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Abstract

A phylogeny is the evolutionary history for a set of evolutionarily related species. The development

of hereditary trees, or phylogenetic trees, is an important research subject in computational biology.

One development approach, motivated by graph theory, constructs a relationship graph based on

evolutionary proximity of pairs of species. Associated with this approach is the kth phylogenetic

root construction problem: given a relationship graph, construct a phylogenetic tree such that the

leaves of the tree correspond to the species and are within distance k if adjacent in the relationship

graph. In this thesis, we give a polynomial time algorithm to solve this problem for strictly chordal

graphs, a particular subclass of chordal graphs. During the construction of a solution, we examine

the problem for tree chordal graphs, and establish new properties for strictly chordal graphs.
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Chapter 1

Introduction

1.1 Historical Background

1.1.1 Phylogenetics

The evolutionary history of a set of evolutionary units (for example, organisms) is its phylogeny;

a hereditary tree which represents this history is its phylogenetic tree. Such a tree can be used to

describe the pattern and timing of branching events in the evolution of a group of units. Some

important applications of phylogenetic trees are determining the closest evolutionary relatives of an

organism and determining the function and origin of genes.

The study of evolutionary relationships belongs to the biological subject of phylogenetics. Phy-

logenetic analysis, a method of deducing these evolutionary relationships, consists of four major

steps [1]: alignment, determining the substitution model, tree building, and tree evaluation. Start-

ing with appropriate character sequences corresponding to each evolutionary unit, alignment is a

means for describing how related these sequence are and produces the data set used in the model

of evolution. The substitution model of evolution describes the probability of a difference between

characters, found in an alignment, occurring. Construction of phylogenetic trees use the substitution

model of evolution and an alignment to deduce a hereditary tree. Finally, tree evaluation calculates

the probability of the tree being representative of the data. The books [33, 1, 16] discuss each of

these four steps in detail. The problem considered in this thesis is inspired from the third of these

four steps — phylogenetic tree construction.

By the Darwinian school of thought, a central idea to the development of a phylogenetic tree

is that all life forms have descended from a common ancestor [26]. By this assumption it follows

that there exists a historically accurate tree, or true tree, for the evolution of a set of evolutionary

units. An inferred tree is a tree constructed based on the particular phylogenetic analysis method

used. The inferred tree is an estimate of the genetic connection between evolutionary units and the

chronological spacing of branching events in their evolution.

A tree is an acyclic connected graph. Roughly speaking, a phylogenetic tree is a tree whose nodes

are either external leaf nodes representing the evolutionary units or internal nodes representing
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ancestors. A tree is bifurcating if all internal nodes have degree three.

A phylogenetic tree can be rooted or unrooted. A rooted tree represents the evolution of a

group of evolutionary units where the root represents the common ancestor. An unrooted tree shows

only evolutionary proximity of units. If an unrooted tree is considered as a rooted tree whose root

is unknown then a root can be found using the outgroup method [30], though this rooted tree is

not always accurate (with respect to the true tree). Both types of phylogenetic trees are useful in

understanding a phylogeny [1].

With respect to a unit set Ωn = {ω1,ω2, ...,ωn} and an alignment, a dissimilarity matrix D =

dij for Ωn is a matrix whose entries dij give the alignment score between units ωi and ωj , where

the closeness of units is indicated by the smallness of the score. With respect to a tree T with leaves

labelled by the set Ωn, π(T ) is the path length matrix where entries π(T )ij give the distance in T

between ωi and ωj . In the construction of an evolutionary tree T based on the dissimilarity matrix

D, the goal is to find such a tree T so that π(T ) fits well with D. One measure of fitness is the

goodness-of-fit [12] between D and π(T ) as

Fα(D,π(T )) =
∑

1≤i<j≤n

|dij − π(T )ij |α.

An additive tree [26] is a tree with leaves labelled by the set Ωn and with positive real edge weights

such that the sum of edge weights between leaves labelled by ωi and ωj is dij .

FITTING ADDITIVE TREES [12]

Instance: Set Ωn, n ≥ 3; matrix D; positive integer k.
Query: Does an additive tree T exist such that Fα(D,π(T )) ≤ k?

Day [12] showed that FITTING ADDITIVE TREES is NP-complete for α ∈{1, 2}. This is not

surprising, as the number of additive trees grows exponentially in the number of units in Ωn. For

example, the number of unrooted bifurcating trees with n elements is (2n−5)!/[(n−3)!2n−3] [14].

1.1.2 Construction Techniques of Phylogenetic Trees

Two methods of phylogenetic root construction commonly used in practice are either to limit the

search using heuristics to find a probable tree, or to find the optimal tree by searching all possibilities,

which is often computationally expensive. The goal of such construction is to take the information

derived for a set of evolutionary units through alignment and the substitution model and produce an

inferred tree that is closest to the true tree. Phylogenetic tree construction algorithms belong to two

major categories: character-based methods and distance-based methods. Character-based methods

search for the optimal tree based on character pattern differences between the species, whereas

distance-based methods use calculated evolutionary distance to construct a tree.

The maximum parsimony [26] technique is a character-based method that finds the tree that min-

imizes the total evolutionary change that has occurred between elements of the group. As the word

parsimony suggests, the basis of this method is the assumption that a simpler explanation is more
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desirable than a complicated one. As such algorithms must search through the exponentially many

unrooted trees, this method becomes computationally infeasible for a large number of evolutionary

units. See Figure 1.1 for an example.

(a) Plausible tree with 5 char-

acter replacements.

(b) Plausible tree with 5 char-

acter replacements.

(c) Plausible tree with 7 char-

acter replacements.

Figure 1.1: The three possible unrooted trees using the maximum parsimony technique given four

character sequences: {CTG, ATG, ACA, CCA}. Either tree (a) or (b) will be chosen as they both
have the minimum number of nucleotide replacements.

The maximum likelihood [26] method is a character-based method that finds the tree with the

highest probability of occurrence from the given data. Based on a model of assumptions for the

probability of an event occurring, such as genetic mutation, this method searches for the tree with the

highest likelihood of existence. Again, the main disadvantage of this method is that current methods

search the exponentially many possible phylogenetic trees, making this technique computationally

expensive and therefore infeasible for sets with a large number of evolutionary units.

The following two distance-based methods attempt to construct the tree by considering ‘neigh-

bours’ in an evolutionary tree, where units of a subtree are considered neighbours of units of another

subtree if the roots of the two subtrees are siblings in the evolutionary tree. See Figure 1.2.

Figure 1.2: Neighbours in an evolutionary tree. ω1 is an evolutionary neighbour of {ω2, ω3}. ω2

is an evolutionary neighbour of ω3. ω4 is an evolutionary neighbour of ω5. {ω1, ω2 ω3} is an
evolutionary neighbour of {ω4, ω5}.

The neighbour-relation [36] method uses the insight called the four-point condition [26], which

states that for an additive tree T where a and b are neighbours and c and d are neighbours, then

dT (a, b) + dT (c, d) ≤ dT (a, c) + dT (b, d).

The algorithm searches all sets of four elements and chooses the pair of neighbours that most fre-
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quently satisfy this condition with the other elements in the tree. This pair of elements becomes

neighbours in the tree and is subsequently viewed as a single element. The algorithm continues until

all units have been processed.

The neighbour-joining [35] method is a greedy algorithm that iteratively minimizes total branch

length. Starting with all elements adjacent to a central node, this method looks for the closest

neighbours and creates a new branch with its distance equal to the mean of its two elements.

The focus of this thesis is an algorithm that is a graph theoretic variation of the distance method

– the kth phylogenetic root construction. Given a dissimilarity matrix for a set of evolutionary

units Ωn, our algorithm creates an input graph G by making the units adjacent if their dissimilarity

distance is under a given threshold. It then creates a tree T where the vertices of G correspond to

the leaves of T where two vertices of G are adjacent if within a given path-length distance in T .

Formally, given a dissimilarity matrix D and a threshold t, construct a new matrix D′ such that:

D′
ij =

{
1 if Dij ≤ t

0 otherwise.

UsingD′ as the input graph, our algorithm constructs a corresponding tree where leaves are labelled

by the units, and, for a fixed positive integer k, units ωi and ωj are within distance k if and only if

D′
ij = 1. Before we discuss our algorithm further, we first introduce graph terminology and some

related notions.

1.2 Definitions

1.2.1 General Definitions

Given a set S, a binary relation R on S is a subset of the Cartesian product S×S; in other words, it

is a way of indicating which pairs of elements of S are related. A graph is a mathematical notation

that is a useful representation of a binary relation.

Formally, a graph G = (V,E) is a pair of sets: the vertex set V and the edge set E, where E

is a set of pairs of elements of V . A graph is simple if vv /∈ E for all v ∈ V , and is undirected if

v1v2 ∈ E if and only if v2v1 ∈ E for all v1, v2 ∈ V . For the remainder of this thesis, we assume

that all graphs are undirected and simple.

Two vertices v1 and v2 are adjacent or neighbours if v1v2 ∈ E and nonadjacent or non-

neighbours if v1v2 /∈ E. The set of neighbours of a vertex v ∈ V in a graph G = (V,E) is

the neighbourhood of v, denoted NG(v) or, where clear from the context, N(v). The degree of a

vertex v in G is the number of vertices in its neighbourhood, denoted degG(v). A leaf is a vertex in

a graph with degree one.

A graph H = (VH , EH) is a subgraph of a graph G = (VG, EG) if VH ⊆ VG and EH ⊆ EG.

H = (VH , EH) is an induced subgraph of G = (VG, EG) if VH ⊆ VG and v1v2 ∈ EH if and only

if v1v2 ∈ EG for all v1, v2 ∈ VH ; we write H = G[VH ].
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A path of a graph is an ordered sequence (v0, v1, ..., vi) of pairwise distinct vertices, such that

vjvj+1 ∈ E, for 0 ≤ j < i; every other edge induced by the this vertex sequence is a chord of the

path. A cycle of a graph is an ordered sequence (v0, v1, ..., vi) of pairwise distinct vertices, such that

vjvj+1 ∈ E and v0vi ∈ E, for 0 ≤ j < i; every other edge induced by the this vertex sequence is a

chord of the cycle. We denote a chordless path Pn and a chordless cycle Cn, where n is the number

of vertices in the path or cycle, respectively. The length of Pn and Cn is the number vertices n.

Two vertices are connected if there exists a path between them. A graph G = (V,E) is connected if

every pair of vertices in V is connected. The distance between two connected vertices inG, denoted

dG(v1, v2), is the length of the shortest path between v1 and v2 inG or, where clear from the context

d(v1, v2).

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, written G1
∼= G2, if there exists

a bijection f from V1 to V2 such that v1v2 ∈ E1 if and only if f(v1)f(v2) ∈ E2. For a fixed graph

H , a graph G is H-free if it does not contain any induced subgraph isomorphic to H .

A forest is an acyclic graph. A tree is a connected forest. For a discussion of the many useful

properties of trees the reader is referred to [6, 41, 42].

Let A and B be two sets. The intersection of A and B, denoted A ∩ B, is the set of elements

contained in both A and B. The union of A and B, denoted A ∪B, is the set of elements contained

in either A or B. The set difference of A from B, denoted B \A, is the set of elements contained in

B but not A.

1.2.2 Complexity

As the focus of this thesis is the development of efficient algorithms to solve various problems from

computational biology, some complexity theory will be needed. We assume the reader is familiar

with the concepts of algorithms, time complexity analysis, and NP-completeness. The texts [11, 18]

both contain introductions to these concepts. All runtimes given in this thesis are with respect to the

size of the input graph, namely the sum of the number vertices plus the number edges.

1.2.3 Chordal Graphs

A graph is chordal if every cycle of length four or more has a chord. Equivalently, a graph is chordal

if it contains no induced cycle of length four or more.

Lemma 1.2.1. [13] There exists a linear time algorithm to decide if a graph is chordal.

One such algorithm based on lexicographical breadth first search (LexBFS)[37], a variant of

the well studied breadth first search (BFS)[11] , searches as in BFS, but uses a lexicographical

ordering of the vertices to choose the next vertex to search from. This algorithm exploits a structural

property of chordal graphs called a simplicial vertex elimination ordering. A simplicial vertex is

a vertex whose neighbourhood induces a clique. Dirac [13] and independently Lekkerkerker and
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Boland [25] showed that all chordal graphs have a simplicial vertex. A simplicial vertex elimination

ordering is a permutation of the vertices (vs(0), vs(1), ..., vs(n−1)) such that vs(i) is simplicial in the

subgraph graph induced by {vs(0), vs(1), ..., vs(i−1)} for 0 ≤ i ≤ (n−1). The algorithmic approach

of simplicial vertex elimination ordering was introduced by Fulkerson and Gross who showed that a

graph is chordal exactly when there exists a simplicial vertex elimination ordering [17]. The traversal

order of the vertices by LexBFS is a simplicial ordering exactly when the graph is chordal [34].

For a graphG = (V,E), C ⊂ V is a cutset if the number of connected components ofG[V \C]

is greater than the number of connected components of G. A cutset C is minimal if no subset of C

is a cutset. Dirac’s theorem [13] states that a graph is chordal if and only if every minimal cutset in

every induced subgraph is a clique.

1.2.4 Graph Powers and Graph Roots

For a graph G = (V,E), the kth power of G is the graph Gk = (V,Ek) such that

Ek = {v1v2 | d(v1, v2) ≤ k, v1 ,= v2}.

A kth root of a graph G is a graph H such that G = Hk.

Computing the kth power of a graph G = (V,E) can be done in O(|V |3) time using the Floyd-

Warshall all-pairs shortest path algorithm [15, 40]. Conversely, finding the kth root of a graph

has no known polynomial time algorithms; moreover, computing a square root of a graph is NP-

complete [31]. If extra conditions are required of a root, polynomial time algorithms are known.

For example, recognizing if a graph is the square of a tree and constructing such a root, if it exists,

can be done in O(|V |3) time [29]. Similarly, recognizing if a graph is the kth power of a tree and

constructing this tree can be done in O(|V |3) time [22].

1.2.5 Leaf-Labeled Trees and Steiner Points

For a tree, a vertex is internal if it is not a leaf. For a set S, a leaf-labelled tree T corresponding

to S is a tree with an injective mapping from the leaves in T to the set S. Thus, a leaf-labelled tree

T has three kinds of vertices or points: leaves which (all corresponding to vertices of S), internal

points corresponding to vertices of S, and internal points which do not corresponding to vertices of

S, called Steiner points.

Definition 1.2.1. Given a graph G = (VG, EG), a leaf-labelled tree T = (VT , ET ) corresponding

to set VG, and a positive integer k, define the following conditions of T :

1. the mapping from leaves in T to VG is surjective,

2. every Steiner point in VT has degree at least three,

3. G equals the subgraph of T k induced by VG.
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The first condition implies that the leaves of T are exactly the vertices ofG, so all internal points

of T are Steiner points. The second condition is based on the idea of an internal point representing

a genetic split from a common ancestor into two or more descendants. The final condition requires

that all adjacent units in G are within distance of k in T . We now define three problems which

motivate our kth phylogenetic root construction method.

kTH PHYLOGENETIC ROOT PROBLEM (k-PRP) [27]
Instance: A graph G = (VG, EG) and a positive integer k.
Query: Does a kth phylogenetic root tree T exist such that T is a leaf-labelled

tree corresponding to set VG and T satisfies conditions 1, 2 and 3 of
Definition 1.2.1?

kTH LEAF ROOT PROBLEM (k-LRP) [32]
Instance: A graph G = (VG, EG) and a positive integer k.
Query: Does a kth phylogenetic root tree T exist such that T is a leaf-labelled

tree corresponding to set VG and T satisfies conditions 1 and 3 of
Definition 1.2.1?

kTH STEINER ROOT PROBLEM (k-SRP) [27]
Instance: A graph G = (VG, EG) and a positive integer k.
Query: Does a kth phylogenetic root tree T exist such that T is a leaf-labelled

tree corresponding to set VG and T satisfies condition 3 of
Definition 1.2.1?

Lin et al. showed that k-PRP has a linear time solution for k ≤ 4 [27]. Chen et al. [8] demon-

strated a linear time algorithm for k ≥ 2 if T has bounded degree. Similarly, Nishimura et al.

showed that k-LRP has a polynomial time solution for k ≤ 4 [32]. In addition, Kennedy et al.

showed that all strictly chordal graphs (defined in Chapter 2) have a k-leaf root tree for k ≥ 4 [24].

Lin et al. showed that k-SRP is known to have a linear time solution for k ≤ 2, [27]. Kennedy et

al. showed that if the input graph is strictly chordal then 3-SRP has a linear time solution [24]. If

k ≥ 5, the complexity of both k-PRP and k-LRP, with respect to having a polynomial time algo-

rithm or being in the class of NP-complete problems, is still an open question. Similarly, for k-SRP

the complexity is still unknown for k ≥ 3.

Lemma 1.2.2. [27] A graph G has a kth phylogenetic root tree T , then G is chordal.

Proof. It is known that the kth power of a tree is chordal for all positive integers k [29]. From

the definition of chordal, every induced subgraph of a chordal graph is chordal. Therefore, the kth

power of T is chordal and so the subgraph of T k induced by VG is also chordal.

Since a kth root phylogenetic tree satisfies both Definitions 1.2.5 and 1.2.5, it follows that the

preceding lemma holds for kth Steiner root trees as well as kth leaf root trees.

1.3 Overview

The following is a brief overview of the organization of this thesis. We first note that proofs of

cited lemmas or theorems are given if the original proof has been change or altered in some fashion.
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Proofs included from references [24, 23, 28] are shown if their proof is integral to the development

of the final algorithm of this thesis. The majority of this thesis is original work.

Chapter 2: In Section 2.1, we introduce strictly chordal graphs, a subclass of chordal graphs for

which structural properties allow efficient solutions to be developed for all three leaf-labeled root

problems. We first develop the characterization that uses the notion of dual hypergraphs. Three other

characterizations are presented which become the working definitions for the remainder of thesis.

In Section 2.2.2 we introduce the class of tree chordal graphs and three equivalent characterizations.

We show how to recognize both strictly chordal and tree chordal graphs in linear time.

Chapter 3: We describe the approach and method used for the construction of the 5th root

phylogenetic tree along with some important preliminaries. In Section 3.1, we introduce a variation

of k-SRP and show that it is equivalent the k-PRP. In Section 3.2, the basis for the reduction used to

solve k-PRP for strictly chordal graph is presented – decomposition of a strictly chordal graph into

a forest of tree chordal graphs. In Section 3.3, we overview the algorithm design for k-PRP.

Chapter 4: We consider the 5-PRP on the restricted class of tree chordal graphs. In Sections

4.1.1 – 4.1.3, we a solution for the 5-PRP where the input graph is tree chordal in three progressively

less restrictive steps. In Section 4.2.2, we present a modification of the phylogenetic tree construc-

tion in Section 4.1.3 that will be used in the construction of k-PRP algorithm for strictly chordal

graphs.

Chapter 5: We here discuss the main result of the thesis, the construction of 5-PRP for strictly

chordal graphs, and the structural results that lead to its proof. In Section 5.1.1 we present several

lemmas demonstrating the restrictive structure of maximal cliques containing three or more criti-

cal cliques. In Section 5.2, we progressively present the construction of the 5th phylogenetic root

problem.

Chapter 6: We summarize the results presented in the previous chapters along with several open

problems.
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Chapter 2

Strictly Chordal Graphs

2.1 Preliminaries

2.1.1 Critical Clique Graphs

Let G = (V,E) be a graph. A clique is a set of pairwise adjacent vertices. Denote a clique

on k vertices as Kk. A clique is maximal if it is not properly contained in any other clique. A

homogeneous clique is a clique S such that either |S| = 1 or for all v1, v2 ∈ S andw ∈ V \S, v1w ∈

E if and only if v2w ∈ E. A critical clique is a homogeneous clique that is not a proper subset of

any other homogeneous clique [27]. The critical clique cardinality of a maximal cliqueK, denoted

cccard(K), is the number of critical cliques it contains. For convenience, we define a maximal

clique to be large if it has critical clique cardinality three or more. The size of a critical clique C in

a graph G is the number of vertices it contains. A critical clique is internal if it is contained in at

least two maximal cliques and external otherwise. Figure 2.1 illustrates these concepts.

Figure 2.1: The maximal cliques in the above graph are {a,b,d,e}, {b,c,e,f}, and {c,g}. The critical
cliques in the above graph are {a,d}, {b,e}, {c}, {f}, and {g}. The cardinality of maximal clique
{a,b,d,e} is 2. The critical clique {a,d} is external, whereas the critical clique {b,e} is internal.

Define a partition of a nonempty set S as a set of nonempty sets {S1, S2, .., Sp} such that Si ∩

Sj = ∅, for each i ,= j, and S1 ∪ S2 ∪ ... ∪ Sp = S. The set of maximal cliques of a graph does not

form a vertex partition, as maximal cliques can overlap. On the other hand, the set of critical cliques

of graph does form a partition of the vertex set.

Lemma 2.1.1. [27] Let G = (V,E) be a graph and S ={S1, S2, ..., Sp} be the set of critical

cliques in G. Then S forms a partition of V .
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Two critical cliques are adjacent if they are part of a common maximal clique. Define the critical

clique graph of a graphG, denoted CC(G), where the vertex set is the set of all critical cliques inG

and two vertices are adjacent if and only if the critical cliques they represent are adjacent in G [27].

By the definition of adjacency and Lemma 2.1.1, it follows that CC(G) is well-defined for all G.

Figure 2.2: The critical clique graph for the graph in Figure 2.1.

Lemma 2.1.2. [27] Let G be a graph. Then CC(G) = CC(CC(G)).

Lemma 2.1.3. [27] Let G be a chordal graph. Then there exists an O(|V |+ |E|) time algorithm to

construct the critical clique graph CC(G).

2.1.2 Hypertrees

Hypergraphs, or set systems, are natural extensions of graphs where the edge set is generalized from

a vertex pair to a vertex subset. Specifically, a hypergraphH = (V, E) consists of a vertex set V and

a hyperedge set E = {e1, e2, . . . , em}, where ei ⊆ V for 1 ≤ i ≤ m [3]. A hypergraph is connected

if for every pair of vertices u and v there is a sequence of hyperedges (eα(1), eα(2), . . ., eα(")) such

that u ∈ eα(1), v ∈ eα("), and eα(j) ∩ eα(j+1) ,= ∅ for 1 ≤ j < %.

Define the clique hypergraph of G = (V,E) as the hypergraph H(G) = (V, E) where E is the

set of maximal cliques of G.

Let H = (V, E) be a hypergraph. H is a hypertree if there exists a tree T with vertex set V

such that every hyperedge in E induces a subtree in T [3]. A graph G is dually chordal if its clique

hypergraph is a hypertree [5].

H is a dual hypertree if there exists a tree T with vertex set E such that, for each vertex ofH the

set of hyperedges containing that vertex form a subtree of T [6].

LetH(V, E) be a hypergraph. A hyperedge et ∈ E is a twig if forR = ∪e∈E−ete either

et ∩R = ∅,

or, for some eb ∈ E − et

et ∩R = et ∩ eb.

eb is a branch for the twig et [21].

A twig elimination ordering of a hypergraph [21] is a total ordering of the hyperedges (eα(1), eα(2), . . . , eα(m))

such that for 1 ≤ i ≤ m ei is a twig in the sub-hypergraphHi = (Vi, Ei), where Vi = eα(1)∪eα(2)∪

. . . ∪ eα(i) and Ei ={eα(1), eα(2), . . . , eα(i)}.
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Theorem 2.1.4. [7, 19, 39] (See [20]) Let G = (V,E) be a graph. Then the following are equiva-

lent:

• G is chordal.

• G is the intersection graph of subtrees of a tree.

• H(G) is a dual hypertree.

Notice that Theorem 2.1.4 can be easily adapted to show the following lemma.

Lemma 2.1.5. A graph G is chordal if and only ifH(G) has a twig elimination ordering.

Proof. We will prove the forward direction by induction on the number of vertices of G. A graph

with a single vertex is chordal and has a clique hypergraph with a single twig. Assume that all

chordal graphs with n vertices have a valid twig elimination ordering; let Gn+1 be a chordal graph

on n+1 vertices. AsGn+1 is chordal, let (vs(1), vs(2), ..., vs(n+1)) be a simplicial vertex elimination

ordering on the vertex set. Let Gn be the graph formed by removing vertex vs(n+1) and all edges

incident with it. Gn is chordal and has n vertices; thus by the inductive hypothesis, the clique

hypergraph of G has a twig elimination ordering K1,K2, ...,Kp. Let S be the set of maximal

cliques such that NGn+1(vs(n+1)) is a subset of maximal cliques in S. If, for a maximal clique

K ∈ S, NGn+1(vs(n+1)) = K then K ∪ vs(n+1) forms a new larger maximal clique and the same

ordering of hyperedges is a twig elimination ordering. IfNGn+1(vs(n+1)) is a proper subset of every

maximal clique in S then let Ki be the first maximal clique in the twig elimination ordering which

is also in S. Place the new maximal clique, K ′ = vs(n+1) ∪ NGn+1(vs(n+1)) immediately before

Ki in the twig elimination ordering. It follows that K ′ is a twig with Ki as its branch, as K ′ ∩Ki

intersection is the intersection ofK ′ with the graph. Therefore,Gn+1 has twig elimination ordering.

Thus, G chordal implies the clique hypergraph of G has a twig elimination ordering.

We will show the contrapositive of the backwards direction. AssumeG is not chordal. Therefore,

G has a chordless cycle, Ci = (v1, v2, ..., vi), where i ≥ 4. Note that each pairwise adjacent

set of vertices in the cycle is contained in a maximal clique which is a hyperedge in the clique

hypergraph. Assume that there exists a valid twig elimination ordering and let ej be the hyperedge

corresponding to a pair a vertices vj , vj+1(mod i) such that ej is the first hyperedge in the ordering

containing both vj and vj+1(mod i). Such a hyperedge must exist as all hyperedges will be eventually

removed. Therefore, ej is the first hyperedge removed as a twig that will remove an edge in the cycle.

Let ej−1(mod i) be a the hyperedge containing vj−1(mod i) and vj and ej+1(mod i) be a hyperedge

containing vj+1(mod i) and vj+2(mod i). Both edges will still be in the graph as we assumed that ej

was the first hyperedge corresponding to an edge in the cycle. Also, as vj−1(mod i) and vj+1(mod i)

are non-adjacent, vj+1(mod i) /∈ ej−1(mod i). Similarly, vj and vj+1(mod i) are non-adjacent so

vj /∈ ej+1(mod i). Therefore, ej can not be a twig as no other hyperedge contains both vj and vj+1,

a contradiction to this being a valid twig elimination ordering. Therefore, as any twig elimination
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ordering will have such an edge, no valid ordering will exist. Thus, if G is chordal the clique

hypergraph for G has a valid twig elimination ordering.

Corollary 2.1.6. LetH be a hypergraph. ThenH(G) is a dual hypertree if and only ifH(G) has a

twig elimination ordering.

2.1.3 Moplexes

As the twig elimination ordering suggests, chordal graphs can be viewed as a generalization of trees.

A further generalization of this ordering leads to a moplex elimination ordering [4].

Let G = (V,E) be a graph. A moplex is a critical clique whose neighbourhood is a minimal

cutset of G. A moplex is simplicial if all vertices in the moplex are simplicial. A simplicial mo-

plex elimination ordering is a sequence M1,M2, ...,M", such that Mi is a simplicial moplex in the

G(M1 ∩M2 ∩ ... ∩Mi), for 1 ≤ i ≤ %.

Lemma 2.1.7. Let G = (V,E) be a chordal graph. If M is a simplicial moplex in G, then e =

M ∪ N(M) are the vertices of a hyperedge in the clique hypergraph H(G). Moreover, e is a twig

inH(G).

Proof. Let G = (V,E) be a chordal graph and M be a simplicial moplex in G. By Dirac’s theo-

rem [13], every minimal cutset is a clique in a chordal graph. As N(M) is a minimal cutset and as

M is a critical clique, it follows that e = M ∪N(M) is a clique in G. AsM is made of simplicial

vertices, all vertices inM are adjacent only to other vertices inM and vertices in N(M). As such,

no other vertex exists that is adjacent to every vertex in N(M) ∪M , therefore, it must correspond

to a maximal clique, and thus, a hyperedge inH(G).

To see that e is a twig, we must find a branch. We claim that N(M) must be contained in

another maximal clique inG. Assume that this not the case, and there exists no vertex adjacent to all

vertices inN(M). There must exist at least one vertex in v ∈ (V \M) that is adjacent to a vertex in

N(M), as otherwise, it is not a minimal cutset. It follows that the vertices in the cutset adjacent to

v form a smaller cutset, contradicting the minimality of N(M). Therefore, at least one vertex must

be adjacent to all of N(M), and therefore, the maximal clique containing this vertex and N(M)

forms a branch for M in H(G). It follows that a moplex in a chordal graph is a twig in the clique

hypergraph of G.

2.2 Strictly Chordal Graphs

2.2.1 Chararcterizations

Let H = (V, E) be a hypergraph. Let E ′ = {eα(1), eα(2), . . . , eα(")} with % ≥ 2, be a subset of E

with non-empty intersection, namely I(E ′) = ∩"
j=1eα(j) ,= ∅. E ′ is intersection maximal if every

hyperedge which intersects I(E ′) is contained in E ′. I(E ′) is a strict intersection if E ′ is intersection
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maximal, and if, for every pair of hyperedges e′, e′′ ∈ E ′, e′ ∩ e′′ = I . A hypergraph is strict if for

every subset E ′ of E such that E ′ is intersection maximal, I(E ′) is strict.

A dart graph is any graph isomorphic to the graph on vertices a, b, c, d, e with edges (a, b),

(b, c), (b, d), (b, e), (c, e), and (d, e) (see Figure 2.2.1). Dart-free graphs have been studied in the

context of perfect graphs; a graph is perfect if its chromatic number1 is equal to the size of a largest

clique for all of its induced subgraphs. Sun [38] showed that the Perfect Graph Theorem2 (then

conjecture) holds for this class of graphs. Chvatal et al. [10] showed that perfect dart-free graphs

can be recognized in polynomial time.

Figure 2.3: A labelled dart graph.

A gem graph is any graph isomorphic to graph on vertices a, b, c, d, e with edges (a, b), (a, c),

(b, c), (b, d), (b, e), (c, e), and (d, e) (see Figure 2.2.1). A wheel graph, denoted Wn, is any graph

isomorphic toCn with an additional vertex adjacent to each vertex in the cycleCn (see Figure 2.2.1).

Figure 2.4: A labelled gem graph.

Figure 2.5: A labelled 4-wheel graph,W4.

Lemma 2.2.1. Let G be a graph. H(G) has all intersections strict if and only if G is dart-free,

gem-free and W4-free.

1The chromatic number χ(G) of graph G is the minimum number of labels needed to label the vertices of a graph such

that adjacent vertices receive different labels.
2The Perfect Graph Theorem states that a graph is perfect if and only if no induced subgraph contains an odd cycle of

length 5 or more or the complement of an odd cycle of length 5 or more. It was conjectured in 1960 by Claude Berge [2] and

proven by Maria Chudnovsky, Paul Seymour, Neil Robertson and Robin Thomas in 2002 [9].
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Proof. Given a graph G such that H(G) all strict intersections, assume that the vertices a, b, c, d, e

induce a dart in G. Let eab be the hyperedge containing vertices ab, let ebce be the hyperedge

containing bce, and let ebde be the hyperedge containing bde. But the maximal clique ab intersects

only part of the intersection of maximal cliques bce and bde, so the intersection of eab, ebce, ebde is

not strict, a contradiction. Similarly, if a, b, c, d, e induce a gem, we have the same hyperedge set

with, in addition, hyperedge eab now containing the vertex c, denote eabc. The edge eabc intersects

only part of the intersection of ebce and ebde, therefore, not a strict intersection. If a, b, c, d, e induce a

W4, we the same hyperedge set with the addition of hyperedge eabd. The same non-strict intersection

as for the gem graph will occur.

Conversely, assume thatH(G) contains a non-strict intersection I . We will show thatG contains

either a dart, gem orW4 graph as an induced subgraph. Therefore, take a set of hyperedges {e1, e2,

..., e"} which are a part of the non-strict intersection such that |e1 ∩ e2| > 1 and e3 intersects only

a proper subset of e1 ∩ e2. A non-strict intersection must involve at least three hyperedges. Any

intersection that involves exactly two hyperedges, the intersection is a clique inG, all vertices in the

intersection share the same neighbourhood outside of the clique inG, and as they are an intersection

no other vertex exists satisfying the first two properties, thus they form a critical clique in G. As an

intersection which is a critical clique in G is a strict intersection, we have that % ≥ 3. Also, at least

two hyperedges must intersect by two or more vertices, as if all intersect by a single vertex again it

is a critical clique. And finally, at least one hyperedge must have an intersection which is a proper

superset of I , as if all pair-wise intersections are exactly I then the intersection is a critical clique.

Define the following vertices; a vertex a from e3 \ (e1 ∪ e2), a vertex b from e1 ∩ I , a vertex e from

I \ e3, a vertex c from e1 \ I , a vertex d from e2 \ I . We show the vertices a, b, c, d, e either induce

a dart, a gem, or aW4 graph in G. If c is contained only in e1 and d is contained only in e2, then we

have an induced dart. If exactly one of c and d, without loss of generality assume c, is contained in

e3 and there exists a hyperedge containing the vertices a, b, d, then we have an induced W4. If no

such hyperedge exists, we have an induced gem.

Let G be a graph and H(G) its clique hypergraph. H(G) is a strict dual hypertree if H(G) is

strict and a dual hypertree. G is strictly chordal ifH(G) is a strict dual hypertree. By Lemma 2.1.5,

it follows that strictly chordal graphs live up to their name and are chordal. The following is another

characterization of strictly chordal graphs which follows as a corollary of Lemmas 2.2.1 and 2.1.5.

Corollary 2.2.2. Let G be a graph. G is strictly chordal if and only if it is dart-free, gem-free and

chordal.

Lemma 2.2.3. Let G be a graph. G is strictly chordal if and only if G is chordal and every set of

maximal cliques has intersection of either exactly one critical clique or ∅.

Proof. A strictly chordal graphG is chordal and the clique hypergraph ofG is a strict dual hypertree.

Assume there exist two maximal cliques, K1 and K2, in CC(G) with two or more vertices in
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common. Each of these common vertices must have a different neighbourhood in both CC(G) and

G as they represent different critical cliques. Therefore in G there must exist a third maximal clique

which is adjacent to only part of the intersection of K1 and K2; this intersection is not strict. This

contradicts the clique hypergraph of G being a strict dual hypertree.

Let G be a chordal graph such that for every subset of maximal cliques in CC(G), the inter-

section is either ∅ or a single vertex in CC(G). As shown above, since G is chordal, the clique

hypergraph H(G) must be a dual hypertree. In H(G), take any set of hyperedges {e1, e2, ..., ei}

having a nonempty intersection, say vertex v. Notice in CC(G) the critical clique containing v is

represented by a single vertex, therefore, no vertex not in this critical clique is contained in more than

one of these hyperedges as two maximal cliques would share two vertices in common in CC(G).

Therefore the hyperedges form a strict intersection. As this argument holds for all intersections, all

intersections are strict in the clique hypergraph. Therefore, as G’s clique hypergraph is a strict dual

hypertree, so G is strictly chordal.

Lemma 2.2.4. [24] For a chordal graph G, the clique hypergraph H(G) is a strict dual hypertree

if and only if for every (not necessarily induced) cycle the vertices induce a clique in the critical

clique graph CC(G).

Proof. GivenGwithCC(G) satisfying that each cycle is a clique, it followsG is chordal asCC(G)

largest induced cycle has three vertices and replacing vertices of CC(G) with their corresponding

critical cliques will maintain this property. Therefore from Lemma 2.1.5 it follows that the clique

hypergraph of G is a dual hypertree. CC(G) must be dart-free and gem-free as both darts and gems

contain non-clique cycle. It follows that G must also be dart-free and gem-free as replacing vertices

of CC(G) with their corresponding critical cliques again maintains this property. Therefore, G is

strictly chordal.

Assume that H(G) is a strict dual hypertree, as G is chordal, so must be CC(G), therefore

all cycles of length four or more will have a chord. For contradiction assume that there exists a

simple cycle in CC(G) which has at least four nodes and does not form a clique. Pick the shortest

of all these cycles, (C0, C1, . . . , C"−1). There must exist two nodes in CC(G) such that Ci and

Ci+2(mod ") are non-adjacent, as otherwise, if % = 4, 5 then the cycle forms a clique and if % ≥ 6 the

cycle is not minimal. Therefore, without loss of generality, assume C0 and C2 are not adjacent. Let

K0 be a maximal clique in G that includes C0 and C1, and K1 be a maximal clique including C1

and C2.

Let I = K0 ∩ K1; note by the definition of a strict dual hypertree I = C1 which implies

Ci ∩ I = ∅ for i ,= 1. Let Ci be the last critical clique such that Ci+1 ! K1. Let K2 be a

maximal clique including Ci and Ci+1(mod "). The intersection K1 ∩K2 includes Ci and does not

intersect K0 ∩ K1. We continue to build this chain of maximal cliques until we find a K"′−1 that

intersects withK0, leaving a sequence of at least three maximal cliquesK0,K1, . . . ,K"′−1 such that
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Ki∩Ki+1(mod "′) are the only non-empty pairwise intersections. Suppose without loss of generality

thatK"′−1 is the first maximal clique that appears in a twig elimination ordering (K0,K1, . . . ,Km).

Then we will find no branch for K"′−1 since K"′−1 intersects at least two other maximal cliques in

the sub-ordering (K0,K1, . . . ,K"′−1). This contradicts the assumption that the clique hypergraph

H(G) is a strict dual hypertree.

We have previously presented a forbidden induced subgraph characterization of strictly chordal

graphs, namely that strictly chordal graphs do not contain any induced subgraph isomorphic to a

dart, gem, or Ci for i ≥ 4. It is also interesting to give a generation construction, such a construction

will show exactly how strictly chordal graphs can be generated from small graphs. Hence we define

the following operation. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs and let c1 ⊆ V1 and

c2 ⊆ V2, where c1, c2 are cliques. The clique join of the pairs (G1, c1) and (G2, c2), denoted

(G1, c1) " (G2, c2), is the graph G = (V (G), E(G)), such that

V (G) = V1 ∪ V2,

E(G) = E1 ∪ E2 ∪ (c1 × c2).

Lemma 2.2.5. Let G = (V,E) be a graph.

1. If |V | = 1, then G is strictly chordal.

2. If G1 = (V1, E1) and G2 = (V2, E2) are vertex disjoint and strictly chordal graphs, then

G = (V1 ∪ V2, E1 ∪ E2) is strictly chordal.

3. If G1 = (V1, E1) and G2 = (V2, E2) are vertex disjoint and strictly chordal and there are

subsets c1 ⊆ V1 and c2 ⊆ V2 such that each is either a critical clique or is a clique contained

in exactly one maximal clique, then G = (G1, c1) " (G2, c2) is strictly chordal.

4. All strictly chordal graphs can be generated using rules 1− 3.

Proof. Trivially, a single vertex graph is a strictly chordal graph. In the second case, as no edges are

added, the new graph is still strictly chordal.

For the third case, the new graph G will be chordal, as the clique join adds the complete set of

edges between the vertices of c1 and c2, thus no cycle of length four or more can be created. Notice

in the clique hypergraphH(G) that c1∪c2 forms a maximal clique and, thus, a hyperedge e inH(G).

We show that this maximal clique either contains exactly one critical clique c1 ∪ c2 or exactly two

critical cliques c1 and c2. If c1 and c2 were both maximal cliques, then the clique join will be a

larger maximal clique. Otherwise, c1 will be a critical cliques in G as its new neighbourhood will

be NG1(c1) ∪ c2, similarly NG(c2) = NG1(c2) ∪ c1. Therefore, as the hyperedge e has only strict

intersections with G(V1) and G(V2) and as all intersections in G1 and G2 are strict, it follows that

G is strictly chordal.
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To see that there are no further strictly chordal graphs, we show that given any strictly chordal

graphG, there exists a sequence of the above steps to produceG. Without loss of generality assume

G is connected, as if we can produce a sequence for each connected component of G then we can

apply the second rule to produce the whole G.

Let (eα(1), eα(2), . . . , eα(m)) be a twig elimination ordering for H(G). We proceed by adding

hyperedges from eα(1) to eα(m) creating graphH(Gi) = (Vi, Ei), where Vi = (eα(1) ∩ eα(2) ∩ . . .∩

eα(i)) and Ei = (eα(1), eα(2), . . . , eα(i)), for 1 ≤ i ≤ m.

For a eα(i), let e
′ = eα(i) ∩ Vi and e′′ = eα(i) \ e′. Notice that both e′ and e′′ induce critical

cliques in H(G). Trivially, e′ can be constructed using single vertices and rule 3. Then Gi+1 =

(Gi, e′) " (e′′, e′′). Completing this for each twig in the twig elimination ordering will construct G.

2.2.2 Tree Chordal Graphs

We now consider a subclass of strictly chordal graphs that will be used in the solution of 5-PRP. A

graph G is tree chordal if CC(G) is a tree [28].

Lemma 2.2.6. A graph G is a tree chordal graph if and only if it is chordal and every maximal

clique contains at most two critical cliques.

Proof. Let G be a graph such that CC(G) is a tree; we will show that G is chordal and every

maximal clique contains at most two critical cliques. As CC(G) collapses critical cliques in to

single vertices, for any chordless path that exists in G a path of the same length can be found in

CC(G) by replacing vertices in the path with the critical clique they are part of. Any chordless path

will contain at most one vertex from a critical clique, as the path is chordless. Therefore, if G is not

chordal then we can find a chordal cycle in both G and CC(G) a contradiction to CC(G) being a

tree; therefore, G is chordal. As maximal cliques in CC(G) correspond directly to maximal cliques

in G, CC(G) being a tree implies that the largest clique is size two, implying that each maximal

clique in G contains at most two critical cliques.

Let G be a chordal graph such that every maximal clique contains at most two critical cliques;

we will show that CC(G) is a tree. As every maximal clique contains at most two critical cliques,

CC(G) contains no clique larger than two vertices. Therefore, to show CC(G) is a tree we need

only show it does not contain any induced cycles of length four or more. For any induced cycle in

CC(G) a corresponding cycle can be found in G, by replacing a node in the cycle corresponding to

a critical clique with any of the vertices in the critical clique. Therefore, as G is chordal we can not

find any cycle of length four or more, and we will, therefore, not be able to find any such cycle in

CC(G). Therefore CC(G) is a tree.

Lemma 2.2.7. A graph G is a tree chordal graph if and only if there exists a tree, T , such that

G can be created by replacing each vertex, vi ∈ V (T ) by a clique Ki and replacing each edge
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(vi, vj) ∈ E(T ) by (Ki ×Kj).

Proof. Let G be a tree chordal graph. Let T = CC(G). The lemma describes the reverse process

of creating a CC(G) from a graph G. Both directions follow easily from this observation.

2.2.3 Recognition

Theorem 2.2.8. [24] There exists a linear time algorithm for recognizing whether or not a graph is

strictly chordal, and if so, returning its critical clique graph.

Proof. We can decide if a graph is chordal in linear time, by Lemma 1.2.1; moreover, we can build

the critical clique graph in linear time as well, by Lemma 2.1.3. By Lemma 2.2.4, it suffices to

check that every simple cycle in CC(GG) is a clique. The breadth first search (BFS), representing

the order of edges searched, is known to have two types of edges: tree edges and cross edges [11]. A

tree edge corresponds to a new vertex encountered while traversing the graph, whereas a cross edge

corresponds to already encountered vertex. Necessarily, the cross edge set and the tree edge set are

disjoint and cover the whole edge set of the graph. A cross edge represents two connected nodes

which share a common ancestor that is not a parent; as such, if the nodes are not siblings in the tree,

a cycle of length at least four exists in the graph which is clearly not a clique as they are not adjacent

to both parents. To check for non-induced cycles, check the set of all child nodes of any fixed node

in the BFS tree, the graph induced must be a collection of disjoint cliques, otherwise there exists a

non-induced cycle whose nodes do not form a clique. BFS runtime is linear time in the size CC(G)

and it takes linear time to check the child node lists; as the number of edges and vertices of CC(G)

is bounded above by the number of edges and vertices inG, it follows that BFS is linear with respect

to the size of G.

Corollary 2.2.9. There exists a linear time algorithm for recognizing whether or not a graph is tree

chordal, and if so, returnin its critical clique graph CC(G).

Proof. Build CC(G) using Lemma 2.1.3 in linear time. Using BFS to check if CC(G) is acyclic

and return yes if so.
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Chapter 3

Root Construction Methods

This chapter explains the approach we use in our algorithm for the construction of a 5th phylogenetic

root tree. We introduce a variation of k-SRP that we will show is equivalent to k-PRP. We then

present our algorithm design for the k-PRP serving as a guideline for the chapters to follow.

3.1 S-restricted kth Steiner Root Trees

An S-restricted kth Steiner root tree T for a set of critical cliques S of a graph G is a kth Steiner

root tree T such that T has no degree 2 Steiner points and the representatives of critical cliques in

S are internal in T . For each critical clique c, there exists a set of vertices {r1, r2, ..., rn} in an

S-restricted kth Steiner root tree that correspond to c; each ri represents a set of vertices in c. We

denote each element of such a vertex ri as a representative of c. The size of ri as the number of

vertices that map to it from c. No vertex in a critical clique has more than one representative, and

every vertex in a critical clique corresponds to one of its representatives.

Lemma 3.1.1. [23] Let G be a graph and let S be the set of all critical cliques of size 1 in G. Then

G has an S-restricted (k-2)th Steiner root tree T if and only if G has a kth phylogenetic root tree.

Proof. Assume that G has an S-restricted (k − 2)th Steiner root tree T ; we construct a kth phy-

logenetic root tree T ′. Replace each representative of a critical clique with a Steiner point and set

adjacent to this point each of the vertices represented. As T was a valid (k−2)th Steiner root tree T ,

it follows that adjacent representatives are at a distance of at most k − 2. The construction extends

all paths between every vertex by exactly two, therefore, all adjacent vertices are at a distance of

at most k in T ′. Similarly, nonadjacent representatives are at a distance of at least k − 1 in T ; it

follows that they will be at distance at least k + 1. Steiner points in T maintain their degree in T ′

and therefore still at least 3. Representatives that were leaves in T had size at least 2 therefore, the

created Steiner point has degree at least 3. Representatives that were internal had degree at least 2

will now have degree at least 3 as a Steiner point as they represent at least one vertex. Therefore,

Steiner points all have degree at least 3. Thus, as all vertices are represented by leaves it follows that

T ′ is a valid 5th phylogeny root tree.
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Assume that G has a kth phylogenetic tree T ; we construct an S-restricted (k − 2)th Steiner

root tree T ′. To construct such a tree, for each Steiner point in Twe record the number of leaves it

is adjacent to and then remove all leaves in the T to produce T ′. Steiner points in T that were not

adjacent to any leaves will remain as Steiner points in T ′; notice that they will still have degree of

three or more. The remaining Steiner points now correspond to vertices in the input graph; let the

set S be the internal representatives in the graph of size 1. T ′ is a valid S-restricted kth Steiner root

tree with S corresponding to all size 1 vertices; these vertices were are internal as T was a valid 5th

phylogenetic root tree.

Using the preceding lemma, our algorithm for 5-PRP searches for an S-restricted 3rd Steiner

root tree.

3.2 Decomposition of Strictly Chordal Graphs

Our algorithm for 5-PRP for strictly chordal graphs uses the algorithm for 5-PRP for tree chordal

graphs and the following observation. Observe that we can produce a set of tree chordal graphs T

from a strictly chordal graph in the following way. Using the critical clique graph CC(G), remove

the edges from large maximal cliques to produce CC(T ), which is a set of trees. To create T ,

re-substitute each critical clique in for the node that it represents in CC(T ). Figure 3.1 gives an

example.

(a) G. (b) Forest T .

Figure 3.1: An example decomposition from a strictly chordal graph to a forest of tree chordal

graphs.

It follows from the input graph being strictly chordal that each node is part of exactly one tree

chordal graph.

3.3 kth Phylogenetic Root Algorithm

The following is a brief overview of the strategy we employ to produce a 5th phylogeny root tree

from a graph G. Starting with G, check if G is strictly chordal, and if yes, build the critical clique

graph CC(G).

Using CC(G), we produce the set of tree chordal graphs T by the decomposition of Section

3.2. For each tree chordal graph Ti ∈ T , we modify the critical cliques contained in large maximal

cliques in G to produce T ′
i . We justify this modification in Section 4.2.2.
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Let S be the size 1 nodes in T ′
i . We search for an S-restricted 3rd Steiner root tree T ′

i . If no

S-restricted 3rd Steiner root tree exists, then no phylogeny tree exists by Lemma 4.2.1. If for all

T ′
i ∈ T , there exists a Steiner tree Si we then continue to consider the edges removed from the large

maximal cliques.

We combine each 3rd Steiner root tree Si until either we come to a contradiction, or we have

a valid S-restricted 3rd Steiner root tree where S is the set of critical cliques of size 1 in G. If we

find such a Steiner tree, then by Lemma 3.1.1 we are always able to produce a corresponding 5th

phylogeny root tree. Figure 3.2 shows a simplified flow chart of the steps of our algorithm.

Figure 3.2: A flow chart of our 5th phylogeny root tree construction algorithm. ALG(Ti) is our
algorithm for S-restricted 3-SRP, as described in Section 4.2.2.
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Chapter 4

Root Construction for Tree Chordal

Graphs

We now consider the 5-PRP construction for tree chordal graphs in general and then we consider

the construction as an intermediate step in the algorithm to solve 5-PRP for strictly chordal graphs.

For this chapter1, we primarily consider the S-restricted 3rd Steiner root tree construction prob-

lem. We remind the reader that by Lemma 3.1.1, when the set S contains exactly all size 1 critical

cliques in the input graph G, the problem of constructing an S-restricted 3-SRP tree is equivalent to

constructing a 5-PRP tree.

Note that every maximal clique in a tree chordal graph G contains exactly two critical cliques.

We assume for this chapter that the given graphG is tree chordal and its critical clique graphCC(G)

has been constructed.

4.1 General Construction

We assume, for this section, that every graph contains at least three critical cliques, as such, CC(G)

will have at least three nodes. We also assume, for this section, that S corresponds to the size 1

critical cliques in G.

4.1.1 Structural Restriction 1

Lemma 4.1.1. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Let u denote

a leaf node in CC(G). Then removing the representatives for u does not disconnect T .

Proof. Let v denote the internal node adjacent to u in CC(G). Note that all representatives for v

must be within distance 3 to r(u) but no representative for a critical clique other than u and v can

be within distance 3 to r(u). Assume, for contradiction that removing the representatives for u from

Steiner root T disconnects T . It follows that there must be some representative r(u) for u that lies

on the path P connecting representatives of two other critical cliques. It follows that one of these

1A version of this chapter has been submitted for publication. Lin, Kennedy, Kong and Yan 2005. Discrete Applied

Mathematics [28]
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critical cliques is not v and its representatives must be at a distance of at least 4 from r(u), otherwise,

they are representatives for v. Therefore, this critical clique is nonadjacent, a contradiction to the

existence of such a path.

Corollary 4.1.2. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Then there

exist no size 1 leaf nodes in CC(G).

Proof. Let u be a size 1 leaf node in CC(G). u will have exactly one representative in any 3rd

Steiner root tree T . By Lemma 4.1.1, if u was internal removing it would disconnect T , implying

that u has two neighbours in CC(G), a contradiction. Thus, u is a leaf in any 3rd Steiner root tree

T , specifically in any S-restricted 3rd Steiner root T . A contradiction follows as an S-restricted

Steiner tree has no size 1 leaf representatives by definition.

Therefore, from now on, we assume that every leaf node in CC(G) has size at least 2.

Lemma 4.1.3. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and u be an

internal node in CC(G). Suppose r1(u) and r2(u) are two distinct representatives for u. Then

dT (r1(u), r2(u)) ≤ 2.

Proof. Clearly, dT (r1(u), r2(u)) ≤ 3. Therefore assume that dT (r1(u), r2(u)) = 3 and denote

the path connecting r1 and r2 as r1-x-y-r2. Let v1 and v2 denote two nonadjacent nodes that are

adjacent to u in CC(G). For a representative r(v1) to be adjacent to both r1(u) and r2(u) it must

be adjacent to x or y, as if it is adjacent to any other point it will be at a distance of at least 4. The

same argument follows, by symmetry, for a representative r(v2). Therefore, r(v1) and r(v2) must

be adjacent, a contradiction.

Corollary 4.1.4. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and let u be

an internal node in CC(G). Then, every vertex of the set of representatives for u is adjacent to a

common point p in T .

Lemma 4.1.5. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and u be

an internal node in CC(G). Suppose r1(u) and r2(u) are two distinct representatives for u. If

dT (r1(u), r2(u)) = 2 and p is the node on the path between r1(u) and r2(u) in T , then only

representatives of u are adjacent to p.

Proof. It follows that any representative r′ adjacent to p will be adjacent to everything both r1(u)

and r2(u) are adjacent to. Therefore, no other representative r∗ can exist that is adjacent to r1(u),

r2(u) and not r′, implying that u is not internal, a contradiction. Therefore, only representatives of

u or Steiner points are adjacent to p.

Theorem 4.1.6. Let G be a tree chordal graph such that every internal node in CC(G) has size at

least 2 and every leaf node has size at least 4. Then G has an S-restricted 3rd Steiner root tree.

24



Proof. Starting with CC(G), replace each node, representing a critical clique ci, by a Steiner point

si. If ci is internal in CC(G), create a single representative r(ci) and set it adjacent to si. If ci is

external in CC(G), create two representatives r1(ci) and r1(ci), where r1(ci) represents -|ci|/2.

vertices and r2(ci) represents /|ci|/20 vertices. Denote this new tree T .

As CC(G) is a tree T is also a tree. We claim T is an S-restricted 3rd Steiner root tree. Every

Steiner node has degree 3 and all representatives in T have size at least 2 by construction. The set

S is empty, so the property holds vacuously. As adjacent nodes were at a distance of 1 in CC(G),

it follows that all representatives of adjacent critical cliques will be at distance of exactly 3 in T .

Analogously, as nonadjacent nodes were at a distance of at least 2, nonadjacent nodes will be at a

distance of at least 4 in T . Therefore T is an S-restricted 3rd Steiner root tree.

An illustration of the construction process is in Figure 4.1, where Figure 4.1(a) shows G, Figure

4.1(b) shows CC(G), Figure 4.1(c) shows an S-restricted 3rd Steiner root tree T for G.

(a) Graph G. (b) CC(G): labeled by the

critical cliques.

(c) A 3rd Steiner root for

CC(G): representatives la-

beled by vertices they repre-

sent.

Figure 4.1: An example graph G shows the steps of operations for constructing a S-restricted 3rd
Steiner root tree in the ideal case.

4.1.2 Structural Restriction 2

Theorem 4.1.6 deals with an ideal case where critical cliques must have sufficient size, namely

internal critical cliques have size at least 2 and external critical cliques have size at least 4. The

following several lemmas discuss the construction when there exist leaf nodes in CC(G) of size

less than 4.

Lemma 4.1.7. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Let r(v)

and r(u) be representatives in T of two critical cliques in CC(G). If r(v) and r(u) are adjacent a

common Steiner point p then only representatives of u or v are adjacent to p.

25



Proof. Assume, for contradiction, that a representative for another critical clique w is adjacent to x.

Then u, v, and w form a C3 in CC(G), a contradiction to the assumption that CC(G) is a tree. If

adjacent to x is a Steiner point y which is adjacent to a representative for w, then again we have a

C3, a contradiction. Any representative that is further out will disconnect the graph. Therefore, no

Steiner points or representatives are adjacent to x.

Lemma 4.1.8. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and let u be

an internal node in CC(G) with exactly two representatives r1(u) and r2(u). If r1(u) and r2(u)

are adjacent then every internal neighbour v of u in CC(G) has at most two representatives in any

Steiner root T of G. Moreover,

• if v has exactly two representatives, then these two representatives must be adjacent in T , with

one of them adjacent to either r1(u) or r2(u), and,

• if v has exactly one representative, then this representative must be adjacent to either r1(u)

or r2(u).

Proof. Suppose v has more than two representatives in T . By Lemma 4.1.4, all the representatives

are adjacent to a common center point p. For both r1(u) and r2(u) to be adjacent to all representa-

tives of v, one of them is adjacent to p, but this is a contradiction to v being internal, as nothing else

can be adjacent to v and not u. Therefore, v has at most two representatives.

Assume v has exactly two representatives r1(v), r2(v) in T . r1(v) and r2(v) must be adjacent

as otherwise, as above, r1(u) or r2(u) is adjacent to a common center point p of r1(v) and r2(v). It

follows that since r1(u) is adjacent to r2(u) and r1(v) is adjacent to r2(v), they must form a path

P4, for all four to be within a distance of 3.

Assume v has exactly one representative r(v) in T . If r(v) is nonadjacent in T to r1(u) or

r2(u), then as it must be within a distance of 3 from both we know that we have again a P4. Assume

without loss of generality, we have the path r(v)−x−r1(u)−r2(u). Clearly, something must attach

to x, otherwise x will be a degree 2 Steiner point. By Lemma 4.1.7, nothing but representatives of u

or v can be adjacent to x. Therefore, r(v) must be adjacent to either r1(u) or r2(u).

Lemma 4.1.9. LetG be a tree chordal graph with an S-restricted 3rd Steiner root T and let u be an

internal node in CC(G) with exactly two representatives r1(u) and r2(u), such that dT (r1, r2) = 1.

Then, u has at most one internal neighbor in CC(G).

Proof. From Lemma 4.1.8, if there are two internal neighbors v1 and v2, then one representative for

v1 must be adjacent to either r1 or r2 and one representative for v2 must be adjacent to either r1 or

r2. It follows that these two involved representatives for v1 and v2 are at distance either 2 or 3 in T ,

which contradicts the fact that v1 and v2 are not adjacent in CC(G).
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Lemma 4.1.10. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and let u

and v denote two adjacent nodes in CC(G). If u and v each have exactly one representative in T ,

say r(u) and r(v) respectively, then either dT (r(u), r(v)) = 1 or dT (r(u), r(v)) = 3. Moreover, if

dT (r(u), r(v)) = 1 then one of {u, v} has degree at least 3 in CC(G), and if dT (r(u), r(v)) = 3,

then both u and v are internal nodes in CC(G).

Proof. If dT (r(u), r(v)) = 2 and x is the node adjacent to both of them, by Lemma 4.1.7 we have a

contradiction. As CC(G) contains at least 3 nodes, one of u or v must be internal, assume with out

loss of generality u is internal. Let w be another node adjacent to u in CC(G).

If dT (r(u), r(v)) = 1 then the representatives for w are at distance exactly 3 from r(u) in T ,

since they have to be at least 4 from r(v). Let r(w) be a representative forw, and the path connecting

r(u) and r(w) be r(u)-x-y-r(w). By the degree requirement, we need degT (x) ≥ 3; therefore

u must be adjacent to another critical clique that uses x as the path between its representatives.

Therefore, node u has degree at least 3 in CC(G).

If dT (r(u), r(v)) = 3 and the path connecting r(u) and r(v) is r(u)-x-y-r(v). As we require

both degT (x) ≥ 3 and degT (y) ≥ 3, it follows that x and y must be attached to another point in

T . As all leaves of T are representatives and as T is connected, it follows that r(u) is within 3 from

another representative; similarly for r(v). Therefore, u and v are both internal.

Lemma 4.1.11. LetG be a tree chordal graph with an S-restricted 3rd Steiner root T and let u and

v denote two adjacent nodes in CC(G). If u has exactly one representative r(u) in T and v has

exactly two representatives r1(v) and r2(v) in T such that r1(v) and r2(v) are adjacent, then r(u)

is adjacent to either r1(v) or r2(v). Moreover, if v is a leaf node in CC(G), then u has degree at

least 3 in CC(G).

Proof. Note when both u and v are internal nodes in CC(G) the result follows from Lemma

4.1.8. Assume with out loss of generality that r(u) is closer to r2(v) than it is to r1(v). If

dT (r(u), r2(v)) = 2, let r(u)-x-r2(v) be the path connecting r(u) and r2(v). From Lemma 4.1.7,

it follows that this is a contraction. Therefore, r(u) is adjacent to r2(v).

If v is a leaf node in CC(G), then u is internal in CC(G). Let r(w) be a representative for

w, and the path connecting r(u) and r(w) be r(u)-x-y-r(w). By the degree requirement, we need

degT (x) ≥ 3; therefore u be adjacent to another critical clique that uses x as the path between its

representatives. Therefore, node u has degree at least 3 in CC(G).

Lemma 4.1.12. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Then, there

is an S-restricted 3rd Steiner root for CC(G) in which every leaf node in CC(G) of size less than

four has exactly one representative adjacent to one of the representatives for the neighboring node.

Proof. Let u be a leaf node in CC(G) of size less than 4. By Corollary 4.1.2, 2 ≤ |u| ≤ 3. If

|u| = 2, then u has exactly one representative, as it is a leaf in any 3rd Steiner root for CC(G), by
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Lemma 4.1.1. If |u| = 3, then at least one of the representatives r1(u) for u must appear as a leaf

and r(u) > 1 in any 3rd Steiner root for CC(G), by Lemma 4.1.1. If u has multiple representatives,

the other representative r2(u) must have size 1. It follows as u is a critical clique and that r1(u) is a

leaf in T , that we can delete r1(u) and increase the size of r2(u) to size 3.

Let r(u) denote the unique representative for u and r(v) be a representative for the neighbouring

node v. As u is a leaf in CC(G), v is the only adjacent representative. As by Lemma 4.1.7, we can

not have a Steiner point between r(u) and r(v), it follows they are either adjacent or have two

Steiner points on the path between them. In the latter case, it follows that as v is the only neighbour

of u, the Steiner point adjacent to u will have degree 2. Therefore, they must be adjacent.

Corollary 4.1.13. LetG be a tree chordal graph with an S-restricted 3rd Steiner root T . Then there

exist no degree 2 size 1 internal node u in CC(G) such that u is adjacent to a leaf node v of size 2

or 3.

Proof. By Lemma 4.1.12, it follows that there exists a Steiner root with a single representative r(v)

for v such that r(v) is adjacent to the representative r(u) for u. A contradiction follows as by Lemma

4.1.10, as the degree of u is 2.

Lemma 4.1.14. LetG be a tree chordal graph with an S-restricted 3rd Steiner root T . Then, there is

an S-restricted 3rd Steiner root for CC(G) in which every leaf node in CC(G) of size at least four

has exactly two representatives that are leaves in T which are separated by a non-representative

Steiner node.

Proof. Let u be such a critical clique. We can place the representatives of u, denote r1(u), r2(u), ..., r"(u),

in one of three structural configurations:

1. % = 1;

2. % > 1 and all representatives adjacent to a common point p where p is either a Steiner point

or representative of u; or,

3. % > 1 and all representatives adjacent to a common edge induced by points p1 and p2 where

p1 (p2) is either a Steiner point or a representative of u.

If as in Case 1, we know by assumption that |r1(u)| ≥ 4 and, by Lemma 4.1.12, u must be

adjacent to the representative r(v) of another critical clique v. As u is a leaf v is its only neighbour.

If r(v) is the only representative for v, then replace r1(u) by two representatives r′1(u) of size

-|u|/2. and r′′1 (u) of size /|u|/20. Create Steiner point p, and set it adjacent to r′1(u), r′′1 (u) and

r(v) adjacent to it. It trivially follows that this construction satisfies the lemma. If v has multiple

representatives then replace r(v) by a Steiner point p and append its vertices to another representative

of v. Again, replace r1(u) with r′1(u) and r′′1 (u) and set them adjacent to p. Again, this is the

postcondition from the lemma.
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If as in Case 2, we are done if the common point is a Steiner point, else replace this common

point p with a Steiner point and let the vertices p represents be represented by another representative

of v. This satisfies the lemma.

If as in Case 3, either p1 or p2 is adjacent to a representative of u’s only neighbour. Assume,

without loss of generality that it is p1. Then remove p2 and the representatives adjacent to it other

than p1. Represent these representatives by p1. We now continue as in Case 2. Thus, the lemma

follows.

Lemma 4.1.15. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . If u is an

internal node in CC(G) adjacent to k ≥ 2 leaf nodes of size 2 or 3, then |u| ≥ k and there is a

3rd Steiner root T for CC(G) such that there are at least k representatives for u that are adjacent

to a common point. Moreover, the representative for each neighbouring leaf node of size 2 or 3 is

adjacent to a distinct one of the representatives for u.

Proof. From Lemma 4.1.12, we conclude that there is a 3rd Steiner root for CC(G) in which there

is exactly one representative for a leaf node of size 2 or 3 in CC(G), and it is adjacent to a repre-

sentative for the neighboring node, which is u in our case. It follows that there are at least k distinct

representatives for u. Also, there are k representative that are adjacent to representatives of size-2

and 3 leaf nodes, and these k representatives are at distance exactly 2 to each other, that is, they are

all adjacent to a common (Steiner or non-Steiner) point.

Corollary 4.1.16. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Then for

every internal node u in CC(G) the number of adjacent leaf nodes of size 2 or 3 is at most |u|.

Corollary 4.1.17. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T . Then is

no degree-2 size-2 internal node u in CC(G), such that u is adjacent to a leaf node of size 2 or 3.

Proof. By Corollary 4.1.13, such a u can not have a single representative. Therefore, as it is size

two, it must have two representatives r1(u), r2(u) of size 1 that, therefore, must be internal in T . If

follows from Lemma 4.1.7 that the leaf node representative is adjacent to r1(u) or r2(u) and they

form an induced P3. A contradiction follows from Lemma 4.1.10, which implies that u has degree

at least 3.

Theorem 4.1.18. LetG be a tree chordal graph such that in CC(G) every internal node in CC(G)

has size at least 2 and every leaf node has size at least 2. Then if no degree 2 size 1 internal node

is adjacent to a leaf node of size 2 or 3, every internal node u in CC(G) has at most |u| adjacent

leaf nodes of size 2 or 3, and no degree-2 size-2 internal node in CC(G) is adjacent to a leaf node

of size 2 or 3 then G has an S-restricted 3rd Steiner root tree.

Proof. From CC(G), replace each node ni in CC(G) corresponding to critical clique ci inGwith a

Steiner point pi. For every internal node ni adjacent to leaf node nj such that 2 ≤ |nj | ≤ 3, place a

29



representative r(ni) for a single vertex for ni adjacent to pi and pj removing the existing edge. After

considering all leaf representatives of ni, represent all remaining vertices by a single representative

adjacent to pi. For all remaining internal nodes, represent all vertices by a single representative

adjacent to pi. For every leaf node ni in CC(G) of size at least 4, create two representatives of

sizes -|ni|/2. and /|ni|/20, respectively, and attach them to pi. Finally, for every leaf node ni in

CC(G) of size 2 or 3, replace its the Steiner point pi with a single representative. This constructs

an S-restricted 3rd Steiner root T for CC(G)

In T , every leaf node of size 2 or 3 has exactly one representative adjacent to a representative of

its only neighbour, satisfying Lemma 4.1.12. Leaf nodes of size four or more have two representa-

tives adjacent to a Steiner point of degree at least 3. Internal nodes which are not adjacent to any

leaf nodes of size 2 or 3, are represented by a single vertex adjacent to a Steiner point of degree at

least 3. Internal nodes, adjacent to a leaf node of size 2 or 3, have all representatives adjacent to a

common Steiner point. As G satisfies Corollaries 4.1.2, 4.1.13 and 4.1.16 it follows that the degree

of this Steiner point is at least 3. As nodes in CC(G) were adjacent if and only if at distance of 1,

it follows that adjacent nodes are either at distance of at most 3 in T and nonadjacent node are at

distance of at least 4.

An illustration of the construction process is in Figure 4.2, where Figure 4.2(a) shows G, Figure

4.2(b) shows CC(G), and Figure 4.2(c) shows an S-restricted 3rd Steiner root for CC(G).

(a) Graph G. (b) CC(G): labeled by critical
cliques.

(c) An S-restricted 3rd Steiner
root for CC(G): representa-
tives labeled by vertices they

represent.

Figure 4.2: An example graph G shows the steps of operations for constructing a S-restricted 3rd
Steiner root tree T when leaf nodes of size 2 and 3 exist.

Theorem 4.1.19. LetG be a tree chordal graph such that every internal node in CC(G) has size at

least 2 and every leaf node has size at least 2. If G satisfies Corollaries 4.1.13, 4.1.16, and 4.1.17,

then an S-restricted 3rd Steiner root tree can be constructed in linear time.
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Proof. Using Theorem 4.1.18, checking if G is tree chordal and, if so, building the critical clique

graph CC(G) takes linear time by Corollary 2.2.9. Corollaries 4.1.13, 4.1.16, and 4.1.17 can be

checked in linear time by examining each node and checking that it satisfies each of the conditions.

The replacement of the nodes inCC(G)with Steiner points and setting the vertices adjacent to these

Steiner points we show is also linear. As the number of nodes in CC(G) is bounded above by the

number of vertices in G this replacement takes at most O(|V |) time. For each critical clique we

then, using the corresponding lemma, place its vertices adjacent to the corresponding Steiner point;

as we are constructing a tree this is an addition of |V | edges and |V | vertices. Therefore, we do a

constant amount of work to each of the O(|V |) vertices, implying an overall linear runtime.

4.1.3 k-PRP Algorithm for Tree Chordal Graphs

We now present the remaining details of the algorithm, namely we deal with the existence of size 1

internal nodes in CC(G). Clearly, there is a unique representative for each such internal node u and

the representative r(u) must be internal in any 3rd Steiner root for CC(G).

Lemma 4.1.20. Let G be a tree chordal graph with an S-restricted 3rd Steiner root T and let u

denote a size-1 internal node in CC(G). Then either CC(G) has exactly 3 nodes or u has degree at

least 3 in CC(G). Moreover, if u has degree exactly 3, then one of its neighboring nodes must have

size greater than the number of adjacent leaf nodes of size 2 oor 3 in CC(G).

Proof. By Lemma 4.1.10, we note that u is adjacent to at most one leaf of size 2 or 3, and if it

is, then u must necessarily have degree 3 in CC(G). Therefore, assume u has degree 2 and is not

adjacent to any leaf node of size 2 or 3. Let r(u) denote the unique representative for node u. Let

v and w be the two adjacent nodes of u. The representatives of v and w must be at a distance of at

least 4 from each other, therefore, at most one has a representative adjacent to r(u). Without loss

of generality assume r(v) is adjacent to r(u), then all the representatives of w are at a distance of

three from r(u). Let r(u)-x-y-r(w) denote one of these such paths. We note, by Lemma 4.1.7, only

Steiner points of u and w can be adjacent to x and y. But the degree of x must be at least 2, and

as u has only a single representative, it must be a representative of w, thus, a contradiction to the

distance being exactly 3.

Therefore, the representatives of v and w must be at a distance of exactly 2 from r(u). Denote

one such path r(v)-x-r(u)-y-r(w). By Lemma 4.1.7 and as u has only single representative, only

representatives of r(v) (respectively r(w)) can be adjacent to x (respectively y). Therefore, both v

and w must have at least two representatives attached to x and y, respectively. Therefore G must

consist of exactly three nodes, as nothing can be adjacent to w and v without being adjacent to u,

contradicting u having degree 2. Therefore, u must have degree at least 3 in CC(G).

When u has degree exactly 3 in CC(G), CC(G) could have 4 nodes where all nodes other then

u have size at least 4, as the above case with 3 nodes. If all nodes are at distance three than as u

must be internal we will have the situation of a path r(u)-x-y-r(w), implying that r(u) has degree at
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least 4. Therefore, there must be a representative r(v) adjacent to r(u) in the root. It follows that no

representative for other nodes than u and v could be adjacent to r(v). For each leaf node adjacent to

v of size 2 or 3, by Lemma 4.1.12, we must have a representative of v adjacent to the representative

of the leaf. Therefore, as one representative is adjacent to r(u), it follows that |u| is strictly greater

than the number of adjacent nodes of size 2 or 3 is CC(G).

Lemma 4.1.21. Let G be a tree chordal graph and let u be a size 1 internal node in CC(G) with

exactly one leaf node v of size 2 or 3 adjacent to u in CC(G). Let G′ be the graph created by

removing v and increasing the size of u to 2. Then G′ has an S-restricted 3rd Steiner root tree T ′ if

and only if G has an S-restricted 3rd Steiner root tree T .

Proof. Let G have an S-restricted 3rd Steiner root tree T . Then there is a unique representative

r(u) for u and a unique representative r(v) for v. Moreover, r(v) is a leaf in the associated 3rd

Steiner root tree for CC(G) and no representatives for nodes other than u can be within distance 3

to r(v). Therefore, if we remove r(v) and increase the size of r(u) to two, the new tree T ′ is a valid

S-restricted 3rd Steiner root tree corresponding to the graph G′ as modified in the lemma.

Let G′ have an S-restricted 3rd Steiner root tree T ′. By the construction of Theorem 4.1.18,

Represent u by a single vertex adjacent to a Steiner point p. As no leaf node of size 2 or 3 is

adjacent to u, it also follows that only Steiner points are adjacent to p. Therefore, all neighbouring

representatives are at distance of exactly 3. Therefore, let r(u) only represent a single vertex and

place a representative, corresponding to v, or size 2 or 3 adjacent to r(u). It follows that this new

tree T is a valid S-restricted 3rd Steiner root tree corresponding to the graphG as in the lemma.

Lemma 4.1.22. Let G be a tree chordal graph and let u be a size 1 internal node in CC(G) with

exactly one leaf node v adjacent to u in CC(G) and |v| ≥ 4. Let G′ be the graph created by

removing v and increasing the size of u to 2. Then G′ has an S-restricted 3rd Steiner root tree T ′ if

and only if G has an S-restricted 3rd Steiner root tree T .

Proof. Let G have an S-restricted 3rd Steiner root tree T ; it follows from Lemma 4.1.14 and its

proof that there is a phylogenetic root for G such that there are exactly two representatives for node

v that are separated by a Steiner point p and p is adjacent to the unique representative r(u) for node

u. Consequently, we can remove the two representatives for v, p, and increase the size of r(u). It

follows that this new tree T ′ is a valid S-restricted 3rd Steiner root tree corresponding to the graph

G as in the lemma.

LetG′ have an S-restricted 3rd Steiner root tree T ′. By the construction of Theorem 4.1.18, rep-

resent u by a single vertex adjacent to a Steiner point p; therefore, all neighbouring representatives

are at distance of at least 2. Therefore, let r(u) only represent a single vertex and place a Steiner

point p adjacent to r(u). Create two representatives for v of suitable size and set them adjacent to p.

It follows that this new tree T is a valid S-restricted 3rd Steiner root tree corresponding to the graph

G as in the lemma.
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Lemma 4.1.23. Let G be a tree chordal graph and let u be a size 1 internal node in CC(G) with

exactly no leaf nodes adjacent to u in CC(G). Let G′ be the graph created by increasing the size

of u to 2. Then the graph G′ has an S-restricted 3rd Steiner root tree T ′ if and only if G has an

S-restricted 3rd Steiner root tree T .

Proof. Let G have an S-restricted 3rd Steiner root tree T . Trivially, T ′ = T is a valid S-restricted

3rd Steiner root tree for G′.

Let G′ have an S-restricted 3rd Steiner root tree T ′. From Lemma 4.1.20, u has at least three

neighbors in CC(G). By the construction of Theorem 4.1.18, u has exactly one representative r(u)

that appears as a leaf in the associated 3rd Steiner root for CC(G′). Moreover, r(u) is at distance

exactly 3 to any other representatives for the neighboring nodes to u. If u has all non-neighbours at

distance of 5 or more in T , then replace the Steiner point p adjacent to r(u) with r(u) and reduce its

size to 1. Assume then, that there exists a non-neighbour at distance 4 from r(u). By the construction

of the theorem, it follows that adjacent to p is the Steiner points adjacent to the representatives of all

of the neighbours of u. Therefore, if u has 4 or more neighbours then by splitting p into two Steiner

nodes p1 and p2 such that each of them inherits at least two edges, and removing one vertex from u,

we obtain a S-restricted 3rd Steiner root tree T for G. If u has degree of 3 in CC(G), from Lemma

4.1.20 we have at least one neighbouring node v to u such that its size is larger than the number

of adjacent leaf nodes of size 2 and 3 in CC(G). Consequently, either we have one representative

for v that is a leaf in the Steiner root, or we can create a new representative r(v) for v and make it

adjacent to the Steiner point, p(v) of v. The obtained tree is no longer an S-restricted 3rd Steiner

root tree T , but by removing edge between p(u) and p(v) and adding edge between r(u) and r(v)

it becomes a valid S-restricted 3rd Steiner root tree T . Furthermore, we may reduce the size of u

from 2 to 1 and the resultant tree is a S-restricted 3rd Steiner root tree T .

Theorem 4.1.24. Let G be a tree chordal graph G. Then there exists a linear time algorithm to

decide whether G has an S-restricted 3rd Steiner root tree T , and if so, return such a T .

Proof. First of all, if the critical clique graph CC(G) contains only one or three nodes, then one can

determine G has an S-restricted 3rd Steiner root tree T is trivial. Assume CC(G) contains more

than three nodes. Determining ifG does not have an S-restricted 3rd Steiner root tree T can be done

by check the following conditions:

1. CC(G) contains no size 1 leaf nodes (Corollary 4.1.2);

2. Every size-1 internal node in CC(G) has degree at least 3; and if it has degree exactly 3 then

one of its neighboring node must have size greater than the number of its adjacent leaf nodes

of size 2 and 3 in CC(G) (Corollary 4.1.13 and Lemma 4.1.20).

3. Every internal node in CC(G) has size at least as large as the number of adjacent leaf nodes

of size 2 and 3 (Corollary 4.1.16);
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4. There is no degree 2, size 2, internal node c in CC(G) that is adjacent to a leaf node of size 2

or 3 (Corollary 4.1.17);

Create the modified graph G′ by following Lemmas 4.1.21, 4.1.22 and 4.1.23, this increases every

size-1 internal node to have size 2. We then can apply Theorem 4.1.18 to construct an S-restricted

3rd Steiner root tree T ′ for the modified graph G′, and finally according to Lemmas 4.1.21, 4.1.22

and 4.1.23 to construct an S-restricted 3rd Steiner root tree T for the given graph G. Note that

conditions 2–4 guarantee graph G to have an S-restricted 3rd Steiner root tree T if and only if the

modified graph G′ has an S-restricted 3rd Steiner root tree T ′.

Checking if G is tree chordal and, if so, building the critical clique graph CC(G) takes linear

time by Corollary 2.2.9. The four conditions above can be checked in linear time by examining

each node and checking that they satisfy each of the conditions. Producing the modified graph G′

requires finding all size 1 nodes in CC(G), possibly delete a neighbour, and increasing the size to 2;

each of these check is constant time, therefore, creation ofG′ takes linear time. By Theorem 4.1.19,

we can produce a S-restricted 3-root Steiner tree T ′ for the graph G′ in linear time. Finally, we find

the tree T by modifying T ′. As we add a constant bounded amount to each size 1 node in G, this

again is linear. The overall construction is linear as V (T ) ≤ 2V (G) and E(T ) ≤ 2E(G). This

proves the theorem.

By Theorem 4.1.24 and Lemma 3.1.1 we have the following corollary.

Corollary 4.1.25. Let G be a tree chordal graph G. Then there exists a linear time algorithm to

decide whether G has a 5th phylogenetic root tree T , and if so, return such a T .

4.2 Decomposition Construction

Let G be a strictly chordal graph with an S-restricted 3rd Steiner root tree T , where S is the set of

all size 1 critical cliques in G. Let T be a forest of tree chordal graphs decomposed from G. Let c

be a critical clique contained in a large maximal clique in G and contained in a tree chordal graph

Ti, decomposed in to at least two nodes in CC(Ti).

We now consider the construction of an S-restricted 3rd Steiner root tree T ′
i for a Ti in T as an

intermediary step in the process of the 5-PRP algorithm for strictly chordal graphs, therefore, we

will allow a critical clique such as c to be adjacent to a degree 2 Steiner point or c to have a single

size 1 leaf representative. These inconsistencies are allowable as long as they do not exist in the final

S-restricted 3rd Steiner root tree T for G.

We first observe that if c has a single size 1 leaf representative rc in T ′
i then rc must be internal

in T , by Corollary 4.1.2. As we will see in Chapter 5, this is always able to be done.

For the degree 2 Steiner point, we note that cmust have a single representative rc as it is adjacent

to another critical clique in Ti. rc will need to be adjacent to an additional Steiner point in T , as the
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degree must be at least 3 in T and if another representative is adjacent to this Steiner point then it

will be indistinguishable from rc.

Therefore, for the follow S-restricted 3rd Steiner root tree constructions we allow critical cliques

such as c to be adjacent to a degree 2 Steiner point or to have a single size 1 leaf representative. As

such we define the set C to be the critical cliques that are contained in large maximal cliques of G.

Let S be the set of critical cliques of size 1 in G. For a Ti ∈ T , we define the sets

Wi = {ci | ci ∈ S \ C & ci ∈ V (Ti)},

Xi = {ci | ci ∈ C & ci ∈ V (Ti)}.

We will now show constructions to produce an S-restricted 3rd Steiner root tree T for a tree Ti ∈ T ,

such that S = Wi and a Steiner point adjacent to critical clique c ∈ Xi can have degree 2.

4.2.1 Trivial Tree Chordal Graphs

We first deal with when CC(G) contains less than 3 nodes - trivial tree chordal graphs. A tree

chordal graph T is trivial when CC(T) is a single node. No connected graph will have a CC(G)

with two nodes; as the two adjacent critical cliques would be one large critical clique.

Trivial tree chordal graphs T can arise in two ways, when decomposed from a strictly chordal

graph: T was part of only large maximal cliques in G, or T was part of a large maximal clique

and decomposed into a tree chordal graph of exactly two critical cliques. In the second case, we

distinguish the two critical cliques as they have a different neighbourhood in G. Therefore, we

describe an algorithm to handle trivial tree chordal graphs.

Corollary 4.1.2 can easily be adapted to show that no size 1 leaf exists in trivial tree chordal

graphs. Lemma 4.1.3 shows that a critical clique has diameter at most 2 in the Steiner tree. Finally,

Lemma 4.1.12 shows that leaf nodes of size 2 or 3 are are represented by a single vertex adjacent

to a neighbours representative and Lemma 4.1.14 shows that leaf nodes of size at least 4 can all be

represented by two representatives adjacent to a common Steiner point. Using these results, Figure

4.3 shows all possible S-restricted 3rd Steiner root trees for three three types of trivial chordal

graphs.

A critical clique c is constrained in K if c has two or more representatives in the Steiner tree

T , c has a single representative adjacent to a Steiner point with Steiner degree 1, or c has a single

representative adjacent to the representative of another critical clique. As shown in Section 5.1.1, at

most one critical clique can be constrained in a large maximal clique of a strictly chordal graph with

an S-restricted 3rd Steiner root tree. Therefore, the algorithm aims to produce constrained critical

cliques only when necessary.

If a tree chordal graph was part of only large maximal cliques in G, the corresponding S-

restricted 3rd Steiner root tree to the Ti will be a single representative. See Figure 4.3(a) for an
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enumeration of all possible trees; notice that the single vertex is common in all possibilities and is

unconstrained for each of these. Note that S = ∅, asWi does not contain this critical clique.

For the second case, we present the following algorithm TrivAlg(Ti).

1. if both c1 and c2 are internal critical cliques in G then represent c1 and c2 by two single

representatives connected by a path of two Steiner points; or,

2. if only one is an internal critical clique, assume c1, then:

a. if |c1| = 1 and 1 < |c2| < 4 then represent c1 and c2 by two single adjacent representa-

tives;

b. if |c1| > 1 and 1 < |c2| < 4 then represent c1 by r′c1
and r′′c1

, c2 by rc2 , and create path

r′c1
− r′′c1

− rc2 ;

c. if |c2| > 3 then represent c1 by a single representative, represent c2 by two representa-

tives of sizes /|c2|/20 and -|c2|/2., and make all adjacent to a common Steiner point;

or,

d. otherwise (|c2| = 1) no S-restricted 3rd Steiner root tree exists.

The trees produces by TrivAlg(Ti) satisfy the condition of being an S-restricted 3rd Steiner

root tree for Ti with respect to Wi and Xi. Figure 4.3(b) corresponds to the possible choice for

Case 1. Notice that all configurations for this critical clique are constrained. The choice for critical

cliques represented by a path of representatives are not chosen in this case as all adjacent critical

cliques will need to have single representatives and, as we will show, one possibility will force one

maximal cliques contained critical cliques to have single representatives. Therefore, we choose the

less restrictive case. This leaves two options for the S-restricted 3rd Steiner root tree: (1) the option

presented in the algorithm and (2) letting c1 and c2 be adjacent, with no Steiner points. For 1) c1

and c2 must be contained in two additional maximal cliques each in G, one adjacent to c1 or c2 (if

|c1| = 1 or |c2| = 1) and the other adjacent to the Steiner points adjacent to c1 and c2. For (2) that c1

and c2 must also be contained in two additional maximal cliques each. The difference is all maximal

cliques adjacent to c1 and c2 will have to all adjacent critical cliques in CC(G) as unconstrained for

(2), whereas only one maximal clique needs all contained critical cliques as unconstrained for (1)

(See Lemma 5.2.1).

For similar reasons, the optimal cases are chosen from the cases of Figure 4.3(b). Cases 2a and

2b satisfy Lemma 4.1.12, where case 2a must be contained in at least two additional maximal cliques

in G and case 2b is only contained in at least one. Case 2c is ideal with no restriction place on the

maximal cliques adjacent to c1. For Case 2d no S-restricted 3rd Steiner root tree exist for G, as c2’s

representative will always be external and have size 1.
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(a) Critical clique graph has exactly one node.

(b) Critical clique graph has exactly two nodes. Both c1 and c2 are
internal in CC(G).

(c) Critical clique graph has exactly two nodes. c1 is internal in and
c2 is external in CC(G).

Figure 4.3: All possible S-restricted Steiner trees corresponding to the three types of trivial tree
chordal graphs.

37



4.2.2 Tree chordal graphs

We now describe and justify a modification of the tree chordal algorithm of Section 4.1.3 to minimize

constrained critical cliques.

Given a tree chordal graph Ti ∈ T decomposed from a graphG, set S corresponding to nodes in

Ti of size 1 in CC(G), and a setR corresponding to nodes of CC(Ti) contained in maximal cliques

of size three or more in CC(G) produce an S-restricted 3rd Steiner root tree as follows. Denote this

modified algorithm ALG(G), where G is a tree chordal graph.

• If Ti was part of only large maximal cliques in G, return a single representative.

• If Ti was part of a large maximal clique and decomposed into a tree chordal graph of exactly

two critical cliques, return tree as in TrivAlg(Ti).

• Produce tree chordal graph T #
i as follows:

– size two and three external nodes contained in R, change size to four;

– size one external nodes contained in R adjacent to degree-2 size-2 node in CC(Ti),

change size to four;

– remaining size one external nodes contained in R, change size to two; and,

– size one internal nodes contained in R which are not adjacent to an external node not

contained in R, change size to two.

• Call the tree chordal algorithm with the modified tree T #
i .

• return no if the tree chordal algorithm fails, or return the S-restricted 3rd Steiner root tree.

Lemma 4.2.1. Given a strictly chordal graph G decomposed into a forest of tree chordal graphs T

and set S corresponding to nodes inG of size 1, if ALG(T ) fails to produce a valid S-restricted 3rd

Steiner root tree for any Ti ∈ T then no S-restricted 3rd Steiner root tree exists for G.

Proof. TrivAlg(T ) only rejects when |c2| = 1, as c2 ∈ S and will never be internal.

To show the correctness of the modified tree chordal algorithm we prove the contrapositive;

assume G has an S-restricted 3rd Steiner root tree T ′, we will show for any tree chordal graph

Ti ∈ T produced in the decomposition, the modified algorithm will produce an S-restricted 3rd

Steiner root tree. Take any Ti ∈ T in such a graph G. Denote T ′
i as the subtree induced on the tree

T ′ with the representatives of the critical cliques of Ti and the Steiner points on paths between these

representatives. We show from T ′
i a valid S-restricted 3rd Steiner root tree for the T that ALG(Ti)

produces.

First, as T ′ satisfies all distance requirements, it follows that so will T ′
i . All representatives that

are not part of large maximal cliques in G will satisfy the size requirements; all Steiner points not

adjacent to a representative of a critical clique in large maximal clique will satisfy the minimum
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degree requirement. Therefore, assume that c is a critical clique in T ′
i that fails; it follows either a

representative of c is external in T ′
i and has size one or a Steiner point adjacent to c has degree two.

We first deal with the case when an external representative is size one. The modifications to

ALG(G) set external representatives of size one to size two. Therefore, cmust have two representa-

tives. But, the other representative was a leaf in T ′ implying its size is greater than one. This implies

the total size of this critical clique was at least three, but external critical cliques of size three were

modified to have size four. Therefore, we can represent these nodes with two representatives of size

two each in T ′
i .

If the Steiner point adjacent to c has degree two, it must of been adjacent to a Steiner point of the

maximal clique. The representative of the critical clique c must also have size one, as size greater

than two were modified to have size four or more and could have two representatives. This could be

the case when the critical clique c is internal as well. By as in the previous case, this implies another

representative must exist and we modified critical cliques of size 2 or 3 to size four and, therefore,

this critical clique can have two representatives.

By Lemmas 3.1.1 and 4.2.1, if ALG(T ) fails for any tree chordal graph, we can return no, as no

S-restricted 3rd Steiner root tree exits and therefore no 5th phylogeny root tree will exist. We now

enumerate the possibilities of a critical clique returned by ALG(T ).

Lemma 4.2.2. Given a tree chordal graph G with at least two critical cliques, ALG(G) leaves

the representatives of any critical cliques in the 3rd Steiner root tree T in exactly one of the follow

states:

c1: Representatives adjacent to a Steiner point of Steiner degree one; nearest representative of

another critical clique is at distance of three with:

a: a single representative, or

b: two representatives,

c2: One representative adjacent to a degree two Steiner point, with:

a: nearest representative of another critical clique is at distance of three, or

b: nearest representative of another critical clique is at distance of two,

c3: One representative at distance of one to another leaf critical clique and a Steiner point, other

critical cliques are at a distance of three,

c4: One representative adjacent to one a representative of another critical clique.

c5: Two adjacent representatives; one adjacent to another leaf’s representative.
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Figure 4.4: The seven possible cases for a leaf critical clique in a tree chordal graph as returned by

algorithm ALG; representatives are darkened. We denote these cases as c1a, c1b, c2a, etc. Notice
only c2a and c2b are unconstrained.

Proof. The following correspondences are for the trivial tree chordal graphs in TrivAlg(T ): both

critical cliques in case 1 will correspond to c1, case 2a will correspond to c4, case 2b will correspond

to c5, and the case 2c will correspond to c2b.

As the ALG(G) modifies all size one internal nodes to size two, Theorem 4.1.18 gives internal

nodes of size at least two a single representative (c2a), external nodes of size 1, 2 or 3 that were

modified to have four representatives (c1a) and external nodes of size at least four by two repre-

sentatives adjacent to a single Steiner point (c1b) in a 3-root Steiner tree. Increase the size of all

size one external nodes to size two; Lemma 4.1.12 leaves a size two external node as a single rep-

resentative adjacent to a representative of an internal critical clique (c4). The algorithm modifies all

size two or more external critical cliques to size at least four; in Theorem 4.1.18 these will have two

representatives adjacent to a Steiner point as in c2a.
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Chapter 5

5-root Phylogeny Tree Construction

for Strictly Chordal Graphs

As shown in the previous chapter, we have 7 possibilities for critical cliques returned by the tree

chordal algorithm. This chapter1 shows how to deal with the possible configurations that could be

in any large maximal clique.

5.1 Preliminaries

Before we present the algorithms, we first discuss structure of large maximal cliques (Section 5.1.1).

We will present the algorithm in three progressively less restrictive parts. Section 5.2.1, will assume

G contains no small leaves and at most one critical cliques is constrained. Section 5.2.2 will restrict

G to not contain small leaves. Section 5.2.3 will show the entire construction for strictly chordal

graphs.

5.1.1 Structure of large maximal cliques

The following lemma, Lemma 5.1.1, is an example of structure that is a potential problem for con-

struction of an S-restricted 3rd Steiner root tree; the following section shows why this poses a

problem and how it becomes unnecessary in the construction of an S-restricted 3rd Steiner root tree.

Lemma 5.1.1. [24] Let G be a graph with a 3rd Steiner root T . Assume there exist in G three

maximal cliques K1,K2,K3 such that K1 ∩K2 = I1 ,= ∅, K2 ∩K3 = I3 ,= ∅, and K1 ∩K3 = ∅.

Let I2 = K2 − I1 − I3. If I1 = {u1, u′1}, I3 = {u3, u′3}, and |I2| > 0, then u1-u′1-u
′
3-u3 is a path

in T and every representative for a critical clique in I2 is adjacent to either u′1 or u′3.

The above lemma has all critical cliques as constrained as all the critical cliques contained in

I2 are as c4 and the critical cliques I1 and I3 are as in c5. As we will show in Lemma 5.1.3, we

can maintain all adjacencies while changing this maximal clique K2 to have all critical cliques as

unconstrained.

1A version of this chapter has been submitted for publication. Kennedy and Lin 2005. ISAAC [23]
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Lemma 5.1.2. [24] LetG be a graph with a 3rd Steiner root T , then each maximal cliques with crit-

ical clique cardinality of 3 or more either has exactly two critical cliques each with two representa-

tives as in Lemma 5.1.1, or has at most one internal critical clique with two are more representatives

in T .

Proof. Let G be a graph and let T be its 3rd Steiner root tree. All representatives of critical cliques

contained in a maximal clique of G are either adjacent to a single point in T or are adjacent to one

of two adjacent points v1, v2 in T .

In the first case, an external critical clique can be adjacent to at most two representatives in T ,

where if exactly two, one must be the single central point. Therefore, all critical cliques except at

most one have a single representative.

In the latter case, if v1, v2 are part of the maximal clique then it is exactly the situation in lemma

5.1.1. If exactly one of v1, v2 is a Steiner point then we would have a path u1-s-u′3-u3 where other

critical cliques are adjacent to either s or u′3. All except at most one critical clique is a leaf critical

clique and a critical clique adjacent to s or u′3 can never be adjacent to a single critical clique.

Therefore in order for a critical clique to be adjacent to a single critical clique it follows that all

critical cliques are represented by a single representative other than u3 and u3. If both v1, v2 are

Steiner points, since there are more than three critical cliques, at most one side can have multiple

representatives for the same critical clique.

Lemma 5.1.3. Let K be a maximal clique represented by the situation of Lemma 5.1.1 in a 3rd

Steiner root T , then there exists an equivalent representation with a central Steiner point adjacent

to the representatives of its critical cliques in K.

Proof. Given the structure as in Lemma 5.1.1 identify u1 and u′1 into one representative, u
∗
1, analo-

gously with u3 and u′3, produce u∗3. Create a new Steiner point s and make u∗1, u
∗
3 and all represen-

tatives for I2 adjacent to s. Notice that since all critical cliques that are adjacent to exactly I1 are at a

distance of 3 from i′1 are now that distance from s. The same follows for all critical cliques adjacent

to i′3 and critical cliques in I2. Therefore, the new structure is equivalent to the old tree.

The following corollary follows easily from Lemmas 5.1.2 and 5.1.3.

Corollary 5.1.4. Let G be a graph with a 3rd Steiner root T . Then there exists a representation

in which all maximal cliques with critical clique cardinality of 3 or more have at most one internal

critical clique with two or more representatives.

5.2 5PRP on Strictly Chordal Graphs

This section deals with the combination of the Steiner trees returned by ALG(G) and progresses

from the most trivial case to the complete case: the solution of the 5-root phylogeny problem on

strictly chordal graphs.
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5.2.1 Structural Restriction 1

A small leaf is an external critical clique of size 1 in a maximal clique of critical clique cardinality

at least three. We remind the reader that a constrained critical clique in a maximal clique K is a

critical clique such that either it has two or more representatives in the Steiner tree T , it has a single

representative adjacent to a Steiner point with Steiner degree 1 in T , or it has a single representative

adjacent to the representative of another critical clique in T . In the following section we will assume

that the input graph G contains no small leaves and large maximal cliques K contain at most one

critical clique which constrained. Therefore, at most one critical clique in a large maximal clique

will be as c1a, c1b, c3, c4, or c5. c4 is a very restrictive case as the following lemma shows.

Lemma 5.2.1. Let G be a graph with an S-restricted 3rd Steiner root tree T and a maximal clique

K. If K has an internal critical clique as in c4 then the critical clique must be part of at least

two maximal cliques with critical clique cardinality three or more with other critical cliques uncon-

strained.

Proof. The unique representative r of the critical clique in c4 is adjacent to another critical clique’s

representative. Therefore, any large maximal cliqueK that contains the critical clique has the repre-

sentatives of all critical cliques contained inK other than r at distance 3 from r in T . This implies,

that each of these critical cliques is unconstrained and a path of two Steiner points must be between

r and these critical cliques. The size of r must be 1, as if had size 2 or more it would have been as

in c1a by ALG(G), thus r necessarily has a single representative. Therefore, there exists a repre-

sentation where all paths between r and the adjacent critical cliques share the Steiner point directly

adjacent to r as their path to r, as otherwise, the Steiner point adjacent to r will have degree 2.

The structure of a critical clique in case c1a, is a single representative adjacent to a Steiner point

with Steiner degree one; as such, if the corresponding critical clique c has size 1 then we must

increase the degree of both this representative and the Steiner point. It follows that c must be part of

at least three maximal cliques; the following operation shows how to increase the degree of both the

Steiner point and the representative of c.

Definition 5.2.1 (Operation 1). Let c be a critical clique part of at least three maximal cliques

K1,K2, ...,Kn. If K1 is in c1a or c2b and K2 has all critical cliques unconstrained then assign c

a single representative and let the Steiner point adjacent to c in K1 be adjacent to the Steiner point

from K2 such that all its critical cliques are at distance exactly three from c. For K3, ...,Kn, c now

corresponds to c2a and is unconstrained.

If a critical clique needs to have Operation 1 performed, check that there exists a maximal clique

containing it that has all critical cliques unconstrained. If no maximal clique exists, we check if

an adjacent critical clique is as c1a or c1b, and apply Operation 1. In a similar fashion continue

searching for a resolvable path through maximal cliques. Note that such a search is a depth first
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search through the tree, and in the worst case, and has a linear runtime. Notice that the choice made

to change a path by Operation 1 will never affect another path as the search will assign a single

representative for a critical clique, and this critical clique will be now unconstrained. Therefore, we

pick the first resolvable path.

Theorem 5.2.2. LetG be a connected strictly chordal graphG such thatG contains no small leaves

and large maximal cliques contain at most one constrained critical clique, there exists a O(|V |3)

time algorithm to recognize whether G has 5th phylogeny root tree T , and if so, return such a T .

Proof. Given G, find CC(G) and create the forest of tree chordal graphs T by decomposing G.

Let set S correspond to critical cliques in G of size 1. For each Ti ∈ T find the corresponding 3rd

Steiner root tree Si; if one does not exists, by Lemma 3.1.1, return no. For each maximal cliqueKi

create a Steiner point si. For each unconstrained critical clique c ∈ Ki, attach its representative to

si. By Lemma 5.2.1, each critical clique as c4 is contained in at least two large maximal cliques, if

not, return no; it follows by the precondition, that each of these maximal cliques will have all other

critical cliques each with a single representative. By Lemma 5.2.1, create a Steiner point, s for a

critical clique as in c4, place s adjacent to the critical clique’s representative and to all si for each

Ki. s will have degree at least three as there is at least two maximal cliquesKi. For a critical clique

c inKi as in c1a, where |c| = 1, check if c is part of at least two other maximal cliques. For a critical

clique c inKi as in c1a with |c| > 1, c1b, or c3, let si be adjacent to the Steiner point adjacent to c’s

representative. For critical clique inKi as in c5, let si be adjacent to the degree one representative.

Our built 3rd Steiner root tree T ′ is now connected as G was connected and we have connected

all the tree chordal graphs by their maximal cliques. As each critical clique had at most one con-

strained critical clique, each maximal clique will have diameter at most 3 in T ′; this satisfies Lemma

4.2.1. As the minimum diameter of a maximal clique in T ′ is 2 and as c4 is the only case where

a representative is adjacent to another representative, it follows that all nonadjacent critical clique’s

representatives are at distance at least 4. All size one representatives in every Ti will all be internal

now as we assumed no small leaves exist. Therefore the algorithm, produces an S-restricted 3rd

Steiner root tree T ′. To produce the 5th phylogeny root tree T , we replace each representative with a

Steiner point and place the representatives adjacent to this Steiner point. By Lemma 3.1.1, we have

a valid 5th phylogeny root tree T . This construction is O(|V | · (|V | + |E|)) ∈ O(|V |3), as it calls

ALG(G) at most once for each critical clique and performs a linear amount of work for each of these

cliques.

5.2.2 Structural Restriction 2

In following section, we assume that the input graph G contains no small leaves. A strictly chordal

graph may have a large maximal clique having more than one constrained critical clique; if all except

one cannot be modified to be unconstrained, then the algorithm returns no, by Corollary 5.1.4. If
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a critical clique in a 3-root Steiner tree is as c4, Lemma 5.2.1 forces the structure for all maximal

cliques it is contained in; c3 and c5 are similarly restrictive.

Lemma 5.2.3. Let G be a graph with an S-restricted 3rd Steiner root tree T with S = ∅ and

a maximal clique K. If K has a critical clique c as in c3 or c5 of Lemma 4.2.2 then any other

maximal cliques with critical clique cardinality three or more containing C will have all critical

cliques as unconstrained.

Proof. As a representative of the critical clique c is adjacent to a critical clique not in K; any other

critical clique that is adjacent to c must be at distance of exactly three from this representative.

Therefore, similar to Lemma 5.2.1 assign these critical cliques a single representative.

Thus, given a representative as in cases c3, c4, or c5, we can immediately decide if the maximal

clique can be recombined. As c2a and c2b both have a single representative adjacent to a Steiner

point of degree at least three, we now deal with the cases c1a and c1b.

Lemma 5.2.4. Let G be a graph with an S-restricted 3rd Steiner root tree T and c be a critical

clique, where c is part of maximal cliques K1,K2, ...,Kn and K1 is as in c1a or c1b, then at least

one maximal clique must have all critical cliques other than c unconstrained.

Proof. If all maximal cliques have two constrained critical clique, then at least one maximal clique

will have diameter of four.

Theorem 5.2.5. Let G be a connected strictly chordal graph, G contains no small leaves, there

exists a O(|V |3) time algorithm to recognize whether G has a 5th phylogeny root tree T , and if so,

return such a T .

Proof. We proceed as Theorem 5.2.2 until we recombine large maximal cliques. For a maximal

clique that contains a critical clique as in c3, c4 or c5, by Lemmas 5.2.1 and 5.2.3 we know that

all other critical cliques must have a single representative; if not, no 5th phylogeny root will exit.

For a critical clique c in Ki as in c1a, where |c| = 1, apply Operation 1 by searching, if necessary.

For each critical clique c as in case c1a with |c| > 1 or c1b, if it is part of exactly two maximal

cliques, then the large maximal cliques containing c must have all its critical cliques unconstrained,

by Lemma 5.2.4; if yes, create a Steiner point and set the Steiner point of the c1b critical clique and

each of the representatives for each critical clique adjacent to it.

Let setM consist of all maximal cliques containing at least two critical cliques as in case c1b or

c1awith |c| > 1. Let setN consist of all maximal cliques containing a critical clique as in c1b or c1a

with |c| > 1 and has all other critical cliques unconstrained. By Lemma 5.2.4, find a critical clique

c which is contained in both N andM ; perform Operation 1 with searching on this maximal clique

and, if possible, remove c fromM . Continue until eitherM is empty, the algorithm has resolved all

maximal cliques in M , or N ∩ M contains no such c, and therefore, no phylogeny tree will exist.
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The algorithm removes one c from the list each time, and we will have at most O(|V |) searches of

the maximal cliques, therefore, this will runtime is bounded by O(|V | · (|V | + |E|)) ∈ O(|V |3).

When M = ∅, every maximal clique will only contain critical cliques that are unconstrained.

Therefore create a Steiner point for each maximal clique and set each representative adjacent to

it. We will now have an S-restricted 3rd Steiner root tree and, thus, the a 5th phylogeny root tree.

The construction is O(|V |3) as we use the polynomial construction from Theorem 5.2.2 and the

searching ofM takes polynomial time.

5.2.3 No Restrictions

In any maximal clique there exists at most one leaf critical clique; otherwise, these multiple critical

clique would have the same set of neighbors, and therefore, would be a larger critical clique. Similar

to Corollary 4.1.2 the following lemma shows a size one leaf critical clique could never exist in a

maximal clique of critical clique cardinality two.

Lemma 5.2.6. Let G be a connected graph with an S-restricted 3rd Steiner root T . If G contains

at least three critical cliques then there exist no size 1 leaf nodes in CC(G).

Proof. Let u be a size 1 leaf node in CC(G). As G is connected, u has exactly one neighbour v in

CC(G), and asG contains at least three critical cliques v has at least one neighbour w in CC(G). If

v and w are not part of a large maximal clique in G, then by the decomposition of a strictly chordal

graph in to tree chordal graphs, it follows that result from Corollary 4.1.2 holds. If v and w are

part of a large maximal clique it similarly follows that if u’s representative r(u) is internal, then

r(u) must be on a path between at least two representatives of v. Thus, the representatives of w are

adjacent to r(u).

As the construction for graph with less than three critical cliques is trivial, for the remainder of

the paper let S contain all size one critical cliques in G.

Lemma 5.2.7. Given a strictly chordal graph G and a corresponding S-restricted 3rd Steiner root

tree T , if there exists a small leaf l in a maximal clique K, then:

1. l is internal in T ,

2. each critical clique c ∈ K \ l has all adjacent critical cliques not in K at a distance of at

least 2 in T ,

3. at least one critical clique c ∈ K \ l has all adjacent critical cliques not in K at a distance of

3 in T , and

4. every critical clique in K has a single or 2 adjacent representatives.

46



Proof. Assume G has such a maximal clique l, by definition of S-restricted 3rd Steiner root tree, it

must be internal. As the maximum diameter of a maximal clique is 4 and l is internal, any critical

clique not in K adjacent to a critical clique K would be adjacent to l, thus claim two holds. The

third claim follows as l is internal and therefore is adjacent to at least one other critical clique c;

critical cliques adjacent to c must be at distance of three from c in T , otherwise, adjacent to l. If K

has an internal critical clique, c, with at least two nonadjacent representatives in T , l will be adjacent

to the same center Steiner point or representative of the critical clique and will be adjacent to all c’s

neighbors. A critical clique not inK can be adjacent to a critical clique with a single representatives

or two adjacent representative and not to l, thus, the fourth claim holds.

By this lemma, a critical clique c in a maximal clique containing a small leaf can be as in c1a,

c1b, c2a or c2b. c4 is impossible as the critical clique is adjacent to another critical clique failing to

satisfy condition 2. c3 is impossible as the small leaf would have to be at a distance of exactly three

from single representative, but then it would be a leaf in T , failing to satisfy condition 1. Similarly,

c5 a small leaf would be distance three from the degree two representative but then a leaf in T .

We now introduce two operations to change a critical clique to satisfy condition 3. The algorithm

applies these operations if no suitable critical clique exists to satisfy condition 3 of Lemma 5.2.7.

Notice that only one of these operations can apply to a set of maximal cliques. In addition, the

search as done for Operation 1 can be applied to these operations.

Definition 5.2.2 (Operation 2a). Given a critical clique, c, which is part of at least three maximal

cliques, K1,K2, ...,Kn. If at most one of K2, ...,Kn was part of a decomposed tree chordal graph

with c as in c1a, c2b c2a, or c2b and all critical cliques in the remainder are unconstrained. Then

give all critical cliques c a single representative and let the Steiner point adjacent to c be adjacent

to the Steiner points from K2, ...,Kn such that each remaining critical clique is at distance exactly

three from c.

Definition 5.2.3 (Operation 2b). Given a critical clique, |c| ≥ 2, which is part of exactly two large

maximal cliques K1 and K2. If all critical cliques in K1 and K2 other than c are unconstrained

then create two Steiner points, p1 and p2; let all critical cliques in K1 other than c be adjacent to

p1, all critical cliques in K2 other than c be adjacent to p2, and give c two adjacent representatives

where one is adjacent to p1 and the other to p2.

Lemma 5.2.8. Given a graph with an S-restricted 3rd Steiner root tree and a large maximal clique

K containing a small leaf l, then one critical clique C ∈ K \ l can have Operation 2a applied,

Operation 2b applied, or is as c2a.

Proof. Lemma 5.2.7 case 3 shows that at least one critical clique c must have all critical cliques

adjacent to c not inK at distance exactly 3, the above enumerates the possibilities. To see that there
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(a) CC(G) with crit-

ical cliques labelled

by size.

(b) Forest of

tree chordal

graphs from

decomposition of

CC(G).

(c) S-restricted 3rd Steiner

root trees for tree chordal

graphs in (b).

(d) S-restricted 3rd Steiner

root tree for G after Operation

2a.

Figure 5.1: An example of Operation 2a for a strictly chordal graph G.

exists no other situations to consider, we note that cases c1a, c1b, c2a, c2b are the only cases for

a maximal clique with a small leaf. Operations 2a and 2b show how to construct such a distance

3 situation. For a critical clique c as in c2b, representing the critical clique by two adjacent repre-

sentatives will force all critical cliques in K to have all representatives in their maximal cliques at

distance 3 from c’s representative; thus, at least one can have Operation 2a applied, Operation 2b

applied, or is as c2a.

Lemma 5.2.9. Given a strictly chordal graph G and a corresponding S-restricted 3rd Steiner root

tree T , if there exists a small leaf l in a maximal clique K, then:

1. if cccard(K) = 3 and there exists exactly one critical clique c ∈ K \ l with two adjacent

representative, then all other critical cliques have all adjacent critical cliques not in K at a

distance of exactly 3 in T ,

2. if cccard(K) = 3 and no critical clique c ∈ K \ l has two adjacent representative, then all

critical cliques having all adjacent critical cliques not in K at a distance of exactly 3 in T ,

and

48



(a) CC(G) with crit-

ical cliques labelled

by size.

(b) Forest of

tree chordal

graphs from

decomposition of

CC(G).

(c) S-restricted 3rd Steiner

root trees for tree chordal

graphs in (b).

(d) S-restricted 3rd Steiner

root tree for G after Operation

2b.

Figure 5.2: An example of Operation 2b for a strictly chordal graph G.

3. if cccard(K) ≥ 4 then there exists a critical clique c ∈ K \ l with Operation 2a applicable

or c is as c2a.

Proof. When cccard(K) = 3 and l is internal, at least one of the critical cliques must be adjacent to

l, as it is internal. If the other critical clique is not adjacent and does not have two adjacent represen-

tatives then the Steiner point adjacent to l will have degree two, a contradiction. Thus, the first claim

holds. In case 2, as every critical clique has two adjacent representative or a single representative,

the two non-leaf critical cliques have single representatives that are adjacent to the small leaf, oth-

erwise, the maximal clique has width four. It follows from Lemma 4.2.2, that Operation 2a and c2a

represent the only cases for the critical clique c in its other maximal cliques. When cccard(K) ≥ 4,

at least one critical clique representative r will have a single representative adjacent to l, otherwise,

not internal. All critical cliques adjacent to r that are not in not in K must be at distance of three,

otherwise, adjacent to r. Therefore, the third case holds.
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Theorem 5.2.10. Let G be a strictly chordal graph. Then there exists a O(|V |3) time algorithm to

recognize whether G has a 5th phylogeny root tree T , and if so, return such a T .

Proof. Proceed as in Theorem 5.2.2 until the recombination of large maximal cliques. Lemmas

5.2.1 and 5.2.3 handle tree chordal graphs returned as in c3, c4, and c5. Define set L as all maximal

cliquesK which contain a small leaf l. All critical cliques as in c1a and c1b which are in a maximal

clique in L will need to be changed using either Operation 1 or 2a with searching. For each K ∈ L

such that cccard(K) = 3 if one critical clique c in K is as c2b and in no other maximal clique,

then if |c| > 1 then given c two adjacent representatives such that one is adjacent to l. All other

critical cliques must be one of the choices in Lemma 5.2.8, otherwise return no. If |c| = 1 then no

S-restricted 3-root Steiner tree will exist by Lemma 5.2.9. Otherwise by Lemma 5.2.9 both critical

cliques must be one of the choices in Lemma 5.2.8, otherwise return no. Perform operations if

needed and set representatives adjacent to l.

All maximal cliques in L now have critical clique cardinality at least 4. If any critical clique

is as in c2a and contained in exactly two maximal cliques, then set the leaf adjacent to it and all

remaining critical cliques single representative adjacent to a Steiner point adjacent to the leaf. For

a maximal clique containing multiple critical cliques as in c1a or c1b, first apply Operation 2a, if

possible, and then, apply Operation 1 if possible. If neither operation is applicable, then no tree

exists by Lemma 5.2.7. Every maximal clique in Lmust have a critical clique changed by Operation

2a, otherwise by Lemma 5.2.9 no S-restricted 3-root Steiner tree exists; combine these maximal

cliques by setting l adjacent to this critical clique. Set the other critical cliques, which are now all

necessarily unconstrained, adjacent to a Steiner point adjacent to l. All maximal cliques in L will

now be recombined, by Lemma 5.2.9.

Finally continue as in Theorem 5.2.5 by combining large maximal cliques with more than one

constrained critical clique. We produce a 5th phylogeny root tree as in Theorem 5.2.2. This con-

struction adds a linear amount of work for each maximal clique containing a small leaf. Therefore,

the algorithms overall runtime, as in Theorem 5.2.5, is still O(|V |3).
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Chapter 6

Conclusions and Future Research

In this section we summarize our major results and give some open problems.

For Chapter 1 the result by [24] that all strictly chordal graphs have a kth leaf root tree if k ≥ 4

leads naturally to the following question.

Problem 6.0.1. Characterize those graphs which are kth leaf powers, for k ≥ 3.

For strictly chordal graphs, there exists a linear time algorithm to compute a leaf root and a linear

time algorithm to construct a 3rd Steiner root tree. The following problem is open.

Problem 6.0.2. Let G be a chordal graph and let k be an integer such that k ≥ 3. Either give a

polynomial (preferably linear) time algorithm to decide if a kth root Steiner tree T exists for G, and

if so construct T , or show k-SRP ∈ NP-complete.

In Chapter 2 we introduce strictly chordal graphs, a subclass of chordal graphs, for which struc-

ture properties allow efficient solutions to be developed for all three leaf-labeled root problems. We

introduce and characterize this class of graphs.

In Chapter 3 we describe the S-restricted kth Steiner root problem and show its equivalence to

the (k + 2)th phylogenetic root problem.

Problem Known Results Open Problems

k-PRP k ≤ 4, O(|V | + |E|) solution [27] k ≥ 5, unknown
k = 5, tree chordal graphs, O(|V | + |E|) solution*
k = 5, strictly chordal graphs, O(|V | + |E|) solution*
k ≥ 5, bounded degree in tree, O(|V | + |E|) solution [8]

k-SRP k ≤ 2, O(|V | + |E|) solution [27] k ≥ 3, unknown
k = 3, strictly chordal graphs, O(|V | + |E|) solution [24]

k-LRP k ≤ 4, O(|V | + |E|) solution [32] k ≥ 5, unknown
k ≥ 4, strictly chordal graphs, O(|V | + |E|) solution*

kth tree root k ≥ 1, O(|V |3) solution [29, 22]
kth root k = 2, NP-complete [31] k ≥ 3, unknown

Figure 6.1: A summary of the best known results for various root construction problems. Problems

marked by a ‘*’ are considered in this thesis.
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In Chapter 4, we derive an algorithm to decide if a tree chordal graph has a 5th phylogenetic root

tree, and if so, construct such a root. We present the class of tree chordal graphs as an intermediate

step for the final construction in Chapter 5.

Problem 6.0.3. Let G be a tree chordal graph and let k be an integer such that k ≥ 6. Give a

polynomial (preferably linear) time algorithm to decide if a kth root phylogenetic tree T exists for

G, and if so construct T .

In Chapter 5, we present a polynomial time algorithm to construct a 5th phylogenetic root tree

for a strictly chordal graph if one exists. This is the largest class of graphs for which a polynomial

time algorithm for k-PRP such that k ≥ 5 is known.

Problem 6.0.4. Let G be a chordal graph and let k be an integer such that k ≥ 5. Either give a

polynomial (preferably linear) time algorithm to decide if a kth root phylogenetic tree T exists for

G, and if so construct T , or show k-PRP ∈ NP-complete.
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