
Domain-Independent Cost-Optimal Planning in ASP

by

David Spies

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© David Spies, 2019

Abstract

We examine various techniques in SAT-based (Satisfiability) planning and ex-

plore how they can be applied and further improved in the context of ASP

(Answer Set Programming). First, we look at the 2006 planner SATPlan and

show that their encoding, when translated directly into ASP, enjoys a sig-

nificantly reduced search space over the very same encoding in SAT. Next we

tackle the problem of reducing the large encoding size which prohibits the best

SAT-based planners from handling the larger planning problems that appear

in planning competitions. In particular we give a simple encoding for reducing

the number of expressions required to handle action-mutex constraints. After

that we tackle the problem of how to reduce the size of fluent-mutex con-

straints and show that this can be done far more effectively than in previous

work by covering the mutex-graph with multicliques (complete multi-partite

subgraphs). Finally we address the problem of cost-optimal planning in ASP.

While most attempts at planning in SAT have been either cost-agnostic or at

best constrained to planning at a fixed-makespan, those that have attempted

to handle cost-optimal planning at any makespan introduce significant space-

overhead, to the point of prohibiting them from tackling larger planning prob-

lems. We show that by exploiting stable model semantics, we can produce a far

more space-efficient ASP-planner which guarantees makespan-agnostic cost-

optimality. Using lessons learned from this, we develop an entirely new and

different approach to planning, stepless planning which reduces the grounded

ii

problem space even more and relies heavily on stable model semantics for its

correctness.

iii

Preface

This thesis was written with significant help from my supervisor Jia You,
who added references and short descriptions of background material including
significant revisions to the introduction. He continually helped me find places
that needed further explanation and clarification, pointed me to lots of great
resources, and helped me work through many of the problems I encountered
along the way.

iv

Acknowledgements

Thank you to Professor Jia You, my supervisor who helped me through writing
this and who taught me so much over the time I spent at the University of
Alberta. Then three years later after I’d left the university and all but given
up on completing my MSc, he reached out to me and offered to really help
me finish this. I cannot overstate my appreciation and respect for all his help,
support, kindness, and encouragement.

Also, thank you to my co-supervisor Professor Ryan Hayward for his help
and support.

I also want to thank Professors Martin Mueller, Michael Buro, Zach Frig-
gstad and all my friends in the UofA Programming Club.

Thank you to the Department of Computing Science and the University
of Alberta for providing me this opportunity to learn and research in a stim-
ulating and supportive environment.

v

Contents

1 Introduction 1

2 Boolean Satisfiability (SAT) 5
2.1 Hamiltonian Path as SAT . 5
2.2 Solving Techniques . 7

2.2.1 DPLL . 8
2.2.2 CDCL . 9

2.3 Encoding Efficiency . 10

3 Answer Set Programming 12
3.1 ASP . 13

3.1.1 Overview . 13
3.1.2 Basic Rules . 13
3.1.3 Other Rules . 21

3.2 The ASP-Core-2 Language . 23
3.3 Hamiltonian Path Revisited 28
3.4 Iterative Grounding . 30

4 Strips Planning 32
4.1 Actions and Fluents . 32
4.2 Sequential Planning . 33
4.3 Taking Simultaneous Actions 34
4.4 The Planning Graph . 36

5 ASPPlan 37
5.1 Translating from SATPlan . 37
5.2 An Observation about Mutex Actions 39
5.3 Encoding Reduction . 40

6 Mutex Graphs and Multicliques 42
6.1 Saving Space with Multicliques 42
6.2 An Assignment-MinimumMulticlique-Covering Approximation

Algorithm . 44
6.3 Eventual Fluent Mutex Constraints 50
6.4 Experiments . 51

7 Cost-Optimal Planning in ASP 53
7.1 Our First Complete Planner 54
7.2 Stronger Notions of Progress 57
7.3 Extending No-Solution Detection to Cost-Optimality Detection 61
7.4 Delete-Free Planning . 64

7.4.1 Delete-Free Planning: Take 1 65
vi

7.4.2 Delete-Free Planning: Take 2 66
7.5 The Suffix Layer . 68

8 Planning without Layers: Stepless Planning 70
8.1 Stepless Planner Encoding . 71
8.2 Making Stepless Progress . 76
8.3 Stepless Suffix Layer . 79
8.4 Counting Stepless Occurrences 81
8.5 Example of Stepless Planning: Bridge Crossing 82

9 Experiments 90

10 Summary and Future Directions 95

References 100

Appendix A Equivalent Definitions of Multicliques 104

Appendix B Representing a Mutual Exclusion Clique in SAT 106

Appendix C List of Selected ASP Planners Used in this Paper 109
C.1 Simple Planner . 109
C.2 ASPPlan . 109
C.3 AASPPlan . 110
C.4 Delete-Free Planner . 110
C.5 Variant II encoding for Cost-Optimal ASPPlan with Suffix Layer111
C.6 Stepless Planner with Suffix Layer 113

vii

Chapter 1

Introduction

Planning is one of the most celebrated research problems in artificial intelli-
gence for building goal-oriented intelligent artifacts. Simply put, planning is
the problem of finding a sequence of actions that lead from some initial state
to a goal state. A planning problem is described by a collection of available
actions, each with some preconditions and effects, an initial state, and final
state. The STRIPS planning framework [13] provides the basis for express-
ing domain-independent planning problems in an appropriate action language.
Planning in this form is often called offline planning as compared to more com-
plex planning problems in dynamic environments. The book by Ghallab et al.
[24] gives an excellent account of the theory and practice of solving planning
problems. For empirically evaluating state-of-the-art planning systems, the
International Planning Competition (IPC) has been carried out as an event
in the context of the International Conference on Automated Planning and
Scheduling (ICAPS).

Two of the successful approaches to planning are GraphPlan [5] and SAT-
Plan [28], [29] (also see [33], [37], [46]). The former is based on searching
a state-graph where nodes are collection of fluents and edges are actions.
A number of systems based on GraphPlan have been implemented as open
source (check, e.g., GraphPlan in Wikipedia). SATPlan is based on the idea
of planning as satisfiability - formulating a planning problem by a collection
of propositional clauses and using an efficient SAT solver to search for a plan.
Once a satisfying truth value assignment is found, a plan can be extracted

1

from it.
Along with boolean satisfiability and the advancement of its solver tech-

niques, Answer Set Programming (ASP) [21] (also see, [3], [11], [12], [20], [21],
[30], [42]) has emerged as a prominent approach to declarative problem solv-
ing and knowledge representation. ASP provides a paradigm for uniformly
encoding NP-complete problems as well as problems in the second level of the
polynomial hierarchy, namely ΣP

2 -hard problems, by supporting disjunctive
rules. Compared to other approaches, ASP has some unique advantages, e.g.,
it allows cardinality constraints and constraints requiring that solutions be
acyclic to be encoded compactly and handled efficiently. Highly competitive
ASP solvers already (e.g., [14], [16], [19]), are used in applications in molecular
biology, planning and scheduling, and solving puzzles and games.

This report investigates a new approach to domain-independent planning
in ASP. Current ASP planners such as PLASP [15] do not use nearly as so-
phisticated techniques as modern SAT planners. In this report, we start by
bringing ASP planning up to speed, translating the rules presented in [28] into
ASP. We further find ways to reduce the large instance size by analyzing the
mutex graph, improving on techniques presented in [36]. Finally, we explore
the domain of cost-optimal planning, basing our encoding on techniques pre-
sented in [40], but exploiting stable model semantics to create a much more
efficient, simple, and successful cost-optimal planner.

The next few chapters present the background material necessary to un-
derstand this report.

Chapter 2 introduces SAT (Boolean Satisfiability) as a paradigm for encod-
ing and solving problems. We briefly overview modern techniques for SAT-
solving and explore the question of how and when to reduce the size of an
encoding in a way that would be beneficial to the solver.

Chapter 3 introduces ASP (Answer Set Programming) as a paradigm for
encoding and solving problems. We first look at grounded ASP in the SModels
format [42] and discuss the role stable models play in an encoding. We then
present enough of the higher-level ASP-Core-2 language [7] to understand the

2

programs presented in this paper. This chapter finishes with an example and
a note about iterative solving in ASP.

Chapter 4 provides a brief overview of STRIPS planning. STRIPS is a
paradigm for encoding a planning problem so that it may be solved by any
domain-independent planner. We write a short naive ASP planner to illustrate
the input that is assumed in this paper. This encoding is then revised to allow
for parallel actions.

Chapter 5 creates the planner ASPPlan by translating the rules from SAT-
Plan directly into ASP. We then make some observations about the resulting
encoding and some optimizations.

Chapter 6 introduces a class of graphs called multicliques and shows how
to reduce the number of clauses used to express mutex relations in a planning
problem by finding a multiclique-covering of the mutex graph.

Chapter 7 brings the entire paper together to produce our first cost-optimal
planner. We first examine how to tell when an instance is unsolvable by
restricting the set of candidate solution plans to those that “make progress”,
and then use this to create a cost-optimal planner, AASPPlan. We then look at
the problem of delete-free planning and use stable models to generate a linear-
size encoding. This is then appended to AASPPlan to serve as a heuristic
“suffix” layer.

Chapter 8 applies the same idea as described in Chapter 7, which enables
us to create our second cost-optimal planner, SteplessPlan. As the name
suggests, in this planner there is no notion of layers or makespan. To the best
of our knowledge, this is the first time that cost-optimal planning is solved by
a stepless planner in a logic-based language.

Chapter 9 reports experimental results and compares with those of Robin-
son et al. [40], the only work that we can find that addresses globally1 cost-
optimal planning in a logic-based approach. Our early expectation of stepless
planning was that the difficulty of the problems involved and the use of dis-
junctive ASP would make it underperformant, but our experiments showed

1As opposed to for a fixed makespan

3

that this expectation was wrong and that in fact stepless planning may have
significant practical implications.

Chapter 10 provides a summary and discusses future directions. Indeed,
this thesis is a first step in using ASP to encode cost-optimal planning prob-
lems. To make it practical many more issues need to be investigated.

Appendix A presents a proof that the various definitions of multicliques
given in Chapter 6 are equivalent and gives an extra definition.

Appendix B gives a more compact representation of mutual-exclusion cliques
in SAT than exists in the literature.

Appendix C lists encodings of key ASP planners used in this paper.

4

Chapter 2

Boolean Satisfiability (SAT)

In Boolean Satisfiability, a given problem is encoded by a collection of clauses,
say Γ (such a collection is called a SAT instance, or just a program), and the
problem has a solution if and only if there is a truth value assignment that
satisfies Γ. A satisfying truth value assignment can be interpreted to provide
a solution to the given problem. In this context, a clause is a disjunction of
literals, where a literal is either a proposition or the negation of a proposition.
In the literature, such a proposition is often called a variable. SAT is known
to be NP-complete.

2.1 Hamiltonian Path as SAT

Let us start by examining a simple problem, the Hamiltonian-Path problem.
Given a graph G = (V,E), imagine we wish to represent the problem “find
a hamiltonian path on G” as a Boolean Satisfiability instance. Recall that a
hamiltonian path on a graph (directed or undirected) is a path in the graph
that visits each vertex exactly once.

The simplest and most common format for encoding problems in SAT is
DIMACS CNF format. In DIMACS format, every variable is a positive integer
and a rule is a single 0-terminated line of negative (for negated variables)
and positive integers denoting a disjunction of literals. So, for instance, the
expression ((a ∨ b) ∧ (¬b ∨ c)) might be represented as:

c A simple DIMACS SAT instance

5

p cnf 3 2

1 2 0

-2 3 0

In this example, the first line is a comment and the second line indicates
the number of variables and clauses (two and three respectively). The last
two lines are the clauses themselves. The variables are numbered 1, 2, and
3 (corresponding to a, b, and c respectively). Every (disjunctive) clause sits
on one line and is 0-terminated. Where a number is negative, this indicates a
negated variable.

This format is simple and easy for a program to parse. However, one would
not write a serious SAT instance in this format by hand. For that, you must
write code to generate a CNF file.

Here is a SAT description of the problem “find a hamiltonian path on
graph G = (V,E) with |V | = n”. We include n2 boolean variables labeled
x(v,k)| (v ∈ V, 1 ≤ k ≤ n) (where each vertex is represented by a number) to
indicate the solution includes vertex v at position k. The constraints are as
follows:

1. Each vertex has at most one position:∧
v∈V,j∈1...n,k∈1...n,j<k(¬xv,j ∨ ¬xv,k)

2. Every vertex has at least one position:∧
v∈V (

∨
(k∈1...n) xv,k)

3. If vertex v takes position k > 1, then some neighbor of v takes position
k − 1:∧

v∈V,k∈2...n(¬xv,k ∨
∨

(w∈V) xw,k−1|(w, v) ∈ E)

4. Some vertex has position n∨
v∈V xv,n

6

This is a fairly straightforward program which certainly encodes the Hamil-
tonian Path program as a SAT instance. It is probably the simplest solution,
but (as we shall see) not the most efficient.

2.2 Solving Techniques

This thesis focuses primarily on how to optimize problems before they reach
the solver. Ideally, we want to express each problem in a way that simply
encodes everything we know about the problem, while at the same time uses
as few variables/clauses as possible. Thus, we are not particularly concerned
with what happens once the program actually reaches the solver. In general,
larger encodings may not necessarily be harder or easier. Sometimes a larger
encoding includes redundant code that serves as extra constraints thus guiding
the search more effectively. Furthermore, the heuristic used to select decision
literals can matter greatly as well. But for the purposes of this thesis, we will
assume it is always beneficial to reduce the big-O complexity of the encoding
size.

This is not too strong an assumption. For random SAT instances, there
is a well-known phenomenon called phase transition [22], [23] (similarly for
random programs in ASP [47]). But for structured problems, the sheer size of
an encoding can significantly influence the reasoning performance. One of the
reasons is that it is known that a modern SAT solver typically spends 80-90%

of its running time on computing unit propagation [46], which in theory takes
linear time in the size of the underlying SAT instance but in practice can sig-
nificantly impact the performance of a SAT solver. While it is indeed possible
that a SAT or ASP solver might more quickly solve instances generated by an
encoding that requires 2n clauses than one that requires n clauses, it is un-
likely that the solver would perform even faster on an encoding that requires
n2 clauses, as linear time on unit propagation actually becomes quadratic time.
One piece of evidence to support this argument is that modern SAT solvers
have removed the process of lookahead, which though may assign some vari-

7

ables without search, its quadratic running time for each invocation causes too
much overhead.

Modern complete SAT solvers use a technique known as Conflict-Directed
Clause Learning (CDCL) [46]. This is an extension of the earlier algorithm
known as Davis Putnam Logemann Loveland (DPLL) [9]. We will describe
DPLL in detail.

2.2.1 DPLL

Here we give a brief overview of DPLL and then follow that up with a descrip-
tion of CDCL.

DPLL maintains a partial assignment while performing a backtracking
search. Briefly, DPLL can be summarized as:

1. Initialize the search with an empty partial assignment (no variables are
assigned).

2. Select a boolean variable according to some heuristic. The efficiency of
the algorithm depends heavily on the choice of variable which is why bet-
ter heuristics can make a big difference in how well the solver performs.
One popular heuristic is VSIDS (Variable State Independent, Decaying
Sum) [34].

3. Assign this variable either True or False (again according to the heuris-
tic).

4. Perform Unit Propogation and Pure Literal Elimination assigning all
variables which are fixed by the current partial assignment. Eliminate
all satisfied clauses.

5. If a conflict is encountered, backtrack until we reach a variable for which
we have not tried both values (True and False). If no such variable is
found, return “No Solution”. Otherwise flip the value of the variable
found and return to step 4.

8

6. If there are more unsatisfied clauses go back to step 2 selecting another
variable.

7. Otherwise, assign the remaining variables arbitrarily and return the re-
sulting assignment as a solution.

Step 4 mentions Unit Propogation and Pure Literal Elimination. These two
operations take a partial assignment together with a collection of clauses, and
augment that assignment with more literals that can be inferred from the
current partial assignment. Additionally, Unit Propogation may result in a
“conflict”, which indicates that there is no solution using the current partial
assignment (resulting in backtracking in step 5).

• Pure Literal Elimination: For any boolean variable x, if all the clauses
containing x use it only as a positive literal, then assign x to True. Simi-
larly, if x is used in the program only as a negative literal ¬x then assign
it to false. Clearly, this will never cause any conflicts. Then eliminate
any clauses containing the variable x since they are now satisfied.

• Unit Propogation: Take all singleton clauses and assign the correspond-
ing variables accordingly. That is, if we have some clause x, then we
assign the variable x to be true. Similarly, if we have a clause ¬x, we as-
sign x to be false. Now wherever the variable x occurs in another clause,
if it occurs with the opposite sign we eliminate x from the clause, and if
it occurs with the same sign we eliminate the clause entirely since it is
now satisfied. If we ever create an empty clause in this way or assign the
same variable to be both True and False, this indicates we have reached
a conflict and must backtrack (as per step 5).

2.2.2 CDCL

CDCL (Conflict Directed Clause Learning) [46] behaves similarly to DPLL
except in the way it handles conflicts. In CDCL, whenever a conflict is en-
countered, rather than simply backtracking, we use information about the

9

conflict to construct a new clause and add it to the global list of clauses. After
doing this the solver backjumps to the last point at which our new clause would
have taken us in a different direction. In this way, it is possible to skip over
deciding variables whose choice would not affect the current conflict.

2.3 Encoding Efficiency

There are plenty of metrics by which we can determine the efficiency of a
particular encoding. The most obvious ones are of course, number of variables
and number of clauses. Besides this, two other valuable metrics we might use
are total number of literals among all the clauses and number of ≥ 3-literal
clauses.

With respect to these four metrics, let us consider the SAT encoding of
Hamiltonian path given in Section 2.1. Given a graph with n vertices and m

edges, our three metrics over the last problem give:

• Variables: n2 ∈ θ(n2)

• Clauses: n
(
n
2

)
+ 2n+ 1 ∈ θ(n3)

• Literals: 2n
(
n
2

)
+ n2 + 2n+m ∈ θ(n3)

• Non-binary clauses: 2n+ 1 ∈ θ(n)

This can be broken down as follows:

1. First we have n
(
n
2

)
binary clauses asserting a vertex has no more than

one position.

2. Next we have n clauses, one for each vertex, each of length n which
assert that the vertex must take some position. (Literals: n2)

3. Then, n (n− 1) clauses, n−1 for each vertex v, all of length deg (v)+1 as-
serting that v is connected to its predecessor. (Literals: (n− 1) (2m+ n))

4. Finally, a single length-n clause ensuring that the path contains a last
element.

10

Looking at rule 1, we can recognize each cluster of
(
n
2

)
binary clauses as a

collection of mutual exclusion constraints on a clique of size n. As illustrated
in [36], given such a clique, we can exploit a trade-off between auxilliary vari-
ables and clauses to get a more compact representation. In particular [36]
points to two other representations; one which uses ⌈log2 n⌉ extra variables
and n ⌈log2 n⌉ binary clauses, and another which uses n − 1 extra variables
and only 3n− 4 binary clauses. In Appendix B, we present an alternative en-
coding which is a slight improvement on this linear representation using only
3n− 6 binary clauses and

⌈
n
2

⌉
− 2 auxiliary variables.

Substituting this last encoding for ours in rule 1 above, we now use a total
of n⌊3n

2
−2⌋ variables over only n(4n−6) clauses, totaling n(8n−13)+2m(n−1)

literals (of course the number of non-binary clauses is unchanged).

11

Chapter 3

Answer Set Programming

Although it is ostensibly the premise of this whole paper, comparing ASP en-
codings with SAT encodings may be like comparing apples and oranges. They
are, ultimately, two different paradigms employed to solve NP-hard problems.
There are two distinctions we must recognize, one which may be seen as purely
semantic and the other which is rooted deeply in the underlying theory of ASP.

Let us start with the semantic distinction. An ASP program (or more
specifically ASP-Core-2 as we use in this paper [43]) is not a collection of rules
and variables as is SAT, but it is rather a higher-level language for generating
such a collection. This is why a program written in ASP can be more properly
compared with a SAT generator than with the SAT instance it generates.

If we want something we can compare with SAT, we should instead be
comparing the SModels format which is the language of a program generated
by a standard grounder (most popularly lparse or gringo) when we run it
on an ASP program. As with DIMACS CNF format, the SModels language
is intended primarily to be both generated and parsed by a program, and not
coded by hand except perhaps in dealing with toy instances. This is, of course,
what we really mean when we make claims about the comparitive efficiency
of a SAT encoding and an ASP encoding. We are referring to the class of
SModels programs the ASP code can generate, not the actual ASP code itself.

The deeper reason is that an ASP solver must accept only well-supported
models. It is solving an inherently more difficult problem than a SAT solver. It
is not clear whether this translates to asymptotically slower solving times. In

12

practice, ASP solvers tend to be a few years behind SAT solvers performance-
wise, but this is generally thought to be primarily because there is a much
larger community of researchers and developers working on SAT than on ASP;
not because of any inherent differences between the two paradigms.

3.1 ASP
3.1.1 Overview

An ASP program passes through multiple stages on the way to finding a so-
lution. Initially, we write code in the full ASP language using variables and
numeric operations and constructs. Then a grounder (such as lparse or
gringo) is run to produce the grounded program. This program is expressed
in a simpler language with no arithmetic or variables and only atomic proposi-
tions. A solver such as smodels or clasp is then run on this to find solutions.
We’ll start by describing what a grounded program looks like and then back
up and explain about variables.

3.1.2 Basic Rules

This section briefly explores the formal SModels language. For further details,
the reader is referred to [43] and [7]. Note, we will not actually look at SModels
code, but rather at the restricted subset of ASP-Core 2 rules which bear a one-
to-one mapping to rules in SModels input format. In particular, this means
we will avoid variables. Alternatively, this can be seen as the language of
programs which are output by gringo when run with the –text option.

A grounded ASP/SModels program is in many respects similar to a SAT
instance. Both types of programs can be seen as a collection of atoms, A, and
constraints, R, for which we wish to answer the question, “Does there exist an
assignment of truth values, µ ∈ A→ {T, F} which satisfiesR?” All constraints
available in SAT are also available in ASP. However, ASP additionally allows
the user the ability to encode some constraints which cannot be concisely
expressed by a SAT instance.

13

An atom in ASP Core-2 is written as a well-parenthesized expression in
which each open-parentheses is preceded by a function name and the leaves
are terms (the outermost function is called a predicate). Function/predicates
names must all begin with a lowercase letter; terms may be either words
beginning with a lower-case letter or integers. The following are all examples
of atoms in ASP

a

bluebird(cavern)

cartiledge(17)

my(hovercraft(is,full),of(eels))

An ASP program consists of a set of rules which express relations between
atoms. Every ASP rule has a body and a head. A basic rule is expressed as:

h← b+1 , b
+
2 , . . . , b

+
m,¬b−1 , . . . ,¬b−n

Here h is an atom which is the head of the rule. b+1 , . . . , b
+
m are the atoms

which make up the positive part of the body of r, and b−1 , . . . , b
−
n are atoms

which make up the negative part of the body of r.
The actual programs that run in an ASP system are slightly different in

syntax from the above definitions. The main difference is that we write the
symbols :- for ←, and every rule ends with a period. Lines beginning with
% are comments. In the following discussions, we may use both notations
without confusion.

The following are examples of basic rules in ASP (Although ASP allows
separating basic rule body atoms with both ‘;’ and ‘,’, we will use ‘;’ throughout
this paper, since ‘,’ is overloaded and has a different meaning in more complex
rules).

sidewalk(wet) :- raining.

day(nice) :- not cloudy; day_of_week(saturday).

14

impossible :- raining; not cloudy.

pigs(flying) :- impossible.

The meaning of ← in this context is not quite as straightforward as in the
language of boolean formulas. In SAT, a← b is syntactic sugar for a ∨¬b. In
ASP, a ← b additionally asserts that a is supported if b is true. Any solution
M (which is a set of ground atoms called a stable model) to an ASP instance
must satisfy two criteria:

• M satisfies all clauses in P .

• Every true atom in M is well-supported.

There are a couple of ways we can define well-supportedness. We will first
define the positive reduct of a program together with a candidate model [7].

Definition 1. Given an ASP instance P and a boolean assignment M to
atoms appearing in P , the positive reduct of M with respect to P , denoted by
P+
M , is obtained by:
For each rule r ∈ P where r = h← b+1 , . . . , b

+
m,¬b−1 , . . . ,¬b−n , if M

(
b−i

)
=

False for all b−i then r′ ∈ P+
M where r′ = h← b+1 , . . . , b

+
m.

In other words r′ is contained in the positive reduct if and only if the
negative part of its body is satisfied by M .

Definition 2. Given a program P , a stable model M of P , also called an
answer set of P , is a ⊂-minimal model of P+

M . A stable model is also said to
be well-supported.

When a model M is not a stable model of program P , it must be the
case that it is not a minimal model of P ’s positive reduct. This means that
there exists some subset M− ⊊ M such that M− satisfies P+

M . Any atom
a ∈M \M− is called unsupported in M .

To illustrate the basic idea of this definition, let us consider a propositional
basic program P that consists of two rules

a← not b
b← b

15

When not is treated as classic negation and ← as classic local implication, P
has three models, M1 = {a}, M2 = {a, b}, and M3 = {b}. M1 is a stable
model, as it is clearly a (subset) minimal model of P+

M1
= {a←, b← b}. The

next two models are not stable. For example, M2 is not a minimal model of
P+
M2

= {b← b}, since ∅ is a model of P+
M2

.
Intuitively, well-supportedness requires that every atom in a stable model

be supported by a non-circular derivation. In the example above, atom b can
never be supported in this way and it thus is not in any stable model of the
program. There is also a view of dependency: the head atom b depends on
itself, and thus a positive loop is formed. As another example, consider the
program {a ← b, b ← a}, where a and b together form a positive loop. Loop
formulas have been studied extensively in ASP (e.g., see [31], [32], [45]).

The orientation of← is important in stable model semantics. For example,
a← not b has no relation with not a→ b. The mechanism of positive reduct
re-enforces that this is not a possible interpretation.

Another feature in ASP is to deny a possible solution. In general, we can
write a rule in a program, say

f ← p, not f

to express that there is no solution (stable model) that contains p. One can
verify that, if p is in a solution, we will literally have the rule, f ← not f , for
which we are running into something like Barber’s Paradox: f is in a stable
model (thus it should be derivable) iff f is not in it. In ASP, for convenience,
a constraint like the above is written as

← p

It’s worth noting that using just basic rules, we can already model NP-
complete problems. This follows from the fact that SAT problems are ex-
pressible in ASP. Given a collection of atoms, S = {a1, . . . , an}, the following
basic propositional program can be used to compute any subset of S: for all
1 ≤ i ≤ n,

ai ← not a′i
a′i ← not ai

16

where ai is new proposition intuitiveluy representing the opposite of ai. For
example, if n = 3, then {a1, a′2, a′3} is a stable model representing that a1 is in
the subset while a2 and a3 are not.

Note: In practice with other rule-types available, this encoding is unnec-
essary and generally inefficient. Instead we can make use of choice rules (see
rule 3 in Section 3.1.3).

Now, let us consider a program that actually runs in any implemented ASP
system. This program represents a system of wall-sockets, surge protectors,
and lightbulbs. Each surge protector can be switched into safe-mode which
means it does not provide power. Otherwise it provides power to anything
plugged into it so long as it is itself powered.

% There is one wall-socket sock(s), which is always powered

%rule: r1

powered(sock(s)).

% We have 4 surge-protectors prot(1), prot(2), prot(3), and prot(4).

% prot(1) is plugged into the wall socket which means it is powered

% if sock(s) is powered

% rule: r2

powered(prot(1)) :- powered(sock(s)).

% prot(2) and prot(3) are plugged into prot(1). prot(2) is in safemode

% rule: r3

powered(prot(2)) :- powered(prot(1)); not safemode(prot(1)).

% rule: r4

powered(prot(3)) :- powered(prot(1)); not safemode(prot(1)).

% rule: r5

safemode(prot(2)).

% prot(4) is plugged into prot(2)

% rule: r6
17

powered(prot(4)) :- powered(prot(2)); not safemode(prot(2)).

% Finally we plug a lightbulb into each protector, which is on if its

% protector is powered and not in safemode

% rule: r7

on(light(1)) :- powered(prot(1)); not safemode(prot(1)).

% rule: r8

on(light(2)) :- powered(prot(2)); not safemode(prot(2)).

% rule: r9

on(light(3)) :- powered(prot(3)); not safemode(prot(3)).

% rule: r10

on(light(4)) :- powered(prot(4)); not safemode(prot(4)).

This instance has only one stable model:

powered(sock(s))

safemode(prot(2))

powered(prot(1))

powered(prot(2))

powered(prot(3))

on(light(1))

on(light(3))

To verify this is indeed a stable model, let us first examine which rules’
bodies are satisfied by this model (we will call these rules “active”). Rule r1

has an empty body, so it is always active. Rule r2 is active since its single
body atom (powered(sock(s))) is in our candidate solution. Rules r3 and r4

are active since powered(prot(1)) is in our model, but safemode(prot(1))

is not. Similarly, Rules r5, r7, and r9 are active for this model. Rules r6

and r8 are not active because safemode(prot(2)) is in our model (and it is
part of the respective negative bodies), Rule r10 is not active because it has
powered(prot(4)) in the body (which is not in our model)

18

Now let us look at the positive reduct corresponding to this model (using
only the active rules 1,2,3,4,5,7,9):

% r1

powered(sock(s)).

% r2

powered(prot(1)) :- powered(sock(s)).

% r3

powered(prot(2)) :- powered(prot(1)).

% r4

powered(prot(3)) :- powered(prot(1)).

% r5

safemode(prot(2)).

% r7

on(light(1)) :- powered(prot(1)).

% r9

on(light(3)) :- powered(prot(3)).

We can see that indeed, the head of every rule appears in our model. I
leave it to the reader to verify that our model is a minimal solution to this
reduced program.

Now let us look at an example where the candidate solution is not minimal.
We will re-arrange three of the surge protectors into a different configuration:

% r1

powered(sock(s)).

%prot(1) we'll leave plugged into the wall

% r2

powered(prot(1)) :- powered(sock(s)).

%We will plug prot(2) into prot(3)

% r3

powered(prot(2)) :- powered(prot(3)); not safemode(prot(3)).
19

%and prot(3) into prot(2)

% r4

powered(prot(3)) :- powered(prot(2)); not safemode(prot(2)).

Now consider the candidate solution:

powered(sock(s))

powered(prot(1))

powered(prot(2))

powered(prot(3))

This generates the positive reduct:

% r1

powered(sock(s)).

% r2

powered(prot(1)) :- powered(sock(s)).

% r3

powered(prot(2)) :- powered(prot(3)).

% r4

powered(prot(3)) :- powered(prot(2)).

in which every head appears in our candidate model. But we notice that the
candidate is not minimal. There is an alternative solution to this program
which is a strict subset:

powered(sock(s))

powered(prot(1))

This is sensible. Surge protectors 2 and 3 form a closed loop (a positive
loop). They are not drawing power from anywhere so they cannot be powered.

We will note here (without going into detail) that the restriction on ASP
programs that they be well-supported can also be expressed using something
known as loop constraints (which is closely related to positive loops that we

20

mentioned earlier). This allows ASP programs to be expressed as SAT in-
stances (although with potentially an exponential number of rules) [18].

The ASP solver clasp uses a variant of CDCL on an ASP program together
with a subset of the loop constraints for that program. In addition to the usual
learned clauses that CDCL generates as it runs, clasp is also able to generate
learned clauses from loop constraints [17].

3.1.3 Other Rules

We will now examine the other types of rules available in grounded ASP.
These rules can give a more compact grounded representation to certain types
of problems.

We assume we have a program P and a model M

1. Basic rule: h← b+1 . . . b+m,¬b−1 . . .¬b−n

Active If:
{
b+1 . . . b+m

}
⊂M and

{
b−1 . . . b−n

}
∩M = ∅

Active Constraint: h ∈M

Positive Reduct: h← b+1 . . . b+m

The head h may also be a special atom, ⊥ which is restricted from being
in any solution.

2. Cardinality constraint: h← #count
{
b+1 ; . . . ; b

+
m,¬b−1 ; . . . ;¬b−n

}
≥ k

Active If:
∣∣{b+1 , . . . , b+m} ∩M

∣∣+ ∣∣{b−1 , . . . , b−n} \M ∣∣ ≥ k

Active Constraint: h ∈M

Positive Reduct: h←
∣∣b+1 , . . . , b+m∣∣ ≥ d (where d = k−

∣∣{b−1 , . . . , b−n} \M ∣∣)
A cardinality constraint enforces the restriction “of this set of atoms
and negated atoms, if at least k of them are true, then h is true”. In the
positive reduct, the negated atoms are removed from the body and k is
appropriately reduced.

3. Choice rule: {h1, . . . , hk} ← b+1 , . . . , b
+
m,¬b−1 , . . . ,¬b−n

Active If:
{
b+1 , . . . , b

+
m

}
⊂M and

{
b−1 , . . . , b

−
n

}
∩M = ∅

21

Active Constraint: None

Positive Reduct:
∧
{h1, . . . , hk} ∩M ← b+1 , . . . , b

+
m

Informally, choice rules can provide support for an atom without forcing
its truth. Even when the body is true, the head need not be true. If the
head is true, the rule will be included in the positive reduct.

4. Weight constraint:

h← #sum
{
b+1 = w+

1 ; . . . ; b
+
m = w+

m; b
−
1 = w−

1 ; . . . ; b
−
n = w−

n

}
≥ k

Active If:
m∑
i=1

w+
i |b+i ∈M +

n∑
i=1

w−
i |b−i /∈M ≥ k

Active Constraint: h ∈M

Positive Reduct: h←
m∑
i=1

w+
i |b+i ≥ d (where d = k−

n∑
i=1

w−
i |b−i /∈M)

A weight constraint behaves like a generalized cardinality constraint.
Each atom (or negated atom) is assigned a weight and the head must be
true if the sum of the body weights is at least k. As with a cardinality
constraint, in the positive reduct the negated atoms are removed and
the bound is appropriately reduced

5. Weak constraint: ⊥ ≈← b+1 , . . . , b
+
m,¬b−1 , . . . ,¬b−n .w@l

When a program contains a weak constraint, this indicates to the solver
that we are looking for not just any solution, but an optimal solution. A
weak constraint is to ASP as a “soft” clause is to partial weighted max-
SAT [40]. A weak constraint does not affect the models of a program.
Instead, it is an instruction to the solver to search for models in which the
body does not hold. w is the imposed cost of ignoring this constraint and
l is a position. Minimizing solvers will minimize the sum of the weights
of rules of the highest level and then each of the lower ones. (subject to
the “strong” constraints imposed by all of the other rules)

6. Disjunctive rule: h1| . . . |hk ← b+1 . . . b+m,¬b−1 . . .¬b−n

Active If:
{
b+1 . . . b+m

}
⊂M and

{
b−1 . . . b−n

}
∩M = ∅

22

Active Constraint: {h1 . . . hk} ∩M ̸= ∅ and M is a minimal model of
the reduct P+

M where P is the given program.

Positive Reduct: h1| . . . |hk ← b+1 . . . b+m

A disjunctive rule enforces the restriction that if the body is true, at
least one of the head atoms must be true. What makes a disjunctive rule
interesting is that all of the head atoms of an active rule are retained
in the positive reduct. That is, the definition of stable model in the
disjunctive case is that the guessed model M is a ⊂-minimal model of
the reduct P+

M . As a result, the presence of disjunctive rules generally
raises the complexity of verifying minimality in the positive reduct from
P to co-NP . As a result, programs including disjunctive rules generally
belong to the class ΣP

2 = NPNP [18].

3.2 The ASP-Core-2 Language

In Section 3.1.3, we introduced a complete syntax for all the ASP-Core-2 rules
which have a direct one-to-one translation to rules in grounded ASP. This
paper primarily focuses on showing how we can reduce the size of grounded
planning problem by using ASP, but the easiest way to generate (and discuss)
grounded ASP is by using the full ASP-Core-2 language.

We will not present the entire language here (the full specification is given
in [7]), but we will give just enough to understand all the ASP code used in this
paper. The primary advantage ASP boasts over SModels format is variables.
A variable in an ASP expression must be a term beginning with a capital leter.
The following are variables:

V

Var

QUART

B91a

A variable may occur as the argument to any predicate or function (mean-
ing inside any set of parentheses), but every variable which occurs in a rule

23

must occur somewhere within at least one positive body atom.

% These are valid rules:

t(A) :- s(A).

start :- enters(V1); exits(V2); not seesAt(V1,exitPoint(V2)).

abnormal(BRAIN) :- inside(BRAIN, frankenstein).

% These are NOT:

x :- VAR. % ERROR! Not inside any predicate

question(SELF) :- placed(OTHER). % ERROR!

% SELF does not occur in body

system(H) :- not quartered(H). % ERROR!

% H does not occur positively in body

solved :- not invented(MACHINE). % ERROR!

% MACHINE does not occur positively in body

When a grounder (such as gringo) encounters a rule with variables, it
creates a rule for every possible instantiation of those variables.

For instance:

{a(1)}.

{a(2)}.

{a(3)}.

b(start).

b(finish).

c(X,Y) :- a(X); b(Y).

% This grounds to 6 rules:

% c(1,start) :- a(1). c(1,finish) :- a(1).

% c(2,start) :- a(2). c(2,finish) :- a(2).

% c(3,start) :- a(3). c(3,finish) :- a(3).

The grounder will remove body atoms from a rule automatically whenever it
24

can guarantee the atom holds (or does not hold in the case of a negative body
atom). This is why above there is no mention of b in the grounded rules.

When a variable is used to stand in for a number, it may be used as part
of an arithmetic expression. The grounder will evaluate all such expressions.
However, the variable must still appear (unmodified) as the argument to some
predicate or (non-arithmetic) function in the positive body. The relations ==
and != may also be used with non-numeric variables.

c(3).

c(5).

f(X+1) :- c(X).

% Grounds to f(4). f(6).

g(Y) :- c(Y); Y > 3.

% Grounds to just g(5).

h(X) :- c(X+1).

% ERROR! X cannot be grounded

% unless it occurs within the positive body unmodified

Note that it is possible (even easy) to construct programs on which the
grounder will not terminate. The problem of solving a grounded ASP program
is in NP (Or ΣP

2 if the program includes disjunctive rules), but the full language
ASP with functions and variables is Turing complete (and therefore can be
used to express undecidable problems). It’s up to us to ensure our encodings
always have a finite grounded form.

A variable may appear only within a cardinality constraint and nowhere
else in the positive body. Also we may omit the words #count and #sum for
cardinality and weight constraints. The atoms in the constraint then include
all groundings for that variable. We can further restrain the values of that
variable by including comma-separated expressions after a colon (Wherever a
colon occurs, it can be thought of as meaning “for all”).

25

{c(1)}. {c(2)}. {c(3)}. {c(4)}.

{wildcard}

d(1). d(3). d(4).

twoOf :- {c(X); wildcard} >= 2.

% Grounds to

% twoOf :- #count {c(1); c(2); c(3); c(4); wildcard} >= 2.

selectedTwo :- {c(X) : d(X), X < 4; wildcard} >= 2.

% Grounds to

% selectedTwo :- #count {c(1); c(3); wildcard} >= 2.

The cardinality constraint may be written using >, <, or <=. In the case
of >n, the grounder changes it to >=n+1. In the case of <=n, the grounder
negates all the atoms inside the constraint and flips it to >= k− n where k is
the total number of atoms (or sum weights in case of a weight constraint) in
the constraint (and < compounds both operations, first flipping, then adding
1).

Cardinality and weight constraints can also be included among a list of
body atoms (even possibly containing variables themselves).

battery(1).

battery(2).

battery(3).

laser(l1).

{laser(l2)}.

charged(LASER) :- {hasBattery(LASER,X) : battery(X)} > 1; laser(LASER).

% Grounds to

% charged(l1) :- {hasBattery(l1,1); hasBattery(l1,2);

hasBattery(l1,3)} >= 2.

% charged(l2) :- __internal_atom; laser(l2).

% __internal_atom :- {hasBattery(l2,1); hasBattery(l2,2);

hasBattery(l2,3)} >= 2.

26

If a cardinality constraint uses an =, it is grounded to the equivalent of
using two constraints, one with <= and the other with >=.

A variable may occur in only the head of a choice rule if it is grounded by
a colon. In this case the choice rule encompasses all groundings of the head.

We may express both a cardinality constraint and a choice rule at the same
time by including any of <, <=, >, >=, = after the braces in the head.

b(1). b(2). b(3).

{a(X) : b(X)}.

% Grounds to

% {a(1); a(2); a(3)}

{c(X) : b(X)} = 1.

% Grounds to

% {c(1); c(2); c(3)}.

% :- {c(1); c(2); c(3)} >= 2.

% :- {not c(1); not c(2); not c(3)} >= 3.

A colon can be used outside a cardinality or weight constraint directly in
the body. In this case it says, for any variable which does not occur elsewhere in
the body, the expression to the left ranges over all groundings of the expression
to the right. If the expression to the right is itself not fixed, we must create a
new variable for each instantiation.

b(1). b(2). b(3).

{a(1); a(2); a(3)}.

{c(1); c(2); c(3)}.

holds :- c(X) : b(X).

% Grounds to

% holds :- c(1); c(2); c(3).

holds :- c(X) : a(X).

% Grounds to
27

% holds :- __internal(1); __internal(2); __internal(3).

% __internal(1) :- not a(1).

% __internal(1) :- c(1).

% __internal(2) :- not a(2).

% __internal(2) :- c(2).

% __internal(3) :- not a(3).

% __internal(3) :- c(3).

An expression using colon in the body is a convenient way to express a
(possibly lengthy) conjunction. In the first example above, grounding results
in a conjunction of literals c(.) generated by instances of b(.). In the second
example, the resulting expression is still a conjunction but we only consider
those instances of c(.) for which the corresponding instances of a(.) hold.

A colon may occur in the head of a rule. In this case, it indicates that the
rule is a disjunctive rule (ranging over instantiations of the colon).

c(alice). c(bob). c(carol).

a(X) : c(X).

% Grounds to

% a(alice) | a(bob) | a(carol).

3.3 Hamiltonian Path Revisited

An ASP program can be divided into sections. This allows us to separate the
encoding from the input. For instance, a particular Hamiltonian Path instance
might just be specified as a list of vertices and edges:

vertex(a;b;c;d).

% shorthand for

% vertex(a). vertex(b). vertex(c). vertex(d).

edge(a,b;b,a;b,c;c,b;b,d;d,b;a,d;d,a).

% edge(a,b). edge(b,a).

28

We can now write a generalized encoding for Hamiltonian Path directly in
ASP (without resorting to any other languages):

{start(V) : vertex(V)} <= 1.

inPath(V) :- start(V).

{selected(A,B) : edge(A,B)} <= 1 :- inPath(A).

inPath(V) :- selected(_,V).

:- not inPath(V); vertex(V).

The first rule says we must (and may) have at most one start vertex. The
second rule says: for any vertex V, if V is the start vertex then it is in the path,
while the third rule says for any vertex in the path, we may select at most one
outgoing edge. In the fourth rule, if an edge is selected, then its child must be
in the path, and in the fifth, for every vertex V , reject all models where V is
not in the path.

This encoding relies on stable model semantics to avoid loops. To see this,
consider the following candidate model for our instance:

start(a)

selected(a,d)

selected(b,c)

selected(c,b)

inPath(a)

inPath(b)

inPath(c)

inPath(d)

In this case, we see that the subset:

inPath(b)

selected(b,c)

inPath(c)

selected(c,b)

29

forms an unsupported cycle, so this model will be rejected by the solver.
Now we can measure the ASP encoding of Hamiltonian path with respect

to each of the four metrics listed in Section 2.3. When applying the same four
metrics (with n as the number of vertices and m the number of edges) to the
grounded version of this program, they resolve to:

• Variables: 2n+m

• Clauses: 4n+m+ 2

• Literals: 7n+ 6m

• “Non-binary” Clauses: n+ 1

In other words, regardless of which metric we use, the problem requires at
least quadratic space to encode in SAT, but only linear space in ASP.

3.4 Iterative Grounding

There is a useful tool called clingo which simply combines the steps per-
formed by gringo (the grounder) and clasp (the solver). Furthermore,
clingo allows more fine-grained control over its behavior by making it pos-
sible to solve some problem, look at the result, add more rules, and then
continue solving where the solver left off. In other words, any learned clauses
that CDCL deduced in the initial run are kept in subsequent runs.

This is an extraordinary feature which gives a high degree of control over
how solving proceeds. Although we pretend in this paper (for simplicity’s
sake) as if we start each solve anew, anywhere you can imagine you might use
this feature to speed up a succession of solves, we did.

There is an important caveat however. Clingo does not allow supported-
ness cycles to extend across different program sections. In other words, the
following would result in undefined behavior:

#program(part1)

#external b.
30

% Indicates b will be grounded in

% a later section

a :- b.

Then run the solver and then later add the rule:

#program(part2)

b :- a.

The solver may report {a, b} as a solution even though it is clearly unsup-
ported. This is unfortunate for stepless planning (Chapter 8) since an ideal
implementation would rely heavily on the ability to do exactly this and expect
correct results.

31

Chapter 4

Strips Planning

We will not explore the theory of STRIPS quite so thoroughly as we explored
ASP in Chapter 3. There are at least three reasons for this:

• For the purpose of this paper, we may assume any planning problem we
encounter has already been grounded and expressed as a collection of
ASP atoms which can be easily input into our planner.

• STRIPS is not as nuanced or interesting as ASP and does not require
quite so much background knowledge to use effectively.

• We are interested in solving existing STRIPS planning instances, not
writing our own.

4.1 Actions and Fluents

A STRIPS problem consists of actions and fluents. The term “fluent” is some-
what overloaded in the context of planning, but in this paper we use it exclu-
sively to mean a boolean piece of state in a STRIPS planning problem.

Throughout this paper, we will use the following predicates in our program.

• action(A): A is an action.

• fluent(F): F is a fluent.

• pre(A,F): action A has F as a precondition; when F is a precondition
of action A, then action A cannot be taken unless F holds.

32

• add(A,F): action A has F as an add-effect; when F is an add-effect of
action A, then taking action A causes F to be true afterwards.

• del(A,F): action A has F as a del-effect; when F is a delete-effect of
action A, then taking action A causes F to be false afterwards.1

• init(F): initial conditions

• goal(F): goal conditions, i.e., these are the fluents we must make true
in order to solve the problem.

• cost(A,C): taking action A costs C where C is a positive integer.

We assume that add(A,F) is mutually exclusive with pre(A,F) or del(A,F),
since that would be redundant or self-contradicting respectively.

In cost-optimal planning each action has an associated cost and we wish
to find a plan which minimizes the sum-cost of all actions taken.

STRIPS planning is PSPACE-complete [6]. Plan-lengths may be exponen-
tial in the worst case which is why STRIPS is not in NP (assuming NP ̸=
PSPACE), but planning is in PSPACE because although plan-lengths may be
exponential, there exists a polynomial space algorithm which determines for
any planning problem whether or not it has a solution (and indeed, such an
algorithm can also be used to determine the first action of the solution-plan).

4.2 Sequential Planning

We can easily write a sequential planner using ASP which is guaranteed to
find a plan if one exists (much later in Section 7.1 we will discuss the problem
of determining when there is no solution, but for now this will suffice).

The idea is we choose some maximum number of steps maxsteps, that
we expect our plan might take to run, and write a program to find a plan in
maxsteps or less. If the ASP solver returns UNSAT, we increment maxsteps

by 1 and try again. In addition to the input, we are given true supported
1In the common case, it seems that del(A,F) implies pre(A,F). but this is not strictly

a requirement of STRIPS.

33

atoms of the form: step(0), step(1), step(2), up to step(maxsteps− 1) as well
as one atom finalstep(maxsteps).

holds(F,0) :- init(F).

{happens(A,T)} :- holds(F,T) : pre(A,F); step(T).

:- {happens(A,T)} > 1; step(T).

holds(F,T+1) :- happens(A,T); add(A,F).

deleted(F,T) :- happens(A,T); del(A,F).

holds(F,T+1) :- holds(F,T), not deleted(F,T).

:- not holds(F,K); finalstep(K); goal(F).

The first 6 rules specify what constitutes a plan. The 7th rule instructs
the solver to find a plan which achieves the goal-state.

1. F is true at time 0 iff F is an initial fluent.

2. An action A may happen at time T if all of its preconditions hold at
time T .

3. At most one action may occur at any time.

4. If action A occurs at time T , then its add-effects hold at time T + 1.

5. If action A occurs at time T , and has F as a delete-effect, then F is
deleted at time T .

6. If a fluent F holds at time T , then F still holds at time T + 1 unless it
was deleted at time T .

7. Only accept solutions where all the goal fluents are satisfied at step K

(the final step).

4.3 Taking Simultaneous Actions

A more sophistocated SAT planner can relax rule 3 from the previous section.
If two actions a and b can both be taken at some time T , and if the effect of

34

performing action a and then action b is identical to the effect of performing
action b and then action a, then we should allow a and b to happen simulta-
neously. In this way, we reduce the number of steps we have to search before
finding a plan [4].

We may formalize this by specifying when two actions a and b are mutually
exclusive (mutex) meaning they cannot occur simultaneously:

mutexAct(A,B) :- del(A,F); pre(B,F); A != B.

mutexAct(A,B) :- del(B,F); pre(A,F); A != B.

mutexAct(A,B) :- add(A,F); del(B,F).

mutexAct(A,B) :- add(B,F); del(A,F).

Two actions A and B are mutex if one deletes the other’s precondition or
if they have conflicting effects. Any set of actions for which no two actions
are mutex under these rules could conceivably happen simultaneously (if the
preconditions for all of them are satisfied at time T).

To simplify our encoding, we can now do away with rules 5 and 6 and
instead add to our plan “preserving” actions for each fluent. These preserving
actions can be specified as:

action(preserve(F)) :- fluent(F).

pre(preserve(F), F) :- fluent(F).

add(preserve(F), F) :- fluent(F).

where each fluent F has a corresponding preserving action denoted by term
preserve(F).

Now we have two kinds of actions: regular actions and preserving actions.
It will be handy to be able to distinguish between these two kinds of actions
so we will additionally add a predicate preserving/1.

preserving(preserve(F)) :- fluent(F).

Now, whenever such an action occurs at time T , it indicates that its argu-
ment F is held over from time T to time T + 1. Since each preserving action

35

is mutex with any action which deletes its preserved fluent, this automatically
enforces the restriction that a fluent can only hold at time T if it is not deleted
at time T .

Under this relaxed model, the number of steps a plan uses is sometimes
referred to as the plan’s makespan. When we search for a plan with some
makespan n, the steps can also be called layers.

4.4 The Planning Graph

Blum [4] presents a handy way to identify for each action and each fluent,
what is the first layer at which this action/fluent might occur by building
the planning graph2. The planning graph can be built in polynomial time
with respect to makespan and can additionally give us valuable information
regarding mutex relations among fluents as well as actions.

We will not detail how to build the planning graph here, but instead assume
that the graph is given to us and has information encoded in the following form:

validAct(A,T). % action A can occur at time T

validFluent(F,T). % fluent F can be true at time T; when T=0, this is

% equivalent to init(F)

mutex(F,G). % fluents F and G are mutually exclusive and cannot

% both hold simultaneously

2The planning graph of a problem is different from its state graph; the planning graph is
polynomial-size and generally tractable to construct and store in memory whereas the state
graph is not

36

Chapter 5

ASPPlan

5.1 Translating from SATPlan

In this section we examine SATPlan [28], the “standard encoding” for SAT-
based planners. We show that a direct translation of their rules into ASP
can account for a significant reduction in search space. This occurs because
ASP only accepts stable models and in particular stable models must also be
supported models. By encoding the SATPlan rules directly into ASP, we find
that ASP’s notion of supportedness prunes the search space in a couple useful
ways.

• The solution space does not contain any model which includes a super-
fluous action. In order to be supported, an action must produce a fluent
which is eventually needed. Whether restricting the solution space in
this way also ends up restricting the search space depends on the imple-
mentation of the solver, but it strongly suggests this is a possibility

• Actions or fluents which cannot be useful in the sense that they do
not add any fluent which eventually leads to the goal state are removed
during grounding. This is analagous to the neededness-analysis described
in [39] except that we get it for free in ASP without having to add any
special preprocessing.

We can translate each of SATPlan’s 5 rules into ASP rules to create a
planner which I will uncreatively dub ASPPlan. holds/2 and happens/2

37

are the only predicates which produce atomic propositions in the grounded
program. The others are all elided during grounding.

Like SATPlan, we run this planner by starting at makespan k (where k

is the first layer at which validFluent (F, k) holds for all goal (F)) and then
incrementing the finalStep by 1 until we find a plan.

1. “Goals hold at level k, and the initial state at level 0”.

holds(F,K) :- goal(F); finalStep(K).

holds(F,0) :- init(F).

The second part of this rule (initial state at level 0) has no bearing on
our encoding and can indeed be safely eliminated as no other rule makes
use of it. This is true for SATPlan as well, but in any case, we have it
here for the sake of consistency.

2. “If a fluent holds at level k, the disjunction of actions that have that
fluent as an effect hold at level k - 1;”

happens(A,K-1): add(A,F),validAct(A,K-1) :- holds(F,K); K > 0.

3. “Actions at each level imply their preconditions;”

holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

4. “Actions with (directly) conflicting preconditions or effects are mutually
exclusive, encoded as negative binary clauses;”

:- mutexAct(A,B); happens(A,K); happens(B,K).

If one fluent is a popular effect/precondition, this rule can blow up
quadratically in space. We will find a better way to handle this in the
Section 5.3.

5. “Fluents that are inferred to be mutually exclusive are encoded as neg-
ative binary clauses.”

38

:- mutex(F, G); holds(F, K); holds(G, K).

In some domains this rule can account for most of the overhead. We will
address how to better handle this problem in Chapter 6.

This is a straightforward and unsurprising encoding in every respect, but has
a somewhat surprising consequence. Because ASP models are well-supported,
we find that for any fluent F, “holds(F,k)” can only be true if there exists
some action which requires its truth as per rule 3. Similarly, for an action
A, it may only be true if there exists a fluent F which requires support from
the previous time step as per rule 2. Furthermore, since rule 2 is disjunctive
we find that at every layer, the set of actions which occurs is the minimal set
required to support the fluents at the subsequent layer. This conforms exactly
to the approach to planning in [4]: First build the planning graph, then start
from the goal-state planning backwards, at each step selecting a minimal set
of actions necessary to add all the preconditions for the current set of actions.
That is, in the ASP translation, the neededness-analysis as carried out in
[39] is accomplished automatically during search for stable models or during
grounding based on the stable model semantics.

Although we have done nothing surprising or innovative in translating from
one to the other, we find that where SATPlan must search the space of all
conceivable plans, ASPPlan only searches those plans for which each action
and each fluent is both valid and needed. Later on, when dealing with cost-
optimal planning and how to encode the delete relaxation, we will actively
strive to obtain this same result by forcing every fluent and every action to
have support “from both ends” rather than just from the initial state.

5.2 An Observation about Mutex Actions

We would like to make a small observation here about mutex. The definition
of mutex as given in [4] is overly restrictive for actions. Mutex is meant to
encode two actions which cannot happen simultaneously because their order is
restricted (Action A cannot take place if action B has already occured and/or

39

vice versa). Indeed if we allowed such actions to happen simultaneously, we
risk creating a cycle of dependencies, which fails to translate into a sequential
plan. However, so long as all preconditions are positive, it is not necessary to
restrict actions with conflicting effects from happening simultaneously.

Indeed, if we have two actions with side effects, one which disables a crane
from being used and the other which frees the crane to be used again, there is
no restriction on the order of these two actions. The order determines whether
or not the crane is free when the actions are completed, but if we do not intend
to use the crane again, we do not care if the crane is free. We can allow these
two actions to happen simultaneously and then assume the crane is disabled
when they complete. There certainly may still be a plan which does not require
later use of the crane.

5.3 Encoding Reduction

As mentioned in Section 5.1, some of the rules presented in ASPPlan can blow
up in size when grounded. In the case of rule 4 regarding “directly conflicting
actions”, this happens because nearly any two actions which act on the same
fluent can be considered directly conflicting.

Indeed, if we imagine a planning problem in which there is a crane which
we must use to load boxes on to freighters and there are many boxes and many
freighters available but only one crane, then we will have one such constraint
for every two actions of the form, load(Crate, Freighter), for any crate and
any freighter. We already have a quadratic number of actions in the problem
description size. Hence, the number of mutex constraints over pairs of actions
is quartic in the initial problem description size (crates×crates×freighters×
freighters).

We would like to avoid such an explosion by introducing new predicates to
keep the problem size down. We will only consider two actions to be mutex
if one deletes the other’s precondition. But we will take extra steps to ensure
that no add-effect is later used if the same fluent is also deleted at that layer.

40

Here is the revised encoding of rule 4 in Section 5.1.

used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

:- {used_preserved(F,K); deleted_unused(F,K);

happens(A,K) : pre(A,F), del(A,F)} > 1;

valid_at(F,K).

deleted(F,K) :- happens(A,K); del(A, F).

:- holds(F,K); deleted(F,K-1).

Effectively, we are splitting the ways in which we care that an action A
can relate to a fluent F into three different cases:

1. A has F as a precondition, but not a delete-effect.

2. A has F as a delete-effect, but not a precondition.

3. A has F as both a precondition and a delete-effect.

Now we observe that for each fluent, exactly one of four cases holds:

1. Some subset of actions from category 1 occur.

2. Some subset of actions from category 2 occur.

3. One action from category 3 occurs.

4. No action from any of them occur.

By explicitly creating two new predicates for properties 1 and 2, we have
packed this restriction into one big cardinality constraint.

Further, we must account for conflicting effects, so we define one more
predicate (deleted) which encapsulates the union of all actions from properties
2 and 3 (those that delete F) and assert that F cannot hold at this layer if
any of those actions occured in the previous one.

41

Chapter 6

Mutex Graphs and Multicliques

6.1 Saving Space with Multicliques

As shown in [36], significant space-savings can be gained by considering the
way in which we encode mutex constraints. The naive way given in rule 5 of
Section 5.1 can certainly generate enough rules to overwhelm the underlying
solver for large instances. We may view the set of mutex constraints on fluents
as an undirected graph where each fluent is a vertex and each constraint is an
edge. When a SAT solver selects one fluent to be true at a given layer, it can
then infer by unit-propogation that each fluent joined directly by an edge with
the selection must be false. Thus, the set of fluents which are true at a given
layer constitute an independent set on the mutex graph (an independent set
on a graph is a set of vertices where no two vertices in the set share an edge
[41]; equivalently this is a clique in the complement graph).

In [36], Rintanen shows that there exist other smaller encodings besides
the naive approach of listing out every individual binary constraint and im-
plies that since these encodings are smaller, they must be superior. In their
experiments, they use instances of the AIRPORTS domain from the 2004 IPC
planning competition. This domain is notable because of the vast number of
mutex constraints it generates. The larger instances of this problem emit com-
plex mutex graphs which can overwhelm the underlying SAT solver if encoded
naively (in a one-constraint-per-edge fashion).

Rintanen shows that the mutex graphs in these planning problems (even

42

in benchmark AIRPORTS) tend to be highly structured and that in SAT it
is possible to cover the mutex graph (somewhat more compactly) with cliques
(complete subgraphs) or with bicliques (complete bipartite subgraphs). A
biclique can be expressed in SAT using only one auxiliary variable and one
binary clause per assignment. Rintanen demonstrates that cliques can be
expressed using only a logarithmic set of bicliques. He concludes that the best
way to express a mutex graph in SAT is with a biclique edge-covering.

In this paper we intend to show that for ASP, cardinality constraints give
us more power than is available in SAT and indeed we can directly encode a
mutex graph by its clique covering (without the extra cost of a logarithmic
factor), but further we can eliminate the choice of whether to use cliques
or bicliques entirely and instead cover the graph with multicliques (complete
multi-partite subgraphs) which is a generalization of both. Indeed, we find
that with multicliques, the number of clauses (namely ASP rules) required to
encode mutex constraints can be further reduced over Rintanen’s results.

Definition 3. A multiclique has a few equivalent definitions which we will list
here:

• A partitioned graph such that for any two vertices v and w there exists
an edge between v and w if and only if v and w belong to separate
partitions.

• A graph whose complement is a cluster graph (a set of disjoint cliques)
(See Appendix A for third equivalent definition.)

Given a multiclique covering, we can encode a constraint graph in ASP as:

% Covering is given by inPartition(F,P) if fluent F belongs

% to partition P, and inMulticlique(P,M) if partition P

% belongs to multiclique M.

partitionHolds(P,K) :- holds(F,K); inPartition(F,P).

:- {p(P,K): partitionHolds(P,K),inMulticlique(P,M)} > 1;
43

multiclique(M); layer(K).

Here we have a cardinality constraint expressing the rule that among all
partitions P of multicliqueM , at most one holds at time-stepK. Furthermore,
if any fluent F holds at time-step K, then its corresponding partition P must
also hold.

Additionally, we can avoid some unnecessary rules by handling singleton
partitions specially. A singleton partition can be packed directly into the car-
dinality constraint rather than introduced through an auxiliary atom:

:- {partitionHolds(P,K):inMulticlique(P,M);

holds(F,K):singletonPartitionOf(F,M)

} > 1;

multiclique(M); layer(K).

6.2 An Assignment-MinimumMulticlique-Covering
Approximation Algorithm

As discussed above, given a planning instance, if we can construct a multiclique
covering (of edges) from its mutex graph, we can use ASP to encode these
constraints compactly. Now let us find an algorithm for this task.

In general, finding a minimum multiclique covering (using as few multi-
cliques as possible) is NP-hard. To see why this is true, consider the problem
of finding a minimum multiclique covering on a bipartite graph. It’s easy to
see that a multiclique on a bipartite graph is a biclique. Thus the minimum
multiclique covering of a bipartite graph is the minimum biclique covering.
The size of the minimum biclique covering of a bipartite graph is also known
as its bipartite dimension. Finding the bipartite dimension of a graph is known
to be NP-hard [2]. Thus, we can safely say in the general case that finding a
minimum multiclique cover is also NP-hard (since it reduces to an NP hard
problem even when restricted to bipartite graphs).

Nonetheless, we can still use approximation algorithms similar to those
used in [26]. One interesting thing to notice is that under the restriction that

44

a multiclique must use exactly a particular set of vertices, there is always
only one optimal way to partition those vertices into a multiclique to cover a
maximal set of edges:

If there is a path between two vertices v and w in the complement of the
induced graph, then they must belong to the same partition. If there is no
path, then we might as well put them in separate partitions. Therefore the
best partition is the one which makes a partition for each connected component
in the complement of the induced graph.

Our algorithm is given in Algorithm 6.1. It is greedy, simple, and polynomial-
time. We track the set of uncovered edges and tack multicliques on one at a
time, greedily building each multiclique in such a way so as to maximize the dif-
ference 2 ∗ New Edges Covered− Number of Literals Used in Encoding. This
algorithm is the a natural extension of the “identify-biclique” algorithm used
in [36] with a couple key differences.

• We’re generating multicliques rather than bicliques so there can be more
than two partitions.

• Instead of removing edges from the graph once they’ve been assigned to
a multiclique, we keep a separate record of “uncovered” edges which still
remain to be assigned. In this way the same edge may be covered twice
by different multicliques if that helps to minimize the encoding.

• Instead of optimizing for |Clauses in naive encoding|−|Clauses in our encoding|,
we’re optimizing for |Literals in naive encoding|−|Literals in our encoding|.1

We select the first vertex by finding the one incident to the most uncov-
ered edges. We then select each subsequent vertex to greedily maximize this
difference under the assumption that we will finish by adding on a “default
partition” of vertices. The default partition consists of all vertices which have
an edge to every vertex we have selected so far including at least two edges
not yet covered.

1When dealing with strictly binary clauses (as in Rintanen’s case), these behave identi-
cally since latter metric is just the former multiplied by two.

45

Algorithm 6.1 Multiclique Covering
procedure find_cover(g :: Graph) → Set MultiClique

var uncovered← g.edges :: Set Edge
var multicliques← {} :: Set MultiClique
while uncovered.nonempty do

new_multiclique← next_multiclique()
multicliques← multicliques ∪ {new_multiclique}
uncovered← uncovered \ edges_covered_by(new_multiclique)

end while
return multicliques

end procedure

For more details, in Algorithm 6.1, lines 5 to 34 are helper functions. The
variable multicliques is empty to start with. Then it iteratively adds one new
multiclique at a time until all edges are covered.

Let’s take a look at how this behaves on an example graph. We’ll start with
a mutex graph for a ferry crossing problem in which we have three islands, a
ferry and a car. The ferry can be at any of the three islands and it can have
just moved or be in the process of loading. The car can be on the ferry or at
one of the three islands. If loading then the car is not currently on the ferry.
Here’s what the mutex graph for the problem looks like:

46

Algorithm 6.2 Multiclique Covering Helper Functions
1: type MCPartition = Set Vertex
2: type MultiClique = Set MCPartition
3: function make_multiclique(vs :: Set Vertex) → MultiClique
4: return g.induced_subgraph(vs).complement().connected_components()
5: end function
6: function edges_covered_by(mc :: MultiClique) → Edge
7: return {(x, y)|p ∈ mc ∧ q ∈ mc ∧ p ̸= q ∧ x ∈ p ∧ y ∈ q}
8: end function
9: function count_uncovered_incident_edges(x :: Vertex) → N

10: |(g.incident_edges(x) ∩ uncovered)|
11: end function
12: procedure defaults_for(vs :: Set Vertex) → MCPartition
13: candidates←

∩
{g.neighbors(v)|v ∈ vs} :: Set Vertex

14: return {c|c ∈ candidates, |g.incident_edges(c) ∩ uncovered| ≥ 2}
15: end procedure
16: procedure score(vs :: Set Vertex) → Z
17: multiclique :: MultiClique
18: multiclique← make_multiclique(vs) ∪ defaults_for(vs)
19: newly_covered :: Set Edge
20: newly_covered← edges_covered_by(multiclique) ∩ uncovered
21: complexity_cost :: Z

22: complexity_cost←
∑

p∈multiclique

{
1 if |p| == 1

2 ∗ |p|+ 1 if |p| > 1

23: return 2 ∗ |newly_covered| − complexity_cost
24: end procedure
25: procedure next_multiclique → MultiClique
26: first_vertex :: Vertex
27: first_vertex← argmaxg.vertices(count_uncovered_incident_edges)
28: var vertex_set← {first_vertex} :: Set Vertex
29: repeat
30: next :: Vertex
31: next← argmaxg.vertices(λw. score(vertex_set ∪ {w}))
32: improved← score(vertex_set ∪ {next}) > score(vertex_set)
33: if improved then
34: vertex_set← vertex_set ∪ {next}
35: end if
36: until ¬improved
37: return make_multiclique(vertex_set ∪ defaults_for(vertex_set))
38: end procedure

47

Now lets run our multiclique cover algorithm on it. We get:

% Multiclique 0 has all singleton parts

:- {holds(just_moved(ferry,island_a),T);

holds(just_moved(ferry,island_b),T);

holds(just_moved(ferry, island_c),T);

holds(loading(ferry),T)

} > 1; step(T).

% Multiclique 1 has all singleton parts

:- {holds(car_at(island_a),T);

holds(car_at(island_b),T);

holds(car_at(island_c),T);

holds(on_ferry(car),T)

} > 1; step(T).

% Multiclique 2 has three non-singleton partitions

partitionHolds(part(2,0),T) :- holds(ferry_at(island_a),T).

partitionHolds(part(2,0),T) :- holds(just_moved(ferry,island_a),T).

partitionHolds(part(2,1),T) :- holds(ferry_at(island_b),T).

48

partitionHolds(part(2,1),T) :- holds(just_moved(ferry,island_b),T).

partitionHolds(part(2,2),T) :- holds(ferry_at(island_c),T).

partitionHolds(part(2,2),T) :- holds(just_moved(ferry,island_c),T).

:- {partitionHolds(part(2,0),T);

partitionHolds(part(2,1),T);

partitionHolds(part(2,2),T)

} > 1; step(T).

% Multiclique 3 has two singleton parts and so is just a normal

% mutex constraint.

:- holds(loading(ferry),T); holds(on_ferry(car),T).

In total we have (per-layer) a grounded 10 rules with 25 literals. Had we
used the naive encoding it would have been 22 rules with 44 literals so we can
see this encoding is quite a bit more compact.

To give a better picture, we’ll color each edge with the multiclique to which
it belongs. Note that three of the edges ended up in two distinct multicliques
and so are duplicated in the image:

49

6.3 Eventual Fluent Mutex Constraints

In Section 5.3 we found a way for the ASP solver to avoid explicitly dealing with
action mutex constraints and so were able to save on grounded encoding space.
But we still have a problem because the algorithm presented by Blum [4] for
generating fluent mutex constraints in the first place requires simultaneously
constructing action mutex constraints.

Indeed Rintanen [36] reports being unable to run experiments on the largest
AIRPORTS instances from IPC-2004 because the action mutex constraints
used so much memory they wouldn’t fit in a 32-bit address space.

In this section, we find a way to circumvent this problem and were able
to generate mutex constraints on the very largest (AIRPORTS-50) instance
while using only about a gigabyte of memory.

Mutex constraints as defined in Blum [4] are “per-layer”. You determine
the set of mutex constraints at each layer by looking at what actions, fluents
and mutex constraints were in the previous layer. Two actions are mutex if
they are directly mutex or have any mutex preconditions. Two fluents are
mutex if all respective pairs of causing actions are mutex. However, suppose
we only care to discover and encode which fluents are always mutex in the
sense that for every layer up to an arbitrarily large makespan they cannot
both be true.

One way to obtain this set is to build the planning graph outward until
the set of mutex constraints stabilizes. That is, we can stop once we find
two consecutive layers at which the set of mutex constraints doesn’t change.
But this would still require tracking action mutex constraints for all pairs of
actions.

The key insight is that fluents which are always mutex will be so in sequen-
tial planning (where exactly one action happens at each layer; see Section 4.2)
as well as in parallel planning. A parallel plan is just a way of compressing a
sequential plan into fewer steps so the set of pairs of things which can be true
at some point will be the same regardless of how we express it.

50

Since a sequential plan can be expressed as a parallel plan where at most
one non-preserving action happens at each layer, we can run the mutex gen-
eration algorithm under the assumption that all non-preserving actions are
mutex with each other. Then we only need to explicitly keep track of which
actions are mutex with each of the preserving actions. There are generally
significantly fewer preserving actions than total actions. When the set of mu-
tex fluent-pairs stabilizes, it should come out the same as if we had obtained
these pairs by building the planning graph normally and waiting for the mutex
fluents to stabilize.

6.4 Experiments

We implemented the multiclique generation algorithm in Haskell, represent-
ing a fluent or action as an Int and a collection of mutex constraints as an
IntMapIntSet. Both IntMap and IntSet come from the containers package.
A partition of a multiclique was represented as an IntSet, a multiclique as a
list of partitions, and a multiclique covering as a list of multicliques.

We ran this algorithm on the same instances as Rintanen (as well as on
the AIRPORTS-50 instance, the largest problem in the set) and found a sig-
nificant improvement over his results. Note that these edge-counts do not take
into account neededness. That is, they cover many fluents and actions which
irrelevant to the goal of the problem and are guaranteed not to be explored by
the solver. When we accounted for neededness we found the graphs got much
smaller (approximately 5-fold). But we chose not to utilize this so that our
results would be better comparable to Rintanen’s.

In Table 6.1, “Edges” is the number of edges in the mutex graph for each
instance. “CL” is the number of grounded clauses (rules) we used to encode
this graph. These clauses are a mix of binary constraints and “at most 1” car-
dinality constraints. Because not all the clauses are binary, we are compelled
to give the sum number of literals among all the constraints. This is the “Lit”
column.

51

instance Edges CL Lit Edges* CL* Lit* R-Lit
AP-21 181884 7531 16437 166229 2336 4783 26382
AP-22 275515 11310 25014 249173 3464 7104 42776
AP-23 371062 14969 33100 336209 4806 9929 63552
AP-24 373188 15353 33894 337385 4907 10103 60814
AP-25 467653 18834 41821 421181 6208 12816 83438
AP-26 566948 22507 50252 511401 8025 16625 100494
AP-27 571298 22777 50801 514978 8155 16890 107442
AP-28 669336 26488 59201 602737 9941 20616 132120
AP-36 324835 9870 21502 297160 3084 6306 37744
AP-37 490408 14826 32921 442256 4266 8696 61362
AP-38 487033 14678 32793 438457 4263 8682 58928
AP-39 654787 20501 45166 598421 6352 12965 89294
AP-40 656469 20486 45150 599396 6351 12956 87744
AP-41 653096 20241 44709 588884 5846 11914 84628
AP-50 2613736 76180 171944 2353222 34538 71644 -

Table 6.1: Multiclique Reduction for AIRPORTS (Abbreviated AP)

After a looking at a couple of example instances, it became immediately
clear that the majority of edges belong to the first few multicliques found.
After that the number of edges covered per clause drops off rapidly. Thus,
if we are willing to forget a small percentage of the edges, we can reduce
the number of clauses necessary to encode the graph much further. For each
instance, we reran the multiclique generation algorithm terminating it as soon
as it had covered 90% of the total number of edges. The resulting numbers
of edges covered, clauses, and literals required are given respectively by the
columns “Edges*”, “CL*”, and “Lit*”. “R-Lit” gives the number of literals
required for Rintanen’s biclique encoding. It’s twice the number of constraints
he reports [36] since all his constraints are binary clauses (having exactly two
literals).

52

Chapter 7

Cost-Optimal Planning in ASP

In Cost-Optimal Planning, each action is associated to a cost, and our objective
is to find a plan which minimizes the sum cost of all actions. Given a particular
makespan (number of steps), any ASP planner can be trivially extended to a
cost-optimal planner by adding weak constraints. To do this, we need only
add one weak constraint for each action at each time-step:

:~ happens(A,K); cost(A,C).[C,A,K]

the grounded rules of which instruct the solver to search for a stable model
that minimizes the sum of the costs of actions.

ASPPlan, augmented with this weak constraint, we will refer to as “Mi-
nASPPlan”. “MinASPPlan” finds minimum cost solutions of a given makespan
to a planning problem.

Quite a lot of work has been done on cost-optimal Partial-Weighted-MaxSat
planning with regard to makespan, such as in [33] and [8]. But readers should
find this somewhat unsatisfactory. After all, finding a plan that is “cost-
optimal with regard to makespan” is just a way to sidestep the complication
the real problem (finding a globally cost-optimal plan) presents. What is
makespan, but an internal artifact of the SAT approach to planning? A solu-
tion should not depend on the way in which the planner happens to order the
actions. Ideally, we want an approach to planning which guarantees a globally
optimal solution and makes no mention of makespan.

53

We are aware of only one existing paper which tackles this much more
difficult problem, the paper by Robinson et al. [40] (in the following, when
we say Robinson’s paper, we mean this paper). We will pursue a separate
investigation into globally cost-optimal planning and eventually arrive at a
similar (but somewhat less cluttered) algorithm to Robinson’s, gaining some
novel insights into the problem along the way.

Here is a road map of this chapter. In section 7.1 we tackle the problem
of determining whether a planning problem (without costs) has a solution at
all. As we’ll see, this relies on being able to make assertions about whether
a given plan “makes progress” towards a solution. In section 7.2 we’ll look at
better ways to address whether a plan is making progress. In section 7.3 we
look at the connection between deciding whether a plan has a solution and
determining whether a plan is optimal with respect to action costs. Section
7.4 digresses to explore the world of delete-free planning, and finally section
7.5 makes use of that to provide a much more powerful approach to detecting
cost-optimality.

7.1 Our First Complete Planner

From a theoretical standpoint, let us consider why cost-optimal planning is
such a difficult problem for SAT/ASP. Any planner which guarantees cost-
optimality must be a proving machine [9]. When the planner terminates with
a plan of cost c, it is additionally asserting “I have proved there does not exist
a plan of cost c − 1”. But here we immediately have a problem, because all
the planners we have written so far are not actually planners in the sense of
[4]; they cannot identify when a problem has no solution. So before we can
create a cost-optimal planner, we must first create a (normal) planner which
can determine if a problem has no solution.

Planning is PSPACE-complete, which means in the worst case, we must
expect that solving a planning problem might require us to solve an exponential
number of ASP instances (or at least an exponentially-sized instance). But

54

exponential is not infinite, and all the approaches to planning we have outlined
so far have no stopping condition at all. In other words, if there is no plan,
the planners we have written will simply march on forever searching for one
until somebody kills the process.

The key thing that makes planning decidable is, of course, the finite state
space. Any plan which goes on too long will eventually revisit the same state
twice, so we only need search for a plan among those that never visit the same
state twice. We can, of course, produce a naive upper bound on the number
of possible states by taking n = 2|fluents| and then terminate the search after
n steps, but let us try to do a little better.

It is simple to add a rule to our planner stating for all time-step pairs j

and k with j < k, “some fluent must be true at time k which was not true at
time j”. We will augment ASPPlan with such a rule, but first, let us replace
our planner’s goal condition with something a little easier to satisfy.

In place of

holds(F,K) :- goal(F); finalStep(K).

we will say

{holds(F,K)} :- fluent(F); finalStep(K).

By using a choice rule here, the planner can now choose any goal it wants
and then plan towards that goal. This makes our instance always satisfiable.
(Just produce any valid sequence of actions, then take the end-state and claim
that was your goal).

Now here comes the “we must make progress” rule.

:- not holds(F,K) : not holds(F,J), fluent(F); step(J); step(K); J < K.

In English: “For any time-step pair J and K where J < K, we cannot
allow that every fluent F which does not hold at J also does not hold at K”

To examine more in detail what is said in the constraint, let us consider
parts of it. First,

55

:- not holds(F,K)

says that it is not possible that F does not hold atK, while the full rule is
instantiated to, given a particular J and particular K, a list of elements in the
form “not holds(F,K) : not holds(F,J)”, one for each F . In other words, the
constraint in its entirety

:- not holds(F,K) : not holds(F,J), fluent(F); step(J); step(K); J < K.

says “For every time-step J and every time-step K > J, there exists some
fluent F which did not hold at J but does hold at K.”

This rule guarantees that there exists a makespan n for which our planning
instance is UNSAT. This is because we are now enforcing that the state must
change at every time-step to take on some value which it did not have in any
previous time-step. But if there are only m reachable states in our planning
instance, then for all n > m this is clearly impossible.

The layer at which this program becomes UNSAT must also be the layer at
which we can stop searching for a solution. After all, if we can guarantee that
all non-repeating plans take less than n steps, and we cannot find a solution to
our problem using less than n steps, then that immediately tells us no solution
exists.

Hence, we can build a complete planner by running two separate compu-
tations in parallel. The first is our usual ASP planner which increases the
step-length until it finds an instance for which the solver finds a model (which
indicates a plan has been found). The second is our “any-goal” planner which
increases the step-length until it finds an instance for which the solver returns
UNSAT at which point we record the previous step-length as maxlength.

Once that is done, if the first instance manages to reach maxlength and
report UNSAT, we can safely claim to have proved that no plan exists, and
terminate the solve.

In a sense we have struck gold. We now have a planner which is guaranteed
to eventually reach a point where it knows no plan exists. Practically, however,
this approach may be of limited use. We’ve bounded the number of steps

56

required by the number of possible states, which still may be as many as
2|fluents|, but there are a couple ways this might be reduced.

First of all, this already does do a little bit better than “the number of
possible states” as the step length, it bounds the maximum number of steps
by the length of the longest non-repeating plan, or equivalently, the longest
non-self-intersecting path in the state-transition graph. This is nothing to
scoff at. Some problems have a strictly-decreasing invariant such as the game
Peg Solitaire. In Peg Solitaire, there is a rectangular grid of holes, some of
which initially are filled with pegs. A move consists of picking up one peg and
jumping (orthogonally) over an adjacent peg into an empty space on the other
side. The jumped peg is removed from the board. The game is won when only
one peg remains in the middle of the board.

In this problem, every jump decreases the number of pegs on the board, so
the length of the longest possible plan is bounded by the number of pegs. For
such problems, using the second step length finder is an easy way to determine
(in a domain-independent fashion) the maximum solution length. This is
indeed one problem for which our new “complete” planner can realistically
be expected to terminate quickly even when there is no solution.

7.2 Stronger Notions of Progress

Unfortunately, there also exist problems containing many independent vari-
ables which may be separately manipulated to generate a large easily-traversable
state-space. For such problems, the solver can produce long plans which idly
“flip bits” to avoid repeating themselves.

To make this scenario more concrete, imagine we take any unsolvable plan-
ning problem and adjoin to it a binary counter with one hundred two-state
switches. In addition to the actions from the original problem, we also have two
hundred actions which independently flip each of the switches in the counter
(either from 0 to 1 or from 1 to 0). Even though this counter has no impact
on the problem itself, it suffices to increase the length of the longest plan by a

57

factor of 2100 because for every state in the longest path, we can flip through
all possible arrangements of these switches before proceeding to the next state.
This easily puts the possibility of solving the problem out of reach whenever
there’s no solution.

One way to deal with this would be to somehow encode into our planner
the knowledge that the longest possible time it can take to iterate over the
possible states of two independent subproblems is the maximum of the re-
spective longest times rather than the product. In fact, this is possible. Let
us create a rule stating that any action which occurs must occur as soon as
possible. Robinson presents a simpler variant of this rule (rule 26) in his suffix
layer [40], but does not so carefully defend its importance and effectiveness.

We can add this rule to ASPPlan (this rule only applies to regular actions,
not preserving actions1), but we must be careful. There are quite a few things
which might prevent an action from occurring any sooner. If we leave any
out, we risk rendering the problem unsolvable. For an action to be able to
occur at the previous time-step, its preconditions must hold at the previous
time-step, its delete-effects should not be used at the previous time-step, and
its used add-effects should not be deleted at the previous time-step. There
are a few other conditions which at first appear to be necessary (such as its
preconditions must not be deleted at the previous time-step), but upon further
consideration you may notice that all of these are redundant if our goal is
specifically to prevent the action from occurring at the current time-step. We
must borrow our definition of deleted/2 from the modified encoding of rule
4 in Section 5.3 (which is originated from Section 5.1) and additionally add a
similar definition for used/2.

deleted(F,K) :- happens(A,K); del(A F).

used(F,K) :- happens(A,K); pre(A,F); not preserving(A).

1Remember from Section 4.3, in addition to the actions defined in the problem, which
we call regular actions, we also include preserving actions for each fluent which allows that
fluent to remain true from one timestep to the next. Clearly we don’t want to restrict these
to happening as early as possible.

58

:- happens(A,K); K > 1;

not preserving(A);

holds(F,K-1) : pre(A,F);

not used(F,K-1) : del(A,F);

not deleted(F,K-1) : add(A,F), holds(F,K).

How does this defeat the 100-switch-scenario?
Well, remember that the 100 switches exponentially increased the plan

length because the planner may choose to flip some switches but not others
to achieve one state, but then flip those other switches later to achieve an
alternative state.

For every switch this rule boils down to, “if we want to flip switch i at
time t, then we must also flip switch i at time t − 1 as well”. Otherwise the
solution fails this rule since the switch flip could have occurred one action
sooner. Hence, under this rule, we have made it impossible to achieve more
than 100 unnecessary states within the same plan. At each step where we do
not make progress somewhere else, we must choose at least one switch to stop
flipping (if we toggle the exact same set of switches as in the last step, we
revert to the same overall state as two steps earlier which is forbidden by the
previous rule).

More generally, one can see that wherever a planning problem has multiple
independent parts, this rule forces all the parts to proceed independently and
not stall needlessly. It still has some gaps though.

• Even adding a linear number of unnecessary steps is suboptimal. All the
switches are independent so we really should not be adding more than
one layer regardless of how many switches there are.

• The switch scenario is contrived to make our solution look better than
it is. One can easily see that by using three-state switches rather than
two-state switches (where each state is reachable from the other two),
it is still possible to construct exponential-length plans even with this
restriction in place. This is because we can still reach an exponential

59

number of states while continually changing every switch at every time-
step.

We have a stronger definition of “make progress”, which I conjecture perfectly
defeats the independent parts problem in all its forms, but it’s quite a bit more
complicated and will require some preliminary definitions first.

Definition 4. A partially-ordered plan is a transitive directed acyclic graph
G (equivalently, a partial ordering) of “action occurrences” such that all topo-
logical sorts of G are valid sequential plans.

In moving from Section 4.2 to Section 4.3 we relaxed our definition of a
“plan” by imposing less ordering on a solution and allowing actions to oc-
cur simultaneously. The intention with this definition is to impose even less
ordering and relax the definition of a plan further.

Starting with any sequential plan S, we can generalize it to its canonical
partially-ordered plan as follows. If a precedes b in S, then we will say a ≺ b

for actions a and b (adding an edge from a to b) iff any of the following holds:

1. a adds some fluent which is used as a precondition for b

2. b deletes some fluent which is used as a precondition for a (and a ̸= b)

3. a adds a fluent which b deletes

4. a deletes some fluent and b adds the same fluent2

5. a and b are different instances of the same action

6. There exists an action c such that a ≺ c and c ≺ b

Keep in mind, these rules only apply to a-b pairs for which a precedes b in S

(otherwise, rules 3 and 4 would appear to be contradictory).
If we add a source and sink s and t respectively to any partially-ordered

plan such that for all actions s ≺ a ≺ t, we can consider any s-t cut x as a
2This will be a later occurrence of that fluent

60

generalized “intermediate state” for this plan. To see this, take any ordering
where the s-side actions all precede the t-side actions and look at what fluents
hold after we have taken only the s-side actions. Let us call this state x-state.

Now here comes the strongest possible (domain-independent) definition of
“make progress” I can think of.

Definition 5. A partially-ordered plan is strongly minimal iff, given any two
s-t cuts x and y, if there exists any t-side action in x which is an s-side action
in y, then there must be some fluent which is true in y-state but not in x-
state. We can similarly call a sequential plan strongly minimal if its canonical
partially-ordered plan is.

An action can be said to make progress if no two cuts exist on either side of
the action without this property (that some new fluent occurs between them).

In a strongly minimal plan, all actions make progress.

This beautifully handles the one hundred 3-state switch scenario by forcing
us, for each switch w, to consider the generalized intermediate state where s

is flipped first, before any of the other switches, and also the state where w

is flipped last. The ASP encoding of this rule is complicated and has some
drawbacks which merrit further discussion. It is relegated to chapter 8 where
we describe how to apply it to the stepless planner. The same technique can
with some effort be applied to layered planners as well, but requires quite a
bit of boilerplate in order to talk about next and previous occurrences of each
fluent and action.

7.3 Extending No-Solution Detection to Cost-
Optimality Detection

How should we determine a plan is cost-optimal. Well, there’s one extremely
simple dummy way. Once we have used the approach from the last section to
determine the maxlength of a non-repeating plan for our problem, we itera-
tively run MinASPPlan for every makespan up to maxlength and then take
the one who’s cost is optimal among those.

61

Here’s one somewhat quirky way to reduce the possible amount of search
we must do. Instead of running the any-goal solver first, we run MinASPPlan
and the any-goal solver in parallel. We can take advantage of information
learned from the MinASPPlan solver even if we do not yet know the overall
optimal solution, once the MinASPPlan solver produces a plan of cost C, we
can treat C as an upper-bound on the cost of an optimal plan. Now, we tell
the any-goal solver to only search for non-repeating plans of cost < C. When
the any-goal solver terminates with UNSAT at some time-step n we can claim
that all non-repeating plans with cost < C have a makespan < n which means
we can stop the MinASPPlan solver after finishing time n− 1.

In fact, if the any-goal solver finishes first, we now have a way to use the
any-goal solver even after it is reached n and returned UNSAT (if we are going
to allocate two cores, one for each solver, we might as well keep them both
busy). Every time the MinASPPlan solver finds a new cheaper solution (say of
cost D), we can start counting back down with the any-goal solver until it can
find a non-repeating plan of cost D (i.e., until the problem becomes satisfiable
again). In this way, we can iteratively decrease the maximum makespan we
have to search until the two solvers meet somewhere in the middle.

But why should the flow of information between the two solvers be one
way. The any-goal solver uses the costs of intermediate plans produced by
MinASPPlan, but the costs of plans produced by the any-goal solver itself are
ignored. What if in turn we use weak constraints for the any-goal solver as well
and try to its action costs. If the any-goal solver gives back a minimum-cost
plan for layer n 3, then that cost is a lower bound on the optimal cost of any
plan with makespan at least n

We’ve now established that as the MinASPPlan solver increases the makespan,
it can produce successively smaller upper-bounds. Meanwhile as the any-goal
solver increases the makespan it can produce successively larger lower-bounds.
This gives us a much simpler way to approach this algorithm. Both of these

3without make-progress rules, this will always be zero, which is why we keep fussing
about them.

62

solvers can now march forward independently and as soon as the original solver
reaches a layer n where its best-known solution cost C matches the cost of the
any-goal solver for that same layer, we now know that the plan with cost C

is globally optimal (having established an equal upper and lower bound on its
cost).

Let us summarize this algorithm. We have two threads iteratively solve
successively larger instances for encoding I and encoding II. We will name
them I and II in deference to their similarity to Robinson’s [40] Variant-I and
Variant-II encodings.

• I is MinASPPlan (eg. ASPPlan augmented with weak constraints weighted
by action costs)

• II is the any-goal solver. It is similar to I except for two major differ-
ences

– In place of the goal conditions, II is allowed to choose its own goal.

– II is given some notion of progress together with the constraint
that it must make progress at every time-step. (We may choose
to include such a constraint in I as well, but it is certainly not
necessary. It is not clear whether such a rule would be useful).

How we determine when to stop depends on which solver (I or II) lags behind.
I’s result costs will fluctuate at each layer after the first layer it can solve
(unless I includes no make-progress rules in which case it is monotonically
nonincreasing). We can always ignore all but the lowest cost I has obtained
so far on any plan. Conversely, II’s result costs should be monotonically
nondecreasing. If I lags behind, then as soon as I’s lowest cost is ≤ the II

cost for the layer it is currently trying to solve, we can stop and report the
solution at that layer as optimal. If II lags behind, then as soon as its cost
for some layer is ≥ the best known I-cost so far (at any layer), we can stop.

The asymmetry in deciding when to stop happens because of the types
of bounds I and II produce. I will never produce a cost D < C if C is

63

the optimal cost, but II will continually increase its lower bound eventually
marching straight past C and on to infinity (the point at which it returns no
solution). This is why we must take into account the layer at which each lower
bound was produced when determining if we are done, but we do not care
what layer the upper bound was produced at.

Although we have yet to talk about delete-free planning and the suffix-
layer, there’s one other particularly subtle difference between our approach
and Robinson’s approach that is worth noting. In place of our notion of
progress, Robinson uses a simpler but less powerful rule (rule 6 in [40]) which
simply states

∨
a∈At

at some action must occur at every time-step. This works

only if we assume the problem is solvable (which he does) and all actions have
positive (nonzero) costs (which he also does, but unfortunately this tends to
not hold in actual planning competition problems. The paper doesn’t attempt
to rectify this; it seems in practice while planning problems have zero-cost
actions, most of them don’t produce the exact pathological case which would
cause Robinson’s planner to run indefinitely. In other words they don’t allow
you to idly “toggle state” back and forth while avoiding incurring cost). The
Robinson paper does not acknowledge the problem in which the Variant-II
solver proceeds faster than the Variant-I solver, but in practice the heap of
extra restrictions and accompanying difficulty introduced by the suffix layer
seems to make this unlikely.

7.4 Delete-Free Planning

Before discussing the suffix-layer, we must once again digress to talk about a
special subclass of planning problems which happen to be in NP . This is the
class of delete-free planning problems. These are planning problems without
delete-effects. Surprisingly, delete-free planning can be modeled as a graph
problem. We will first present it in this way and then show how the two
problems are identical.

Delete-Free Planning:

64

Given a directed bipartite graph G = (X,Y,E) with weights on X and a
goal set YF ⊆ Y , find a minimum acyclic subgraph G∗ = (X∗, Y ∗, E∗) such
that

1. YF ⊆ Y ∗

2. If x ∈ X∗ and (y, x) ∈ E, then y ∈ Y ∗ and (y, x) ∈ E∗

3. For all y ∈ Y ∗, E∗ contains at least one edge (x, y) (and x ∈ X∗).

What is the connection? WellX is the set of actions, and Y is the set of fluents,
the (x, y) edges are add-effects and the (y, x) edges are preconditions. YF is the
goal set and the initial set has been removed (together with all corresponding
preconditions) from the graph. Rule 1 means the goal fluents must be true.
Rule 2 means an action implies its preconditions. Rule 3 means every fluent
must have a causing action. The graph must be acyclic to ensure the actions
can occur in some order. This is possible because there’s no incentive to ever
take an action or cause a fluent more than once. As soon as any fluent is true,
it is permanently true.

7.4.1 Delete-Free Planning: Take 1

Let us write an ASP program to solve the problem delete-free planning. Fur-
thermore, we can trivially add the extra rule to make our plans cost-optimal.
Here we do not worry about makespan or running multiple iterations of the
solver. Thanks to the NP-ness of delete-free planning, we can solve this prob-
lem all in one go.

%Instance defined by:

%action(A), cost(A,C), fluent(F), init(F), goal(F), pre(A,F), add(A,F)

holds(F) :- init(F).

{happens(A)} :- holds(F) : pre(A,F); action(A).

holds(F) :- add(A,F); happens(A).

:- goal(F); not holds(F).
65

:~ happens(A); cost(A,C).[C,A]

We have again encountered a five-line program which, magnificently, does
everything. It handily encodes the problem of delete-free planning. To be
supported, an action’s preconditions must hold independently of that action
itself, and a fluent’s causing action must not require that fluent.

However, we have lost something by encoding planning “from the ground
up”. Earlier, we noted how the state-space for solving a planning problem was
reduced when we started from the goal, and built support up backwards. That
is, an action should only happen if something needs it. Let us fix that.

7.4.2 Delete-Free Planning: Take 2

If we build up the plan backwards, we must be careful to ensure that the
actions can happen in some order. As such, we need to explicitly include
atoms whose only purpose is to ensure supportedness.

holds(F) :- goal(F).

{happens(A) : add(A,F)} >= 1 :- holds(F), not init(F).

holds(F) :- pre(A,F); happens(A).

supportFluent(F) :- init(F); holds(F).

supportAct(A) :- supportFluent(F) : pre(A,F), holds(F); happens(A).

% Rule SA

supportFluent(F) :- supportAct(A); happens(A); add(A,F); holds(F).

:- holds(F); not supportFluent(F).

:~ happens(A); cost(A,C).[C,A]

Now the first three rules encompass neededness. We add actions and flu-
ents in working backwards from the goal until we encounter the initial fluents.
Meanwhile the second three rules indicate whether an action or fluent is sup-
ported. Together, with the restriction that all the fluents must be supported,

66

these guarantee a correct plan. Essentially, for an action or fluent to occur, it
now must have support both from the bottom and from the top.

Why did we express needed actions with a choice rule rather than a disjunc-
tive rule? It turns out this is important in the domain of delete-free planning
since using a disjunctive rule can sometimes render an instance UNSAT. This
happens because in the positive reduct, rule SA is reduced to simply:

supportAct(A) :- happens(A).

This happens because of the implicit “not” which results from having the
condition holds(F) on the right of the “:” in it.)

This unintentional reduction results in an assertion that any action which
happens is automatically supported.

Consider the following simple instance:

action(a;b;c).

fluent(x;y;z).

pre(x,a).

add(a,y).

pre(y,b).

add(b,(x;z)).

add(c,x).

goal(x;y;z).

Without supportedness, a valid plan requires only actions a and b (with
a causing y and b causing x. Each causes the other’s precondition). With
supportedness, however, we must also include c in the plan. But in the positive
reduct, c becomes extraneous and so the model

{happens(a), happens(b), happens(c), holds(x), holds(y), holdst(z)}

is deemed not minimal since it is a superset of the smaller model

{happens(a), happens(b), holds(x), holds(y), holds(z)}.

67

Running this through a disjunctive solver will return UNSAT, but by using a
choice rule, we get the proper solution

{happens(a), happens(b), happens(c), holds(x), holds(y), holds(z)}

This concludes our digression into delete-free planning. Now let’s use it.

7.5 The Suffix Layer

Delete-Free planning gives us access to an admissible heuristic for general
STRIPS planning (in case we want to plan with some form of A∗-search [25]
which we don’t). Given any planning problem, we can simply remove all the
delete-effects to get its delete relaxation [40]. The minimum-cost solution to
the delete-relaxation of the problem is a lower bound on the minimum-cost
solution to the problem itself.

As with A∗-search, we can generate successively better lower bounds by
planning normally from the starting state I to some intermediate state S

chosen by the planner and then finding the minimum-cost solution to the
delete relaxation for the planning problem from S to the goal state G.4 This
suggests a natural way to modify our Varaint-II encoding in Section 7.3 to
find better lower bounds. We append a “suffix layer” at the end, which must
generate a plan in the delete relaxation of the problem from the chosen any-
goal state to the actual goal state. The costs for any actions taken in the suffix
layer must be added to the total cost of our plan. Indeed, in many cases this
produces a remarkable lower bound. The full code for this Variant-II planner
with a suffix can be found in the appendix (We do not present it here since
it is really nothing more than joining the code from the rest of the chapter
together into one program).

To summarize, we have two ASP programs running simultaneously. One is
the Variant-I standard ASPPlan solver with weak constraints for action costs.

4 More precisely, we encode in ASP the problem of finding the minimum total cost across
all possible subgoal states of cost(normalplan) + cost(suffixplan) (given that the normal
plan respects whichever progress rule we choose to employ)

68

The other is the Variant-II solver with a progress rule and appended suffix
layer.

• Both solvers independently run successively on makespan 0, 1, 2 etc.
until we kill them.

• Each time the Variant-I solver begins solving a new makespan, we update
the current makespan being solved for.

• When the Variant-I solver finds a plan, we record the plan and its cost
if this is the lowest-cost plan found so far.

• When the Variant-II solver finds an optimal plan for some makespan
using the suffix layer, we record the optimal cost as a lower bound for
that makespan (as well as all larger makespans).

• If the Variant-II solver ever finds an optimal plan which doesn’t use the
suffix layer, then that plan is globally optimal. We can return it as a
solution and entirely ignore the Variant-I solver (This only happened
twice in all of our experiments. It seems to be fairly unlikely).

• If the Variant-II solver obtains UNSAT for a layer, we can stop running
it and record the cost of that and all future layers as ∞.

• Any time the best-cost plan found so far (by the Variant-I solver) is no
greater than the Variant-II lower bound for the currently-solving layer
or any earlier layer, we can stop both solvers and report that plan as an
optimal solution.

• Any time the Variant-I solver is solving for a makespan whose Variant-II
lower bound is ∞, we can stop the solver and return the best-cost plan
found so far or “no solution” if no plan has been found.

69

Chapter 8

Planning without Layers:
Stepless Planning

All the planners so far in this paper (and indeed, all SAT/ASP planners that
I’ve encountered) have used layers to order the actions and fluents that occur
within a planning problem. But let us consider the definition of a partially
ordered plan from Definition 4. A partially ordered plan does not need to
specify layers, it is a directed graph of action-dependencies. Any topological
sort of this graph corresponds to a valid plan. Perhaps we could save space by
avoiding layers entirely and embedding action-dependencies directly.

The idea here is that, just as with delete-free planning, we can create a
plan by specifying only which actions and which fluents hold, and we’ll rely
on stable model semantics to ensure the resulting solution graph is acyclic.

There’s a key difference between delete-free planning and full stepless plan-
ning though which accounts for the distinction in computation complexity. In
the case of delete-free planning, no fluent holds more than once and no action
occurs more than once. In stepless planning, it’s possible for an action to occur
multiple times. As such, we’ll have to have separate atoms in our encoding
representing each occurrence of an action. But prior to solving, we don’t know
how many occurrences of each action or fluent will be needed.

In this chapter we’ll first present a solver that assumes it has enough oc-
currences and then in Section 8.3 we’ll come back to the issue of figuring out
how many of each are needed in order to produce an optimal plan. The step-

70

less planner is significantly more complicated than anything else done in this
thesis so we put more care into explaining what each line of ASP code does.
Additionally, to the author’s knowledge no planner like this has been built
before, so we’ll take more care to try and bridge the gap between the standard
approach to planning and the approach being presented here.

8.1 Stepless Planner Encoding

Before explaining how to figure out how many occurrences we need, let us
first present the encoding under the assumption we have enough. To avoid an
O
(
|actions|2

)
-size encoding, we don’t directly encode dependencies between

actions. Instead we use the fluents as intermediate nodes in the solution graph.
An occurrence of a fluent F will be encouded as an object

is(fluentOcc(F,M)).

where M is a sequentially-ordered index. M = 0 is reserved for the initial
fluents. All others start at M = 1 (when caused by some action). Similarly

is(actOcc{A,N}).

indicates an occurrence of action A.1 In stepless planning, there are no preserv-
ing actions since there are no layers to preserve things across. We don’t utilize
mutex relationships between objects. We have some interesting ideas about
how to use mutex for stepless planning, but it would require further develop-
ment. Whereas in our previous encodings the causes and destroyers of each
fluent were implicit, here we must explicitly give which occurrence of which
action A causes which fluent F to hold (causes(A,F)) and which occurrence of
which fluent F is used as a precondition for which action A (permits(F,A)).

1We index action and fluent occurrences with numbers N and M and have symmetry-
breaking rules ensuring that the occurrences happen in numerical order for a given action
or fluent, but it’s important to understand that these numbers are not layers. There’s no
global step of any kind to which they correspond. A fluent occurrence can be used as a
precondition for an appropriate action occurrence regardless of what their indices are or
how they relate to each other. The same goes for an action causing a fluent. The indices
are simply to be able to distinguish between multiple occurrences of the same object; they
have no global significance or relation to any other object.

71

Additionally we need an atom for each deleted fluent occurrence F which
action occurrence A has as a precondition and deletes (deletes(A,F)) and
also one in the rare case that an action has a fluent as a delete-effect, but
not a precondition, for which occurrence of the fluent F the action A follows
(follows(A,F)).

% Helper function to recognize subsequent occurences of the same

% fluent/action.

nextOcc(fluentOcc(F,0),fluentOcc(F,1)) :- fluent(F).

nextOcc(fluentOcc(F,M),fluentOcc(F,M+1)) :- is(fluentOcc(F,M)).

nextOcc(actOcc(A,N),actOcc(A,N+1)) :- is(actOcc(A,N)).

% Any fluent above level 0 which holds must have exactly one causing

% action.

{causes(actOcc(A,N),fluentOcc(F,M)) : add(A,F), is(actOcc(A,N))}=1 :-

holds(fluentOcc(F,M)); M > 0.

% If an action causes a fluent, it happens.

happens(AO) :- causes(AO,_).

% An action cannot cause more than one occurrence of the same fluent.

:- {causes(AO,fluentOcc(F,M))} > 1; is(AO); fluent(F).

% For each precondition an action occurrence has, some occurrence of

% that fluent must permit it.

{permits(fluentOcc(F,M),actOcc(A,N)) : is(fluentOcc(F,M))}=1 :-

happens(actOcc(A,N)); pre(A,F).

% A fluent occurrence which permits an action must hold.

holds(FO) :- permits(FO,_).

% A fluent which is used to satisfy a goal condition "permits" it.

% For each goal condition, exactly one occurrence of that fluent

% permits it.

{permits(fluentOcc(F,M),goal) : is(fluentOcc(F,M))}=1 :- goal(F).

% A fluent which permits a goal condition cannot be deleted.

:- deleted(FO); permits(FO,goal).
72

% An occurrence of an action deletes an occurrence of a fluent if

% it permits it and that action has the fluent as a delete effect.

deletes(actOcc(A,N),fluentOcc(F,M)) :-

permits(fluentOcc(F,M),actOcc(A,N)); del(A,F).

% No fluent may be deleted by more than one action.

:- {deletes(_, FO)} > 1; is(FO).

% An action which deletes a fluent, but doesn't have it as a

% precondition follows some occurrence of that fluent. Can possibly

% follow occurrence index 0 even if the fluent is not an initial

% fluent (indicates this action occurs before any occurrence of

% that fluent).

{follows(actOcc(A,N),fluentOcc(F,M)) : holds(fluentOcc(F,M));

follows(actOcc(A,N),fluentOcc(F,0))}=1 :-

del(A,F); not pre(A,F); happens(actOcc(A,N)).

% Fluent occurrences 0 which aren't initial fluents count as "deleted".

deleted(fluentOcc(F,0)) :- fluent(F); not init(F).

% A fluent is deleted if something deletes it.

deleted(FO) :- deletes(_, FO).

% A fluent is deleted if something follows it.

deleted(FO) :- follows(_, FO).

% Weak constraint charging the cost of an action occurrence.

:~ happens(actOcc(A,N)); cost(A,V).[V,A,N]

% An occurrence of a fluent doesn't hold if its previous occurrence

% doesn't hold.

:- holds(fluentOcc(F,M+1)); not holds(fluentOcc(F,M));

is(fluentOcc(F,M)); M > 0.

% An occurrence of an action doesn't happen if its previous occurrence

% didn't happen.

73

:- happens(BO); not happens(AO); nextOcc(AO,BO).

From this we can structure the graph and assert that it is acyclic. For
each action occurrence we have an“event”; additionally there’s an event for
the start and end of each occurrence of each fluent. There’s also an event
“goal” which corresponds to the goal state being reached.

Events are grouped into vertices in our graph each of which contains at
most one action occurrence. When an action occurrence causes a fluent, the
action and the start of that fluent belong to the same vertex. Similarly when
it deletes a fluent, the action and the end of the fluent belong to the same
vertex. To encode this we use the predicate inV ertex/2 which indicates that
its first argument belongs to the vertex named by the second argument.

% Events in the graph; these will be grouped into vertices

event(start(FO)) :- holds(FO).

event(end(FO)) :- holds(FO).

event(end(fluentOcc(F,0))) :- fluent(F).

event(AO) :- happens(AO).

event(goal).

% Triggering actions

% The start of a fluent by its causing action.

actionTriggers(AO,start(FO)) :- causes(AO,FO).

% The end of a fluent by its deleting action.

actionTriggers(AO,end(FO)) :- deletes(AO,FO).

% Vertices

% If no action triggers an event, then it gets a vertex by itself.

vertex(V) :- event(V); not actionTriggers(A,V) : is(A).

% Otherwise it belongs to the vertex for its trigger action.

inVertex(E,V) :- actionTriggers(V,E).

% Every event which is the name of a vertex belongs to that vertex.

74

inVertex(V,V) :- vertex(V).

% Graph edges

% A fluent ends after it starts

edge(start(FO),end(FO)) :- holds(FO).

% If a fluent permits an action, then the action happens after

% the start of the fluent

edge(start(FO),AO) :- permits(FO,AO).

% If a fluent permits an action but the action doesn't delete the

% fluent, then the action happens before the end of the fluent.

edge(AO,end(FO)) :- permits(FO,AO); not deletes(AO,FO).

% An action happens after the fluent it follows

edge(end(FO),AO) :- follows(AO,FO).

% but before the next occurrence

edge(AO,start(GO)) :- follows(AO,FO); nextOcc(FO,GO); holds(GO).

% The start of the next occurrence of a fluent happens after the

% end of the previous occurrence

edge(end(FO),start(GO)) :- holds(GO); nextOcc(FO,GO).

% The next occurrence of an action happens after the previous

% occurrence

edge(AO,BO) :- happens(AO); happens(BO); nextOcc(AO,BO).

% And now we use stable models to assert that the graph is acyclic; sup(X)

% indicates that X has acyclic support going back to the root of the graph.

% The input for a given event has support if all events joined

% by any incoming edge have support.

sup(in(E)) :- sup(D) : edge(D,E); event(E).

% A vertex has support if all of its events' inputs have support.

sup(V) :- sup(in(E)) : inVertex(E,V); vertex(V).

% An event has support if its vertex has support.

75

sup(E) :- sup(V); inVertex(E,V).

% Every vertex must have support.

:- vertex(V); not sup(V).

8.2 Making Stepless Progress

Now we need a way to assert that the actions of a given stepless plan “make
progress”. With no layers to make assertions about, the only notion of progress
we’re left with is the definition 5 from Section 7.2 of a plan which is strongly
minimal so we’ll have to use that one somehow.

Unfortunately, this definition logically takes the form of “there does not
exist a pair of st-cuts such that ...”. This means that given a particular plan,
determining whether it is strongly minimal is likely co-NP hard (open con-
jecture). Then the problem of determining the existince of such a plan for a
given collection of atoms and fluents could possibly be ΣP

2 -hard (NPNP).
Luckily, as was mentioned in rule 6 of subsection 3.1.3, ASP gives us a way

to encode ΣP
2 hard problems through the use of disjunctive rules [3]. Briefly,

to determine whether a (propositional) disjunctive program has an answer set
is ΣP

2 -complete, as ASP with disjunction captures Boolean quantified formulas
(QBF) with variables partitioned to two sets whereas the first set is quantified
by ∃ followed by the second which is quantified by ∀. The satisfiability of such
QBFs is known to coincide with the decision problems in ΣP

2 [35]. Below we
will diverge briefly to a short introduction about how to encode ΣP

2 problems
in ASP.

Theorem 6. Let QBF F be

∃p1, ..., pk, ∀q1, ..., ql :
θ1(p1, ..., pk, q1, ..., ql) ∨ ... ∨ θn(p1, ..., pk, q1, ..., ql)

F is satisfiable iff there exists an answer set for the following disjunctive

76

program P :
{pi} ←
qj or q′j ←
sat ← θ′m
qj ← sat
q′j ← sat
← not sat

where i ∈ [1..k], j ∈ [1..l], m ∈ [1..n], and θ′m means θm except negative qj

literals ¬g are replaced by g′ .

Example 7. Consider the QBF and its disjunctive program encoding below.

∃p1, p2∀q : (p1 ∧ ¬q) ∨ (p2 ∧ q)

ASP encoding:
{p1} ←
{p2} ←
q or q′ ←
sat← p1, q

′

sat← p2, q
q ← sat
q′ ← sat
← not sat

When p1 and p2 are assigned to true, for either assignment to q, the QBF
evaluates to true. The only answer set is: {p1, p2, q, q′, sat}.

We now come back to encoding our stepless planner. We’ll present the
encoding first followed by an explanation of why it works. The key thing to
notice is the total lack of negative literals. This is done intentionally as we’ll
explain below and leads to some somewhat awkwardly named predicates of
the form not_p.

% A counterexample to strong minimality consists of two cuts, cut1

% and cut2.

cut(cut1; cut2).

% For each vertex V and each cut C, V is on either the s-side or

% the t-side of V. Note this rule is disjunctive.

77

onSideOf(V,s,C) | onSideOf(V,t,C) :- vertex(V); cut(C).

% An event belongs to the cut side of its vertex.

onSideOf(E,X,C) :- inVertex(E,V); onSideOf(V,X,C).

% The goal (t) is always on the t-side of cut2.

onSideOf(goal,t,cut2).

% If there's a directed edge from D to E, but D is on the t-side

% and E is on the s-side, this is not a cut (invalidating this

% counterexample to strong minimality).

not_counterexample :- edge(D,E); onSideOf(D,t,C); onSideOf(E,s,C).

% If a fluent starts on the s-side of cut2 and ends on the t-side,

% then it "holds over" cut2.

holdsOver(FO,cut2) :-

onSideOf(start(FO),s,cut2); onSideOf(end(FO),t,cut2).

% Similarly if it starts and ends on the same side of cut1, then it

% doesn't hold over cut1.

not_holdsOver(FO,cut1) :-

onSideOf(start(FO),X,cut1); onSideOf(end(FO),X,cut1).

% Action occurrence AO is not between cut1 and cut2 if it's on the

% s-side of cut1 or the t-side of cut2.

not_betweenCuts(AO) :- onSideOf(AO,s,cut1).

not_betweenCuts(AO) :- onSideOf(AO,t,cut2).

% If no action occurs between the two cuts, then this is not a

% counterexample.

not_counterexample :- not_betweenCuts(AO) : happens(AO).

% If there exists a fluent for which some occurrence holds over cut2,

% but no occurrence holds over cut1, then this is not a counterexample.

not_counterexample :-

holdsOver(fluentOcc(F,_),cut2);

not_holdsOver(fluentOcc(F,M),cut1) : holds(fluentOcc(F,M)).

% There should be no counterexample (sorry for the triple negative).

78

:- not not_counterexample.

% If this is not a counterexample, all atoms must hold.

onSideOf(V,s,C) :- vertex(V); cut(C); not_counterexample.

onSideOf(V,t,C) :- vertex(V); cut(C); not_counterexample.

To understand why this works, imagine we find a plan which satisfies these
rules. Consider the candidate model which includes the atom not_counterexample.
Because all the rules here are strictly positive, the last two rules force all the
others to hold. Any other solution is a strict subset. Therefore if some other
solution exists which does not include the not_counterexample atom, then a
model including it would be rejected for not being minimal. It follows that
the only models which include not_counterexample (and satisfy the triple-
negative rule) are those for which no counterexample exists.

8.3 Stepless Suffix Layer

Again, if there aren’t enough occurrences of a fluent or action, we can tack on
a suffix layer in the same way we did with the stepped-cost-optimal planner.

First, we need to replace all uses of goal with a subgoal which is the entry-
point into the suffix layer:

% A fluent which is used to satisfy a subgoal condition "permits" it.

% For each subgoal condition, exactly one occurrence of that fluent

% permits it.

{permits(fluentOcc(F,M),subgoal(F)) : is(fluentOcc(F,M))}=1 :-

subgoal(F).

% A fluent which permits a subgoal condition cannot be deleted.

:- deleted(FO); permits(FO,subgoal(_)).

% subgoals are events

event(subgoal(F)) :- subgoal(F).

79

% Any subgoal is always on the t-side of cut2.

onSideOf(subgoal(F),t,cut2) :- subgoal(F).

In the ASP snippet above, I’ve just copy-pasted any rule with the word
goal or goal(F) in the last couple sections and replaced it with subgoal(F) for
the appropriate fluent F .

We’ll get our subgoals from the suffix layer, which can be encoded as:

% All goal fluents hold in the suffix layer.

suffix(holds(F)) :- goal(F).

% If a fluent holds in the suffix layer, either some action causes it

% or it is a subgoal.

{subgoal(F); suffix(causes(A,F)) : add(A,F)} = 1 :- suffix(holds(F)).

% If an action causes a fluent in the suffix, it happens.

suffix(happens(A)) :- suffix(causes(A,_)).

% If an action occurs in the suffix layer, then all of its

% preconditions hold in ths suffix layer

suffix(holds(F)) :- suffix(happens(A)); pre(A,F).

% If any action happens in the suffix layer, then we are using the

% suffix layer.

useSuffix :- suffix(happens(_)).

% A fluent is supported in the suffix if it's a subgoal

suffix(sup(holds(F))) :- subgoal(F).

% An action is supported in the suffix if all of its preconditions are

suffix(sup(happens(A))) :-

suffix(sup(holds(F))) : pre(A,F); suffix(happens(A)).

% A fluent is supported in the suffix if its causing action is

suffix(sup(holds(F))) :- suffix(sup(happens(A))); suffix(causes(A,F)).

% No action happens in the suffix without support

80

:- suffix(happens(A)); not suffix(sup(happens(A))).

% No fluent holds in the suffix without support

:- suffix(holds(F)); not suffix(sup(holds(F))).

% Actions that happen in the suffix layer impose their cost.

:~ suffix(happens(A)); cost(A,V).[V,A,suffix]

% Very weak preference to avoid using the suffix layer.

:~ useSuffix.[1@-1]

This is similar to the normal encoding we use for the suffix layer but there
are a few key differences. First, if the suffix layer is used at all, then useSuffix

is true. There is a cost of 1 at level -1 for useSuffix so among plans of equal
cost, the solver will prefer one which doesn’t use the suffix to one which does.
If an optimal solution doesn’t use the suffix, then it must be globally optimal
with respect to cost.

8.4 Counting Stepless Occurrences

We’ll now add rules to enforce the use of actions and fluents from our bag so
that the planner resorts to the suffix layer only when it “runs out” of something.

% A fluent is saturated if all occurrences of it hold (besides the 0th).

saturated(fluent(F)) :-

holds(fluentOcc(F,M)) : is(fluentOcc(F,M)),M>0; fluent(F).

% An action is saturated if all occurrences of it happen.

saturated(action(A)) :-

happens(actOcc(A,N)) : is(actOcc(A,N)); action(A).

% If an action happens in the suffix layer and all of its preconditions

% are subgoals, we designate it a "starting" action.

suffix(start(action(A))) :- subgoal(F) : pre(A,F); suffix(happens(A)).

% Any fluent caused by a starting action is designated a "starting"

% fluent.
81

suffix(start(fluent(F))) :- suffix(start(action(A))); suffix(causes(A,F)).

% Guarantees that some starting action or fluent will be saturated.

:- useSuffix; not saturated(X) : suffix(start(X)).

With this we know how to expand our bag of fluents and actions. Each
time we get back a plan making use of the suffix layer, look at all the fluents
or actions which were saturated by that plan and add another occurrence of
each one.

This, coupled with our definition of making progress, is what guarantees
it will eventually find a plan or determine that none exists. The suffix layer
is only used because the planner ran out of something it needed and needs to
request more of that item from the controlling program; not as a way to save
on plan cost.

The total collection of all rules needed for the stepless planner is presented
in Appendix C, Section C.6.

8.5 Example of Stepless Planning: Bridge Cross-
ing

We will use a modified version of the bridge-crossing problem from Eiter [10].2

In the original problem, we have four people, Joe, Jack, William, and
Averell, needing to cross a bridge in the middle of the night. The bridge is
unstable and so at most two people can cross at a time. The four only have
a single lantern between them and since there are planks missing it’s unsafe
to cross unless someone in your party is carrying the lantern. In the original

2Eiter et al. [10] claims to present an approach to finding globally cost-optimal plans in
ASP with action costs, but make the assumption that the domain has some polynomial
upper bound on plan lengths. They cite some complexity results for why this assumption
is reasonable. However, they then further implicitly and without justification make the
assumption that this upper bound is known to the solver and that the algorithm can make
use of it. Their algorithm for finding cost-optimal plans amounts to constructing an ASP
program which can consider plans of any makespan up to a hard-coded upper bound and
returning the cheapest only among those. This technique could not be deployed in building
a domain-independent planner.

82

problem, it takes Joe 1 minute to run across, Jack 2 minutes, William 5 minutes
and Averell 10. When two people cross together they must go at the slower
speed of the two. What’s the fastest all four can get across considering that
after each crossing somebody needs to cross back carrying the lantern?

In our version we’ll add two more people Jill and Candice for a total of
six people. Jill takes 3 minutes to cross and Candice takes 20 (the original
problem doesn’t make for a very interesting example of stepless planning).

We can now phrase the problem as follows:

person(joe;jack;jill;william;averell;candice)

side(side_a;side_b)

crossing_time(joe,1).

crossing_time(jack,2).

crossing_time(jill,3)

crossing_time(william,5).

crossing_time(averell,10).

crossing_time(candice,20).

fluent(lantern_at(S)) :- side(S).

fluent(at(P,S)) :- person(P); side(S).

init(at(P,side_a)) :- person(P).

init(lantern_at(side_a)).

goal(at(P,side_b)) :- person(P).

action(cross_alone(P,FROM,TO)) :-

person(P); side(FROM); side(TO); FROM != TO.

pre(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

pre(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),at(P,TO)) :-
83

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),lantern_at(TO)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

cost(cross_alone(P,FROM,TO),C) :-

action(cross_alone(P,FROM,TO)); crossing_time(P,C).

action(cross_together(P_SLOW,P_FAST,FROM,TO)) :-

side(FROM); side(TO); FROM != TO;

crossing_time(P_SLOW,T1); crossing_time(P_FAST,T2); T2 < T1.

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

84

cost(cross_alone(P_SLOW,P_FAST,FROM,TO),C) :-

action(cross_alone(P_SLOW,P_FAST,FROM,TO)); crossing_time(P_SLOW,C).

Let’s run the stepless solver on this and see what happens. On the first
iteration we input one occurrence of every fluent and every action as well as a
bonus zeroth occurrence of each initial fluent.

is(fluentOcc(F,1)) :- fluent(F).

is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

It gives back a directed graph of action and fluent dependencies. After
topologically sorting the graph and throwing out everything that isn’t an ac-
tion we have the plan:

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(william,jill,side_a,side_b)

cost: 29

In the suffix layer when Candice and Averell cross from side_a to side_b,
the fluent lanternat(side_a) is not deleted (because the suffix layer encodes
the delete-free relaxation of the problem), so this is still considered to be
achieved when Joe, and then William and Jill cross. Nobody needs to bring
the lantern back for them. The use of the suffix layer is allowed because there
isn’t a second occurrence of the fluent at(joe(sideb)), but this is a starting
fluent (all 3 suffix actions are starting actions since they do not depend on
each other). Since the suffix layer was used, we add a second occurrence of
each of the fluents and actions which were saturated by this plan:

Adding:

is(fluentOcc(at(joe,side_a),2)).
85

is(fluentOcc(lantern_at(side_a),2)).

is(fluentOcc(lantern_at(side_b),2)).

is(fluentOcc(at(joe,side_b),2)).

is(fluentOcc(at(jack,side_b),2)).

is(actOcc(cross_together(jack,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),2)).

and run it again

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_together(jack,joe,side_a,side_b)

cost: 32

This time we start by having William and Joe cross together and then Joe
carries the lantern back, crosses with Jill and carries it back again. In the suffix
layer, Candice and Averell cross together while Jack and Joe cross together
(each pair making use of the same undeleted lantern). Again the suffix layer
occurs because we don’t have enough occurrences of at(joe(side_b)).

Interestingly, a cheaper solution seems to have been skipped. Namely the
plan which is identical to the cost-29 plan, but with Joe running across and
running back first for a total cost of 31.

This is because such a plan fails to make progress. We can produce two
cuts, namely the one at the start of the plan and the one after Joe crosses
back the first time and see that no new fluents hold between the two cuts.
The rules enforcing strong minimality will reject this plan.

Add another occurrence of each saturated item

Adding:

is(fluentOcc(at(joe,side_a),3)).
86

is(fluentOcc(lantern_at(side_a),3)).

is(fluentOcc(lantern_at(side_b),3)).

is(fluentOcc(at(joe,side_b),3)).

is(fluentOcc(at(jill,side_b),2)).

is(fluentOcc(at(william,side_b),2)).

is(actOcc(cross_together(jill,joe,side_a,side_b),2)).

is(actOcc(cross_together(william,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),3)).

and again:

cross_together(william,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 33

Here we have William and Jack crossing together. Then Jack crosses back
alone. Jill and Jack cross together, and now Jack would cross back alone
again taking the lantern, but there are only two occurrences of the action
cross_alone(jack, side_b, side_a) in our bag so instead we move into the
suffix layer. In the suffix layer he carries the lantern back, but because of the
delete relaxation, we don’t lose the fluent at(jack, side_b) so he doesn’t need
to cross back again. Candice and Averell use the lantern to cross as does Joe
by himself.

The rest of the output from the stepless solver follows:

Adding:

is(fluentOcc(at(jack,side_a),2)).

is(fluentOcc(at(jack,side_b),3)).

is(actOcc(cross_together(jill,jack,side_a,side_b),2)).
87

is(actOcc(cross_together(william,jack,side_a,side_b),2)).

is(actOcc(cross_alone(jack,side_b,side_a),2)).

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 34

Adding:

is(fluentOcc(at(joe,side_a),4)).

is(fluentOcc(lantern_at(side_a),4)).

is(fluentOcc(lantern_at(side_b),4)).

is(fluentOcc(at(joe,side_b),4)).

is(actOcc(cross_alone(joe,side_b,side_a),4)).

cross_together(jill,jack,side_a,side_b)

cross_alone(jill,side_b,side_a)

cross_together(william,jill,side_a,side_b)

suffix cross_alone(jill,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 35

Adding:

is(fluentOcc(at(jill,side_a),2)).

is(fluentOcc(at(jill,side_b),3)).

88

is(actOcc(cross_together(william,jill,side_a,side_b),2)).

is(actOcc(cross_alone(jill,side_b,side_a),2)).

cross_together(jack,joe,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

cost: 36

Adding:

is(fluentOcc(at(jack,side_a),3)).

is(fluentOcc(at(jack,side_b),4)).

is(actOcc(cross_alone(jack,side_b,side_a),3)).

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(candice,averell,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cost: 37

In the last one, the suffix layer is not used so we’re done. No other plans
need be searched.

89

Chapter 9

Experiments

We ran our cost-optimal two-threaded solver and stepless solver on most of
the same instances as Robinson [40] and here report results.1

Experiments were run on a cluster of c3.large Amazon EC2 instances each
with two Intel Xeon 2.8 GHz CPU cores and 3.75 GB of memory. We used
GNU Parallel [44] to distribute the work of running multiple instances

For comparison, we include Robinson’s reported results scaled down by a
factor of 2.6

2.8
to account for the difference in processor speeds.

For each domain we report the largest instance solved by each of the two-
thread, stepless, and Robinson’s planner where largest is measured by the
amount of time it took that planner to solve the instance. Where it differs, we
also report the largest-indexed instance solved by that each of the two-thread
and stepless planners.

Every plan produced by either planner was validated by the Strathclyde
Planning Group plan verifier VAL [27].

The column C∗ is the optimal cost found for each instance. In all cases
the optimal cost for the two-thread and stepless planners agree and further-
more agree with the optimal cost reported by Robinson [40] where applicable
(Robinson compares his results against a non-SAT-based planner and our op-
timal costs agrees with that as well).

1excluding satellites since our planner doesn’t support the : equality extension to PDDL
and miconic since we couldn’t find the problem files for it. Robinson was kind enough to
send us the instances from his constructed ftb domain so we can report performance on
that as well.

90

The column n is the lowest makespan at which the problem has a C∗ plan
(according to our Variant-I MinASPPlan solver). Our value for the makespan
n agreed with all of Robinson’s reported results except for in Rovers-3 where
we found we only needed a makespan of 7 to produce the optimal plan while
Robinson reported a required makespan of 8. We suspect this is because of
the action mutex relaxation distinction from Section 5.2, but have not verified
this.

n∗ is the makespan at which our Variant-II suffix solver proves C∗ is opti-
mal. Interestingly, for many of instances this value was 0 which indicates that
the optimal plan in the delete-free reduction of the problem has the same cost
as the true optimal plan.

tπ is the time required to find the plan (by our Variant-I MinASPPlan
solver). t∗ is the time required to prove optimality (by our Variant-II suffix
solver) tt is the sum of these two numbers (can be thought of as “total” solve
time” although the algorithm necessitates that they run in parallel, so the
actual wall-clock time required to run them was the maximum, not the sum,
but with two CPU cores rather than one). All reported times are measured in
seconds.

ns is the number of times the stepless solver was run for this instance
(each time adding more items to its bag of fluents and actions based on what
was saturated in the previous rounds). On the last of these runs it produced
an optimal solution which doesn’t use the suffix layer and hence is globally
cost-optimal. ts is the total time running the stepless solver across all runs.

One important distinction between the experiments run with the two-
threaded solver and those run with the stepless solver is that the two-threaded
solver took advantage of iterative solving as mentioned in Section 3.4. For
the stepless solver this was not possible since it relies heavily on full-program-
spanning loop constraints to give correct results, but as mentioned in Section
3.4, clingo doesn’t support having loop constraints cross multiple iterative
stages. So instead every time new fluents or actions are added to the stepless
solver’s bag, it has to restart solving from scratch.

91

ls is the total time required for the last iteration of the stepless solver to run.
This one run by itself is sufficient to both find the globally optimal solution
and prove its optimality. However we know of no efficient way to find the right
bag of actions and fluents in order to guarantee the optimal solution won’t use
the suffix layer (except by running the solver multiple times and looking at
saturated actions and fluents on each run). This number is still interesting in
that it provides a lower bound on the time it would take to solve the instance
if clingo supported loop constraints crossing program section boundaries (so
that we could add more occurrences and continue solving rather than having to
restart). It gives us some idea of what savings such a modification to clingo

might provide.
Rt is the total time reported by [40] to find the optimal solution scaled

by a factor of 2.6
2.8

. A questin mark ? in this column indicates the time is
unknown since it’s not reported in [40]. If the solver for which this row is
maximal successfully solved the largest instance reported by Robinson in this
domain and found this instance to be larger, we fill with a dash mark − rather
than ? in this column (our best guess as to whether Robinson’s planner solved
it). A − in any other column indicates the relevant planner failed to solve
the instance in less than 1671.4 seconds (30 minutes scaled down by 2.6

2.8
). In

the case of depots-2, the Variant-II suffix solver reached layer 12 before the
Variant-I MinASPPlan solver and so it found an optimal no-suffix solution by
itself.

All instances were solved with clingo version 5.2.3. The controller logic
for both the two-threaded solver (handling of incremental solving, coordinating
the two solvers, and figuring out when to terminate the search) and the stepless
solver (figuring out which occurrences to include and topologically sorting the
output) was written in Haskell using the clingo-Haskell bindings written by
tsahyt (GitHub alias) to communicate with clingo .

We used the default configuration and options for clingo except that the
stepless planner used the –opt-usc option which finds optimal solutions by
expanding an unsatisfiable core (Definition 2 in [1]).

92

The ASPPlan solver and its variants as well as the two-threaded and step-
less solver are available on GitHub at https://github.com/davidspies/

aspplan2. Feel free to contact the repo owner (the author of this paper)
for any help with reproducing these results.

In all domains except for blocks, ftb, and storage, our two-layer solver
outperformed Robinson’s equivalent SAT-based solver and our stepless solver
outperformed both (in terms of number of instances solved). In the case of
storage, the stepless solver and Robinson’s solver each solved an instance which
the other failed to solve which seems to point to the possibility that the stepless
solver encounters different difficulties from a more traditional approach. One
more piece of evidence favoring this conclusion is that the toy example bridge-
crossing problem from Section 8.5 required a full 30 seconds to solve (whereas
the two-thread solver solves it in 2 seconds) and in general we found that
on small/toy problems the stepless solver’s performance is abysmal compared
with other approaches we tried, but when given more time scales better with
larger instances.

Prior to running the full suite of experiments, the above observation gave
us the mistaken impression that the stepless solver was interesting as a theo-
retical oddity, but fails to produce decent results in practice, since for every
example we ran it on while tuning it, it seemed to run slower than the two-
threaded solver. It was a pleasant surprise to discover when officially running
the experiments that in fact the inverse was true.

93

https://github.com/davidspies/aspplan2
https://github.com/davidspies/aspplan2

Problem C∗ n n∗ tπ t∗ tt ns ts ls tR

blocks-12 20 20 17 0.5 1203.4 1203.9 - - - ?
blocks-15 16 16 12 0.4 113.4 113.8 7 89.4 33.7 ?
blocks-18 26 26 16 0.9 256.8 257.7 - - - 3.2
blocks-23 30 - - - - - - - - 29.8
blocks-25 34 - - - - - - - - 27.4
depots-2 15 - 12 - 771.5 771.5 2 9.7 4.2 -
depots-13 25 - - - - - 3 475.9 137.2 -
driverlog-2 19 - - - - - 20 215.5 44.4 -
driverlog-3 12 7 3 0.1 0.9 1.0 1 0.4 0.4 450.2
driverlog-11 19 - - - - - 1 13.5 13.5 -
elevators-2 26 3 0 0.4 1.7 2.1 1 2.7 2.7 13.0
freecell-3 18 - - - - - 2 420.5 344.0 -
ftb-30 1001 25 0 1.8 0.3 2.1 1 5.5 5.5 1.8
ftb-38 601 33 0 2.7 0.2 2.9 1 3.2 3.2 1.5
ftb-39 801 33 0 3.9 0.3 4.2 1 5.6 5.6 2.2
ftb-40 1001 33 0 3.9 0.4 4.3 1 8.2 8.2 ?

gripper-1 11 7 4 0.1 0.4 0.5 2 0.4 0.2 14.6
gripper-2 17 11 8 0.6 312.4 313.0 7 23.5 9.7 -
pegsol-9 5 15 11 3.9 35.9 39.8 5 131.5 46.6 386.8
pegsol-16 8 21 17 48.3 1029.0 1509.3 10 910.2 280.8 -
pegsol-18 7 - - - - - 7 1548.0 537.1 -
rovers-3 11 7 4 0.1 0.2 0.3 1 0.1 0.1 49.4
rovers-4 8 4 0 0.0 0.0 0.0 1 0.1 0.1 ?
rovers-6 36 - - - - - 48 1354.3 391.0 -
rovers-9 31 - - - - - 53 1040.6 101.4 -
rovers-14 28 - - - - - 72 900.7 55.9 -
storage-7 14 14 11 0.6 42.9 43.5 10 89.2 42.4 1.1
storage-8 13 - - - - - 15 799.1 239.5 -
storage-9 11 - - - - - 9 181.0 46.0 -
storage-13 18 - - - - - - - - 244.0
TPP-5 19 7 2 0.1 0.2 0.3 2 0.5 0.3 -
TPP-7 34 - - - - - 13 189.6 32.4 -

transport-1 54 5 0 0.1 0.1 0.2 2 0.5 0.3 0.2
transport-2 131 12 4 74.3 55.1 129.4 2 111.6 106.3 -
transport-11 456 9 3 0.3 1.6 1.9 2 163.4 151.4 -
transport-21 478 7 1 0.2 0.6 0.8 2 5.2 3.5 -
zenotravel-4 8 7 3 0.5 2.8 3.3 3 14.1 6.9 783.4
zenotravel-6 11 7 0 7.2 6.5 13.7 1 2.1 2.1 -
zenotravel-10 22 - - - - - 1 1387.1 1387.1 -

94

Chapter 10

Summary and Future Directions

We found that by using ASP instead of SAT, various inherent problems with
SAT-based planning can be mitigated or even eliminated entirely in some
cases specifically because of the added power granted by stable-model seman-
tics. Stable model semantics allows us to encode certain complex non-local
conditions without a big-O increase in the grounded size of the problem be-
ing solved. These conditions turn out to be majorly useful when applied to
domain-independent planning.

In Summary:

• When taking the standard approach to planning in SAT (SATPlan) and
encoding it in ASP (ASPPlan), the resulting program has both a nar-
rower search space and narrower (less redundant) solution space thanks
to stable model semantics. Amazingly we get the neededness analysis of
[39] for free without any need for explicit preprocessing.

• Using cardinality constraints, we can far more compactly express mutex
relationships between fluents then can be expressed using only binary
clauses.

• Delete-free planning and the suffix layer can actually be expressed in lin-
ear size with respect to the grounded problem definition. Stable model
semantics ensures that the resulting plan is acyclic and can be topolog-
ically ordered into a sequential plan.

95

• Disjunctive ASP together with loop constraints lets us encode an in-
credibly sophistocated rule guaranteeing that when searching for opti-
mal plans, the solver will not “get stuck” dealing with iterated versions
of a plan which fails to make progress.

• When we put the above two elements together, we can take an entirely
new approach to planning which does away with makespans entirely
and instead deals only with action and fluent dependencies. Besides
being a theoretically fascinating approach to planning, when used for
cost-optimal planning, stepless planning outperforms the slightly more
traditional approach to SAT(/ASP)-based planning in practice.

There’s a lot of work left to be done, and concluding this thesis where it
is now was somewhat painful considering all the remaining possibilities.

Future work:

• One thing we failed to note in our experiments is that our Variant I
solver exploits the fact that clingo outputs successively better models
as it approaches the optimum solution. Thus it can in some cases find
the optimum solution and prove it’s optimal by way of the Variant II
solver rather than waiting for clingo to finish running that instance and
prove optimallity by exhausting the search space as it typically does.

As has been noted in [38], determining that a given SAT or ASP problem
is UNSAT seems to be significantly more difficult than finding a solution
to one which is satisfiable (for problems of approximately the same size).

They have an approach to planning which simultaneously searches at
multiple different makespans for a solution, pausing and resuming each
solver according to an exponential falloff rate. This handily avoids the
timesink of trying to find solutions with too small a makespan when a
simple solution might be “just around the corner” so to speak. With
regard to cost-optimal planning, this can still be a useful tool for the
Variant I solver since it doesn’t need to prove optimality (that’s the
Variant II solver’s job).

96

• In our experiments, we did not use the –opt-usc option on the Variant II
(suffix) piece of the two-threaded solver since (unlike with the stepless
solver) some preliminary results on toy instances seemed to indicate that
this option made it less performant.

However, there’s a strong incentive to use it. When running with this
option, clingo doesn’t find multiple models until it reaches an optimal
one. Instead it produces successively larger lower bounds on the cost of
the optimal model until it manages to find a solution. Since the Variant
II solver is meant to find lower bounds on the cost of a globally optimal
solution. Any lower bound on the output of the Variant II solver then is
also a lower bound on the global cost (just as suboptimal models for the
Variant I solver are still valid upper bounds on a globally optimal model).
We could use the intermediate lower bounds produced by clingo and
not just the optimal result found at each step.

Coupling this with the exponential falloff rate approach mentioned in the
the previous bullet-point, we could construct a cost-optimal planner in
which neither thread by itself ever has to waste time proving optimality
of any solution it encounters. The optimality proof comes entirely from
combining the intermediate upper and lower bounds found by each of
the two threads.

Unfortunately, it’s not clear how this will integrate with iterative solving.
One idea might be to fork the process before grounding the new layer
so that we can come back to and continue solving the old layer as well
at some later point. Ideally as we flip back and forth between layers, we
should be able to share learnt clauses between them where relevant.

• Stepless planning is a brand new approach to logic-based planning and
and brings with it a lot of unknowns and potentials for future work.

– We did all this work to improve our encoding of mutex constraints
using multicliques and then threw that out the window in order

97

to do stepless planning. Integrating these two things is sure to
produce interesting results.

Briefly, we could add two more types of elements to our “bag of
occurrencs”. These would be occurrences of multicliques and of
partitions of multicliques. When a fluent occurs, it has to belong
to some partition occurence for each partition that it’s part of. A
partition occurrence in turn has to belong to an occurrence for its
associated multiclique. Each occurence of a multiclique can have at
most one occurrence of a partition belonging to it and must start
after the previous occurrence. In this way, we directly encode the
constraint that at most one partition of a multiclique holds at any
given time.

On the flip side however, this would mean that we potentially have
to “request” many more multiclique occurrences than we do action
or fluent occurrences before we have enough to solve the problem.
Also, this constraint may not actually be useful to the solver since it
doesn’t have any obvious effect when coupled with unit propogation
(unlike mutex rules and mutex cardinality constraints in the layered
approach which have relatively obvious and direct consequences).

– Many interesting planning domains use the : conditional− effects

extension to STRIPS PDDL. This allows one to specify that the
effects of an action are conditioned on some predicate. Extending
stepless planning to support : conditional − effects is sure to be
an interesting and extremely non-trivial challenge.

As with mutex constraints, the lack of any notion of simultaneity
in stepless planning makes it difficult to extend stepless planning in
this way. An effect of an action is expected to depend on whether
another fluent is true at the time the action occurs, but if the action
is just a node in a directed acyclic graph, it’s unclear how to know
exactly what else is true when it occurs.

98

– From a performance perspective, it’s painful to have to throw out
all the work the stepless planner has done and restart from scratch
because we didn’t have enough occurrences of some fluent or action.
We would love to see work on clingo to support loop constraints
crossing program section boundaries. Using this, stepless planning
could potentially become a lot more performant.

We contacted the developers of clingo who told us that such a
change isn’t theoretically difficult, but would require keeping track
of a lot more information than is currently kept by clingo and so
would be a lot of work to implement.

99

References

[1] M. Alviano, C. Dodaro, J. Marques-Silva, and F. Ricca, “Optimum sta-
ble model search: Algorithms and implementation,” Journal of Logic and
Computation, 2015. 92

[2] J. Amilhastre, P. Janssen, and M.-C. Vilarem, “Computing a minimum
biclique cover is polynomial for bipartite domino-free graphs,” in Pro-
ceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 1997, pp. 36–42. 44

[3] C. Baral, Knowledge Representation, Reasoning and Declarative Problem
Solving. New York, NY: Cambridge University Press, 2003. 2, 76

[4] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, no. 1, pp. 281–300, 1997. 35, 36, 39, 50, 54

[5] A. Blum and M. L. Furst, “Fast planning through planning graph anal-
ysis,” Artif. Intell., vol. 90, no. 1-2, pp. 281–300, 1997. 1

[6] T. Bylander, “The computational complexity of propositional strips plan-
ning,” Artificial Intelligence, vol. 69, no. 1, pp. 165–204, 1994. 33

[7] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwall-
ner, N. Leone, F. Ricca, and T. Schaub, ASP-Core-2 input language for-
mat, https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-
2.01c.pdf, ASP Standardization Working Group, 2013. 2, 13, 15, 23

[8] Y. Chen, Q. Lv, and R. Huang, “Plan-A: A cost-optimal planner based
on sat-constrained optimization,” Proceedings of the 6th International
Planning Competition (IPC-08), 2008. 53

[9] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962. 8, 54

[10] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “Answer set
planning under action costs,” Journal of Artificial Intelligence Research,
vol. 19, pp. 25–71, 2003. 82

[11] P. Ferraris, “Answer sets for propositional theories,” in Proceedings of the
8th International Conference on Logic Programming and Nonmonotonic
Reasoning, 2005, pp. 119–131. 2

100

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

[12] P. Ferraris, J. Lee, and V. Lifschitz, “Stable models and circumscription,”
Artificial Intelligence, vol. 175, no. 1, pp. 236–263, 2011. 2

[13] R. Fikes and N. J. Nilsson, “STRIPS: a new approach to the application
of theorem proving to problem solving,” Artif. Intell., vol. 2, no. 3/4,
pp. 189–208, 1971. 1

[14] M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, P. Obermeier, M.
Ostrowski, J. Romero, T. Schaub, S. Schellhorn, and P. Wanko, “The
potsdam answer set solving collection 5.0,” KI, vol. 32, no. 2-3, pp. 181–
182, 2018. 2

[15] M. Gebser, R. Kaminski, M. Knecht, and T. Schaub, “Plasp: A prototype
for PDDL-based planning in asp,” in Proceedings of Logic Programming
and Nonmonotonic Reasoning (LPNMR-11), Springer, 2011, pp. 358–
363. 2

[16] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artif. Intell., vol. 187, pp. 52–89, 2012. 2

[17] ——, “Conflict-driven answer set solving: From theory to practice,” Ar-
tificial Intelligence, vol. 187, pp. 52–89, 2012. 21

[18] ——, “Advanced conflict-driven disjunctive answer set solving,” in Pro-
ceedings of the Twenty-Third international joint conference on Artificial
Intelligence, AAAI Press, 2013, pp. 912–918. 21, 23

[19] M. Gebser, N. Leone, M. Maratea, S. Perri, F. Ricca, and T. Schaub,
“Evaluation techniques and systems for answer set programming: A sur-
vey,” in Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., 2018, pp. 5450–5456. 2

[20] M. Gelfond, “Answer sets,” in Handbook of Knowledge Representation,
Elsevier, 2008, ch. 7, pp. 285–316. 2

[21] M. Gelfond and V. Lifschitz, “The stable model semantics for logic pro-
gramming,” in Proceedings of the Fifth International Conference and
Symposium on Logic Programming, Seattle, Washington: MIT Press,
1988, pp. 1070–1080. 2

[22] I. P. Gent and T. Walsh, “Easy problems are sometimes hard,” Artificial
Intelligence, vol. 70, no. 1-2, pp. 335–345, 1994. 7

[23] ——, “The SAT phase transition,” in Proceedings of European Confer-
ence on Artificial Intelligence, 1994, pp. 105–109. 7

[24] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004, isbn: 978-1-55860-856-6. 1

[25] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuris-
tic determination of minimum cost paths,” IEEE Trans. Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. 68

101

[26] D. S. Hochbaum, “Approximating clique and biclique problems,” Journal
of Algorithms, vol. 29, no. 1, pp. 174–200, 1998. 44

[27] R. Howey, D. Long, and M. Fox, “Val: Automatic plan validation, con-
tinuous effects and mixed initiative planning using pddl,” in Proceedings
of the 16th IEEE International Conference on Tools with Artificial In-
telligence (ICTAI 2004), 2004, pp. 294–301. 90

[28] H. Kautz, “Satplan04: Planning as satisfiability,” Working Notes on the
Fourth International Planning Competition (IPC-04), pp. 44–45, 2004. 1, 2, 37, 109

[29] H. A. Kautz and B. Selman: “Pushing the envelope: Planning, proposi-
tional logic and stochastic search,” in Proceedings of AAAI/IAAI, vol. 2,
1996, pp. 1194–1201. 1

[30] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F.
Scarcello, “The DLV system for knowledge representation and reason-
ing,” ACM Trans. Comput. Log., vol. 7, no. 3, pp. 499–562, 2006. 2

[31] V. Lifschitz and A. A. Razborov, “Why are there so many loop formu-
las?” ACM Transactions on Computational Logic, vol. 7, no. 2, pp. 261–
268, 2006. 16

[32] F. Lin and Y. Zhao, “ASSAT: computing answer sets of a logic program
by SAT solvers,” Artificial Intelligence, vol. 157, no. 1-2, pp. 115–137,
2004. 16

[33] M. Maratea, “Planning as satisfiability with IPC simple preferences and
action costs,” AI Communications, vol. 25, no. 4, pp. 343–360, 2012. 1, 53

[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th
Annual ACM Design Automation Conference, 2001, pp. 530–535. 8

[35] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994. 76

[36] J. Rintanen, “Compact representation of sets of binary constraints,” in
Proceedings of 17th European Conference on Artificial Intelligence, 2006,
pp. 143–147. 2, 11, 42, 45, 50, 52, 106

[37] ——, “Planning and SAT,” in Handbook of Satisfiability, 2009, pp. 483–
504. 1

[38] ——, “Heuristics for planning with SAT,” in Proceedings of the Inter-
national Conference on Principles and Practice of Constraint Program-
ming, Springer, 2010, pp. 414–428. 96

[39] N. Robinson, C. Gretton, D. N. Pham, and A. Sattar, “A compact and
efficient SAT encoding for planning.,” in Proceedings of International
Conference on Automated Planning and Scheduling, 2008, pp. 296–303. 37, 39, 95

[40] N. Robinson, C. Gretton, D.-N. Pham, and A. Sattar, “Cost-optimal
planning using weighted MaxSAT,” in Proceedings of the ICAPS’10
Workshop on Constraint Satisfaction Techniques for Planning and Schedul-
ing Problems, 2010. 2, 3, 22, 54, 58, 63, 64, 68, 90, 92

102

[41] J. M. Robson, “Algorithms for maximum independent sets,” Journal of
Algorithms, vol. 7, no. 3, pp. 425–440, 1986. 42

[42] P. Simons, I. Niemelä, and T. Soininen, “Extending and implementing
the stable model semantics,” Artificial Intelligence, vol. 138, no. 1-2,
pp. 181–234, 2002. 2

[43] T. Syrjänen, ASP-Core-2 input language format, http://www.tcs.hut.
fi/Software/smodels/lparse.ps, 2000. 12, 13

[44] O. Tange, GNU Parallel 2018. Ole Tange, Mar. 2018, isbn: 9781387509881.
doi: 10.5281/zenodo.1146014. [Online]. Available: https://doi.org/
10.5281/zenodo.1146014. 90

[45] Y. Wang, J. You, L. Yuan, and Y. Shen, “Loop formulas for description
logic programs,” Theoretical Computer Science, vol. 415, pp. 60–85, 2012. 16

[46] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient
conflict-driven learning in a boolean satisfiability solver,” in Proceedings
of the 2001 IEEE/ACM International Conference on Computer-Aided
Design, IEEE Press, 2001, pp. 279–285. 1, 7–9

[47] Y. Zhao and F. Lin, “Answer set programming phase transition: A study
on randomly generated programs,” in proceedings of 19th International
Conference on Logic Programming, 2003, pp. 239–253. 7

103

http://www.tcs.hut.fi/Software/ smodels/lparse.ps
http://www.tcs.hut.fi/Software/ smodels/lparse.ps
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014

Appendix A

Equivalent Definitions of
Multicliques

In Section 6.1, we gave three different (but equivalent) definitions of multi-
cliques

1. A partitioned graph such that for any two vertices v and w there exists an
edge between v and w if and only if v and w belong to separate partitions.

2. A graph whose complement is a cluster graph (a set of disjoint cliques).

3. A graph which is induced-(K1 +K2) free 1

No induced subgraph has the form (K1 +K2) (Figure A.0.1)

Let us demonstrate that these representations are indeed equivalent:

Proof. 1→ 2

Consider any graph G which is a multiclique by definition 1. In the com-
plement graph Gc, every partition is a clique. Further, since any two vertices
v and w must have an edge if they belong to separate partitions in G it follows
that there are no edges between partitions in Gc, therefore, the only edges in
Gc belong to cliques.

1This definition was observed by user13136 on cstheory.stackexchange.com

Figure A.0.1: K1 +K2

104

2→ 1

Similarly if Gc is a cluster-graph, then the connected components form the
partitions in G as a multiclique.

2→ 3

Suppose there exists vertices x, y, and z in G whose induced graph consists
of a single edge xz not joined to y. Then in Gc, we must have edges xy and
yz. Then x and y belong to the same cluster, and y and z belong to the same
cluster, so x and z must also belong to the same cluster. Then there is also
an edge xz in Gc which contradicts the assumption that there is an edge xz

in G (since G and Gc are complements).
3→ 2

Suppose we have a graph G that does not contain the induced subgraph
K1+K2. Equivalently, the complement graph Gc does not contain the induced
subgraph P3. Now imagine we have two vertices x and z such that there is
a path from x to z in Gc but no direct edge between x and z. WLOG, let x
and z be the two indirectly connected vertices for whom the distance between
them is minimal in Gc. Let y be the vertex directly after x in the shortest
path between them. y is closer to z than x, but since the path between x and
y is shortest for any two unconnected vertices, it follows that z and y must be
directly connected. Thus the triplet x-y-z has the induced subgraph P3 which
contradicts our assumption. Gc must be a cluster-graph.

105

Appendix B

Representing a Mutual
Exclusion Clique in SAT

After reading [36], it is natural to wonder what is the most compact represen-
tation. Rintanen’s linear representation uses 3n− 4 binary clauses and n− 1

auxiliary variables. If the variables we want to represent as mutually exclusive
are labeled v1 through vn, we can visualize Rintanen’s method as:

Here, a directed edge from a to b represents a clause of the form a→ b or
¬a ∨ b

Similarly, an undirected edge represents a clause signifying a and b are
mutually exclusive (i.e. a→ ¬b or equivalently ¬a∨¬b). The unlabeled nodes
are auxilliary variables

Our method uses only 3n−6 binary clauses and
⌈
n
2

⌉
−2 auxiliary variables.

It can be expressed as:

106

This picture describes the encoding better than a list of boolean equations
can, but nonetheless, here is a formal characterization.

First we have a triplet describing v1

¬v1 ∨ ¬v2
¬v1 ∨ ¬v3
¬v1 ∨ x1

Then for i ∈
[
1,
⌈
n
2

⌉
− 1

]
, we explicitly enforce mutex between each con-

secutive even-odd pair:

¬v2i ∨ ¬v2i+1

Then we describe the x’s, for all i ∈
[
1,
⌈
n
2

⌉
− 2

]
¬v2i ∨ xi

¬v2i+1 ∨ xi

¬xi ∨ ¬v2i+2

¬xi ∨ ¬v2i+3

For all i ∈
[
2,
⌈
n
2

⌉
− 2

]
, we have the rule:

¬xi−1 ∨ xi

And finally, if n is even, we have one last triplet enforcing the mutex
constraints on vn:

¬vn−1 ∨ ¬vn
¬vn−2 ∨ ¬vn
¬xn

2
−2 ∨ ¬vn

Proof. Let us totally order the v’s and x’s as follows: vi < vj iff i < j.
Furthermore, xi < vj iff 2i+ 1 < j (in the image, the v’s and x’s are arranged
from left to right according to this ordering).

First we prove that for any vi, there exists an assignment where vi is true
and vj is false for all j ̸= i. The assignment is: xj is false wherever xj < vi

107

and xj is true wherever xj > vi. This satisfies all the clauses. Additionally,
the clauses are all satisfied whenever all the v’s and x’s are false.

Conversely, let usshow that given any vi and vj with i < j, we can derive
¬vi ∨ ¬vj using Robinson resolution. We have a few possible cases.

Case 1: If vi and vj belong to the same set (initial triplet, internal pair, or
end pair/triplet), then there is a clause directly asserting ¬vi ∨ ¬vj.

Case 2: Otherwise, there is a clause ¬vi ∨ xk (where xk is the next x

after vi in our ordering) and some other clause ¬xm ∨ ¬vj (where xm is the x

immediately before vj in our ordering) with k ≤ m

We can resolve the sequence of clauses {(¬xk ∨ xk+1) , (¬xk+1 ∨ xk+2) . . . (¬xm−1 ∨ xm)}

to get (¬xk ∨ xm). Resolving this with the above two clauses gives ¬vi ∨
¬vj.

Conjecture. For all n ≥ 5, this representation minimizes the number of
clauses required to describe a mutual exclusion clique in n variables (For n ≤

4, the optimal representation is the direct representation using 0 auxiliary
variables

(
n
2

)
clauses). Furthermore, among all such minimal representations,

this one also minimizes the number of auxiliary variables required.

108

Appendix C

List of Selected ASP Planners
Used in this Paper

C.1 Simple Planner

At most one action per step, no plan graph, no preserving actions, no needed-
ness. Run with an increasing finalStep until satisfiable.

holds(F,0) :- init(F).

{happens(A,T)} :- holds(F,T) : pre(A,F); step(T).

:- {happens(A,T)} > 1; step(T).

holds(F,T+1) :- happens(A,T); add(A,F).

deleted(F,T) :- happens(A,T); del(A,F).

holds(F,T+1) :- holds(F,T); not deleted(F,T).

:- not holds(F,K); finalStep(K); goal(F).

C.2 ASPPlan

Rules translated from SATPlan [28], using planning graph and preserving ac-
tions Run with an increasing finalStep until satisfiable.

holds(F,K) :- goal(F); finalStep(K).

holds(F,0) :- init(F).

happens(A,K-1) : add(A,F),validAct(A,K-1) :- holds(F,K); K > 0.

holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

109

:- mutexAct(A,B); happens(A,K); happens(B,K).

:- mutex(F,G); holds(F,K); holds(G,K).

C.3 AASPPlan

Like ASPPlan, but with a smarter encoding for mutex fluents and actions.
Requires that the mutex graph be encoded as multicliques (see algorithm 6.1)

holds(F,K) :- goal(F); finalStep(K).

holds(F,0) :- init(F).

happens(A,K-1) : add(A,F),validAct(A,K-1) :- holds(F,K); K > 0.

holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

:- {used_preserved(F,K);

deleted_unused(F,K);

happens(A,K) : pre(A,F),del(A,F)} > 1; valid_at(F,K).

deleted(F,K) :- happens(A, K); del(A, F).

:- holds(F,K); deleted(F,K-1).

partitionHolds(P,K) :- holds(F,K); inPartition(F,P).

:- {p(P,K): partitionHolds(P,K),inMulticlique(P,M)} > 1;

multiclique(M); layer(K).

C.4 Delete-Free Planner

with action costs. No external handling needed. Run it on the problem; get
an optimal solution.

holds(F) :- goal(F).

{happens(A) : add(A,F)} >= 1 :- holds(F); not init(F).

110

holdsPre(F) :- pre(A,F); happens(A).

supportFluent(F) :- init(F); holds(F).

supportAct(A) :- supportFluent(F) : pre(A,F), holds(F); happens(A).

supportFluent(F) :- supportAct(A); happens(A); add(A,F); holds(F).

:- holds(F); not supportFluent(F).

:~ happens(A); cost(A,C).[C,A]

C.5 Variant II encoding for Cost-Optimal ASP-
Plan with Suffix Layer

(Note: Variant I is just AASPPlan + cost-optimality constraint)

holdsSuff(F) :- goal(F).

{happensSuff(A) : add(A,F), not preserving(A); subgoal(F)} >= 1 :-

holdsSuff(F).

holdsSuff(F) :- pre(A,F); happensSuff(A).

supportFluent(F) :- subgoal(F), holdsSuff(F).

supportAct(A) :- supportFluent(F) : pre(A,F), holdsSuff(F); happensSuff(A).

supportFluent(F) :- supportAct(A); happensSuff(A);

add(A,F); holdsSuff(F).

:- holdsSuff(F); not supportFluent(F).

:~ happensSuff(A); cost(A,C).[C,A]

cheating :- happensSuff(A).

{happensFirst(A)} :- happensSuff(A); subgoal(F) : pre(A,F).

:- cheating; not happensFirst(A) : action(A).

holds(F,K) :- subgoal(F); finalStep(K).

111

holds(F,0) :- init(F).

happens(A,K-1) : add(A,F),validAct(A,K-1) :- holds(F, K); K > 0.

holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

used_preserved(F K) :- happens(A, K); pre(A,F); not del(A,F).

deleted_unused(F,K) :- happens(A, K); del(A,F); not pre(A,F).

:- {used_preserved(F,K);

deleted_unused(F,K);

happens(A,K) : pre(A,F),del(A,F)} > 1; valid_at(F,K).

deleted(F,K) :- happens(A,K); del(A,F).

:- holds(F,K); deleted(F,K-1).

partitionHolds(P,K) :- holds(F,K); inPartition(F,P).

:- {p(P,K): partitionHolds(P,K),inMulticlique(P,M)} > 1;

multiclique(M); layer(K).

used(F,K) :- happens(A,K); pre(A,F); not preserving(A).

% Cost-optimality constraint

:~ happens(A,K); cost(A,C).[C,A,K]

:- happens(A,K); K > 1;

not preserving(A);

holds(F,K-1) : pre(A,F);

not used(F,K-1) : del(A,F);

not deleted(F,K-1) : add(A,F), holds(F,K).

:- happensFirst(A); K >= 1;

finalStep(K);

holds(F,K) : pre(A,F);

112

not used(F,K) : del(A,F);

not deleted(F,K) : add(A,F), holdsSuff(F,K).

C.6 Stepless Planner with Suffix Layer

Requires an external program to detect which fluents and actions are saturated
each time the suffix layer is used and feed in more occurrences.

is(fluentOcc(F,1)) :- fluent(F).

is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

% ============================= Problem description ============================

% Helper function to recognize subsequent occurences of the same

% fluent/action.

nextOcc(fluentOcc(F,0),fluentOcc(F,1)) :- fluent(F).

nextOcc(fluentOcc(F,M),fluentOcc(F,M+1)) :- is(fluentOcc(F,M)).

nextOcc(actOcc(A,N),actOcc(A,N+1)) :- is(actOcc(A,N)).

% Any fluent above level 0 which holds must have exactly one causing

% action.

{causes(actOcc(A,N),fluentOcc(F,M)) : add(A,F), is(actOcc(A,N))}=1 :-

holds(fluentOcc(F,M)); M > 0.

% If an action causes a fluent, it happens.

happens(AO) :- causes(AO,_).

% An action cannot cause more than one occurrence of the same fluent.

:- {causes(AO,fluentOcc(F,M))} > 1; is(AO); fluent(F).

% For each precondition an action occurrence has, some occurrence of

% that fluent must permit it.

{permits(fluentOcc(F,M),actOcc(A,N)) : is(fluentOcc(F,M))}=1 :-

113

happens(actOcc(A,N)); pre(A,F).

% A fluent occurrence which permits an action must hold.

holds(FO) :- permits(FO,_).

% A fluent which is used to satisfy a subgoal condition "permits" it.

% For each subgoal condition, exactly one occurrence of that fluent

% permits it.

{permits(fluentOcc(F,M),subgoal(F)) : is(fluentOcc(F,M))}=1 :-

subgoal(F).

% A fluent which permits a subgoal condition cannot be deleted.

:- deleted(FO); permits(FO,subgoal(_)).

% An occurrence of an action deletes an occurrence of a fluent if

% it permits it and that action has the fluent as a delete effect.

deletes(actOcc(A,N),fluentOcc(F,M)) :-

permits(fluentOcc(F,M),actOcc(A,N)); del(A,F).

% No fluent may be deleted by more than one action.

:- {deletes(_, FO)} > 1; is(FO).

% An action which deletes a fluent, but doesn't have it as a

% precondition follows some occurrence of that fluent. Can possibly

% follow occurrence index 0 even if the fluent is not an initial

% fluent (indicates this action occurs before any occurrence of

% that fluent).

{follows(actOcc(A,N),fluentOcc(F,M)) : holds(fluentOcc(F,M));

follows(actOcc(A,N),fluentOcc(F,0))}=1 :-

del(A,F); not pre(A,F); happens(actOcc(A,N)).

% Fluent occurrences 0 which aren't initial fluents count as "deleted".

deleted(fluentOcc(F,0)) :- fluent(F); not init(F).

% A fluent is deleted if something deletes it.

deleted(FO) :- deletes(_, FO).

% A fluent is deleted if something follows it.

deleted(FO) :- follows(_, FO).

114

% Weak constraint charging the cost of an action occurrence.

:~ happens(actOcc(A,N)); cost(A,V).[V,A,N]

% An occurrence of a fluent doesn't hold if its previous occurrence

% doesn't hold.

:- holds(fluentOcc(F,M+1)); not holds(fluentOcc(F,M));

is(fluentOcc(F,M)); M > 0.

% An occurrence of an action doesn't happen if its previous occurrence

% didn't happen.

:- happens(BO); not happens(AO); nextOcc(AO,BO).

% ============================= Plan Event Graph ===============================

% Events in the graph; these will be grouped into vertices

event(start(FO)) :- holds(FO).

event(end(FO)) :- holds(FO).

event(end(fluentOcc(F,0))) :- fluent(F).

event(AO) :- happens(AO).

% subgoals are events

event(subgoal(F)) :- subgoal(F).

% Triggering actions

% The start of a fluent by its causing action.

actionTriggers(AO,start(FO)) :- causes(AO,FO).

% The end of a fluent by its deleting action.

actionTriggers(AO,end(FO)) :- deletes(AO,FO).

% Vertices

% If no action triggers an event, then it gets a vertex by itself.

115

vertex(V) :- event(V); not actionTriggers(A,V) : is(A).

% Otherwise it belongs to the vertex for its trigger action.

inVertex(E,V) :- actionTriggers(V,E).

% Every event which is the name of a vertex belongs to that vertex.

inVertex(V,V) :- vertex(V).

% Graph edges

% A fluent ends after it starts

edge(start(FO),end(FO)) :- holds(FO).

% If a fluent permits an action, then the action happens after

% the start of the fluent

edge(start(FO),AO) :- permits(FO,AO).

% If a fluent permits an action but the action doesn't delete the

% fluent, then the action happens before the end of the fluent.

edge(AO,end(FO)) :- permits(FO,AO); not deletes(AO,FO).

% An action happens after the fluent it follows

edge(end(FO),AO) :- follows(AO,FO).

% but before the next occurrence

edge(AO,start(GO)) :- follows(AO,FO); nextOcc(FO,GO); holds(GO).

% The start of the next occurrence of a fluent happens after the

% end of the previous occurrence

edge(end(FO),start(GO)) :- holds(GO); nextOcc(FO,GO).

% The next occurrence of an action happens after the previous

% occurrence

edge(AO,BO) :- happens(AO); happens(BO); nextOcc(AO,BO).

% And now we use stable models to assert that the graph is acyclic; sup(X)

% indicates that X has acyclic support going back to the root of the graph.

% The input for a given event has support if all events joined

% by any incoming edge have support.

116

sup(in(E)) :- sup(D) : edge(D,E); event(E).

% A vertex has support if all of its events' inputs have support.

sup(V) :- sup(in(E)) : inVertex(E,V); vertex(V).

% An event has support if its vertex has support.

sup(E) :- sup(V); inVertex(E,V).

% Every vertex must have support.

:- vertex(V); not sup(V).

% ============================= Strong minimality ==============================

% A counterexample to strong minimality consists of two cuts, cut1

% and cut2.

cut(cut1; cut2).

% For each vertex V and each cut C, V is on either the s-side or

% the t-side of V. Note this rule is disjunctive.

onSideOf(V,s,C) | onSideOf(V,t,C) :- vertex(V); cut(C).

% An event belongs to the cut side of its vertex.

onSideOf(E,X,C) :- inVertex(E,V); onSideOf(V,X,C).

% Any subgoal is always on the t-side of cut2.

onSideOf(subgoal(F),t,cut2) :- subgoal(F).

% If there's a directed edge from D to E, but D is on the t-side

% and E is on the s-side, this is not a cut (invalidating this

% counterexample to strong minimality).

not_counterexample :- edge(D,E); onSideOf(D,t,C); onSideOf(E,s,C).

% If a fluent starts on the s-side of cut2 and ends on the t-side,

% then it "holds over" cut2.

holdsOver(FO,cut2) :-

onSideOf(start(FO),s,cut2); onSideOf(end(FO),t,cut2).

% Similarly if it starts and ends on the same side of cut1, then it

117

% doesn't hold over cut1.

not_holdsOver(FO,cut1) :-

onSideOf(start(FO),X,cut1); onSideOf(end(FO),X,cut1).

% Action occurrence AO is not between cut1 and cut2 if it's on the

% s-side of cut1 or the t-side of cut2.

not_betweenCuts(AO) :- onSideOf(AO,s,cut1).

not_betweenCuts(AO) :- onSideOf(AO,t,cut2).

% If no action occurs between the two cuts, then this is not a

% counterexample.

not_counterexample :- not_betweenCuts(AO) : happens(AO).

% If there exists a fluent for which some occurrence holds over cut2,

% but no occurrence holds over cut1, then this is not a counterexample.

not_counterexample :-

holdsOver(fluentOcc(F,_),cut2);

not_holdsOver(fluentOcc(F,M),cut1) : holds(fluentOcc(F,M)).

% There should be no counterexample (sorry for the triple negative).

:- not not_counterexample.

% If this is not a counterexample, all atoms must hold.

onSideOf(V,s,C) :- vertex(V); cut(C); not_counterexample.

onSideOf(V,t,C) :- vertex(V); cut(C); not_counterexample.

% =============================== Suffix Layer =================================

% All goal fluents hold in the suffix layer.

suffix(holds(F)) :- goal(F).

% If a fluent holds in the suffix layer, either some action causes it

% or it is a subgoal.

{subgoal(F); suffix(causes(A,F)) : add(A,F)} = 1 :- suffix(holds(F)).

118

% If an action causes a fluent in the suffix, it happens.

suffix(happens(A)) :- suffix(causes(A,_)).

% If an action occurs in the suffix layer, then all of its

% preconditions hold in ths suffix layer

suffix(holds(F)) :- suffix(happens(A)); pre(A,F).

% If any action happens in the suffix layer, then we are using the

% suffix layer.

useSuffix :- suffix(happens(_)).

% A fluent is supported in the suffix if it's a subgoal

suffix(sup(holds(F))) :- subgoal(F).

% An action is supported in the suffix if all of its preconditions are

suffix(sup(happens(A))) :-

suffix(sup(holds(F))) : pre(A,F); suffix(happens(A)).

% A fluent is supported in the suffix if its causing action is

suffix(sup(holds(F))) :- suffix(sup(happens(A))); suffix(causes(A,F)).

% No action happens in the suffix without support

:- suffix(happens(A)); not suffix(sup(happens(A))).

% No fluent holds in the suffix without support

:- suffix(holds(F)); not suffix(sup(holds(F))).

% Actions that happen in the suffix layer impose their cost.

:~ suffix(happens(A)); cost(A,V).[V,A,suffix]

% Very weak preference to avoid using the suffix layer.

:~ useSuffix.[1@-1]

% ================================ Saturated ===================================

119

% A fluent is saturated if all occurrences of it hold (besides the 0th).

saturated(fluent(F)) :-

holds(fluentOcc(F,M)) : is(fluentOcc(F,M)),M>0; fluent(F).

% An action is saturated if all occurrences of it happen.

saturated(action(A)) :-

happens(actOcc(A,N)) : is(actOcc(A,N)); action(A).

% If an action happens in the suffix layer and all of its preconditions

% are subgoals, we designate it a "starting" action.

suffix(start(action(A))) :- subgoal(F) : pre(A,F); suffix(happens(A)).

% Any fluent caused by a starting action is designated a "starting"

% fluent.

suffix(start(fluent(F))) :- suffix(start(action(A))); suffix(causes(A,F)).

% Guarantees that some starting action or fluent will be saturated.

:- useSuffix; not saturated(X) : suffix(start(X)).

% ==

#show causes/2.

#show deletes/2.

#show happens/1.

#show holds/1.

#show permits/2.

#show follows/2.

#show suffix(happens(A)) : suffix(happens(A)).

120

	Introduction
	Boolean Satisfiability (SAT)
	Hamiltonian Path as SAT
	Solving Techniques
	DPLL
	CDCL

	Encoding Efficiency

	Answer Set Programming
	ASP
	Overview
	Basic Rules
	Other Rules

	The ASP-Core-2 Language
	Hamiltonian Path Revisited
	Iterative Grounding

	Strips Planning
	Actions and Fluents
	Sequential Planning
	Taking Simultaneous Actions
	The Planning Graph

	ASPPlan
	Translating from SATPlan
	An Observation about Mutex Actions
	Encoding Reduction

	Mutex Graphs and Multicliques
	Saving Space with Multicliques
	An Assignment-Minimum Multiclique-Covering Approximation Algorithm
	Eventual Fluent Mutex Constraints
	Experiments

	Cost-Optimal Planning in ASP
	Our First Complete Planner
	Stronger Notions of Progress
	Extending No-Solution Detection to Cost-Optimality Detection
	Delete-Free Planning
	Delete-Free Planning: Take 1
	Delete-Free Planning: Take 2

	The Suffix Layer

	Planning without Layers: Stepless Planning
	Stepless Planner Encoding
	Making Stepless Progress
	Stepless Suffix Layer
	Counting Stepless Occurrences
	Example of Stepless Planning: Bridge Crossing

	Experiments
	Summary and Future Directions
	References
	Appendix Equivalent Definitions of Multicliques
	Appendix Representing a Mutual Exclusion Clique in SAT
	Appendix List of Selected ASP Planners Used in this Paper
	Simple Planner
	ASPPlan
	AASPPlan
	Delete-Free Planner
	Variant II encoding for Cost-Optimal ASPPlan with Suffix Layer
	Stepless Planner with Suffix Layer

