ∼ 0.16 -0.11 ∼ 0.28
Topic #6 1 ∼ 1 -0.2 ∼ 0.2 -0.22 ∼ 0.18 -0.22 ∼ 0.17 -0.22 ∼ 0.18
Topic #7 -0.2 ∼ 0.2 1 ∼ 1 -0.21 ∼ 0.18 -0.21 ∼ 0.18 -0.23 ∼ 0.17
Topic #8 -0.22 ∼ 0.18 -0.21 ∼ 0.18 1 ∼ 1 -0.23 ∼ 0.16 -0.22 ∼ 0.17
Topic #9 -0.22 ∼ 0.17 -0.21 ∼ 0.18 -0.23 ∼ 0.16 1 ∼ 1 -0.05 ∼ 0.33
Topic #10 -0.22 ∼ 0.18 -0.23 ∼ 0.17 -0.22 ∼ 0.17 -0.05 ∼ 0.33 1 ∼ 1

Table 2: Topic-topic correlation matrix. 95% confidence intervals of the corre-
lation amount. From the same LDA model as Figure 1.

Thus, working with LDA-produced topics has some hazards: for example, even
if LDA produces a recognizable sports topic it may be combined with other
topics or there may be other sports topics.

Another important property of LDA topics is that they are independent.
This means that a word can only come from a single topic. Even if LDA pro-
duced a recognizable “sports” topic and a recognizable “news” topic, their com-
bination is assumed never to occur. “Sports news,” may then appear as a third
topic, independent from the first two. Or, it may be present in other topics
whose focus is neither sports nor news. The independence of topics makes their
comparison problematic. For example, it might be desirable to ask if two top-
ics overlap in some way, but due to their independence they are not allowed
to correlate: the output of LDA has topic-to-topic correlation values that are
never significantly different from 0, as shown within the confidence intervals of
Table 2.

Another pitfall is that some LDA software reports probabilities while others
report word counts or other weights. While one can convert between proba-
bilities and word counts, it is important to consider whether each document
receives equal weight, or whether longer documents should receive more weight
than shorter documents.

Since LDA models are found iteratively, it is important to ensure that they
have had adequate time to converge before use. Otherwise, the model does not
correspond to the input data. The time required for convergence depends on

15

the number of topics, documents and vocabulary words. For example, Vowpal
Wabbit with 100 topics and 20 000 documents, each pass takes a matter of
seconds on modest hardware, but at least 2 passes are recommended. In order
to choose the correct number of passes, the output should be examined and the
number of passes increased until the output stops changing significantly.

Finally, it is necessary to remember that LDA assumes that word-topic prob-
abilities and topic-document probabilities are Dirichlet distributions. Further-
more, many pieces of LDA software use symmetric Dirichlet distributions. This
implies the assumption that the Dirichlet parameters are the same for every
word (β) or topic (α), respectively, and that these parameters are known be-
forehand. In most software this means that α and β must be set carefully.

5 LDA uses in Software Analysis

The Latent Dirichlet Allocation (LDA) method was originally formulated by
Blei [4] and it soon became quite popular within the software engineering com-
munity. LDA’s popularity comes from the variety of its potential applications
and uses.

LDA excels at feature reduction and can employed as a pre-processing step
for other models, such as machine learning algorithms. LDA can also be used to
augment the inputs to machine learning and clustering algorithms by producing
additional features from documents. One example of this type of LDA usage is
described in Wang et al. [23], where it is employed in a recommender system.
Similarly, labelled LDA can be used to create vectors of independent features
from arbitrary feature sets such as tags.

An important use of LDA is for linking software artifacts. There are many
instances of such artifact-linking applications, such as measuring coupling be-
tween code modules [19] and matching code modules with natural-language
requirement specifications [20] for traceability purposes. Asuncion et al. [2] ap-
plied LDA on textual documentation and source-code modules and used the
topic document matrix to indicate traceability between the two. Thomas et
al. [22] focused on the use of LDA on yet another traceability problem, link-
ing email messages to source-code modules. Gethers et al. [8] investigated the
effectiveness of LDA for traceability-link recovery. They combined IR tech-
niques including Jenson/Shannon model, vector space model and the relational
topic model using LDA together. They concluded that each technique had its
positives and negatives yet, the integration of the methods together tended to
produce the best results. Typically steeped in the information retrieval domain,
Poshyvanyk et al. [21, 18, 16] have explored the use of IR techniques such as
LSI [15] and LDA to recover software traceability links in source code and other
documents. For a general literature survey related to traceability techniques
(including LDA), the interested reader should refer to De Lucia [7].

Baldi et al. [3] labelled LDA extracted topics and compared them to aspects
in software development. Baldi claims that some topics do map to aspects, this
was somewhat corroborated by Hindle et al. [12].

16

Clustering is frequently used to compare and identify (dis)similar documents
and code, or to quantify the overlap between two sets of documents. Clustering
algorithms can potentially be applied to topic probability vectors produced by
LDA. LDA has been used in a clustering context, for issue report querying and
deduplication. Lukins et al. [14] applied LDA topic analysis to issue reports,
leveraging LDA inference to infer if queries, topics, and issue reports were re-
lated to each other. Alipour et al. [1] leveraged LDA topics to add context to
deduplicate issue reports and found that LDA topics added useful contextual
information to issue/bug deduplication. Campbell et al. [5] used LDA to ex-
amine the coverage of popular project documentation by applying LDA to two
collections of documents at once: user questions and project documentation.
This was done by clustering and comparing LDA output data.

Often LDA is used to summarize the contents of large datasets. This is done
by manually or automatically labelling the most popular topics produced by
unlabeled LDA. Labeled LDA can be used to track specific features over time,
for example to measure the fragmentation of a software ecosystem as in Han et
al. [10].

Even though LDA topics are assumed to be implicit and not observable,
there is substantial work on assessing the interpretability of those summaries
by developers. Labelling software artifacts using LDA was investigated by De
Lucia et al. [6]. By using multiple IR approaches such as LDA and LSI, they
labelled and summarized source code and compared against human-generated
labels. Hindle et al. [11] investigated if developers could interpret and label
LDA topics. They report limited success with 50% being successfully labelled
by the developers and that non-experts tend to do poorly at labelling topics on
systems they have not dealt with.

Finally, there has been some research on the appropriate choice of LDA
hyper-parameters and parameters: α, β, K topics. Grant et al. [9] were con-
cerned about K where K is the number of topics. While Panichella et al. [17]
proposed LDA-GA, a genetic algorithm approach to searching for appropriate
LDA hyper-parameters and parameters. LDA-GA needs an evaluation measure,
thus Panichella et al. used software engineering specific tasks that allowed their
GA to optimize against the cost effectiveness.

6 Threats to Validity

This section summarizes the threats to validity that practitioners may face when
using LDA. Pitfalls have been identified throughout the chapter, especially in
section 4, but some are summarized here.

6.1 Construct Validity

Construct validity relates to the ability of research to measure what it intended
to measure. LDA topics are independent topics extracted from word distri-
butions. This independence means that correlated or co-occuring concepts or

17

ideas will not necessarily be given their own topic, and if they are the docu-
ments might be split between topics. One should be aware of the constraints
and properties of LDA when trying to infer if LDA output shows an activity or
not. LDA topics are not necessarily human ideas, concepts or topics. Compar-
isons between topics in terms of document association can be troublesome due
to the independence assumption of topics.

6.2 Internal Validity

Internal Validity refers to how well conclusions can be made about casual effects
and relationships. An important aspect of LDA is that topics are independent,
thus if two ideas are being studied to see if one causes the other one has to guard
against LDA’s word allocation strategy. To show that an event caused a change
in LDA output one should use a different data source and manual validation.
LDA output changes given different α and β parameters, and sometimes given
a test one could tune these parameters to pass or fail this test. Thus one has to
motivate the choice of α and β parameters carefully.

6.3 External Validity

External validity is about generalization and how broadly findings can be made.
LDA topics are relevant to the corporae provided thus their topics and words
associated with the topics might not be generalizable. Alternatively LDA can
be applied to numerous collections of documents and thus external validity can
be addressed in some situations.

6.4 Reliability

Reliability is about how well one can repeat the findings of a study. With
LDA the exact topics found will not be found again without sharing of initial
parameters or seeds. Thus all LDA studies should report their parameters.
Yet even if parameters are reported LDA implementations will return different
results and the same implementation might produce different topics or different
topic orderings each time it is run. Others might not be able to replicate the
exact topics found or the ordering of the topics found.

7 Conclusions

Latent Dirichlet Allocation is a powerful tool for working with collections of
structured, unstructured, and semi-structured text documents, of which there
are plenty in software repositories. Our literature review has documented the
abundance of LDA applications in software analysis, from document clustering
for issue/bug deduplication, to linking for traceability between code, documen-
tation, requirements and communications, to summarizing for association with
software-lifecycle activities.

18

We have demonstrated a simple case of using LDA to explore the contents of
an issue tracker repository and showed how the topics link back to documents.
We also discussed how to visualize the output.

LDA however relies on a complex underlying probabilistic model and a num-
ber of assumptions. Therefore, even though off-the-shelf software is available
to compute LDA models, the user of this software must be aware of potential
pitfalls and caveats. This chapter has outlined the basics of the underlying con-
ceptual model and discussed these pitfalls in order to enable the informed use
of this powerful method.

References

[1] A. Alipour, A. Hindle, and E. Stroulia. A contextual approach towards
more accurate duplicate bug report detection. In Proceedings of the Tenth
International Workshop on Mining Software Repositories, pages 183–192.
IEEE Press, 2013.

[2] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability
with topic modeling. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 95–104,
New York, NY, USA, 2010. ACM.

[3] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya. A theory of
aspects as latent topics. In Proceedings of the 23rd ACM SIGPLAN confer-
ence on Object-oriented programming systems languages and applications,
OOPSLA ’08, pages 543–562, New York, NY, USA, 2008. ACM.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, Mar. 2003.

[5] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller. Deficient
documentation detection: a methodology to locate deficient project doc-
umentation using topic analysis. In T. Zimmermann, M. D. Penta, and
S. Kim, editors, MSR, pages 57–60. IEEE / ACM, 2013.

[6] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella.
Using ir methods for labeling source code artifacts: Is it worthwhile? In
Program Comprehension (ICPC), 2012 IEEE 20th International Confer-
ence on, pages 193–202. IEEE, 2012.

[7] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. Information
retrieval methods for automated traceability recovery. In Software and
Systems Traceability, pages 71–98. Springer, 2012.

[8] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia. On integrating
orthogonal information retrieval methods to improve traceability recovery.
In Software Maintenance (ICSM), 2011 27th IEEE International Confer-
ence on, pages 133–142. IEEE, 2011.

19

[9] S. Grant and J. R. Cordy. Estimating the optimal number of latent concepts
in source code analysis. In Proceedings of the 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation, SCAM ’10, pages
65–74, Washington, DC, USA, 2010. IEEE Computer Society.

[10] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia. Under-
standing android fragmentation with topic analysis of vendor-specific bugs.
In WCRE, pages 83–92. IEEE Computer Society, 2012.

[11] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan. Relating require-
ments to implementation via topic analysis: Do topics extracted from re-
quirements make sense to managers and developers? In ICSM, pages
243–252. IEEE Computer Society, 2012.

[12] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos. Automated
topic naming to support cross-project analysis of software maintenance ac-
tivities. In Proceedings of the 8th Working Conference on Mining Software
Repositories, pages 163–172. ACM, 2011.

[13] J. Langford, L. Li, and A. Strehl. Vowpal wabbit, 2007.

[14] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source code retrieval for bug
localization using latent dirichlet allocation. In Proceedings of the 2008 15th
Working Conference on Reverse Engineering, WCRE ’08, pages 155–164,
Washington, DC, USA, 2008. IEEE Computer Society.

[15] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information
retrieval approach to concept location in source code. In Proceedings of
the 11th Working Conference on Reverse Engineering, WCRE ’04, pages
214–223, Washington, DC, USA, 2004. IEEE Computer Society.

[16] C. McMillan, D. Poshyvanyk, and M. Revelle. Combining textual and
structural analysis of software artifacts for traceability link recovery. In
Proceedings of the 2009 ICSE Workshop on Traceability in Emerging Forms
of Software Engineering, TEFSE ’09, pages 41–48, Washington, DC, USA,
2009. IEEE Computer Society.

[17] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia. How to effectively use topic models for software engineer-
ing tasks? an approach based on genetic algorithms. In Proceedings of the
2013 International Conference on Software Engineering, pages 522–531.
IEEE Press, 2013.

[18] D. Poshyvanyk. Using Information Retrieval to Support Software Main-
tenance Tasks. PhD thesis, Wayne State University, Detroit, MI, USA,
2008.

[19] D. Poshyvanyk and A. Marcus. The conceptual coupling metrics for object-
oriented systems. In Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on, pages 469–478. IEEE, 2006.

20

[20] B. Ramesh. Factors influencing requirements traceability practice. Com-
mun. ACM, 41(12):37–44, Dec. 1998.

[21] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk. Topicxp: Exploring
topics in source code using latent dirichlet allocation. In Proceedings of the
2010 IEEE International Conference on Software Maintenance, ICSM ’10,
pages 1–6, Washington, DC, USA, 2010. IEEE Computer Society.

[22] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein. Validating the use
of topic models for software evolution. In Proceedings of the 2010 10th IEEE
Working Conference on Source Code Analysis and Manipulation, SCAM
’10, pages 55–64, Washington, DC, USA, 2010. IEEE Computer Society.

[23] H. Wang and K. Wong. Recommendation-assisted personal web. In Services
(SERVICES), 203 IEEE Ninth World Congress on, pages 136–140. IEEE,
2013.

[24] Wikipedia. Latent dirichlet allocation — wikipedia, the free encyclopedia,
2014. [Online; accessed 15-July-2014].

21

	Introduction
	How LDA Works
	Technical Details of LDA

	LDA Tutorial
	Materials
	Acquiring Software Engineering Data
	Preprocessing
	Loading Text
	Mapping Text
	Lexical Analysis
	Stop Word Removal
	Stemming
	Common and Uncommon Word Removal

	Applying LDA
	Vowpal Wabbit
	Tutorial LDA Output
	Semantic Topic Analysis
	Visualization

	Potential Pitfalls and Hazards
	LDA uses in Software Analysis
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Conclusions

