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Abstract

The game of Hex is of interest to the mathematics, algorithms, and artificial intelligence communi-

ties. It is a classical PSPACE-complete problem, and its invention is intrinsically tied to the Four

Colour Theorem and the well-known strategy-stealing argument. Nash, Shannon, Tarjan, and Berge

are among the mathematicians who have researched and published about this game.

In this thesis we expand on previous research, further developing the mathematical theory and

algorithmic techniques relating to Hex. In particular, we identify new classes of moves that can be

pruned from consideration, and devise new algorithms to identify connection strategies efficiently.

As a result of these theoretical improvements, we produce anautomated solver capable of solv-

ing all 8× 8 Hex openings and most 9× 9 Hex openings; this marks the first time that computers

have solved all Hex openings solved by humans. We also produce the two strongest automated Hex

players in the world — Wolve and MoHex — and obtain both the gold and silver medals in the 2008

and 2009 International Computer Olympiads.
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Nomenclature

For formal definitions, see the specified section.

Term Section Explanation
4-3-2 2.9.2 A common second player connection strategy.

AND rule 2.9.2 A deduction rule in the H-search algorithm that com-
bines connection strategies in series.

backing up 2.9.2 Deducing connection strategies or inferior cells in
previous states based on properties observed in suc-
cessor states.

board size 2.2 The number of cells.

border 2.2 A coloured side of the Hex board.

border bridge 2.9.2 A bridge that has a border as one endpoint.

border template 2.9.2 A frequently occurring connection strategy that has a
border as one endpoint.

braids 4.1 First player connection strategies of a particular form
not found by H-search.

bridge 2.9.2 A common second player connection strategy with a
carrier of size two.

bypass 2.5 Replacing a reversible move with all of the legal
moves available in the state reached via the reversible-
reverser move exchange.

capture-domination 2.9.1 Domination deduced using captured sets and mono-
tonicity.

captured 2.9.1 A set of cells for which there exists a second player
strategy to render all opponent moves dead.

captured-reversible 3.3 Reversible cell where an opponentmove causes the
cell to be player-captured.

captured-reversible
graph

3.3 Graph modelling the interference relationship be-
tween captured-reversible cells.



carrier 2.9.2, 3,
5.3

Set of uncoloured cells required for a strategy (e.g.,
connection strategy, fillin strategy).

cell 2.2 A hexagonal location which the players can colour
during the course of a game.

chain 2.2 A maximal set of connected locations.

chain boundary 3.7.1 Set of chains adjacent to a region that are not internal.

chain component graph 3.7.1 Bipartite graph indicating adjacencies between un-
coloured components and chains.

chain decomposition 3.7.1 Two-tuple of a region and its chain boundary.

chain deleted Hex
graph

3.7.1 The graph obtained by deleting all vertices corre-
sponding to coloured locations.

child limit 5.2.3 The number of live children considered in focused
depth-first proof number search.

closed neighbourhood 3.4 Neighbourhood of a location unioned with the loca-
tion itself.

completion 2.2 A continuation with no uncoloured cells.

completion Hex 3.5 Variant of Hex where the game is played until no un-
coloured cells remain.

connected locations 2.2 Locations that are the endpoints ofsome coloured
monochromatic path.

continuation 2.2 A Hex position where coloured cells have only been
added.

dead 2.9.1 A cell that is not live.

dead-reversible 3.2 Synonym for vulnerable.

dimension 2.2 The length of a (regular) Hex board’s side.

disproof set 5.2 A set of leaves in a proof number tree that aresuffi-
cient to prove that the player to move loses the root
position.

dominated 2.5 A move which results in a (weakly) worse position
than another available move.

double chain adjacent 3.7.2 The relationship between two uncoloured cells that
are common neighbours of some Black chain and
some White chain.

Elo 6 A rating system that indicates the relative strength and
expected win percentage between players.



endpoint 2.2,
2.9.2

The first or last location in a path’s sequence, or one
of the two locations being connected via a connection
strategy.

exchange tree 3.5 Derivation of a completion Hex strategy tree where
two cells’ roles are interchanged.

external 2.9.2 An opponent move outside a player’s connection
strategy carrier.

fillin 2.9.1 Colouring a set of cells in a position without altering
its value.

fillin carrier 5.3.1 Set of cells required to maintain a fillinreduction.

fillin-domination 3.1 Domination deduced using fillin and monotonicity.

four-sided decomposi-
tion

3.8.4 Chain decomposition whose boundary forms a four
cycle of touching chains.

generalized H-search 2.9.2 Complete version of H-search.

Generalized Hex 2.3 A game played on graphs, where players alternate
turns performing vertex simplicialization and ver-
tex deletion, and the players’ goals are to con-
nect/disconnect two marked vertices.

graph neighbour domi-
nation

3.4 Domination deduced by graph neighbourhood sets.

graph neighbourhood 3.4 The neighbourhood of an uncolouredcell in a graph
corresponding to a Hex position.

H-search 2.9.2 An algorithm to identify connection strategies in a
Hex position.

handicap cells B.1 The initial moves in a handicap strategy.

Hex graph 2.3 A graph modelling a Hex position as in Generalized
Hex.

hot game 2.5 A combinatorial game where it is desirable to be the
player to move.

independent captured-
reversible set

3.3 Set of captured-reversible cells corresponding to an
independent set in a captured-reversible graph.

induced path domina-
tion

3.5 Domination deduced by membership in minimal win-
ning sets.

interboundary connec-
tion

3.7.1 A monochromatic path connecting two boundary
chains of a region.



interboundary equiva-
lence

3.7.1 Relationship between two completions of a region
that possess all the same interboundary connection
properties.

interfere 3.3 Relationship between two captured-reversible cells
when one’s reverser is in the other’s carrier.

internal chain 3.7.1 A chain that does not contain a border, and only
neighbours a region’s uncoloured components.

irregular board 2.2 A board whose sides are not all equal length.

key 2.9.2 The first move of a virtual semi connection.

killer 2.9.1 A move that renders a vulnerable cell dead.

knowledge computa-
tion

5 The process of computing all inferior cell analysis and
connection strategy information for a Hex state.

knowledge threshold 6.3.2 Parameter in Monte Carlo tree search. Used to de-
termine when a node warrants time-costly knowledge
computations.

ladder 2.9.2 Border template using a series of threats, typically
forming chains parallel to the border.

live cell 2.9.1 An uncoloured cell for which there exists some com-
pletion in which the cell’s colour determines the win-
ner.

live child 5.2.2 A child node in a proof number tree whose disproof
number is not infinity.

location 2.2 A cell or a border.

loopy game 2.5 A combinatorial game where a series of legal moves
can result in a repeat position.

maintain 2.9.2 The process of following a connection strategy.

maintenance assump-
tion

A.2 The assumption that a player will maintain a particu-
lar connection strategy.

maximum winning car-
rier

5.3.2 A set of uncoloured cells that corresponds to a win-
ning carrier if a particular player wins.

miai 4.3 Pair of uncoloured cells that serve the same purpose;
if opponent plays one, then player immediately re-
sponds with the other.

miai list 4.3.1 List of miai connection substrategies tracked by each
connection strategy in an augmented version of H-
search.



midpoint 2.9.2 The common endpoint in an AND rule deduction.

misère game 2.5 In combinatorial game theory, a game that is won by
the first player to not have a legal move available.

monotonicity 2.1 The property that additional coloured cells cannot be
disadvantageous for the player using that colour.

most proving node 5.2 A leaf node in a proof number tree that intersects a
minimum proof set and a minimum disproof set.

mustplay 2.9.2 The intersection of all opponent winning virtual semi
connection carriers.

neighbour domination 3.4 Domination deduced via neighbourhood sets on the
Hex board.

no-draw property 2.1 The property that a Hex position with nouncoloured
cells must contain a winning path for at least one
player.

normal game 2.5 In combinatorial game theory, a game that is won by
the last player to have a legal move available.

OR-all 2.9.2 Applying the OR rule to all known first player con-
nection strategies, to determine if any OR rule deduc-
tions are possible.

OR-k rule 2.9.2 Restriction of the OR rule to consider at mostk first
player connection strategies.

OR rule 2.9.2 A deduction rule in the H-search algorithm thatcom-
bines connection strategies in parallel.

outcome classes 2.5 Combinatorial game theory synonym for position val-
ues.

partition chain 4.1.1 A chain that can be used to partition a connection
strategy into two independent connection strategies.

pass move 2.5 A move where the position is unaltered; only the
player to move changes.

path 2.2 A sequence of locations, where consecutive pairs of
locations are adjacent.

PC algorithm 4.1.1 Algorithm to compute partition chains inparallel with
H-search deductions.

permanently inferior 3.6 Type of fillin where the strategy extends beyond the
set of coloured cells.

planarity 2.1 The property that at most one player can form a win-
ning chain on a Hex board.



position 2.2 Defined by the board dimension and each cell’s
colour.

position value 2.2 Either a Black win, White win, or first player win, de-
pending on the value of its two corresponding states.

primary cells B.1 The first row cells adjacent to handicap cells.

probe 2.9.2 An opponent move within a player’s connection strat-
egy carrier.

proof set 5.2 A set of leaves in a proof number tree that are suffi-
cient to prove that the player to move wins the root
position.

prune 2.5 Eliminating a move from the set of legal moves being
considered.

random game simula-
tion

6.3.1 The phase of Monte Carlo tree search used to evaluate
a leaf node’s position.

reduced position 3.1 A Hex position derived from another Hexposition via
fillin.

regular board 2.2 A board whose sides are all equal length.

reverser 2.5 The negating response to a reversible move.

reversible 2.5 A move whose benefit can be negated by an opponent
response.

Shannon vertex-
switching game

2.3 Synonym for Generalized Hex.

split decomposition 3.7.2 Chain decomposition whose boundary is composed of
three borders and one other coloured chain.

star decomposition 3.7.4 Chain decomposition where both players have a move
available that captures the entire region.

star game 2.5 The simplest combinatorial game that is a first player
win; both players only have moves to the zero game.

state 2.2 Defined by its position and the player to move.

state value 2.2 Either a Black win or a White win; the minimax value
of a Hex state.

strategy carrier 5.3.1 Carrier of a winning connection strategy on a fillin-
reduced state.



strategy-stealing argu-
ment

2.1 A proof by contradiction argument where one player
adopts the winning strategy of their opponent, thereby
resulting in both players having winning strategies.

surreal numbers 2.5 The number system developed by combinatorial game
theory.

swap rule 1.1 Rule that can be added to Hex, where the first player
selects Black’s first move and then the second player
chooses to play as Black or White.

touch 3.8.4 The relationship between two opposite-coloured
chains that are neighbours or form an opposite-
coloured bridge.

tree traversal 6.3.1 The phase of Monte Carlo tree search that traverses
from the tree’s root to the next leaf to evaluate.

tree update 6.3.1 The phase of Monte Carlo tree search that updates
tree node data using the results of a random simulated
game.

uncoloured component 3.7.1 Set of uncoloured cells corresponding to a component
in the chain deleted Hex graph.

uncoloured region 3.7.1 The union of one or more uncoloured components.

union-connection 2.9.2 Connection strategy with one fixed endpoint, and a
choice for the other endpoint.

unique probe deduction 5.4.5 Deducing a state value from a solved state using a
pairing strategy on a dead-reversible cell and its killer.

vertex implosion 2.3 The compound process of vertex simplicialization fol-
lowed by vertex deletion.

vertex simplicialization 2.3 Adding edges between a vertex’s neighbours such that
its neighbourhood becomes a clique.

virtual connection 2.9.2 A second player connection strategy.

virtual semi connection 2.9.2 A first player connection strategy.

vulnerable 2.9.1 A move that can be rendered dead by an opponent
move.

vulnerable-by-capture 2.9.1 A move that can be rendered dead by the combination
of a killer move and its captured set.

winning carrier 5.3 Carrier of a winning connection strategy.

winning carrier trans-
position

5.4.1 State whose value is deduced using the winning car-
rier of a solved state.



winning chain 2.2 A chain that contains two opposing borders.

winning connection
strategy

2.9.2 A connection strategy whose endpoints are opposing
borders.

winning path 2.2 A path whose endpoints are opposing borders, and
whose locations are each uncoloured or the same
colour as the endpoints.

zero game 2.5 A combinatorial game that is a second player win;
neither player has a legal move available.



Chapter 1

Introduction

The game of Hex is of interest to the mathematics, algorithms, and artificial intelligence communi-

ties.

The invention of this game is intrinsically tied to the Four Colour Theorem [85] and the well-

known strategy-stealing argument [128]. Hex, and its natural generalization the Shannon vertex-

switching game, are classical PSPACE-complete problems [16, 52, 145]. Proving the no-draw prop-

erty of Hex is equivalent to proving the Brouwer Fixed Point Theorem in two-dimensions [59], and

Hex is also one of the first games for which an artificial intelligence player was created [158]. Nash,

Shannon, Tarjan, and Berge are among the mathematicians whohave researched and published about

this game [21, 22, 52, 128, 158].

Despite its simple rules, Hex presents a significant challenge to artificial intelligence. Due to its

large branching factor, humans have consistently outperformed computers both in terms of playing

and solving Hex on all but the smallest board sizes [114, 181]. Although a reasonably strong eval-

uation function exists [9, 121, 158], humans’ ability to intuitively decompose strategies and prune

irrelevant regions have helped them maintain their advantage.

In this thesis we expand on previous research, further developing the mathematical theory, algo-

rithms, and artificial intelligence techniques relating tothis fascinating game.

1.1 Rules of Hex

Hex is a two-player perfect information game played on ann× n array of hexagonal cells. The two

players are Black and White, and each player is assigned a distinct pair of opposing borders. With

Black moving first, players alternate turns. On their turn, aplayer colours an uncoloured cell with

their colour. The winner is the player who completes a path oftheir colour connecting their two

opposing borders. See Figure 1.1.

In practice the first player advantage is significant, so Hex is typically played with theswap rule,

which states that the first player selects the placement of Black’s first move, and the second player

then chooses whether to play as Black or White. Whoever is White makes the next move, and the
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Figure 1.1: 5× 5 Hex boards: empty and a completed game won by White.

players alternate turns thereafter.

1.2 Objectives

Solving and playing games via computers has been of interestto the artificial intelligence community

since its earliest beginnings. The game of Hex is a classicalPSPACE-complete problem, so it is

unlikely that a polynomial-time algorithm exists to solve arbitrary Hex positions. Given this, it

seems more beneficial to develop and improve techniques thatprune the search space.

In particular, Hex positions possess important graph-theoretic properties, and combinatorial

game theory is applicable in terms of pruning inferior movesand analyzing combinatorial decom-

positions. Hex algorithms exist to identify connection strategies, resulting in early termination of

the search space.

In summary, the objectives of this doctoral research are to:

• expand on the mathematical and algorithmic knowledge for the game of Hex, and

• apply and adapt artificial intelligence techniques to make use of such knowledge.

1.3 Overview

This thesis is structured as follows:

• In Chapter 2 we review all previous work related to Hex, including the basic properties, con-

cepts, and notation that will be used throughout this thesis.

• In Chapter 3 we apply combinatorial game theory to reformulate previous inferior move anal-

ysis in the game of Hex. We then identify several new types of inferior cell. Graph-theoretic

properties of board decompositions are explored, and efficient algorithms applying this knowl-

edge are produced.

• In Chapter 4 we discuss enhanced algorithms for identifyingHex connection strategies, and

compare several variations in terms of efficiency and completeness.

• In Chapter 5 we discuss the automated solving of Hex states, including improvements to

previous search algorithms and the application of our new techniques. We review our solver’s

performance, including the surpassing of all previous benchmarks.
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• In Chapter 6 we examine the performance of three artificial intelligence Hex players, each

with a different foundational search algorithm and evaluation methodology. We also analyze

the benefits of applying our new theory to heuristic players.

• In Appendix A we discuss the application of our new inferior cell analysis to probes of a

common connection strategy.

• In Appendix B we discuss the application of our new inferior cell analysis to produce an

efficient and explicit handicap strategy for Hex.

• In Appendix C we analyze all of the Hex games from the 2008 and 2009 International Com-

puter Olympiads.

• In Appendix D we list open questions relating to the game of Hex.

1.4 Contributions

The main results of this thesis can be summarized as follows:

• Further developing Hex inferior cell analysis, including:

– Identifying captured-reversible moves.

– Identifying neighbourhood domination and induced path domination.

– Identifying permanently inferior cells.

– Identifying decompositions using opposite-colour bridges.

– Identifying cyclic decompositions, and their relation to captured sets.

– Identifying star decompositions, and their relation to move domination.

– Applying the above to prune connection strategy probes and deduce further domination

implications.

– Applying the above to construct an efficient and explicit handicap strategy for Hex.

• Developing several efficient modifications of the H-search algorithm that identify more con-

nection strategies, including:

– Producing a new orthogonal deduction rule for identifying new connection strategies

from existing ones.

– Applying inferior cell analysis to allow for partial intersection of connection strategies

in deduction rules.

– Applying common substrategies to allow for partial intersection of connection strategies

in deduction rules.
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• Developing an extremely strong automated Hex solver, including:

– Applying inferior cell analysis to deduce many state valuesfrom each solved state.

– Using strategy-stealing arguments to prune states during search.

– More than a 100-fold speedup over other state-of-the-art solvers.

– Being the first to produce an automated solver capable of solving any and all 8× 8

openings.

– Being the only ones to produce an automated solver capable ofsolving any 9× 9 open-

ings. This marks the first time automated solvers have surpassed humans in terms of

solved Hex openings.

• Developing strong automated Hex players, including:

– Using alpha-beta search, Monte Carlo tree search, and proofnumber search to produce

three distinct Hex players.

– Applying our inferior cell analysis and Hex solver to significantly improve our auto-

mated players.

– Winning both the gold and silver medals for Hex in the 2008 and2009 International

Computer Olympiads.

1.5 Publications

The research described in this thesis includes results appearing in the following publications (listed

in chronological order by submission date):

• Philip Henderson and Ryan B. Hayward. Probing the 4-3-2 edgetemplate in Hex. In van den

Herik et al. [164], pages 229–240.

• Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Wolve 2008 wins Hex tourna-

ment.ICGA Journal, 32(1):49–53, March 2009.

• Philip Henderson, Broderick Arneson, and Ryan B. Hayward. Solving 8x8 Hex. In Boutilier

[26], pages 505–510.

• Philip Henderson, Broderick Arneson, and Ryan Hayward. Hex, braids, the crossing rule, and

XH-search. In van den Herik and Spronck [165], pages 88–98.

• Broderick Arneson, Ryan B. Hayward, and Philip Henderson. MoHex wins Hex tournament.

ICGA Journal, 32(2):114–116, June 2009.

• Philip Henderson and Ryan B. Hayward. A handicap strategy for Hex. In Richard J. Nowa-

kowski, editor, Games of No Chance IV. Cambridge UniversityPress, 2010 (in press).
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• Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Solving Hex: Beyond humans.

Accepted to Computers and Games, 2010.

• Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Monte Carlo Tree Search in

Hex. Accepted to Transactions on Computational Intelligence and AI in Games, Special Issue

on Monte Carlo Techniques and Computer Go, 2010.

• Philip Henderson and Ryan B. Hayward. Captured-reversiblemoves and star decomposition

domination in Hex. Submitted to Integers, 2010.
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Chapter 2

Related Work

In this chapter we summarize previous research on Hex and related topics. We also introduce much

of the notation and terminology that will be used throughoutthis thesis.

2.1 Fundamental Hex Properties

Hex was invented independently by Piet Hein in 1942 and Nobellaureate John Nash in 1948, and in

both cases its invention was closely related to mathematical properties. Hein was contemplating the

(then unsolved) Four Colour Conjecture, attempting to disprove it [85, 115]. He noted that with a

tesselation of hexagons, unlike a tesselation of trianglesor squares, any two-colouring would always

avoid deadlock and hence guarantee a monochromatic path forone of the colours. By contrast,

Nash was looking for a game whose value (assuming optimal play) could be deduced, yet where

the method for attaining this outcome was completely unknown. Nash came to realize that if no

draw was possible, and if having an extra move was never disadvantageous, then the existence of

a first player winning strategy was guaranteed. This was the inspiration for the now well-known

strategy-stealing argument [128].

The key properties of Hex are:

1. If all cells are coloured, then at most one player has a winning path. This is due toplanarity.

2. If all cells are coloured, then at least one player has a winning path. This is theno-draw

property.

3. Colouring additional cells for one player can never be to their disadvantage. That is, Hex is

monotonic.

4. The two players haveisomorphicroles on the emptyn× n board position.

5. The first player must have a winning strategy by thestrategy-stealing argument.

Of these properties, the second is the most difficult to prove. In fact, proving the no-draw

property of Hex is equivalent to proving the Brouwer Fixed Point Theorem in two dimensions [59];
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proofs (and sketches of proofs) of this property abound [19,173].

As mentioned in Chapter 1, Hex is often played with theswap rule. Since every Hex state is

either a Black win or a White win by the no-draw property, and since the second player can select

whether to play as Black or White following the first player’sselection of a Hex state, it follows that

the swap-rule variant of Hex must be a second player win.

a
a

b
b

c
c

d
d

e
e

f
f

g
g

h
h

i
i

j
j

Figure 2.1: A winning pairing strategy on the 5× 4 board.

Another proposed handicap method is to play Hex on rhomboids(i.e., onm × n boards where

m 6= n). However, Claude Shannon observed that this game is a trivial win for the player whose

opposing borders are closer together, regardless of who plays first, using a simple pairing strategy

[60]. See Figure 2.1.

2.2 Basic Terminology and Notation

The sizeof a Hex board is its number of cells. Unless stated otherwise, throughout this thesis we

will be assuming play onregularn× n Hex boards, notirregular m× n, m 6= n Hex boards. The

dimensionof a (regular) Hex board is the length of one board side. That is, ann × n board has

dimensionn and sizen2.

Cellsare the hexagonal locations in which either player can play.Bordersare the four coloured

sides of the Hex board; these can be referred to by direction:North, South, East, West. Locations

includes both cells and borders. Thecolour of a locationl, denotedχ(l), is one ofBlack, White,

or Uncoloured, and we use the notational shorthandB,W,U respectively.Coloured cells/locations

refers to cells/locations whose colour is Black or White, while uncoloured cells/locationsrefers to

cells/locations whose colour is not Black nor White. For instance, the colour of the North and South

borders is always Black, and borders are always coloured.

Unless stated otherwise, throughout this thesis we will be assuming that Hex is played without

the swap rule. Thus a HexplayerP is either Black or White, andP denotes the opponent ofP . A

Hex positionis defined by the board dimension and each cell’s colour. AHex stateis defined by a

Hex position and the player to move.

Hex is a perfect information game with no draws, so a Hex statehas one of two values: aBlack

win or aWhite win. Hex is monotonic, so no position is asecond player win, so a Hex position has

one of three values: aBlack winregardless of who moves first, aWhite winregardless of who moves

first, or afirst player win. See Figure 2.2. In this thesis (in)equality among states and positions

relates only with respect to these values.
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Figure 2.2: Black win, White win, and first player win Hex positions.

For Hex statesS1, S2, we writeS1 ≥P S2 if the value of stateS1 is at least as good for player

P as stateS2, namely ifP has a winning strategy inS1 wheneverP has a winning strategy inS2.

Clearly S1 ≥P S2 if and only if S2 ≥P S1. Given a Hex positionH, HP represents the state

whose position isH with playerP to move. For Hex positionsH1,H2, we writeH1 ≥P H2 if

HP
1 ≥P HP

2 andHP
1 ≥P HP

2 . That is,H1 ≥P H2 implies that playerP prefers positionH1 to

positionH2 regardless of who moves next. We writeX ≡ Y if two states/positions have the same

value, namelyX ≥P Y andX ≥P Y . We writeX = Y if two states/positions are identical.

A P move is a move by playerP , and aP (c) move is a move by playerP to uncoloured cellc.

For a positionH, a playerP , an uncoloured cellc, a set of uncoloured cellsC, and a set of coloured

cellsD:

• H + P (c) is the position obtained fromH by P -colouringc,

• H + P (C) is the position obtained fromH by P -colouring all cells inC, and

• H −D is the position obtained fromH by uncolouring all cells inD.

For a Hex positionH and a colour or set of coloursC, we denote byH → C the set of locations

in H whose colour isC or in C. If we wish to restrict our attention to a set of locationsL in H, we

useLH , or simplyL if the position is implicit.

For positionsH1 andH2, we say thatH2 is acontinuationof H1 if (H1 → B) ⊆ (H2 → B)

and(H1 → W ) ⊆ (H2 → W ). A continuation with no uncoloured cells is called acompletion.

Given a cell, itsneighboursare the locations directly adjacent to it. The neighbours ofa border

are all cells in the adjacent row/column. We useN(l) to denote the neighbour set of locationl.

For instance, a cell has at most six neighbours (it has fewer than six if it is adjacent to one or more

borders), and the cardinality of each border’s neighbour set is equal to the board’s dimension.

A pathis a sequence of locationsl1, l2, . . . , lk such thatli andli+1 are neighbours for1 ≤ i < k.

Such a path is an(l1, lk)-path, andl1, lk are called theendpointsof the path. Awinning pathis a

path whose endpoints are opposing borders, and whose locations are each uncoloured or the same

colour as the endpoints.

Two coloured locationsx, y areconnectedif there exists a monochromatic(x, y)-path. Achain

is a maximal set of connected locations. Awinning chainis a chain that includes two opposing

borders. Note that thecolour of a chainis equal to the colour of every location in the chain. Given a

chain, its neighbours are those locations that neighbour atleast one of its elements, but that are not
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contained within the chain. That is, for chainC = {l1, . . . , lk}, χ(C) = χ(l1) = · · · = χ(lk) and

N(C) = ∪k
i=1N(li) \ C.

2.3 Hex Graphs

We assume the reader is familiar with basic graph theory, including paths, connected components,

cliques, independent sets, cutsets, and list colouring. This thesis uses the notation and terminology

of [27].

The game of Hex can be thought of as a game on a graph, where initially each uncoloured cell

and Black border is represented by a distinct vertex, with edges connecting neighbouring locations

[173]. A Black move to a cell makes all pairs of neighbours adjacent and then deletes the vertex;

we call these two stagesvertex simplicializationandvertex deletionrespectively, or simplyvertex

implosionfor the combined process. A White move to a cell deletes the corresponding vertex. Black

wins if the two vertices corresponding to Black borders become direct neighbours, while White wins

if they disconnect the graph such that these two vertices arein different connected components.

T

T T

T

Figure 2.3: A Hex position and its Black and White graphs. This figure is taken directly from van
Rijswijck’s thesis [173].

The graph of a Hex position obtained by this process is calledits Black graph, and in this

formulation we call Black theShortplayer, and White theCut player. TheWhite graphof a Hex

position is defined similarly, with the roles of Black and White interchanged. See Figure 2.3.

This concept can also be generalized to any graph: two vertices are marked (i.e., the borders to

be connected), and Short and Cut alternate turns performingvertex implosion and vertex deletion

respectively (on unmarked vertices only), until either thetwo marked vertices are direct neighbours

or in different components. This generalized version is known as theShannon vertex-switching

game, or simplyGeneralized Hex[16, 52, 95].

2.4 Computational Complexity

We assume the reader is familiar with the basics of computational complexity, including O-notation

and the complexity classes P, NP, and PSPACE. Please refer to[45, 69] for details.

Determining the winner of a Hex (or Generalized Hex) position is a PSPACE-complete problem

[52, 145]. Thus, developing anefficient(i.e., polynomial-time) algorithm to solve arbitrary Hex

positions is equivalent to proving that P equals PSPACE and,as a consequence, proving that P

equals NP.
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A logical characterization of the class of PSPACE-completeproblems can be constructed using

first-order logic, a built-in successor relation, and an operator corresponding to Generalized Hex

[16].

2.5 Combinatorial Game Theory

Combinatorial game theory (CGT) is the study of two-player perfect information games, and thus

is directly applicable to Hex; see [23] for details. However, we will not use CGT notation nor

CGT values (i.e., thesurreal numbers) to describe Hex positions, but rather our own simpler value

definitions from§2.2, which correspond tooutcome classesin CGT.

In the CGT framework:

• Hex is ahotgame, since both players always prefer to have the next move.

• Hex is notloopy, since a valid move sequence can never result in a repeat position.

• Hex isnormal, not mis̀ere, since the winner is the last player to make a legal move (i.e., the

game terminates when a winning chain is formed).

Only two surreal numbers are of interest in this thesis. The first is thezero game0 = {|}, which

is a second player win since neither player has a legal move available. The second is thestar game

∗ = {0|0}, which is a first player win since both players only have legalmoves to a zero game, a

second player win. The star game is the simplest first player win, since only one legal move remains

in the game, regardless of who moves first.

We will be applying CGT’s theory regarding inferior moves, namely dominated and reversible

moves. When determining the value of a position, dominated moves can be pruned and reversible

moves can be bypassed without altering the position’s value.

Let H be a Hex position with legalP movesm1,m2 such thatH + P (m1) ≥P H + P (m2).

Then we say thatm1 P dominatesm2 in H. In the CGT framework, it has been proven thatP

dominated moves can beprunedfrom consideration by playerP , so long asP considers at least one

dominating move.

Let H be a Hex position with a legalP movem1, and suppose thatH + P (m1) has a legalP

movem2 such thatH ≥P H +P (m1) +P (m2). Then we say thatm1 is aP reversible movewith

P reverserm2 in H. Intuitively, the opponent response negates any benefit gained by the previous

move, reversing the latter’s effect on the position’s value. In the CGT framework, it has been proven

that reversible moves can bebypassed, meaning that it can be assumed thatP movem1 in H will

automatically be replied to withP movem2. Thus,P movem1 in H can be deleted and replaced

by all legalP moves inH + P (m1) + P (m2).

We note that players need not alternate turns in a subgame, and sometimes we will want to allow

this in Hex: apass moveis a move in which a player does not colour any cell. By monotonicity, the
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pass move is always dominated by all other legal moves, and thus adding the pass move as an option

does not change the value of any Hex states or positions.

2.6 Other Game Theory

Besides CGT, there are several other types of game theory that are applicable to Hex. We will not

be applying any of these in this thesis, but we summarize their contributions to Hex below.

Van Rijswijck introduced set colouring and binary combinatorial games as an attempt to integrate

combinatorial decompositions in Hex with combinatorial values and CGT results [172, 173]. In

order to satisfy CGT’s winning conditions (i.e., determined when a player no longer has any legal

moves), van Rijswijck introduced atomic values True and False, which add a fixed number of moves

to the corresponding player. Conjunctions and disjunctions are modelled by adding the appropriate

number of atomic values, thereby emulating the decision formula to determine the winner while

ensuring that CGT will agree on the outcome.

The research by van Rijswijck is related to Game-SAT [185] — agame where players alternate

turns assigning values to boolean variables, in an attempt to make a formula evaluate to true or false

— when restricted to two colours. The monotonicity of Hex ensures that a player would never want

to use their opponent’s colour, so the minor rule differences between these two theoretical games do

not affect the optimal play or outcome when applied to Hex.

Yamasaki studied the theory of division games [180], of which Hex is a particular example. A

division game is a two-player game played on a set, where eachplayer claims any single unclaimed

element from the set on their turn. Unlike in Hex, turns do notnecessarily alternate in division

games. A division game is played until all elements are claimed, and a specified function maps any

final partition to the winning player (no draws are allowed).For instance, in Hex the elements of the

set are all uncoloured cells, and the function expresses which player has a winning chain in a given

partition. Most of Yamasaki’s results demonstrate value (in)equalities given some modification of a

division game, such as adding new elements to the set or altering the move ordering in some fashion.

Yamasaki also focused on games where the sets are regular (i.e., never disadvantageous), misère

(i.e., never advantageous), or negligible (i.e., never affect the outcome). In this manner, Yamasaki

was able to re-derive many previously-known Hex properties. The difference between Yamasaki’s

framework and that of van Rijswijck is that the former does not enforce alternating turns, while the

latter allows for more general (i.e.,not necessarily binary) partitioning.

Jensen and Toft studied Hex in relation to positional games on hypergraphs [95]. Players alter-

nate turns colouring vertices in a hypergraph, and a player wins if they manage to claim all elements

of any hyperedge. They note that the no-draw property of Hex can be modelled as a complete bi-

partite graph, where each vertex in one half of the bipartition corresponds to a distinct winning path

for that player: list-colouring such a graph, where the colours available to a vertex are the Hex cells

in its corresponding winning path, must be impossible sincethis would correspond to a draw in
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Hex. Some results for positional hypergraph games are known, but unfortunately these statements

are trivial when restricted to Hex, or else simply inapplicable.

2.7 Hex Variants

As mentioned earlier, the swap rule and irregular board sizes are attempts to balance the game of

Hex; Beck’s Hex is another attempt to balance the game of Hex.In Beck’s Hex, the White player

chooses Black’s first move; play then proceeds as normal. Thus, Black wins Beck’s Hex if and only

if every first move for Black is winning. However, as Beck proved, an acute corner cell is guaranteed

to be a losing opening move in Hex for all boards of dimension at least two [18]; this proof uses a

strategy-stealing argument and properties of winning paths. A similar proof by Beck shows that a

cell neighbouring an acute corner cell and a Black border is also a losing opening move on all boards

of dimension at least three [19].

Another natural variation of Hex is misère Hex, where a player wins if their opponent forms a

winning chain. Using a strategy-stealing argument, it can be shown that the losing player can delay

their loss until the last uncoloured cell is played, implying that the parity of the board size determines

the winner [109]. In other words, misère Hex is a win for Black if and only if the board size is even.

When the board size is even, the acute corner cell is a winningopening move [50, 180].

Alpern and Beck studied Hex played on the annulus, with one player trying to connect the inside

to the outside (i.e., forming a path connecting ends of a cylinder) and the other trying to form a

closed ring [5]. They proved that this game retains the no-draw property, and that if the cylinder has

an even rotational dimension, then a simple pairing strategy guarantees that the player connecting

the ends of the cylinder will always win, even as the second player and regardless of the board’s

dimensions. The question of who wins on the annulus with odd rotational dimension is still open.

Kriegspiel Hex — Hex where neither player can see the board — is a first player win on boards

of dimension at most three. Furthermore, no guaranteed winning strategy can exist for boards of

dimension four or greater [120]. Many other Hex variants have been defined, such as random-turn

Hex (a coin toss determines who gets the next move), Vex (connecting an obtuse corner cell to either

of the two opposing borders), Vertical Vex (connecting a cell to a border), Tex (played on an infinite

Hex board, where one player tries to enclose their opponent’s opening move, while the other tries

to perpetually escape), their misère variants, and so on [51, 137]. However, with the exception of

random-turn Hex, very few results exist for these games [115].

2.8 Related Games

Aside from direct variants of Hex, there are also many connection games that are closely related.

One example is Y, a game played on a triangular grid of hexagonal cells in which players try to form

a chain connecting all three borders [156]. Y is a generalization of Hex in that any Hex position can
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be modelled on a Y board. Y also possesses the properties of nodraws and monotonicity, and so is

also a first player win.

Another example is Havannah, a game played on a hexagonal grid of hexagonal cells in which

players try to form either a chain connecting two corner cells, a chain connecting three border cells,

or a closed ring. Havannah is monotonic, but draws are possible.

There are also two important variants of Generalized Hex. The multi-Shannon game is played

on general graphs, but the Connect player is trying to connect more than two marked vertices [24].

The Shannon edge-switching game is similar to Generalized Hex, except that players Cut and Short

delete and contract edges respectively. The game of Bridg-it, invented by Gale, is the Shannon

edge-switching game played on a rectangular grid. Unlike the Shannon vertex-switching game,

the edge-switching game has been efficiently solved using matroids, both in its normal and misère

forms [76, 110]. The proof was later simplified to a graph-theoretic argument, demonstrating that

the invariant necessary for Connect to win is the maintenance of two edge-disjoint spanning trees

[38].

2.9 Hex-Specific Research

2.9.1 Inferior Cell Analysis

By analyzing the graphs of a given Hex position, it is possible to efficiently prune many moves

from consideration. Previously known pruning techniques involved dead, vulnerable, captured, and

capture-dominated cells, which we summarize here.

Following observations by Becket al. [18] and Schensted and Titus [156], Hayward and van

Rijswijck defined a class of provably useless Hex cells, called dead cells: with respect to a particular

Hex position, an uncoloured cellc is live if there exists some completion of the position in which

changingc’s colour changes the winner [84]; an uncoloured cell isdeadif it is not live. By definition,

a cell is live/dead for Black if and only if it is live/dead forWhite.

Equivalently, a cell is live if and only if it is contained in some minimal set of uncoloured cells

that can yield a winning chain. Thus determining whether a cell is live reduces to determining in

a graph whether a given vertex is on a minimal path joining twoother given vertices; this problem

is NP-complete for general graphs [24]. If a vertex is separated from the two endpoints by a clique

cutset, then it cannot be on a minimal connecting path, and therefore must be dead.

Figure 2.4: Dead patterns. In each case colouring the empty cell Black or White does not alter a
position’s value.
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Some dead cells can be recognized by matching patterns of neighbouring cells. For example, for

each pattern in Figure 2.4 the uncoloured cell is dead [83]. Since there is no completion in which a

dead cell’s colour matters, it follows that:

• a dead cell in a position remains dead in all continuations, and

• a dead cell can be arbitrarily coloured without changing a position’s value.

If a player has a winning strategy in a Hex state, then they have a winning strategy with no move

to a dead cell [84].

Figure 2.5: Black vulnerable patterns. In each case a White move to the dotted cell kills the empty
cell.

An uncoloured cellc is P vulnerableif P has a move that makesc dead; thisP move isc’s P

killer. See Figure 2.5. If a playerP has a winning strategy in a Hex state, then they have a winning

strategy with no move to a dead orP vulnerable cell [84].

While dead cells remain dead in all continuations,P vulnerable cells need not remainP vulner-

able. For instance, ifc is P vulnerable withP killer k, and laterP plays at cellk, thenP may no

longer have a move that makesc dead. However, for a positionH1 with aP vulnerable cellc, and a

continuationH2 of H1 wherec is still uncoloured and onlyP -coloured cells have been added, then

c is dead orP vulnerable inH2.

Figure 2.6: Black captured patterns. In each case colouringthe empty cells Black does not alter a
position’s value.

A setC of uncoloured cells in positionH is P capturedif P has a second player strategy onC

such that for each terminal positionL produced by the strategy (i.e.,L is a continuation ofH where

only cells inC have been coloured, and no cell inC remains uncoloured), each cell inCL → P is

dead in positionL − (CL → P ). Since a dead cell can be assigned any colour without altering a

position’s value, it follows that for each such terminal position L,

L ≡ L− (CL → P ) ≡ (L− (CL → P )) + P (CL → P ),

and soL ≡ L − C + P (C). In other words, ifP ever plays in aP captured set, thenP has a

replying strategy that guarantees no net benefit toP . See Figure 2.6.
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For a Hex positionH and pairwise non-intersecting uncoloured cell setsX, Y , Z, if X is P

captured inH, thenX is P captured in the continuationH + P (Y ) + P (Z), as the cells inY and

Z neither affect the capturing strategy nor revive any cell that is dead in a terminal position. Thus

if H is a Hex position with aP captured setX, thenH ≡ H + P (X). Moreover, combining a

captured set strategy with a winning strategy on the reducedboard yields a winning strategy forP

in the original position [79].

Figure 2.7: A cell that is White vulnerable-by-capture. If Black plays the shaded cell, Black captures
cells which in turn kill the dotted cell.

The definition of vulnerable cells can be expanded using captured cells: an uncoloured cellc is

P vulnerable-by-capturein positionH if P has a movek such thatH +P (k) hasP captured setX

andc is dead inH + P (X ∪ {k}). See Figure 2.7. As before,k is theP killer of theP vulnerable

cell.

Figure 2.8: Black domination patterns. In each case a Black move to the dotted cell capture-
dominates a Black move to any of the empty cells.

If positionH +P (c) has aP captured setX, then by monotonicity it follows that in positionH

the cellc P dominates all cells inX [77]. That is, for all cellsx in X,

H + P (c) ≡ H + P (c) + P (X) ≥P H + P (x).

See Figure 2.8. To distinguish this type of domination from the more general CGT meaning, we call

this capture-domination.

Fillin refers to colouring a set of cells in a given position withoutaltering its value. For instance,

colouring dead cells orP -colouring aP captured set are examples of fillin.

Van Rijswijck used the five local dead patterns to identify vulnerable, captured, and capture-

dominated patterns [173]. See Figure 2.9.

2.9.2 Identifying Connection Strategies

In Hex, a common tactical question is whether a player has a strategy to create a chain that connects

two locations, an obvious example being a chain connecting two opposing borders. We may also

want to connect locations that are not already coloured, so we define aconnection strategyfor player
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Figure 2.9: Deducing inferior cell patterns. This figure is taken directly from van Rijswijck’s thesis
[173].
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P in a given Hex position to be an (alternating-turn) strategythat guarantees the construction of a

P chain that either neighbours or contains each of the two specified locations. A second player

connection strategy (respectively first player connectionstrategy) is avirtual connectionor VC

(respectivelyvirtual semi connectionor SC). For a VC/SC, the two locations being connected are its

endpoints, and the set of uncoloured cells used in the connection strategy is itscarrier. The initial

move of an SC strategy is itskey. See Figure 2.10.

+

Figure 2.10: Diagrams of a Black VC and a Black SC. Carriers are shaded, endpoints are dotted,
and the SC key is+.

With respect to a player’s connection strategy, aprobe is a move by their opponent to a carrier

cell; all other opponent moves areexternal. A playermaintainsa virtual connection if they always

respond to opponent probes with the corresponding connection strategy response. A connection

strategy iswinning if its endpoints are opposing borders. A VC is aborder templateif one of

its endpoints is a border and it is commonly occuring (e.g.,it matches on positions with very few

coloured cells). Informally, aladder is a border template that uses a series of forced threats, often

resulting in both players producing parallel coloured rows/columns. David King has produced a

thorough list of border templates [100]. Two common VCs are the bridge and the4-3-2. See

Figure 2.11. Since aP border is equivalent to a row ofP -coloured cells, then theborder bridge

matches the leftmost captured pattern in Figure 2.6.

Figure 2.11: A bridge, a border bridge, and a border 4-3-2.

Anshelevich developedH-search[7, 10, 11], a hierarchical VC/SC composition algorithm. H-

search uses one base case and two deduction rules, iteratinguntil no further connections can be

deduced:

1. Base case: A player has an empty set carrier VC between each pair of neighbouring locations

such that neither is opponent-coloured.

2. AND rule: If a player has VCsα1, α2 with respective endpoints{p1, p2}, {p2, p3} and carriers

C1, C2 such thatC1 ∪ {p1} andC2 ∪ {p3} do not intersect, then
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• if p2 is uncoloured, then combiningα1, α2 forms an SC with endpoints{p1, p3}, carrier

C1 ∪ C2 ∪ {p2}, and keyp2,

• if p2 is a coloured cell for the player, then combiningα1, α2 forms a VC with endpoints

{p1, p3} and carrierC1 ∪ C2.

In each case the locationp2 is called themidpointof the AND rule.

3. OR rule: If a player has SCsα1, . . . , αk each with endpoints{p1, p2} but with respective car-

riersC1, . . . , Ck such thatC1 ∩ . . .∩Ck is the empty set (k ≥ 2), then combiningα1, . . . , αk

forms a VC with endpoints{p1, p2} and carrierC1 ∪ . . . ∪ Ck.

There are several ways in which H-search can be altered:

• The base case can be enlarged to any list of precomputed connection strategies (e.g.,border

templates).

• Each chain selects a single element location as its representative, and the representative’s

neighbours are all uncoloured cells in the chain’s neighbourhood; recall the graphs represent-

ing Hex positions. All elements of a chain have empty set carrier VCs to one another, so

H-search will perform many redundant computations withoutthis alteration.

• Superset carrier connection strategies can be deleted [121]. Since all deductions are restricted

by carrier intersection, it is wasteful to compute deductions using a VC/SC with the same

endpoints but a carrier that is a strict superset of another;this alteration reduces such redundant

work.

• Allowing borders to be midpoints of the AND rule. This variant of H-search typically finds

far more connections [121, 122].

• If ORing all known SCs does not produce a VC, then ORing a subset of them cannot produce

a VC. This initialOR-all check improves H-search’s efficiency.

• In a recursive implementation of the OR rule, backtrack immediately if the most recent SC did

not shrink the cumulative carrier intersection. This improves the algorithm efficiency without

changing its output, due to the redundancy of superset carrier connection strategies [140].

• The OR rule can be restricted to a bounded number of SCs, with the exception of the OR-all

check; with a bound ofk we call this theOR-k rule. However, this alteration can reduce the

number of connections identified by H-search.

• Heuristic limits can be used to restrict the VCs/SCs for eachpair of endpoints that are con-

sidered by H-search’s deduction rules. The use of such limits is accompanied by an ordered

sort of VCs/SCs by carrier size, as smaller carrier connections are more likely to be helpful in
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H-search deductions [121]. This alteration can decrease the number of connections identified

by H-search.

x

a

b

y

1

2

3

Figure 2.12: An SC not found by H-search. The SC has endpoints{a, b} and keyx (or keyy).

As Anshelevich observed, H-search does not identify all connection strategies [7, 10], includ-

ing the SC shown in Figure 2.12. Anshelevich developed ageneralized H-searchalgorithm which

is complete, and allows arbitrary size carrier intersections in its deductions [8]. This algorithm

essentially computesk-connectionsfor arbitraryk: connection strategies where one player getsk

unanswered moves before players alternate turns (e.g.,a VC is a0-connection and a SC is a1-

connection). However, generalized H-search is far too slowin practice as it uses deduction rules

whose computational complexity grows exponentially ink, and thus exponentially in terms of board

size. This computational complexity is to be expected sinceidentifying all connection strategies

necessarily implies identifying any connection strategies between opposing borders, and thus deter-

mining the value of the Hex position (a PSPACE-complete problem, see§2.4).

Van Rijswijck noted that during depth-first search, a VC deduced by H-search in one state im-

plies the existence of a SC in its predecessor. Bybacking upsuch connections, one partially alle-

viates H-search’s incompleteness. Rasmussenet al. expanded on this work by storing discovered

connections in a generalized form, so that they can be applied to a wider class of Hex positions.

In yet another attempt to address H-search’s incompleteness, Rasmussenet al. use an inde-

pendent VC search whenever the OR rule finds a set of SCs with small carrier intersection [142].

Naturally this finds more connections, but unfortunately the search time can be exponential in the

number of uncoloured cells.

This focus on identifying connection strategies is due to their ability to prune the search space:

• If P has a winning VC, thenP wins the current state regardless of who moves next.

• If P has a winning SC andP moves next, thenP wins the current state.

• If P has a winning SC andP moves next, then anyP move external to this SC is provably

losing.

Themustplayfor the player to move is the intersection of their opponent’s winning SC carriers.

It follows that all moves outside of the mustplay are losing.See Figure 2.13.

Despite the benefits of H-search — pruning losing moves and producing perfect endgame play

— it is time-costly; efficient implementations can compute the connection strategies for about 25
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Figure 2.13: Two White winning SC carriers and the corresponding mustplay for Black.

positions per second on tournament-size 11× 11 boards [121]. Furthermore, this performance is

worse if borders can be midpoints of the AND rule.

Aside from VCs/SCs, other types of connection strategies have been defined. For instance,

Noshita definedunion-connections, which are connections of the form “locationx connects to loca-

tion y or locationz” [131].

2.9.3 Solving Small Boards

Using Allis’ terminology [3], the emptyn × n Hex board is ultra-weakly solved (i.e.,we know the

value of the initial board state). One goal of current Hex research is to achieve the following on

successively larger board sizes:

• To weakly solve the initial board state (i.e., to find a winning first player strategy),

• To ultra-weakly solve all opening moves (i.e., to determine the second player’s correct choice

of colour when playing with the swap rule),

• To weakly solve all opening moves (i.e.,to find a winning strategy for the second player when

playing Hex with the swap rule), and

• To strongly solve the board size (i.e., to develop an algorithm capable of solving any position

on the given board size in a reasonable amount of time).

Strongly solving Hex positions on board sizes up to 5× 5 is easy, so few comments have been

made about such positions [60, 85]. In 1995 Enderton developed an algorithm capable of weakly

solving all 6× 6 openings [48]. In 2000 van Rijswijck’s automated solver could strongly solve the

6 × 6 board [169].

In 2001 Yang weakly solved 7× 7 by hand, and in 2002 Yanget al.weakly solved 17 of the 49

opening moves on 7× 7 [182, 184]. Yang’s main tool is the decomposition method: build larger

connection strategies from basic ones, so that a common substrategy can be used to respond to large

sets of moves, thus dampening the combinatorial explosion.Yang’s solution uses over 40 templates,

and its correctness proof has 12 pages of case analysis. In 2004 Noshita weakly solved 7× 7 with a

similar but simpler proof; this was attained by applying union-connections [131].

In 2003 Haywardet al. weakly solved all 7× 7 openings [83]; this was the first automated

7 × 7 solution. Two tools were fundamental to their success: inferior cells and H-search. Move
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ordering was also of key importance, since the solver used depth-first search: when H-search could

not find any opponent winning SCs, moves were ordered using Shannon’s electric circuit resistance

evaluation function (see§2.9.4); otherwise moves were ordered by mustplay size, breaking ties with

the circuit evaluation function. In 2007 Rasmussenet al. produced a faster automated solution by

having their algorithm keep track of connections that cannot be found by H-search [144].

However, before these automated results, in 2002 and 2003 Jing Yang had already weakly solved

the centre openings for 8× 8 and 9× 9 by hand [181]. In 2005 and 2006 Noshita and Mishima

et al. presented further manual 8× 8 opening solutions [125, 132]. Figure 2.14 summarizes these

results, with the omission of the single opening solved on 9× 9.

Figure 2.14: Previously solved opening moves. Colour of cell indicates winner if Black opens there.
8 × 8 openings were only solved by hand.

2.9.4 Automated Players

Another goal of Hex research is to develop strong automated players. Claude Shannon and E.F.

Moore developed the first automated Hex player in the 1950s, an electronic circuit network which

set positive charges for one player’s coloured cells, negative charges for the other player’s coloured

cells, and then played at a certain saddle point. The computer played strong opening moves but

sometimes erred in tactical situations [158]. Shannon alsodeveloped a computer to play Bird Cage,

now known as Bridg-it (see§2.8). This circuit network set the resistance of one player’s coloured

cells to zero, the resistance of the other player’s colouredcells to infinity, and then played at a cell

with greatest voltage drop [64].

In 2000 Anshelevich’s Hexy won the first Computer Olympiad Hex competition [9]. Hexy’s

evaluation function uses an augmentation of Shannon’s BirdCage circuit, in which extra wires are

added which correspond to VCs found by H-search [7]. Hexy uses this evaluation function in a

straightforward alpha-beta search.

Hexy’s strongest competitor was van Rijswijck’s Queenbee.Queenbee uses alpha-beta search

with selective extensions to search deeper on important lines, as well as some basic inferior cell

analysis. Its evaluation function is based on two-distance, an approximation of the shortest winning
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path after opponent resistance [169, 171].

Melis’ Six won the next three Computer Olympiad Hex competitions in 2003, 2004, and 2006

[80, 122, 177]. Six significantly refined Hexy’s framework byimproving H-search efficiency via

heuristic limits, using borders as AND rule midpoints, restricting the alpha-beta branching factor,

tuning the evaluation function, and pruning some dead cells[121]. Although Six only uses a trun-

cated 2-ply alpha-beta search, it is generally considered to be a strong player on boards up to 11×

11 [114].

Six’s strongest competitor was Haywardet al.’s Mongoose. Mongoose is another refinement of

the Hexy alpha-beta framework, and is superior to Six in terms of inferior cell analysis. However,

Mongoose’s H-search is not as strong as Six’s, and Mongoose searches to odd-ply depths, resulting

in worse performance than shallower even-ply depths [122].Another competitor was Rasmussen

et al.’s HexKriger, a learning program whose performance improved as the tournament progressed

[80].
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Chapter 3

Inferior Cell Analysis

When playing or solving the game of Hex, many cells can be pruned from consideration. As stated in

§2.9, this pruning can be performed by checking for local patterns and is quite effective. For instance,

simply colouring the captured cells of border bridge virtual connections resulted in a tenfold speedup

when solving all openings on the 7× 7 Hex board [83].

In this chapter we begin by generalizing previous inferior cell classes, and reformulating them

in terms of CGT. We then develop several new classes of inferior cell, including captured-reversible,

neighbourhood domination, induced path domination, permanently inferior, and investigate combi-

natorial decompositions. Lastly, we end with some notes on our implementation.

3.1 Generalized Definitions

We begin with two minor generalizations of existing inferior cell analysis.

Recall the definitions ofP vulnerable andP vulnerable-by-capture from§2.9. To unify these

two definitions, we define theP carrier of a P vulnerable cellc to be the set ofP captured cells

that help killerk renderc dead. If noP captured set is required to kill theP vulnerable cell (i.e., the

original definition ofP vulnerable), then theP carrier is simply the empty set.

Secondly, in all previous implementations of Hex inferior cell analysis, the fillin cells were only

computed once on the original position. However, by colouring fillin and repeatedly applying the

inferior cell patterns to thereduced position, much more fillin can be identified.

That is, for a positionH, a cell setF is fillin if F partitions into cell setsF1, . . . , Ft such that

eachFj is dead orPj captured in positionH+P1(F1)+ . . .+Pj−1(Fj−1), where eachPj is either

P or P ; this follows by simple induction. We defineP fillin to be fillin where onlyP ’s colour is

used to reduce the position.

In addition to iteration finding more fillin, it also allows usto generalize capture-domination

to fillin-domination: If positionH + P (c) hasP fillin F , then by monotonicity it follows that in

positionH the cellc P fillin-dominatesall cells inF . See Figure 3.1.
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Figure 3.1: Iteratively-computed fillin. Black-colouringBlack captured sets can lead to new Black
captured sets being identified.

3.2 CGT Reformulation

We now examine previous Hex inferior cell results through the lens of combinatorial game theory.

This will both motivate and simplify the formulation of someof our new classes of inferior cells.

Our first result is that aP vulnerable cell isP reversible:

Lemma 1 Let H be a Hex position with a cellc that isP vulnerable toP killer k with (possibly

empty)P carrier X. Thenc is P reversible inH, withP reverserk.

Proof: H ≥P H+P ({k}∪X) by monotonicity. Also,H+P (c)+P (k) ≡ H+P (c)+P ({k}∪

X) ≡ H+P ({k}∪X), sinceX isP captured andc is dead. Thus we haveH ≥P H+P (c)+P (k),

satisfying the definition ofP reversible. 2

From now on we refer to vulnerable cells asdead-reversible. Note that the pruning of dead-

reversible moves in Hex is stronger than the bypassing of reversible moves guaranteed by combina-

torial game theory.

Our second result shows that playing in one’s own captured set is equivalent to playing a pass

move:

Lemma 2 LetHP be a Hex state where playerP has a winning move to a cellc that isP captured.

Then positionH is aP win.

Proof: Let F be a set ofP captured cells inH, with c in F . ThenH ≡ H + P (F ), and

H ≥P H + P (c) ≥P H + P (F ) by monotonicity, soH ≡ H + P (c). But c is a winningP move

in HP , so(H + P (c))P is aP win, andH + P (c) ≡ H is aP win. 2

3.3 Captured-Reversible Moves

Just as knowledge of dead cells allows us to define dead-reversible cells, so knowledge of captured

cells allows us to define captured-reversible cells. The latter concept is somewhat counter-intuitive

since it is the opponent’s move that yields the player’s captured set.

Definition 1 A cell c in positionH is P captured-reversibleif there is a cellr such thatH + P (r)

hasP captured setF containingc.
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Lemma 3 Let cellc beP captured-reversible in Hex positionH. Then cellc is P reversible inH.

Proof: By Definition 1, there is aP mover in H that yieldsP captured setF containingc. By

monotonicity,H+P (r) ≥P H+P (c)+P (r) ≥P H+P (F )+P (r). By the definition of captured,

H + P (r) ≡ H + P (F ) + P (r), soH + P (r) ≡ H + P (c) + P (r). ThusH ≥P H + P (r) ≡

H + P (c) + P (r), satisfying the definition ofP reversible. 2

Captured-reversible cells are reversible, so they can be bypassed. However, we would like to

prune them from consideration completely, as is done with dead-reversible cells. Whether pruning

all captured-reversible cells always preserves position value is still an open question; however, we

now show sufficient conditions which allow some pruning.

For aP captured-reversible movem with P reverserr and resultingP captured setF , we call

F aP captured-reversible carrierof m. With respect to such selected reversersr1, r2 and carriers

F1, F2 of P captured-reversible movesm1,m2, we say thatm1 andm2 interfereif r1 is inF2 and/or

r2 is inF1. Thecaptured-reversible graphGγ(H,P ) of positionH for playerP is defined as follows:

• select a set ofP captured-reversible movesmj in H,

• for eachmj , select aP reverserrj and corresponding carrierFj ,

• vertices ofGγ(H,P ) correspond to the movesmj ,

• vertices are adjacent if and only if their corresponding moves interfere.

An independent vertex set inGγ(H,P ) is called anindependent captured-reversible setfor player

P in positionH.

Lemma 4 Let H1 be a Hex position with an uncoloured cellc and an independentP captured-

reversible setI1 = {m1, . . . ,mn}, where each captured-reversible cellmj has selectedP reverser

rj and carrierFj . Then in positionH2 = H1 + P (c) the setI2 = {mj ∈ I1 : c 6∈ {rj} ∪ Fj} is an

independentP captured-reversible set.

Proof: Eachmj in I2 is P captured-reversible inH2 sincerj remains a legal move forP , andFj

remains captured for any continuation ofH1 + P (rj) in which all cells inFj are uncoloured. In

defining the captured-reversible graphGγ(H2,P ), we can select the same reversers and carriers for

all cells inI2 to guarantee independence. 2

Theorem 1 LetH be a Hex position with a set of dead cellsD, a set ofP dead-reversible cellsV ,

and an independentP captured-reversible setI. If HP is a P win, then eitherP has a winning

move not inD or V or I, or HP is aP win.

Proof: Proof by contradiction. Let positionH be a counterexample with the smallest number of

uncoloured cells. Thus,P has some winning move inHP , but each such move is inD or V or I,
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andHP is aP win. ForHP , let W = {m1, . . . ,mn} be the set of winningP moves that are not

in D or V . Pruning dead and dead-reversible moves cannot eliminate all winning moves, soW is a

nonempty subset ofI.

For somemj ∈ W , let Tj = H + P (rj), whererj is theP reverser ofmj . By the definition

of captured-reversible, it follows thatTj ≡ H + P (mj) + P (rj); see the proof of Lemma 3. Since

(H + P (mj))
P is aP win, then(H + P (mj) + P (rj))

P ≡ TP
j is aP win. By monotonicity

Tj ≥P H, soTP
j is aP win.

Tj has fewer uncoloured cells thanH, soTj is not a counterexample to this Theorem. Thus in

positionTj , for any dead cell setDj , P dead-reversible cell setVj , and independentP captured-

reversible setIj , P has a winning move not inDj or Vj or Ij .

Recall that dead cells are dead in all continuations, andP dead-reversible cells are dead orP

dead-reversible in all continuations where onlyP -coloured cells are added. Thus we can select

Dj , Vj such thatDj ∪ Vj ⊇ (D ∪ V ) \ {rj}. Also, we can selectIj to be the set of cells inI whose

P reverser is notrj . Ij is an independentP captured-reversible set inTj by Lemma 4. Thus there

exists a winningP movem in TP
j that is not inDj or Vj or Ij .

SinceTj = H + P (rj), P movem is also winning inHP . Thus by our assumptionm is in

(D ∪ V ∪ I) \ (Dj ∪ Vj ∪ Ij ∪ {rj}) ⊆ I \ Ij . Thusm isP captured-reversible withP reverserrj

in H, meaning that it isP captured inTj . By Lemma 2, positionTj is aP win, a contradiction.2

If stateHP is aP win, then any legal move in stateHP is winning forP by monotonicity. Thus

we can apply Theorem 1 as follows: given a Hex position and a playerP for whom we are trying

to find a winning move, we can identify dead cells,P dead-reversible cells and an independentP

captured-reversible set, and prune all these inferior cells from consideration with the caveat that we

consider at least one legal move.

Figure 3.2: Black captured-reversible patterns. In each case a White move at the dotted cell results
in the empty cells being Black captured.

Using known captured patterns, we can identify captured-reversible patterns. See Figure 3.2.

Note that all of the above captured-reversible results can be generalized to fillin-reversible re-

sults, by replacingP captured sets withP fillin. Indeed, by definition fillin-reversible contains both

dead-reversible and captured-reversible. However, sincewe know of no local patterns that are fillin-

reversible but neither dead-reversible nor captured-reversible, we will only use these two subclasses.

26



3.4 Neighbourhood Domination

We define theclosed neighbourhoodof a locationl to be the union of its neighbourhood setN(l)

with itself, and this is denoted byN [l].

We define theBlack graph neighbourhoodof an uncoloured cellc in a Hex positionH to be the

set of uncoloured cells inH whose corresponding vertices are adjacent toc’s vertex in the Black

graph ofH; recall Figure 2.3. We define theBlack graph closed neighbourhoodof c in H to be the

union of its Black graph neighbourhood and{c}. We denote these asNB(c) andNB [c] respectively.

Similarly, we define theWhite graph neighbourhoodandWhite graph closed neighbourhoodwith

respect to the White graph of a position, and denote them asNW (c) andNW [c] respectively.

Definition 2 Let c1, c2 be uncoloured cells in Hex positionH. Then we say thatc1 P neighbour

dominatesc2 in positionH if (N [c1] → {U,P}) ⊇ (N [c2] → {U,P}).

Definition 3 Let c1, c2 be uncoloured cells in Hex positionH. Then we say thatc1 P graph neigh-

bour dominatesc2 if NP [c1] ⊇ NP [c2].

We begin by observing that neighbour domination implies graph neighbour domination:

Lemma 5 Let c1, c2 be uncoloured cells in Hex positionH such thatc1 P neighbour dominatesc2.

Thenc1 P graph neighbour dominatesc2.

Proof: Follows from the definition of theP Hex graph. 2

Next, we prove that graph neighbour domination is a form of domination:

Theorem 2 Let c1, c2 be uncoloured cells in Hex positionH such thatc1 P graph neighbour dom-

inatesc2. Thenc1 P dominatesc2.

Proof: In theP graphG for positionH + P (c1), the vertices(NP (c1))H form a clique. Thusc2

must be dead inG, as its neighbours form a clique. ThusH + P (c1) ≡ H + P (c1) + P (c2) ≥P

H + P (c2). 2

Corollary 1 Let c1, c2 be uncoloured cells in Hex positionH such thatc1 P neighbour dominates

c2. Thenc1 P dominatesc2.

Proof: Follows from Lemma 5 and Theorem 2. 2

By the proof of Theorem 2, neighbour domination and graph neighbour domination are really

just forms of fillin-domination. However, a benefit of these definitions is that, in addition to local

pattern matching, simple graph-theoretic algorithms can be used to identify domination, whereas no

such algorithm is known for capture-domination.
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1
2 3 4

5 6 7 8

Figure 3.3: Labelling of the 4-3-2 virtual connection carrier.

We also note that domination can be used not only to prune legal moves from consideration, but

also to deduce equivalences and inequalities among states.As an example, we assume we have a

Hex position with a 4-3-2 as labelled in Figure 3.3, and consider domination among various probe-

maintenance exchanges.

Corollary 2 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3.3.ThenH +

W (4) + B(2) ≥W H +W (3) +B(2).

Proof: In positionH + B(2), {5, 6} is Black captured, and so cell4 White neighbour dominates

cell 3. 2

Corollary 3 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3.3.ThenH +

W (2) + B(4) ≥W H +W (6) +B(4).

Proof: In positionH + B(4), {7, 8} is Black captured, and so cell2 White neighbour dominates

cell 6. 2

3.5 Induced Path Domination

Definition 4 LetH be a Hex position with uncoloured cellsc1, c2. Then we say thatc1 P induced

path dominatesc2 if, for each minimal setW of uncoloured cells inH that containsc2 and creates

a winning chain ifP -coloured, thenW also containsc1.

We wish to show that induced path domination implies domination. To do so we will usecom-

pletion Hex, which is identical to Hex except that the game terminates when there are no more

uncoloured cells. Due to the planarity of Hex, the winner of completion Hex is unique, and is iden-

tical to the winner of normal Hex. A benefit of considering completion Hex is that we can easily

modify strategy trees:

Definition 5 LetH be a Hex position with uncoloured cellsc1, c2, and supposeT1 is a strategy tree

for completion Hex whose root position isH + P (c1). Then the(c1, c2) exchange treeof T1 is the

tree obtained by exchangingc1 and c2 throughoutT1 (i.e., the root position becomesH + P (c2),

and every move toc2 in T1 becomes a move toc1).
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Lemma 6 LetH be a Hex position with uncoloured cellsc1, c2, and supposeT1 is a strategy tree

for completion Hex whose root position isH + P (c1). Then the(c1, c2) exchange treeT2 of T1 is a

valid completion Hex strategy tree for positionH + P (c2).

Proof: By definition of a strategy tree, inT1 each node with the losing player to move considers all

legal moves, and each node with the winning player to move considers a single move. Then inT2 the

board will again be played until completion, as the roles of cells c1, c2 have simply been exchanged

everywhere in the tree. Likewise, inT2 each node with the losing player to move considers all legal

moves, and each node with the winning player to move considers a single move. 2

Now we have the tools necessary to discuss induced path domination:

Theorem 3 Let H be a Hex position with uncoloured cellsc1, c2, and suppose thatc1 P induced

path dominatesc2. Thenc1 P dominatesc2 in H.

Proof: We wish to prove thatH+P (c1) ≥P H+P (c2). Assume for contradiction thatH+P (c2)

is aP win andH + P (c1) is aP win. The same must be true in completion Hex, so letT2 be the

P -winning strategy tree for positionH + P (c2), and letT1 be the(c2, c1) exchange tree ofT2.

Select aP -winning leaf nodel1 in T1, and letl2 be the corresponding leaf inT2. Sincel2 must be

P -winning, and sincel1, l2 can only differ on the colouring ofc1 andc2, then it must be the case

that l2’s P winning path(s) require cellc2. However, in all continuations ofH, all P winning paths

that usec2 must requirec1. This implies that bothc1 andc2 areP -coloured inl2, and so bothc1 and

c2 areP -coloured inl1. Thusl1 andl2 are identical, a contradiction. 2

Unfortunately induced path domination does not produce newpruning, because of the following

observation:

Lemma 7 LetH be a Hex position with uncoloured cellsc1, c2. If c1 P induced path dominatesc2,

thenc2 is P dead-reversible withP killer c1.

Proof: By the definition of induced path domination,c2 is dead in positionH + P (c1) since it can

no longer be on any minimal winning paths. 2

Note that the converse of Lemma 7 holds for dead-reversible cells with empty set carriers, but

does not necessarily hold for dead-reversible cells with non-empty carriers. Despite its pruning

redundancy, induced path domination is useful for deducingposition equivalences and inequalities.

As with neighbourhood domination, we illustrate this fact using probe-maintenance exchanges of a

4-3-2 VC:

Corollary 4 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3.3.ThenH +

W (2) + B(3) ≡ H +W (5) +B(3).
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Proof: In positionH + B(3), {6, 7} is Black captured, and so cells2 and5 White induced path

dominate each other. 2

Corollary 5 Let H be a Hex position with a Black 4-3-2 labelled as in Figure 3.3.ThenH +

W (1) + B(4) ≥W H +W (3) +B(4).

Proof: In positionH+B(4), {7, 8} is Black captured, and so cell1 White induced path dominates

cell 3. 2

Appendix A applies these neighbourhood domination and induced path domination 4-3-2 results

to prune 4-3-2 probes.

3.6 Permanently Inferior Cells

We now introduce a new kind of fillin: permanently inferior cells. Unlike with captured sets, the

strategy for maintaining permanently inferior cells extends beyond the set of cells that are coloured.

Definition 6 Let H be a Hex position with a setC ⊇ {c1, c2} of uncoloured cells such thatc1

is P dead-reversible toc2, and each cell inC \ {c2} is P dead-reversible to a killer and carrier

both contained withinC. Then we say thatc1 is P permanently inferior, and thatC \ {c1} is its

correspondingcarrier.

Figure 3.4: A Black permanently inferior pattern. The dotted cell is Black dead-reversible to the
shaded cell. The three unshaded cells are each White dead-reversible to the shaded cell, with the
other two unshaded cells being the killer’s carrier. Thus Definition 6 is satisfied, and so by Theorem 4
the dotted cell can be Black-coloured without changing the position’s value.

Figure 3.4 illustrates a Black permanently inferior pattern and its maintenance strategy against all

possible White probes. Figure 3.5 shows the other two known Black permanently inferior patterns.

Theorem 4 LetH be a Hex position with aP permanently inferior cellc1. ThenH ≡ H + P (c1).

Proof: By monotonicity,H ≥P H + P (c1), so we need only prove thatH + P (c1) ≥P H. So

suppose thatP has a winning strategy onH. ThenP has a winning strategy forH in which P

never plays a dead orP dead-reversible cell. Letc2 andC be as in Definition 6. Notice that the

uncoloured cells ofC \ {c2} remainP inferior in any continuation fromH in which P has not

coloured any cell ofC \ {c2}; that is, they will each remainP dead-reversible or become dead. It

follows that ifP ever plays inC, then their first such move is toc2, at which pointc1 is dead. Thus
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P ’s winning strategy forH never requires them to play atc1, and so their winning strategy also

applies to positionH + P (c1). 2

Figure 3.5: Two more Black permanently inferior patterns. In each case, colouring the dotted cell
Black does not alter a position’s value.

Thus permanently inferior cells are a new type of fillin, and so we can generalize the definitions

of fillin, P fillin, fillin-domination, and so on in the expected manner. The permanently inferior

pattern shown in Figure 3.4 is quite common, as colouring a border bridge’s captured carrier often

creates this pattern.

Figure 3.6: Fillin strategy conflict. Black has a border bridge with captured carrier. From this, Black
deduces permanently inferior fillin, and then two more Blackcaptured cells. White can play a cell
intersecting both the permanently inferior carrier and a captured set. Since the permanently inferior
cell was deduced first, its corresponding strategy must be followed (i.e., the dotted cell should be
played).

Because the strategy for permanently inferior cells extends beyond the coloured cell, the winning

strategy on the original board cannot be a straightforward (i.e., disjoint) combination of the fillin-

reduced board strategy with the permanently inferior strategy. Indeed, even among the fillin patterns

themselves there could be a conflict regarding the strategy on certain cells. Such conflicts can be

resolved so long as the fillin deduction order is recalled, and the strategy of the earliest applicable

fillin is applied. See Figure 3.6.

Theorem 5 LetH be a Hex position withP fillin F that partitions into cell setsF1, . . . , Ft such that

eachFj is dead,P captured, orP permanently inferior in positionH+P1(F1)+ . . .+Pj−1(Fj−1).

ThenP can maintainF on its carrier (i.e., the union of theFj carriers) by responding to each

P probe ofF ’s carrier with the move recommended by the earliest-deduced Fj that demands a

response.

Proof: Any P fillin Fj — dead, captured, or permanently inferior — that demands a response,

always produces a move that kills the probingP -coloured cell in positionH + P1(F1) + . . . +

Pj−1(Fj−1). Thus the result of any such exchange is equivalent to recolouring theP -coloured cell

with P ’s colour, assuming all previously deducedP fillin is maintained. Further, extraP -coloured
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cells can never obstruct aP strategy, so anyP fillin successor ofFj must still have a valid strategy.

2

In Appendix B we apply this new fillin to produce an efficient and explicit handicap strategy for

Hex. Permanently inferior patterns can also help prove the equivalence of two moves in the acute

corner:

Corollary 6 Let H be a Hex position with an acute corner as in Figure 3.7. ThenH + B(a) ≡

H +B(b).

Proof: In positionH + B(a), cell b is dead, soH + B(a) ≡ H + B({a, b}) ≥B H + B(b).

In positionH + B(b), cell a is Black permanently inferior, soH + B(b) ≡ H + B({a, b}) ≥B

H +B(a). 2

a
b

Figure 3.7: Acute corner cell equivalence. If Black claims cell a, then cellb is dead. If Black claims
cell b, then cella is Black permanently inferior.

3.7 Combinatorial Decompositions

3.7.1 Chain Decompositions

Thus far we have discussed inferior cells that can be pruned.Now we examine combinatorial decom-

positions of Hex positions. In particular, we focus our attention on combinatorial decompositions

created by chains partitioning the uncoloured regions of the board:

Definition 7 Let H be a Hex position, and letG be the (Black or White) Hex graph of the initial

Hex board. Delete all vertices inG corresponding to elements of chains inH. Then the resulting

graph is called thechain deleted Hex graphofH.

Note that the set of deleted vertices includes all borders, and thus the resulting graph is identical

regardless of whetherG is the Black or White Hex graph. Thus the chain deleted Hex graph is

well-defined.

Definition 8 LetH be a Hex position and letG be its chain deleted Hex graph. SupposeG has com-

ponentsU1, . . . , Uk (k ≥ 0). Then these components correspond to a partitioning of theuncoloured

cells inH, and so we call eachUi an uncoloured componentofH.

Given a Hex positionH, we define itschain component graphas follows:
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• The chain component graph is bipartite, with vertices in onepart corresponding to chains of

H, and vertices in the other part corresponding to uncolouredcomponents ofH.

• The vertex corresponding to chainCi is adjacent to the vertex corresponding to uncoloured

componentUj if and only ifN(Ci) intersectsUj .

Definition 9 LetH be a Hex position. We call a set of uncoloured cells anuncoloured regionof H

if it is the union of one or more ofH ’s uncoloured components.

Definition 10 Let H be a Hex position with chainC and regionR. We say thatC and R are

adjacentin H if C is adjacent to one or more ofR’s uncoloured components in the chain component

graph ofH.

Definition 11 Let H be a Hex position with chainC and regionR. ChainC is internal to R if it

does not contain a border, and it is adjacent only to uncoloured components contained withinR.

Definition 12 Let H be a Hex position with regionR. Then thechain boundaryof R is the set of

chains inH that are adjacent toR and not internal toR.

These concepts are illustrated in Figure 3.8. For instance,the region defined by uncoloured com-

ponent 6 has one internal chain and seven boundary chains, while the region defined by uncoloured

components 5–7 has eight internal chains and eight boundarychains.

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

2 2
3 3

4 4
5 5

2 2
3 3

4 4
5 5

2 2
3 3

4 4
5 5

2 2

5

2
6 6 6 6

7 7
5

6 6 6
7 7 7

5

5

5 5

5 5 5 5 5 5 5 5 5 5 5

Figure 3.8: A Hex position with seven uncoloured components. The label of an uncoloured cell
indicates its membership among the uncoloured components.The label of a coloured chain indicates
that it is an internal chain of the region defined by the corresponding uncoloured component.

Informally, the chain boundary of a region is the set of chains through which the region’s un-

coloured cells can interact with the rest of the board. In other words, the rest of the board only

perceives what occurs in this region by how it affects connections between its boundary chains. We

now express this formally:

Lemma 8 LetH be a Hex position with regionR, and letW = {l1, . . . , lj} be a winning path in

H such thatlx ∈ R for some1 ≤ x ≤ j. Let ly be the first successor oflx in W that is neither

uncoloured, nor an element of an internal chain ofR. Thenly is an element of a boundary chain of

R.
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Proof: First we note thatly is well-defined sincelj is a boundary, and sox < j since lx is

uncoloured, and alsolj is not uncoloured nor an internal chain of any region by Definition 11. Thus

x < y ≤ j, and the subpathWx = (lx, . . . , ly−1) can only be composed of uncoloured cells and

elements of internal chains ofR.

By the definition of uncoloured components, consective uncoloured cells ofWx must remain

in the same uncoloured component. By the definition of chains, any consecutive same-coloured

cells must be part of the same chain. SinceW is a winning path, transitions between opposite-

coloured cells are impossible. Finally, since all internalchains ofR are only adjacent to uncoloured

components inR, then any transitions from uncoloured cells to coloured cells or vice-versa remain

confined to elements ofR and internal chains ofR. ThusWx is restricted to elements of uncoloured

components and internal chains ofR.

If ly−1 is coloured, thenly must be the same colour, sinceW is a winning path. This is impos-

sible, asly would then be an element of the same chain asly−1, contradicting the selection ofly.

Thusly−1 is uncoloured and an element ofR, while ly is coloured, and not an element of an internal

chain ofR. So by definition the chain containingly is a boundary chain ofR. 2

By symmetry, the same argument holds for the last predecessor of lx in W that is neither un-

coloured, nor an element of an internal chain ofR.

Definition 13 Let H be a Hex position with regionR and let Cx, Cy be distinct same-colour

chains inR’s chain boundary. Then aninterboundary connectionin R with endpointsCx, Cy is

a monochromatic path connectingCx, Cy whose non-endpoint locations are each contained within

R or internal chains ofR.

Definition 14 LetH be a Hex position with regionR. We say that completionsR1, R2 ofR are in-

terboundary equivalentif for all pairs of same-colourR bounding chainsCx, Cy, an interboundary

connection inR with endpointsCx, Cy exists inR1 if and only if it exists inR2.

Figure 3.9: A region and two interboundary equivalent completions.

Lemma 9 LetH1 be a Hex position with regionR, and letH2 andH3 be completions ofH1 that

are identical on(H → U) \ R and interboundary equivalent onR. Then the winner ofH2 is the

winner ofH3.
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Proof: Assume for contradiction that this is not the case. So there exists aP winning pathW that

exists inH2, but noP winning path exists inH3. SinceH2 is identical toH3 on all cells outside

of R, it must be the case thatW intersectsR. By Lemma 8 we know that any element ofR in W

is bounded by two elements of boundary chains ofR. SinceH3 is interboundary equivalent toH2,

we can substitute its own interboundary connections for each of these bounded segments, thereby

producing aP winning path onH3. Contradiction. 2

In other words, such regions allow us to combinatorially decompose strategies. Thus we define

a chain decompositionin a Hex position to be a two-tuple of a region and its corresponding chain

boundary.

3.7.2 Generalized Chain Decompositions

We now show that we can further decompose some uncoloured components while still maintaining

the desired decomposition properties.

Definition 15 Let c1, c2 be uncoloured neighbours in Hex positionH. If cellsc1, c2 are also neigh-

bours of some Black chainCB and some White chainCW , then we say that they aredouble chain

adjacent.

Figure 3.10: An opposite-colour bridge.

For instance, the carrier cells of an opposite-colour bridge — that is, a bridge VC whose end-

points are opposite-coloured cells — are double chain adjacent. See Figure 3.10.

Lemma 10 Let H1 be a Hex position with double chain adjacent cellsc1, c2, and letH2 be a

completion ofH1 with aP winning path. Then there exists aP winning path inH2 wherec1 andc2

are not consecutive locations.

Proof: If a P winning path inH2 hasc1, c2 as consecutive locations, then a newP winning path

can be constructed by rerouting the path through the elements of aP -coloured chain that neighbours

bothc1 andc2 in H1. 2

Theorem 6 Let us redefine the chain deleted Hex graph of a positionH so that edges between

double chain adjacent cells are also deleted. Then Lemma 9 still holds.

Proof: All definitions except Definition 7 remain the same. Lemma 8’sproof is no longer valid,

since there can exist winning paths that avoid boundary chains by containing consecutive double
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chain adjacent cells. However, we can apply Lemma 10 to produce a winning path without consecu-

tive double chain adjacent cells, and Lemma 9’s interboundary connection replacement proof is still

valid on this new winning path. 2

The new chain deleted Hex graph has the same vertex set as the original, but a subset of the

edges. Thus the number of uncoloured components can only increase, and thus the number of chain

decompositions can only increase. We generalize the definition of chain decompositions accord-

ingly.

The simplest chain decomposition is one where the region is the set of all uncoloured cells.

In this case the chain boundary is the set of four chains containing borders; all other chains are

internal by definition. This particular chain decomposition cannot help us decompose our strategy,

but it does imply the PSPACE-completeness of determining the existence of a first player or second

player interboundary connection strategy.

Figure 3.11: A Black split decomposition and two corresponding regions.

Another simple chain decomposition is the split decomposition, in which three boundary chains

contain borders and one boundary chain does not contain a border.

Definition 16 AP split decompositionis a chain decomposition whose chain boundary is composed

of twoP chains, each containing a distinctP border, and twoP chains, exactly one containing a

singleP border.

See Figure 3.11. Note that in this example, the split decomposition uses the generalized results

obtained via double chain adjacent cells. Since only the interboundary connections of this region

matter, then eitherP has a strategy to form a winning chain in this region, or elseP can simply let

P claim all of its uncoloured cells. We formalize and generalize this concept in the next section.

3.7.3 Dead and Captured Regions

Lemma 11 LetH be a Hex position with regionR, such thatR’s chain boundary contains at most

one Black chain and at most one White chain. Then all cells inR are dead.

Proof: Since interboundary connections require two distinct chain endpoints, then no interboundary

connections are possible inR. Hence, all completions ofR are interboundary equivalent, and thus

by Lemma 9, changing the colour of any cell inR does not change the winner of a completion of

H. Thus all cells inR are dead. 2
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Figure 3.12: Two dead chain decomposition regions.

See Figure 3.12. Lemma 11 is subsumed by the previous knowledge that cells isolated by clique

cutsets are dead, since the uncoloured neighbours of a chainform a clique. However, this result

leads naturally to the concept of captured chain decomposition regions:

Theorem 7 Let H be a Hex position with regionR, and assume playerP has a second player

strategy onR that preventsP from making any interboundary connections. ThenR is P captured.

Proof: If P follows this second player strategy onR, then anyP -coloured cells inR are not on any

interboundary connection, and thus cannot be on anyP winning path. It follows that anyP -coloured

cells must be dead in the leaf of this strategy tree onR, which satisfies the definition of aP captured

set. 2

Figure 3.13: A Black captured chain decomposition region.

See Figure 3.13. Since aP captured set can beP -coloured, then it follows that a second player

strategy on regionR to prevent anyP interboundary connections is equivalent to a second player

strategy on regionR to maximize theP interboundary connections. Also, anyP move that creates

aP captured regionR capture-dominates all uncoloured cells inR.

3.7.4 Star Decomposition Domination

Of course, not all chain decomposition regions are settled.We consider the simplest unsettled case,

where both players have a first player strategy to capture theregion. The first move of such a

strategy captures the region, and so capture-dominates allother moves in the region. It follows that

each player need consider only one move in the region, and thefirst to play their corresponding

move captures the entire region. Due to the strategic resemblance to the surreal number∗ = {0|0},

we call such a chain decomposition astar decomposition.
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Definition 17 A chain decomposition(R,C) is a star decompositionif each player has a move in

R that captures the region for themself.

Unlike with captured regions, the move that creates a star decomposition need not dominate all

cells inside the region. However, some domination can be deduced by determining when additional

coloured cells in the region do not affect either player’s strategy.

Theorem 8 LetH be a Hex position such that aP movem yields a star decomposition with corre-

sponding regionR. LetQ ⊆ R be a set of cells on whichP has a first player strategy to prevent all

P interboundary connections inR. Then inH, m P dominates every cell inR \Q.

Proof: If we can prove thatH + P (m) ≡ H + P (m) + P (R \ Q), then the result follows

by monotonicity. Since the cells inR \ Q are within the star decomposition, they can only affect

interboundary connection strategies withinR.

If P is the first to play inside the star decomposition region, then R becomesP captured, so the

P -colouring of cellsR \Q did not alter the position’s value as they would be assigned toP in either

case.

If P is the first to play insideR, thenQ becomesP captured sinceP ’s additional cells do not

obstructP ’s strategy, and this strategy still prevents allP interboundary connections by definition.

Thus theP -coloured setR \Q is dead, or equivalently, by Lemma 9 the resulting completion of R

is interboundary equivalent toP -colouring all ofR. Thus once again theP -colouring ofR \Q did

not alter the position’s value. 2

In other words,P ’s star decomposition strategy is not adversely affected byP -colouringR \Q.

Corollary 7 Let H be a Hex position such that aP movem creates a star decomposition with

regionR. LetI ⊆ R be the set of cells intersecting all ofP ’s first player strategies to prevent allP

interboundary connections onR. Then inH, m P dominates every cell inR \ I.

Proof: By repeated application of Theorem 8 to every such first player strategy forP . 2

Figure 3.14: Star decomposition domination. In each case a Black move to the shaded cell forms a
star decomposition and dominates a Black move to any of the dotted cells.

Star decompositions arise frequently, allowing us to pruneseveral moves that cannot otherwise

be pruned. See Figure 3.14.
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3.8 Algorithms

Thus far we have established the theory for several new typesof inferior cell, as well as chain

decomposition properties. We now discuss how these ideas can be efficiently incorporated into our

Hex program.

3.8.1 Local Patterns

By far the simplest extension is simply adding new local inferior cell patterns to the existing library.

This method was adopted for captured-reversible and permanently inferior cells, as well as for the

common 4-3-2 VC star decomposition domination shown in Figure 3.14.

Since the acute corner often leads to much fillin and other deductions — see for instance Fig-

ures 3.1 and 3.7, as well as Appendix A — several such patternswere added as well.

Some inferior cell patterns in the original set generated byvan Rijswijck are not minimal, in that

they specify the colour of a cell that is irrelevant to the conclusion of inferiority. The pattern library

was revised (by hand) to reduce such inefficiencies.

In an attempt to fix these deficiencies, an automated algorithm was developed with Laurie Char-

pentier and Broderick Arneson to compute all minimal dead patterns of a bounded size. The current

implementation is somewhat slow: it requires roughly one month to identify all dead patterns of

radius at most two. However, new minimal dead cell patterns were identified, so further work in this

area could be beneficial.

3.8.2 Graph-Theoretic Inferior Cell Analysis

As mentioned earlier, neighbourhood domination and induced path domination are subsumed by

existing inferior cell analysis, but they provide the benefit that they can be identified using simple

graph-theoretic properties. Likewise, dead and dead-reversible cells can be identified via graph-

theoretic algorithms, and we added such algorithms to supplement the local patterns.

For instance, any cell isolated by a clique cutset is dead, and the uncoloured neighbours of a

chain form a clique in the same-coloured Hex graph. Thus a basic check for dead cells is whether

some subset of the neighbours of a chain forms a cutset. A simple linear-time search on the graph

can check this for each chain, and since there are at most a linear number of chains in the size of the

board, then in quadratic time we can find all such dead cells.

Likewise, if all but one of the neighbours of a cell are neighbours of someP chain, then it

follows that the cell isP dead-reversible, since aP move to the exception neighbour results in a

clique cutset separating that cell. Such reasoning need notbe restricted to the board neighbourhood,

but can also be applied to the cell’s neighbourhood in the Black and White Hex graphs.

Since the dead, dead-reversible, and neighbourhood domination algorithms all rely on knowl-

edge of chains’ uncoloured neighbours, this information need only be computed once. For instance,

a cell is dead-reversible if the set subtraction of a chain’sneighbourhood and a cell’s neighbourhood
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has size one, and one cell dominates another if the set subtraction of their neighbourhoods is the

empty set.

Lastly, two dead-reversible cells that are each other’s reverser form a captured set so long as their

respective carriers do not conflict. Thus combining the graph-theoretically identified dead-reversible

cells with existing dead-reversible local patterns results in more captured cells being identified as

well.

3.8.3 Backing Up Domination

As stated earlier, we generalize capture-domination to fillin-domination, recursively identify and

colour fillin, and obtain captured regions from chain decompositions. To identify all these different

types of fillin-domination, we simply compute the fillin for successor states, and return the resulting

domination deductions to the immediate predecessor. This is particularly natural in various forms

of search, such as depth-first search, alpha-beta search, and so on; it can be more costly in other

settings.

We use any returned domination information to produce a directed domination graph, and select

a set of dominating representatives, pruning all other cells from consideration. The set of dominating

representatives is currently selected heuristically, andso not necessarily a minimum set.

3.8.4 Decomposition Algorithms

The identification of dead regions is already performed by the aforementioned chain clique cutset

algorithm, so we are predominantly concerned with capturedregions and star decomposition domi-

nation. However, both of these require knowledge of strategies that prevent opponent interboundary

connections, for which there is no known methodology. Furthermore, identifying such strategies is

PSPACE-complete.

However, blocking all opponent interboundary connectionsis equivalent to maximizing one’s

own interboundary connections, and connection strategy information is available via H-search. Thus

we restrict our identification of decomposition regions as follows:

Definition 18 We say that two opposite-coloured chains in a Hex positiontouch if they are neigh-

bours, or if they contain the endpoints of an opposite-colour bridge.

Definition 19 A four-sided decompositionis an uncoloured region whose chain boundary is a4-

cycle of touching chains.

In a four-sided decomposition with regionR, a VC to connect two of the same-coloured bound-

ing chains is a second player strategy to prevent the opponent from producing any interboundary

connections inR. In other words, the existence of a VC for playerP whose carrier is a subset of

R and whose endpoints are the boundingP chains implies thatR is P captured. Likewise, if both
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players have interboundary connection SCs in a four-sided decomposition, then it is a star decom-

position.

Touching chains can be identified using chain neighbourhoods and a simple linear-time scan for

opposite-colour bridges. Given this bipartite graph of Black and White chains, with edges connect-

ing touching chains,4-cycles can be found efficiently, especially when confined topairs of chains

with connecting VCs/SCs. Since the carrier of the VC/SC is known, we need only check that it is a

subset of the region defined by the4-cycle.

Figure 3.15: Captured non-chain decomposition: White maintaining the shaded VC (and the border
bridge) creates a clique cutset in the White Hex graph, and socaptures the shaded and dotted cells.

More generally, if twoP -coloured chains are VC-connected, and if the union of theirneighbours

forms a cutset that isolates the VC carrier, then the VC carrier isP captured. This follows since any

probes of the VC must be dead once the connection is complete,and in fact this simple algorithm

can also identify captured combinatorial decompositions that are not chain decompositions. See

Figure 3.15.

Star decomposition domination is identified similarly, except SCs internal to the region must be

identified for both chain boundary pairs. The identificationof such SC carriers allows for fillin by

the proof of Theorem 8, and the corresponding domination information can be passed back to the

predecessor state.

H-search is costly, but if it is being performed anyhow, the resulting connection strategies might

as well be used to identify more captured sets and dominated moves. This marks the first time that

VC/SC information is used for inferior cell analysis.

41



Chapter 4

Connection Strategy Algorithms

As mentioned in§2.9.2, H-search provides many benefits to Hex programs, suchas mustplay pruning

and early search termination. Recall that H-search is incomplete, while generalized H-search is far

too slow. Thus a natural question is whether there exist extensions of H-search that identify more

connections without increasing the time cost by too great a factor.

Analyzing the performance of H-search is rather difficult, since the number of iterations depends

on the number of deduced connections, and thus varies greatly according to both position connec-

tivity and algorithm completeness. Thus we focus our attention on the computational complexity of

each deduction rule, rather than the algorithmic frameworkas a whole.

Deduction rule Computational complexity
AND rule O(n3l2V )
OR-3 rule O(n2l3S)
OR-4 rule O(n2l4S)

Table 4.1: Computational complexity of H-search deductionrules.

In our analysis we assume that H-search is implemented as in Six (Melis’ automated Hex player;

see§2.9.4), with heuristic limits on the number of VCs/SCs between each pair of locations that

are used by the deduction rules, and with the VCs/SCs sorted by carrier size so that preference is

given to connection strategies with smaller carriers. We also assume that the OR rule has a limit

on the number of SCs it may consider at one time (excepting theOR-all rule). We denote the

number of locations byn, and the heuristic limits for VCs and SCs bylV andlS respectively. The

computational complexity of existing deduction rules is shown in Table 4.1. We note that for Six,

the parameterslV andlS are ten and twenty-five respectively [121].

4.1 Partition Chains and the Crossing Rule

Anshelevich proved the incompleteness of H-search using the SC shown in Figure 2.12. We call

SCs of this formbraids, as the substrategies are intertwined together; that is, a braid is an SC that
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decomposes into VCs between each of{a, x}, {b, y}, and SCs between each of{x, y}, {x, b},

{a, y}. Thus a naive algorithm for identifying braids is the following:

1. Select four non-opponent coloured locations, denoted asa, b, x, andy.

2. For each sucha, b, x, y, find the following connection strategies, ensuring their carriers are

pairwise disjoint:

• A VC with endpoints{a, x} and carrierC1.

• A VC with endpoints{b, y} and carrierC2.

• A SC with endpoints{x, y} and carrierC3.

• A SC with endpoints{x, b} and carrierC4.

• A SC with endpoints{a, y} and carrierC5.

3. Whenever five such connection strategies are found, conclude that there exists an SC with

endpoints{a, b}, carrierC1 ∪ · · · ∪ C5 ∪ {x, y}, and keyx (or keyy).

This naive braid deduction rule isO(n4l2V l
3
S), and thus far slower than all previous deduction

rules. In the remainder of this section we develop the crossing rule, a deduction rule to identify some

braids far more efficiently.

4.1.1 Partition Chains

To describe the crossing rule, we first need to describe partition chains of connection strategies.

Definition 20 Let V be a connection strategy with endpoints{p1, p2} and carrierC. Then apar-

tition chainof V is a chainZ for which there exists a partitionC1, C2 of carrier C such that the

following holds, with possible relabelling ofV ’s endpoints:

• C1 is the carrier of a VC fromZ to p1.

• If V is a VC, thenC2 is the carrier of a VC fromZ to p2.

• If V is a SC, thenC2 is the carrier of a SC fromZ to p2.

+

Figure 4.1: A VC and SC with partition chains and a VC with none.

Thus a partition chain decomposes a connection strategy into two disjoint connection strategies.

See Figure 4.1. We now describe thePC algorithm, which computes partition chains for each

connection strategyC, denoted asPC(C), and works in parallel with H-search:
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1. LetV be a base case connection strategy. ThenPC(V ) = ∅.

2. LetV be a VC computed via the OR rule from SCsS1, . . . , Sk. ThenPC(V ) = ∅.

3. Let S be an SC with keyk computed via the AND rule from VCsV1, V2 with uncoloured

midpointk. ThenPC(S) = PC(V1) ∪ PC(V2).

4. LetV be a VC computed via the AND rule from VCsV1, V2 with chain midpointZ. Then

PC(V ) = PC(V1) ∪ PC(V2) ∪ {Z}.

We now prove the correctness of the PC algorithm:

Lemma 12 LetV be a connection strategy with endpoints{p1, p2} and carrierC. Then any chain

Z in PC(V ) is a partition chain ofV .

Proof: Proof by induction: The statement holds vacuously for any connection strategyV for which

PC(V ) is the empty set. Thus by the definition of the PC algorithm, the statement holds for all base

case connection strategies and VCs computed via the OR rule.Thus letV be a connection strategy

deduced via the AND rule from VCsV1, V2.

If V is a VC, then its midpoint in the AND rule deduction is a chainY , and soPC(V ) =

PC(V1)∪ PC(V2)∪ {Y }. For partition chainZ = Y , the statement clearly holds for a partition of

C into the carriers ofV1 andV2.

If Z ∈ PC(V1), thenV1 must be computed via the AND rule since it is a VC with a non-empty

partition chain set. By the induction hypothesis, the carrier ofV1 can be partitioned byZ into VCs

A andB, whereA is a VC with endpoints{p1, Z} andB is a VC with endpoints{Z, Y }. By the

AND rule, combiningB with V2 over midpointY forms a VCV3 with endpoints{Z, p2}, and thus

the statement holds forZ with a partition into the carrier ofA and the carrier ofV3. By symmetry,

the statement holds for anyZ ∈ PC(V2). The proof is similar ifV is an SC deduced by the AND

rule, so the result follows from mathematical induction. 2

1

1

2

2
2

2

21
1

Figure 4.2: Illustrating Lemma 12. The carrier of a connection strategy can be partitioned into two
connection strategies using a partition chain as an intermediate endpoint.

It is an open question whether the PC algorithm can be generalized to identify more partition

chains. We now apply Lemma 12 to produce the crossing rule.
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4.1.2 The Crossing Rule

Observe in Figure 4.3 that if the endpoints{a, b} of a braid are same-coloured chains, then the braid

‘untangles’ into three pairwise carrier-disjoint SCs withuncoloured endpoints{x, y} such that two

of these SCs have at least one distinct partition chain. We now formally prove that finding two

uncoloured cells with three such SCs is sufficient to conclude the existence of an SC between pairs

of distinct SC partition chains.

x y

2

3

1

a

b

1 1 1
x 3 y

2 2 2

a

b

1 1 1
x 3 y 2

2 2 2 2
2 2 2 2 2 2

a

b

Figure 4.3: Crossing Rule SCs. Forj = 1, 2, 3, cells labelledj form carrierCj of SC Sj with
endpoints{x, y}, whereS1 andS2 have distinct partition chains. By Theorem 9 we conclude the
existence of an SC with endpoints{a, b}.

Theorem 9 Consider a Hex position with SCsS1, S2, S3 with pairwise disjoint carriersC1, C2, C3

each with uncoloured endpoints{x, y}. Further, assume that bothZ1 = PC(S1) \ PC(S2) and

Z2 = PC(S2) \ PC(S1) are nonempty. Then for any chainsz1, z2 in Z1, Z2, there exists an SC

with endpoints{z1, z2} whose carrier is{x, y} ∪ C1 ∪ C2 ∪ C3 and with keyx or keyy.

Proof: By Lemma 12, we can partitionS1’s carrier using partition chainz1 into VCV1 and SCW1.

Likewise, we can partitionS2’s carrier using partition chainz2 into VC V2 and SCW2.

If VCs V1, V2 have a common endpoint, without loss of generality sayx, then by the AND rule

there exists an SC with endpoints{z1, z2}, key x, and whose carrier is the union of{x} with the

carriers ofV1, V2. This SC satisfies the claim with a smaller carrier, so clearly the statement holds

for any larger carrier.

If VCs V1, V2 have no common endpoint, then without loss of generality we can assume thatV1

connectsz1 to x andV2 connectsz2 to y. It follows thatW1 connectsz1 to y andW2 connectsz2

to x. By construction the carriers ofV1,W1, V2,W2 andS3 are all pairwise carrier-disjoint, so the

stated SC strategy is as follows:

1. Play keyx as the first move.

2. Thereafter maintain VCsV1, V2 against all probes.

3. Consider the opponent’s first probe of this SC that is external toV1 andV2:

• If the probe is also external toW2, then playing the key ofW2 completes the connection

from z1 to x to z2 via V1 andW2.
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• Otherwise, respond to the probe ofW2 with y. Note thaty has two disjoint SCs toz1 —

W1, and the AND rule deduction overx of S3 andV1 — and thusy has a VC toz1. y

also has a disjoint VC toz2 via V2, so by the AND rule this maintenance results in a VC

betweenz1 andz2.

Thus in both cases there exists an SC with endpoints{z1, z2}, keyx or keyy, and carrier{x, y}∪

C1 ∪ C2 ∪ C3. 2

Note that in the first case of Theorem 9’s proof, an SC with a smaller carrier is deduced via

the AND rule. Since it is common for H-search implementations to discard duplicate connection

strategies with superset carriers, this case is not relevant in practice as the crossing rule’s output SC

will be discarded.

Note that in the second case of Theorem 9’s proof, the partition is symmetric with respect to

uncoloured cellsx andy (simply interchange thez1, z2 labels), and thus eitherx or y can be the key

in this case.

Note also that Theorem 9 applies to any suchz1, z2, and the deduced SC’s carrier and key are

identical for all such chain endpoint pairs. Thus only one carrier and key need to be computed, and

the ‘same’ SC can be added to various endpoints.

Lastly, note that the crossing rule is a unique deduction rule in that its input connection strategies

share no endpoints with the output deduced connection strategy. Thus in some sense the AND rule

and OR rule make parallel deductions, while the crossing rule makes orthogonal deductions. This

is an interesting property of partition chains, and it remains to be seen whether additional deduction

rules can be produced using this information.

4.1.3 Incorporating the Crossing Rule into H-search

In order to incorporate the crossing rule into H-search, we need to incorporate the PC algorithm

into H-search. Thus we need to consider both the time and space effects of incorporating the PC

algorithm, as well as the computational complexity of the crossing deduction rule.

Firstly, each connection strategy currently needs to trackits endpoints, carrier, and possibly key.

When adding partition chains, we can choose either to track all of them, or to track only a bounded

number. The former requires storage of a set of locations (similar to how the carrier is stored)

despite the fact that most connection strategies will have no partition chains. The latter requires only

a modest increase in our memory requirements, but forces a choice of which partition chain(s) to

retain. Since memory is not a bottleneck for our Hex program,we opted for the (simpler and more

complete) first solution.

Secondly, the PC algorithm will not worsen the computational complexity of H-search’s base

case or deduction rules:

Lemma 13 H-search’s computational complexity is not altered by incorporating the PC algorithm.
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Proof: For each base case connection strategyC, PC(C) = ∅, which is no more computationally

complex than carrier initialization. For each OR rule deduced connection strategyC, PC(C) = ∅,

which is no more computationally complex than its carrier union and intersection operations. For

each AND rule deduced connection strategyC, PC(C) is the union of input partition chain lists,

which is no more computationally complex than its carrier union and intersection operations. 2

By Theorem 9 the crossing rule requires the identification oftwo uncoloured cells with three

pairwise carrier-disjoint SCs connecting them, two with distinct partition chains. In terms of board

size and the heuristic limits for SCs and VCs, it follows thatthe crossing rule computational com-

plexity is O(n2l3S). Recall from Table 4.1 that this is comparable to existing H-search deduction

rules, and roughly the square root of the naive braid deduction rule discussed in§4.1.

We also need to extend the PC algorithm to connection strategies deduced via the crossing rule;

we do so in the simplest way possible:

• Let S be a SC computed via the crossing rule from SCsS1, S2, S3. ThenPC(S) = ∅.

Note that Lemma 12 and Theorem 9 can easily be extended to H-search with the crossing rule,

as the former holds vacuously for any connection strategy with no partition chains.

Lastly, since the crossing rule applies only when connection strategies have partition chains, in

practice almost all crossing rule deductions involve a border. For this reason, the crossing rule is

only really useful when H-search uses border chains as midpoints of the AND rule.

4.2 Carrier Intersection on Captured Sets

Note that the connection strategy deduction rules discussed thus far — AND rule, OR rule, and

crossing rule — all require the carriers of input connectionstrategies to be disjoint, either pairwise or

collection-wise. If this restriction is relaxed and some intersections are allowed, this could increase

the number of connection strategies deduced by these rules.Using this idea, we now improve H-

search by using inferior cell analysis, namely by considering captured sets.

4.2.1 Key Captured Sets

As mentioned in§3.1, fillin is computed iteratively, so all (identifiable) captured cells are already

coloured. Since the carriers of connection strategies are sets of uncoloured cells, carrier intersection

cannot involve cells that are currently captured.

However, for SCs the player with the connection strategy is assumed to move first, and thus we

can consider the captured set of its key. If this key capturesa set that eliminates carrier intersection,

then the connection strategy is valid:

Theorem 10 LetV1, V2 be VCs for playerP with carriersC1, C2 and endpoints{l1, l2} and{l2, l3}

respectively. Further, assume thatl2 is uncoloured and thatP -colouring l2 P captures setC ⊇
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C1 ∩C2. Then there exists an SC for playerP with endpoints{l1, l3}, keyl2, and carrierC1 ∪C2 ∪

C ∪ {l2}.

Proof: Let P play at uncoloured celll2, P -capturing setC. Then aP VC with endpoints{l1, l2}

exists on carrierC1 \C, since theP -colouring ofC ∪{l2} cannot hinderP ’s V1 strategy. Likewise,

P has a VC with endpoints{l2, l3} on carrierC2 \C. Thus by the AND rule, a VC exists following

P ’s move atl2, and the carrier of this VC is at most(C1 ∪ C2) \ (C ∪ {l2}). 2

Since the smallest possible carrier is desirable, we perform two checks when computing the

AND rule:

1. If the two VC carriers do not intersect, compute the resulting SC as before.

2. If the two VC carriers intersect, check if their intersection is a subset of the key’s captured set.

If so, apply Theorem 10 to produce an SC.

Note that Theorem 10 can easily be extended to useP fillin instead ofP captured sets.

4.2.2 Endpoint Captured Sets

This observation regarding captured sets of keys can also bemade regarding captured sets of un-

coloured endpoints, since a connection strategy is only concerned with forming a chain that neigh-

bours such endpoints. In other words, assuming the endpoints are coloured does not affect the

connection strategy, and may create sets of cells that act asthough they are captured within the

connection strategy’s carrier:

Lemma 14 Let V be a VC for playerP with carrier C and endpoints{l1, l2}. Assumel1 is un-

coloured, thatP -colouring l1 P captures setS, and thatC ∩ S 6= ∅. ThenP has a VC onC ∪ S

with endpoints{l1, l2} whereP plays the corresponding capturing strategy onS.

Proof: First assume thatl1 is P -coloured instead of uncoloured. Then setS is P captured, and

V ’s connection strategy is not hindered by theP -colouring ofS, so in this fillin-reduced position

playerP has a VC with endpoints{l1, l2} on carrierC \ S. Thus if only l1 is P -coloured, thenP

has a VC onC ∪ S whereP plays the corresponding capturing strategy onS. But by the definition

of a connection strategy, the colour of its endpoints is irrelevant, and thus the same strategy is valid

whenl1 is uncoloured. 2

Lemma 15 Let V be a SC for playerP with carrier C and endpoints{l1, l2}. Assumel1 is un-

coloured, thatP -colouring l1 P captures setS, and thatC ∩ S 6= ∅. ThenP has a SC onC ∪ S

with endpoints{l1, l2} whereP plays the corresponding capturing strategy onS.

Proof: Similar to the proof of Lemma 14. 2
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Although Lemmas 14 and 15 may increase the carrier size, theycompensate by ensuring a

certain strategy on the captured set, which allows connection strategies to intersect on these sets

without conflict:

Theorem 11 LetV1, . . . , Vk be a set ofP connection strategies with a common uncoloured endpoint

l, and thatP -colouring l results in aP captured setS. Furthermore, assume that a connection

strategy deduction rule (AND/OR/crossing) applies toV1, . . . , Vk except that (some of) their carriers

intersect on subsets ofS. Then the corresponding connection strategy can be deduced, so long as

the carrier is enlarged to include all ofS.

Proof: Applying lemmas 14 and 15 to each ofV1, . . . , Vk that intersectsS produces a set of new

connection strategiesV ∗

1 , . . . , V
∗

k whose carriers either containS or are disjoint fromS, and whose

strategies play theP capturing strategy on setS in the former case. Then any carrier intersection

on S is not problematic, as all the intersecting connection strategies agree on the corresponding

strategy. 2

As with Theorem 10, Theorem 11 can easily be extended to useP fillin instead ofP captured

sets. Likewise, since smaller carriers are preferable, applying Theorem 11 requires checking whether

the normal deduction rule applies and, if not, checking whether the intersecting carriers can be

resolved via the captured sets of one or both uncoloured endpoints.

4.2.3 Incorporating Captured Set Carrier Intersection into H-search

In order to efficiently incorporate captured set carrier intersection into H-search, we first perform a

preprocessing step where we identify the Black and White captured sets for each uncoloured cell.

This simply requires checking the captured-domination inferior cell patterns, and so is linear in the

size of the board since the number and size of the patterns is constant.

Note that if Theorems 10 and 11 are extended to allow fillin, then this preprocessing step requires

more time since fillin is computed iteratively. Thus for simplicity and efficiency, in practice we

restrict ourselves to the captured set versions of these results.

Note that the added checks do not alter the computational complexity of the deduction rules,

since carrier intersections and unions are already being computed; this adjustment simply increases

the number of checks by a constant factor, since the intersection is now checked against the captured

sets of the key and uncoloured endpoints.

Note that multiple captured sets can be applied simultaneously (e.g.,for instance, those of both

endpoints, or an endpoint and a key) so long as the captured sets do not intersect one another, since

the capturing strategies must remain disjoint and independent.

Lastly, captured set carrier intersection can be used with or without the crossing rule. Neither of

these augmentations dominates the other with respect to connection strategies identified, and their

combination can find even more connection strategies. For instance, an SC found by combining the
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Figure 4.4: An SC found by the crossing rule combined with captured set carrier intersection. For
j = 1, 2, 3, cells labelledj form carrierCj of SCSj betweenx, y. CellsB = C2 ∩C3 are captured
if Black playsy. PC(C1) containsa and notb, andPC(C2) containsb and nota. Combining these
SCs yields an SC with endpoints{a, b}, keyy, and carrier{x, y} ∪B ∪ C1 ∪ C2 ∪ C3.

crossing rule with captured set carrier intersection is shown in Figure 4.4. Recall that SCs deduced

from the crossing rule have two potential keys, so before deciding on a key both of their captured

sets can be checked with respect to the carrier intersection. Two more SCs (and the resulting VCs)

that are found via this algorithmic combination are shown inFigure 4.5.

x
y

x
y

Figure 4.5: Border VCs found by combining captured set carrier intersection with the crossing rule.
The newly identified SCs avoid the marked cell, and so allow the resulting VCs to be deduced via
the OR rule.

4.3 Common Miai Substrategy

In the previous section we observed that connection strategy carriers can intersect on captured sets

without problem, as a common strategy on the captured set canbe followed. Likewise, if knowl-

edge of the intersection set strategy were known and identical in all of the intersecting connection

strategies, then once again there would be no problem with such intersection.

Although this knowledge would relax the restriction of intersecting on captured sets, the chal-

lenge of this goal is to be able to track the substrategies of each deduced connection strategy. This

could be done by storing the tree of substrategy deductions for each connection strategy, but this

method would require far more storage space and time. For simplicity, we restrict our attention to

simple substrategies, known in Go asmiai or twin points (i.e., two moves that serve the same pur-

pose). Common instances of miai in Hex are the uncoloured cells in a bridge VC’s carrier, and the

uncoloured cells of a captured set of size two.
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4.3.1 Incorporating Common Miai Substrategy into H-search

In order to incorporate common miai substrategies into H-search, each connection strategy will keep

track of its own list of miai. Themiai list of a connection strategy is a list of pairs of cells in its carrier

such that, when one cell in a pair is probed, the connection strategy always demands an immediate

response at the other cell in the pair. In order to store miai efficiently, every possible pair of cells

is assigned a unique number, and we store a list of the corresponding numbers. For algorithmic

efficiency, miai lists store these numbers in increasing order.

Assuming this change in the VC/SC data structure, we can thenuse the algorithm in Figure 4.6 to

compute the intersection of connection strategy carriers.This algorithm begins with two connection

strategies,Vin andVnew, with Iin initialized toVin.carrier(). The output two-tuple(Iout, Vout) can

then be passed as input(Iin, Vin) in the next iteration (e.g.,in the OR rule, where the intersection is

computed collection-wise, not pairwise). The outputVout is a valid connection strategy ifIout is a

subset of the miai ofVout.

Algorithm: Connection Strategy Carrier Intersection
Input: (I_{in}, V_{in}), V_{new}
Output: (I_{out}, V_{out})
Preconditions: V_{in} and V_{new} are connection strategies with

I_{in} equal to V_{in}.carrier(), or
V_{new} is a connection strategy and
(I_{in}, V_{in}) is the output of a previous iteration

Postconditions: if I_{out} is a subset of V_{out}’s miai,
then V_{out} is a valid connection strategy

I_{out} = I_{in} intersect V_{new}.carrier();
V_{out}.carrier() = V_{in}.carrier() union V_{new}.carrier();

miaiCheckSet = V_{in}.carrier() intersect V_{new}.carrier();
iterating through V_{in}.miai() and V_{new}.miai() lists in order

if V_{in}.miai().current() = V_{new}.miai().current()
V_{out}.miai().add(V_{in}.miai().current());
V_{in}.miai().next();
V_{new}.miai().next();

else if V_{in}.miai().current() < V_{new}.miai().current()
if V_{in}.miai().current() does not intersect miaiCheckSet

V_{out}.miai().add(V_{in}.miai().current());
V_{in}.miai().next();

else
if V_{new}.miai().current() does not intersect miaiCheckSet

V_{out}.miai().add(V_{new}.miai().current());
V_{new}.miai().next();

end if
end iteration

end Algorithm

Figure 4.6: Connection strategy carrier intersection withmiai lists.

We now outline the basic invariants of this algorithm, each of which is easily verified by induc-

tion:
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1. Iout is the intersection of all connection strategy carriers thus far.

2. Vout.carrier() is the union of all connection strategy carriersthus far.

3. Vout.miai() is an ordered subset of the miai from the input connection strategies.

4. Vout.miai() contains exactly the subset of miai from the input connection strategies that are

common to all of its intersecting connection strategies.

5. If Iout ⊆ Vout.miai().union(), then there is no strategy conflict betweenany pairwise inter-

secting connection strategies (i.e.,any intersection is on common miai).

Thus we replace connection strategy carrier intersection with the above algorithm, obtaining a

two-tuple where the output may be a valid connection strategy depending on the relationship of the

cumulative carrier intersection to the cumulative miai list.

In order to not worsen the computational complexity of connection strategy deduction rules, as

well as to guarantee a fixed size for the connection strategy data structure, we limit each VC/SC

to a constant number of distinct miai pairs. Given this limiton miai list length, the algorithm in

Figure 4.6 performs a constant number of operations that areno more computationally complex than

computing carrier intersection. Thus we maintain the computational complexity of the connection

strategy deduction rules.

Note that the above algorithm only retains a subset of existing miai, and never identifies new

miai. The base case rule for adding miai is when the OR rule combines two SCs to create a VC, and

each of the SCs has a disjoint carrier of size one. This base case automatically identifies all bridges

and captured sets of size two. For this reason, we believe that allowing common miai substrategies to

intersect will strictly dominate the captured set carrier intersection technique. However, the common

miai substrategy has not been implemented at this time, and thus its potential remains to be explored.

4.4 Implementation Details

After much experimentation by Broderick Arneson, our H-search implementation came to strongly

resemble that of Six. However, we also incorporated some other minor augmentations, such as

Rasmussen’s OR rule carrier intersection optimization (see §2.9.2).

Another addition, implemented with the help of Broderick Arneson, Andrea Buchfink, and Teri

Drummond, was to incorporate David King’s border and laddertemplates. This algorithm computes

all possible combinations and translations of such templates for the given board size, and uses this

information as an extended base case for H-search.

The pseudocode in Figure 4.7 sketches the overall frameworkof our H-search implementation.

This algorithm performs a static computation of connectionstrategies, but H-search can also be im-

plemented in an incremental fashion, where the connection strategies of a previous state are known

and only connections affected by the most recent move need tobe recomputed and/or updated. This

52



Algorithm: Augmented H-search
initialize VC/SC carrier lists:

for each pair E of endpoints
E.VCList.makeEmpty();
E.SCList.makeEmpty();

end for

initialize queue Q with base VCs:
Q.makeEmpty();
for each pair E of adjacent endpoints

E.VCList.add(baseVC(E));
Q.add(E);

end for
for each pair E of template-connected endpoints

E.VCList.add(templateVC(E));
Q.add(E);

end for

while (not Q.isEmpty())
E <- Q.removeFront();
compute crossing rule on E’s SCs:

for each new SC Z with endpoint pair F found,
Q.add(F);
F.SCList.add(Z);

end for
compute OR rule on E’s SCs:

for each new VC Z found
E.VCList.add(Z);

end for
compute AND rule on E’s VCs with both of E’s endpoints:

for each new VC/SC Z with endpoint pair G found,
Q.add(G);
G.(VC/SC)List.add(Z);

end for
end while

end Algorithm

Figure 4.7: Augmented H-search.

53



incremental version is most useful within search algorithms where neighbouring positions are often

investigated, such as depth-first search and alpha-beta search.

The incremental version of H-search begins by deleting any existing connection strategies that

intersect opponent-coloured cells, and shrinking the carrier and/or promoting (from SC to VC) any

connection strategies that intersect only player-coloured cells. The remaining connection strategies

form the base case, and the processing queue is initialized to contain all pairs of endpoints for

which one or more of the previous connection strategies was altered or destroyed. Because our Hex

engine deduces and colours iterated fillin for every move, the number of newly-coloured cells can

be significant, destroying many of the previously-valid connection strategies. On average we find

the incremental version of H-search to be roughly twice as fast as the static version of H-search.

Regarding time, using borders as AND rule midpoints is a costly option, slowing down H-search

by a factor of about seven on average, although this is highlydependant on the position’s border

connectivity and can easily exceed a factor of ten. Adding both the crossing rule and carrier set

intersection when using this option results in only a 15% time increase, which suggests that few new

connection strategies are found via these methods.

If borders are excluded from being AND rule midpoints, then the crossing rule is essentially

useless, as partition chains are practically non-existent. However, carrier set intersection on cap-

tured sets finds many important connections, and in practiceroughly doubles the computation time.

Likewise, an enlarged base case roughly doubles the computation time, as suggested by Table 5.4.

Finally, we note that using all of our augmentations does notmake H-search complete; there are

many connections that it cannot find.
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Chapter 5

Solving Hex

Thus far we have described new inferior cell analysis and H-search augmentations. We now describe

how these tools can be applied when solving a Hex state.

Given a non-terminal Hex state, compute its inferior cell and connection strategy knowledge as

follows:

1. Compute all fillin (i.e., dead, captured, permanently inferior) for both players, colouring the

corresponding cells and iterating until no more fillin can bededuced.

2. Perform all inferior cell analysis pruning (i.e.,dead-reversible, captured-reversible, and vari-

ous forms of domination) for the player to move.

3. Run (augmented) H-search on the fillin-reduced position,computing connection strategies for

both players.

4. Apply deduced connection strategies to identify captured decomposition regions and star de-

composition domination. If this produces new fillin, colourthe corresponding cells and return

to step 1. with this fillin-reduced board.

Once thisknowledge computationprocess has terminated, then the state’s value can be deter-

mined if any of the following conditions hold:

• One player has a winning chain (i.e.,due to fillin).

• The player to move has a winning SC.

• The player to move has an empty mustplay.

Otherwise, constrain the moves to consider as follows:

• All coloured cells — including fillin — are excluded from consideration.

• All cells outside of the mustplay are excluded from consideration.

• All dead-reversible cells are excluded from consideration.
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• Captured-reversible and dominated cells are excluded under the previously-defined constraints

(e.g.,independent set and consideration of some dominating move).

This algorithmic framework is analagous to the framework used by Haywardet al.when solving

7 × 7 [83], except that decomposition computations have been added, which can cause iteration of

the entire knowledge computation process. The other major differences are the iteratively-computed

fillin, stronger inferior cell analysis tools, and H-searchaugmentations.

In the remainder of this chapter we discuss solver’s underlying search algorithm, as well as

additional solver-specific deduction tools that can be built from our theory. Lastly, we review our

solver’s performance on major benchmarks.

5.1 Depth-First Search

Haywardet al. solved 7× 7 using a depth-first search (DFS) algorithm. Their move ordering

algorithm orders cells primarily by mustplay size (when theopponent has any winning SCs) and

breaks ties using an evaluation function based on Shannon’selectrical circuit model (e.g.,similar to

Hexy, Six, and Mongoose).

Although this move ordering works well on boards up to 7× 7, its performance worsens on

larger board sizes. Rasmussen noted that this mustplay moveordering is vital to the algorithm’s

success [140]. There are two main reasons for this:

• moves that confine the opponent to a small mustplay tend to be stronger moves, and

• whenever such moves are losing, they can usually be disproven quickly since the mustplay is

more constrained in the subtree.

The former suggests that proof number search (PNS) is a good candidate for Hex, as PNS natu-

rally prefers moves with smaller branching factors, and improves on depth-first search in that it can

more easily correct previous erroneous decisions (i.e.,since it does not commit itself based on initial

impressions). We now discuss PNS, and the obstacles to applying it to Hex.

5.2 Proof Number Search

Allis et al. introduced proof number search, an algorithm for solving two-player perfect information

games in which exploration is guided by the search tree’s branching factor rather than domain-

specific knowledge [3, 4]. The principal idea is to use the branching factor to guide the search so

that it produces a proof tree of smallest size.

Given noden in search treeT , the proof numberφ(n) of n is the minimum number of leaves in

T that must be solved in order to prove that noden is a win for the player to move1. Similarly, the

1This definition differs from Allis’ original work in that (dis)proof numbers are not for a particular player. However, this
negamax formulation produces an equivalent search and simplifies the transition to depth-first proof number search.
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disproof numberδ(n) of n is the minimum number of leaves inT that must be solved in order to

prove that noden is a loss for the player to move. The (dis)proof number of a noden depends only

on the (dis)proof numbers of its childrennc1 , . . . , nck , and so can be computed recursively:

φ(n) = min
i=1,...,k

δ(nci), δ(n) =
∑

i=1,...,k

φ(nci) (5.1)

By definition, a terminal noden hasφ(n) = 0 andδ(n) = ∞ (respectivelyφ(n) = ∞ and

δ(n) = 0) if it is a win (respectively loss) for the player to move. By convention a leaf noden has

φ(n) = δ(n) = 1.

2,3

2,2

1,3

1,1 1,1 1,1

1,2

1,1 1,1

1,3

1,1 1,1 1,1

Figure 5.1: A search tree with (negamax) proof and disproof numbers. Dark lines show a path to a
most proving leaf node.

For a noden with playerP to move, a set of leaves in treeT is aproof set(respectivelydisproof

set) for n if determining them to be wins (respectively losses) forP is sufficient to prove thatn is a

win (respectively loss) forP . A leaf node is amost proving nodeif it intersects a minimum proof set

and a minimum disproof set; intuitively, this is a leaf node that contributes most towards resolving

the value of a state. Allis proved that a most proving node canbe found by repeatedly selecting a

child with minimum disproof number among its siblings. See Figure 5.1.

PNS has been applied with success to a variety of games, including connect four, go-moku, and

checkers [3, 151]. However, PNS stores the entire search tree in memory, which prevents it from

solving games of high complexity. Several PN variants have been introduced to address this issue,

most notably depth-first proof number (DFPN) search by Nagai[126] and two-level proof number

search (PN2) by Breuker [31].

PNS does not require domain-specific knowledge, but such knowledge can be applied to provide

heuristic initialization of leaf node proof and disproof numbers, indicating which leaf nodes are

deemed more likely to be wins/losses, as well as their respective solving difficulty. Kishimoto used

this technique to halve the time required to solve certain types of Go problems [101]. We are not

aware of any other successful technique for applying heuristic information to PNS and its variants.

5.2.1 Applying PNS to Hex

There are three impediments to applying PNS to Hex: incremental H-search, weak moves that

produce fillin, and initially-uniform branching factors.
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The first impediment is that our incremental version of H-search, which is faster than the static

version of H-search, does not integrate easily with PNS. While DFS repeatedly transitions between

states that differ by one move, the most proving nodes expanded by PNS can be in different parts

of the search tree, and so multiple incremental updates are usually required between successive

knowledge computations. As mentioned in§4.4, H-search is costly, and the static version is roughly

twice as slow as the incremental version. At this time we haveno solution to this problem other than

to use static H-search (and other knowledge) computations.It follows that PNS can only surpass

DFS if the former explores fewer than half as many Hex positions in its search tree. Also, because

we do not want to recompute this costly static information ateach node along the search tree path

from one most proving node to the next, each node must store its knowledge-based list of children.

The second impediment is that many weak moves, particularlythose near the borders and

acute corners, typically produce significant fillin. The DFSmustplay move ordering only considers

branching factor relating to mustplay, but PNS always considers branching factor, and thus initially

shows preference to these weak fillin-generating moves.

The third impediment is that Hex begins with near-uniform branching factors when neither

player has a (detectable) winning SC, so that initially PNS performs an inefficient breadth-first

search. Since the initial branching factor is roughly 50–100 for the larger boards we wish to solve,

this initial combinatorial explosion creates an excessively large search tree.

To alleviate the second and third problems, we designed our own variant of PNS that temporarily

constrains the branching factor using a move ordering heuristic.

5.2.2 DFPN Search

Since we are concerned with memory usage in addition to search tree size, our PNS variant builds

on Nagai’s DFPN search algorithm rather than the original PNS algorithm.

The Multiple Iterative Deepening (MID) function is the driving method of DFPN search; it

performs iterative deepening with local thresholds for (dis)proof numbers. Rather than store the

entire search tree, DFPN search uses a transposition table (TT) that stores the nodes in the tree,

the key distinction being that nodes may be overwritten before being revisited. Thus the tradeoff is

the loss of some previously-computed information — possibly requiring repeat work — versus the

ability to solve larger search spaces.

The helper methods of DFPN search update the (dis)proof numbers using the recursive formulas

in (5.1), and select the most proving child as the next node toexpand. If a node’s childc has

δ(c) 6= ∞ (i.e., it is not known to be a losing move), then it is said to belive. The SelectChild

method also tracks the second smallest disproof value (whenever there is more than one live child),

as this value is required to update the iterative deepening (dis)proof number bounds. See Figure 5.2.
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// Setup for the root node
bool DFPN(noder) {
r.φ←∞; r.δ ←∞;
MID(r);
if (r.δ =∞)

return true ;
else

return false;
}

// Iterative deepening at each node
void MID(noden) {

TTlookup(n, φ, δ);
// Exceed thresholds
if (n.φ ≤ φ || n.δ ≤ δ) {

n.φ← φ; n.δ ← δ;
return ;
}
// Terminal node
if (IsTerminal(n)) {

Evaluate(n);
// Store (dis)proven node
TTstore(n, n.φ, n.δ);
return ;
}

GenerateMoves(n);
// Iterative deepening
while (n.φ > ∆Min(n) &&

n.δ > ΦSum(n)) {
nc = SelectChild(n, φc, δc, δ2);
// Update thresholds
nc.φ← n.δ + φc − ΦSum(n);
nc.δ ←min(n.φ, δ2 + 1);
MID(nc);
}
// Store search results
n.φ← ∆Min(n);
n.δ ← ΦSum(n);
TTstore(n, n.φ, n.δ);
}

// Select the most promising child
nodeSelectChild(noden,

int &φc, int &δc, int &δ2) {
nodenbest;
δc ← φc ←∞;
for (each childnchild) {

TTlookup(nchild, φ, δ);
// Store the smallest and second
// smallestδ in δc andδ2
if (δ < δc) {

nbest ← nchild;
δ2 ← δc; φc ← φ; δc ← δ;
}
else if(δ < δ2)

δ2 ← δ;
if (φ =∞)

return nbest;
}
return nbest;
}

// Compute smallestδ of n’s children
int ∆Min(noden) {

int min←∞;
for (each childnchild) {

TTlookup(nchild, φ, δ);
min←min(min, δ);
}
return min;
}

// Compute sum ofφ of n’s children
int ΦSum(noden) {

int sum← 0;
for (each childnchild) {

TTlookup(nchild, φ, δ);
sum← sum+ φ;
}
return sum;
}

Figure 5.2: DFPN pseudocode.
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5.2.3 Focused DFPN Search

We now introduce our variant of the DFPN search algorithm, called Focused DFPN (FDFPN).

In order to identify one winning move with certain (dis)proof number bounds, PNS and its

variants must first show that all sibling moves — including weak moves — cannot be solved with

smaller (dis)proof number bounds. Our goal is to modify DFPNso that it focuses its effort on the

strongest moves, thereby eliminating work on the weakest moves and dampening the breadth-first

search behaviour in the opening.

To accomplish this, FDFPN requires a domain-specific move ordering function. For each node,

the children are heuristically ordered according to this function, and initially only a fixed proportion

— the child limit — are put in the search tree. As losing moves are identified, live children later

in the ordering are added into the search tree. For games withuniform branching factor, a breadth-

first search still occurs, but with a smaller branching factor, and so an exponentially smaller tree size.

Similarly, search tree nodes that are winning for the playerto move can be solved without expending

any effort on children beyond the limit, thereby eliminating wasted work on weaker moves.

The differences between the FDFPN and DFPN search algorithms are small, as shown in Fig-

ure 5.3. In FDFPN, the MID method generates the ordered movesfor noden (according to some

domain-specific function), and computes a child limitl. Whenever a recursive MID call identifies a

losing child, it prunes the corresponding move and recomputes the child limit. MID also passes the

child limit l to the helper functions SelectChild,∆Min, andΦSum, which iterate over the firstl live

children instead of all children.

As mentioned in§5.2.2, SelectChild stores the two smallestδ values amongn’s children, so the

child limit l must be at least two for any noden with more than one live child. Also, it is desirable

that the child limit for a node reflects its branching factor,since otherwise the (dis)proof number

foundation of PNS would be misguided; for instance, a constant child limit l would prevent FDFPN

search from distinguishing among branching factors greater or equal tol. Keeping these desired

properties in mind, our child limit formula is as follows, where1 ≤ base and0 < fraction≤ 1:

child limit = base+ ⌈fraction× live children⌉ (5.2)

Each time a child of noden is solved, this formula either maintains the current child limit,

thereby introducing a new child into the search tree, or elsereduces the child limit by one, thereby

maintaining the current set of search tree children for noden. In each case the (dis)proof numbers

for n decrease, indicating that the node has become easier to solve, and ensuring further exploration

in the immediate future. Figure 5.4 illustrates this process.

5.2.4 FDFPN Algorithm Analysis

Solving a losing node requires solving all of its children. FDFPN search guarantees that each child

will eventually be considered: losing children are pruned from the ordered list, and the child limit
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// Setup for the root node
bool DFPN(noder) {

r.φ←∞; r.δ ←∞;
MID(r);
if (r.δ =∞)

return true ;
else

return false;
}

// Iterative deepening at each node
void MID(noden) {

TTlookup(n, φ, δ);
// Exceed thresholds
if (n.φ ≤ φ || n.δ ≤ δ) {
n.φ← φ; n.δ ← δ;
return ;
}
// Terminal node
if (IsTerminal(n)) {

Evaluate(n);
// Store (dis)proven node
TTstore(n, n.φ, n.δ);
return ;
}

(*) GenerateOrderedMoves(n);
(+) ComputeChildLimit(l);

// Iterative deepening
(*) while (n.φ > ∆Min(n, l) &&
(*) n.δ > ΦSum(n, l)) {
(*) nc = SelectChild(n, l, φc, δc, δ2);

// Update thresholds
nc.φ← n.δ + φc − ΦSum(n);
nc.δ ←min(n.φ, δ2 + 1);
MID(nc);

(+) // Identified a move as losing
(+) if (nc.φ =∞) {
(+) PruneLosingMove(nc);
(+) ComputeChildLimit(l);
(+) }

}
// Store search results
n.φ← ∆Min(n);
n.δ ← ΦSum(n);
TTstore(n, n.φ, n.δ);
}

// Select the most promising child
(*) nodeSelectChild(noden, int l,

int &φc, int &δc, int &δ2) {
nodenbest;
δc ← φc ←∞;

(*) for (each childnchild, among firstl) {
TTlookup(nchild, φ, δ);
// Store the smallest and second
// smallestδ in δc andδ2
if (δ < δc) {

nbest ← nchild;
δ2 ← δc; φc ← φ; δc ← δ;
}
else if(δ < δ2)

δ2 ← δ;
if (φ =∞)

return nbest;
}
return nbest;
}

// Compute smallestδ of n’s children
(*) int ∆Min(noden, int l) {

int min←∞;
(*) for (each childnchild, among firstl) {

TTlookup(nchild, φ, δ);
min←min(min, δ);
}
return min;
}

// Compute sum ofφ of n’s children
(*) int ΦSum(noden, int l) {

int sum← 0;
(*) for (each childnchild, among firstl) {

TTlookup(nchild, φ, δ);
sum← sum+ φ;
}
return sum;
}

Figure 5.3: FDFPN pseudocode. (*) indicates modified DFPN code and (+) indicates new code.
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Initial node expansion. Consider only the firstb+ ⌈6f⌉ = 4 of 6 live children:
b

b b b b b b

Discover 3rd move loses. Explore new child, as now consider first b+ ⌈5f⌉ = 4 of 5 live children:
b

b b ⊗ b b b

Discover 5th move loses. No new child, as now consider firstb+ ⌈4f⌉ = 3 of 4 live children:
b

b b ⊗ b ⊗ b

Discover 2nd move wins. Node is solved without exloring the 6th move:

⊕

b ⊕ ⊗ b ⊗ b

Figure 5.4: FDFPN child limit updates with baseb = 1 and fractionf = 0.5.
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l always retains access to some live children. Thus the only difference between DFPN and FDFPN

at losing nodes is that the dis(proof) number bounds are different when some children are revealed

and/or solved. Experimental results suggest that this doesnot cause any significant inefficiencies.

Solving a winning node requires solving only one child, although several children may be ex-

plored before a winner is found. For winning nodes, it is desirable that at least one winning child —

preferably the easiest to solve — should appear within the initial child limit. In this preferable case,

then FDFPN search cannot exceed the (dis)proof number bounds that DFPN search would attain;

furthermore, it examines a subset of the children examined by DFPN search:

Observation 1 Consider a nodeN with child nodec in an FDFPN search tree whose child limit is

computed via Equation (5.2), and assume thatc is withinN ’s child limit at timet. Then for all times

T > t, c is either withinN ’s child limit or elsec is no longer live.

Observation 2 Consider a nodeN with n children in an FDFPN search tree whose child limit is

computed via Equation (5.2) with baseb and fractionf , and assume thatx < n children ofN are

proven losing prior to finding a winning child. Then max(0, n − x − b − ⌈f(n − x)⌉) children of

nodeN never became accessible in the search tree.

Observation 2 is of course the intended strength of FDFPN search. However, the dual observa-

tion is what happens when the move ordering is poor, and no winning moves are within the initial

child limit:

Observation 3 Consider a nodeN with n children in an FDFPN search tree whose child limit is

computed via Equation (5.2) with baseb and fractionf , and assume that the firstx children ofN

are losing, whereb + ⌈fn⌉ ≤ x < n. Then at least⌈x−b−fn
1−f + ǫ⌉ children ofN must be proven

losing beforeN can be solved.

Thus, a child limit that is too restrictive for the quality ofthe move ordering can force the

solving of nodes that would normally remain unsolved in DFPNsearch, potentially imposing large

inefficiencies in the search tree.

5.2.5 FDFPN Experimental Results

We tested DFPN search against both FDFPN search and DFPN search with heuristic leaf initializa-

tion.

Using a set of puzzles on boards of dimension 8–10, FDFPN (with base 1, fraction 0.2) takes

less than 60% of the time required by DFPN (fraction 1.0). SeeFigure 5.5. Further exploration of

the parameter space improves this marginally to 55.6% of DFPN’s time (with base 1, fraction 0.21).

By comparison, our attempts at heuristic leaf (dis)proof number initialization never attains less than

80% of DFPN’s time.
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Figure 5.5: FDFPN search parameters vs. solving times.

The data suggests a base of one is best, and smaller base values generally dominate larger ones.

As expected in light of Observation 3, excessive pruning worsened solving times, even beyond the

time required by DFPN search with no pruning. One phenomenonfor which we have no explanation

is that the optimal fraction parameter for a given base seemsto increase as the base parameter

increases. This seems counter-intuitive, as one might expect the optimal fraction to decrease in

order to counteract the base’s forced increase in child exploration.

We also tested FDFPN’s dependence on good move ordering, with respect to the base and frac-

tion parameters of the child limit formula. This was done by running FDFPN search with a random

move ordering on the set of all7× 7 Hex openings. See Figure 5.6.

As expected (given Observation 3), the data shows that a goodmove ordering is vital to the

effectiveness of FDFPN search, as greater pruning only worsens the performance here. Although

two data points show FDFPN search with slightly improved times despite random ordering, these

cases have minimal pruning and might simply reflect the stochastic nature of this experiment and/or

the improbability of all strongest winning moves being excluded by such minimal pruning.

5.2.6 FDFPN Future Improvements

Although FDFPN improves on the performance of DFPN search, both with and without heuristic

leaf initialization, its fragility with respect to the heuristic move ordering is a concern. It would be

preferable if a child’s inclusion/exclusion could be revised during search, or if there was a grad-

ual scaling of effort rather than a hard limit. Likewise, thereliance on an external heuristic move

64



 1000

 10000

 100000

 0  0.2  0.4  0.6  0.8  1

T
im

e 
(s

ec
)

Child limit fraction

No pruning
Base 1
Base 2
Base 3
Base 4

Figure 5.6: FDFPN search times with random move ordering.

ordering makes FDFPN less applicable than regular PNS and its variants.

Modifications of the child limit function could also be helpful. For instance, perhaps the child

limit should depend not only on the number of live children, but also on the magnitude of differences

in their heuristic evaluation.

5.3 Winning Carriers

A solver search algorithm essentially identifies winning connection strategies that cannot be de-

duced by H-search. Just as the carrier of a winning VC/SC can be used to identify losing moves

(e.g.,moves outside of the mustplay), van Rijswijck noted that we can use the carrier of solver-

found connection strategies to identify more losing moves,as discussed in§2.9.2. Van Rijswick’s

algorithm for computing thesewinning carriers2 is recursive, and follows immediately from the

definition of a winning connection strategy:

1. Base case: H-search finds a winning VC/SC, the winning carrier is the carrier of this winning

VC/SC.

2. Inductive case when the player to move wins: the winning (SC) carrier is the union of the

winning move’s cell and the winning (VC) carrier of the winning child.

2Van Rijswijck calls these proof sets. We rename them to avoidconfusion with the (dis)proof sets of PNS.
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3. Inductive case when the player to move loses: the winning (VC) carrier is the union of all

children’s winning (SC) carriers.

Case 3. includes the SC carriers that define the mustplay, since these carrier cells are required to

refute moves outside of the mustplay. Likewise, for any pruned dead-reversible moves, their killers

and carriers must be included in the winning carrier, since the latter are required to refute the former.

Note that this recursive algorithm can be easily incorporated into the recursive DFS framework.

In order to apply this idea to our new solver algorithm, we must take into account two new

factors:

• connection strategies are computed on (iteratively) fillin-reduced boards, and

• our solver’s underlying search engine has changed from DFS to PNS.

We present our adjustments for these factors below.

5.3.1 Fillin and Winning Carriers

Since we iteratively compute and colour fillin cells, there are two factors relevant to computing a

winning carrier for the original position:

1. Thefillin carrier : the set of cells required to maintain the fillin reduction.

2. Thestrategy carrier: the set of cells required for the winning strategy on the fillin-reduced

board.

The strategy carrier for the reduced board can be computed inthe same way as the winning

carrier for non-reduced boards. Thus the new complication of our algorithm is the computation of a

fillin carrier. In order to maintain the validity of the winning player’s fillin, the set of cells required

to maintain this fillin must be included in the fillin carrier.For a dead cell the carrier is simply

the dead cell, and for a captured set the carrier is simply thecaptured set. However, in the case of

permanently inferior cells the carrier extends beyond the filled in cell, and thus cells in permanently

inferior carriers may be any colour — including the opponent’s colour — in the fillin-reduced board.

The validity of this fillin carrier follows from the discussion in §3.6. The winning carrier of the

original board is the union of the fillin carrier and the strategy carrier on the fillin-reduced board,

and so can still be computed in DFS for fillin-reduced boards.

5.3.2 PNS and Winning Carriers

Computing winning carriers in PNS is more complicated than in DFS for the following reasons:

1. Hex states are not encountered in a simple recursive order, so the data required to compute

winning carriers needs to be stored within the TT so that it can be used if and when the state

is finally solved.
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2. In (F)DFPN, TT entries may be overwritten, causing this recursively-computed winning car-

rier information to be lost. Note that unlike lost H-search and inferior cell analysis informa-

tion, this data cannot be recomputed statically.

3. Since inferior cell analysis is computed statically for each Hex state, then unlike DFS the

fillin of reduced states need not agree with the fillin of theirpredecessors. In other words,

fillin-reduced states may not be continuations of their fillin-reduced predecessors.

Given these obstacles, we adopted a restricted form of winning carrier computation in PNS and

its variants. The following algorithm computes themaximum winning carrierfor the player to move,

assuming they have a winning strategy:

1. Given Hex stateHP
1 and its fillin-reduced stateHP

2 ,

• compute the fillin carrier ofHP
2 for P as described in§5.3.1, and

• set the strategy carrier to be all uncoloured cells inHP
2 .

2. ReturnP ’s maximum winning carrier: the union of this fillin carrier and strategy carrier.

Since any strategy carrier must be a subset of the uncolouredcells of the reduced board, and

since the fillin carrier is computed as before, then it follows that eitherP has a winning strategy in

HP
1 on the maximum winning carrier, or elseHP

1 is aP win.

The advantage of this method is that it eliminates the recursive portion of the definition, allowing

this carrier to be computed solely from static information.The disadvantage is the assumption of a

strategy carrier that requires all uncoloured cells, whichmay result in a larger winning carrier than

could otherwise be computed, and hence less pruning.

We also apply this winning carrier differently in PNS. Givena child that is being expanded (i.e.,

all its static knowledge is currently available), we can compute the maximum winning carrier for

the player to move. Upon returning to the parent of this child, we give it the computed maximum

winning carrier and prune all other children that are external to this carrier. We now prove that this

child pruning does not alter the parent state’s value:

Theorem 12 Letn be a node in a search tree, and letnc be one of its children. Furthermore, letC

be the maximum winning carrier ofnc for its player to moveP . Then allP moves at noden that

are not inC \ {nc} are dominated by theP move tonc.

Proof: If nc is aP winning move, then the result holds by definition. So assumenc is a losingP

move, implying thatP winsnc, and thusP has a winning strategy fornc confined to the maximum

winning carrierC. It follows thatP has a winning (first player) strategy onC in any continuation

of noden’s Hex position whereP has only played cells outside of the setC. Thus allP moves atn

that are not inC are losing. 2

67



Note that this pruning is distinct from previous winning carrier pruning in that we prune siblings

before determining who wins the child state (i.e., the maximum winning carrier may not correspond

to a winning strategy for the player to move).

5.3.3 Winning Carrier Reduction

Since smaller winning carriers yield more pruning, we also developed an efficient algorithm that,

given a winning carrier, tries to deduce the existence of a smaller winning carrier:

1. Let S1 be a Hex state with winning carrierC1 for playerP . Assign all uncoloured cells

outside ofC1 to P , and call this new stateS2.

2. ComputeP fillin on S2, iterating until no more cells can beP -coloured. Call the resulting

stateS3.

3. DefineC2 ⊆ C1 to be the set of cells that are uncoloured inS3. ThenC2 is a winning carrier

for P in stateS1.

This process is illustrated in Figure 5.7.

Figure 5.7: A White winning carrier for stateS1. Assigning all cells outside of the carrier to Black
results in stateS2. Computing Black fillin onS2 results in stateS3, whose uncoloured cells define a
reduced winning carrier.

Theorem 13 Given a valid winning carrierC1 for playerP in Hex stateS, the outputC2 of the

winning carrier reduction algorithm is a valid winning carrier for playerP in Hex stateS.

Proof: By the definition of a winning carrier, assigning all uncoloured cells outside ofC1 to P

cannot affectP ’s winning strategy. ThusC1 is a winning strategy in stateS2. By the definition ofP

fillin, the value of stateS2 is equal to the value of stateS3. ThusP has a winning strategy onS3, and

of course this winning strategy must be confined to the uncoloured cells ofS3, namelyC2. SinceS3

is a continuation ofS1 (andS2) where onlyP -coloured cells have been added,P ’s winning strategy

onC2 in S3 is also valid inS1 (andS2). 2

We note that because of the way in which PNS winning carriers are computed — that is, on

fillin-reduced boards rather than recursively — winning carrier reduction can never shrink the carrier

found by a PNS-based solver. Thus winning carrier reductionis only useful for a DFS-based Hex

solver.
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5.4 Deducing Solved State Values

Winning carrier pruning is a method of applying one winning strategy to multiple sibling Hex posi-

tions in the search tree. We now show that given the value of one Hex state, we can apply inferior

cell analysis and other properties of Hex to deduce the valueof many other Hex states.

Each of the value deduction methods we illustrate can of course be applied to other deduced

states, and so there is the natural concept of the closure of these solved state deductions; that is, the

set of all states whose value can be deduced via the application of these operations. We have not

implemented this complete version; rather, we simply applyeach deduction independently to the

original solved state.

These value deductions can be applied to the original state and/or its fillin-reduced state. We

restrict ourselves to value deductions on the original state for the following reasons:

1. Computing fillin requires significant time, especially when using captured decomposition re-

gions which require connection strategy information.

2. Fillin can result in an imbalanced number of coloured cells (e.g.,more White-coloured cells

than Black-coloured cells). Deduced states of this form will likely be unreachable during

search, making such output useless.

5.4.1 Winning Carrier Deductions

We now generalize the application of winning carriers to anyHex state where the winning player’s

cells and carrier are unaffected, and the player to move unchanged.

Theorem 14 Let S be a Hex state where playerP wins on carrierC. Let S′ be a state where

(S → P ) ⊆ (S′ → P ), C ⊆ (S′ → {U,P}), and the player to move inS′ is eitherP or identical

to the player to move inS. Then stateS′ is aP win.

Proof: By definition, P ’s winning strategy depends only on uncoloured carrierC and theP -

coloured cells in stateS. Thus in the continuation ofS where all uncoloured cells external toC

areP -coloured,P still has a winning strategy onC (with the same player to move); let us call this

continuation stateT .

By definition,S′ has allP -coloured cells that are inT , andS′ has no moreP -coloured than are

in T . If S′ andT have the same player to move, then by monotonicityS′ ≥P T , and so it follows

that stateS′ is aP win. If S′ andT have different players to move, thenS′ hasP to move andT

hasP to move. This cannot be disadvantageous for playerP , and so again it follows that stateS′ is

aP win. 2

We call the states deduced via Theorem 14winning carrier transpositions. Theorem 14 can

result in many state deductions (i.e.,all possible subsets external toC and theP -coloured cells can
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be assigned toP ). In practice we are only interested in states that can be reached during search.

In other words, we restrict the deduced statesS′ to those states that have the same number ofP -

coloured cells asS, or possibly one moreP -coloured cell if the player to move is altered fromP to

P . Even with this restriction, a single solved state can produce thousands of winning carrier trans-

positions, so we typically restrict this method to states oflimited search depth. Note that winning

carrier reduction increases the number of winning carrier transpositions.

To apply this technique to (F)DFPN, we store the deduced terminal states in the TT. For DFS,

we keep a database of shallow solved states for verification purposes and a playable version of the

search tree strategy. Thus to apply this technique to DFS, westore the (shallow) deduced states in

the database.

5.4.2 Strategy-Stealing Argument Deductions

The strategy-stealing argument applies not only to the empty Hex board, but also to any Hex position

where the roles of Black and White are equivalent. For instance, any Hex position where a mirroring

of the board defines a bijection from Black-coloured cells toWhite-coloured cells is a first player

win. Thus any move to such a position is a losing move, and can be pruned from consideration. Note

that there are two distinct diagonals in which to mirror the Black and White cells. See Figure 5.8.

Figure 5.8: Strategy-stealing deductions: White can pruneeach dotted cell from consideration, since
each resulting state is a first player win.

Application of this technique means that the solver only ultra-weakly solves the root state, since

the explicit strategy is not known for these pruned states. However, the proof tree our algorithm

finds can be extended to a complete strategy tree by later computing explicit winning strategies for

all states pruned by the strategy-stealing argument.

5.4.3 Player Exchange Deductions

Player exchange deductions involve transforming a state byexchanging the roles of playersP and

P . We do this as follows:

1. Mirror the position’s coloured cells with respect to either diagonal.

2. Make allP -coloured cellsP -coloured and vice-versa.
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3. Switch the player to move.

If the original positionH1 is aP win with playerQ ∈ {P,P} to move, then the deduced position

H2 is aP win with playerQ to move; this follows immediately since we simply exchangedthe roles

of the two players.

However, the deduction method as currently described is useless: it makes deductions about

unreachable states, as the total number of coloured cells remains the same, but the player to move

is altered. In order to produce transposition deductions for reachable states, the number of coloured

cells must change parity. In order to change coloured cell parity without altering the outcome, we

apply the following properties:

1. By monotonicity, winner-coloured cells can be added without changing a state’s value.

2. By monotonicity, loser-coloured cells can be removed (i.e., uncoloured) without changing a

state’s value.

3. By Theorem 14’s proof, loser-coloured cells can be added outside of the winning player’s

carrier without changing a state’s value (note that the carrier had to be mirrored as well).

Original state properties Adjustment of unreachable player exchange state
Black to move, Black wins Colour Black one cell outside carrier
Black to move, White wins Colour Black one cell, or

uncolour one White cell
White to move, Black wins Colour Black one cell outside carrier
White to move, White wins Colour Black one cell, or

uncolour one White cell

Table 5.1: Player exchange deductions. Given a state with the specified winner and player to move,
compute the player exchange state, and then use the listed alterations to attain reachable states whose
value can be deduced.

Assuming alternating turns, the number of Black-coloured cells is always equal to or one greater

than the number of White-coloured cells, so these three possible adjustments are constrained by the

combination of the winning player and the player to move. Table 5.1 summarizes the possibilities.

See Figure 5.9 for a sample player exchange deduction.

5.4.4 Domination Deductions

Domination can be applied to deduce solved states in the following manner, assuming playerP is

the winner:

1. Any P -coloured cellc1 can be uncoloured, and a cellc2 thatP -dominatesc1 is P -coloured

instead.

2. Any P -coloured cellc1 can be uncoloured, and a cellc2 that c1 P -dominates isP -coloured

instead.
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Figure 5.9: The original state is a White win with White to move. If we mirror the coloured cells
and switch their colour, we obtain a state that is a Black win with Black to move. This state is
unreachable, but we can uncolour a White-coloured cell to deduce a reachable state that is a Black
win with Black to move.

The correctness of these domination deductions follows immediately from the definition of dom-

ination (i.e.,consider the state withc1 uncoloured).

Although all states reached via domination deductions are reachable in the game, they may not

be reachable by our solver’s search since it prunes dominated moves. However, a move that is not

currently dominated (and hence can be played during solver’s search) may become dominated in

some continuation (and hence can be shifted by domination deductions). Furthermore, all forms

of domination — fillin, neighbourhood, induced path, and star decomposition — can exhibit this

temporary behaviour. We know of no efficient algorithm to determine whether a state found via

domination deduction can be reached by the solver algorithm, so we simply compute and store all

domination deductions.

5.4.5 Unique Probe Deductions

Our final solved state deduction method is based on dead-reversible cells whose carrier is the empty

set.

Theorem 15 Let HQ be a Hex state,Q ∈ {P,P}, such thatP has a dead-reversible cellc with

killer k and an empty set carrier. If(H + P (k) + P (c))Q is aP win, thenHQ is aP win.

Proof: Let S1 denoteP ’s winning strategy for(H + P (k) + P (c))Q in completion Hex, and

defineS2 to be the combination ofS1 with a pairing strategy on{c, k}. We shall prove thatS2 is a

P -winning strategy forHQ in completion Hex.

If P does not play atc nor k, then both these cells will beP -coloured, and by monotonicity

this outcome is at least as good forP as the corresponding terminal state inS1, implying thatP

wins. If P ever playsc, thenP responds withk and by definitionc is dead. Thus again it is as ifP

claimed both of these cells, and so this state is at least as good forP as the corresponding state in

S1, and hence aP win. Lastly, ifP ever playsk, thenP responds withc and the state is identical to

aP -winning state inS1. 2

Intuitively, one player obtained their best possible localexchange and still lost. Thus we can

uncolour the two cells involved in the exchange, and conclude that they would lose again. We
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Figure 5.10: By Theorem 15, if the left state is a Black win, then it follows that the right state is a
Black win.

call theseunique probe deductions, since the pruning of dead-reversible cells ensures that the losing

player has a unique line of local play available. Such deductions are identified using patterns derived

from dead-reversible patterns with an empty carrier set. See Figure 5.10.

5.5 Experimental Verification

Given the complexity of our solver’s tools (e.g., inferior cell analysis, connection strategy deduc-

tions, deduced state values), the question of how to verify our solver’s correctness is an important

one. Our experimental verification consists of the following:

• For all opening moves (and some principal variations) solved by others, we verify that our

algorithm obtains the same result.

• For irregular Hex boards, we verify that our algorithm obtains the proven outcome for all

opening moves.

• We use a library of over 100 problems — including those generated and solved by others, but

predominantly our own — to test our algorithm.

• We apply our solver during tournaments and for post-game analysis (as discussed in Chapter 6

and Appendix C), and verify that we get consistent results.

Algorithms such as winning carrier reduction and solved state deductions are extremely useful

for finding any errors, since they magnify any existing problems. Also, we include many assertions

in the code to verify the maintenance of theoretical properties.

5.6 Experimental Results

In this section we provide experimental results indicatingthe contributions of our many new algo-

rithmic tools, both solver-specific as well as the more general inferior cell analysis and H-search

augmentations. Not all of the above ideas have been implemented, and in several cases an algorithm

is implemented for our DFS-based solver but not our FDFPN-based solver, or vice-versa. We show

how our current solver is far superior to all of its predecessors and competitors, solving all 8× 8
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openings and more than half of the 9× 9 openings. All tests were run on an Intel Core 2 Quad

Q9559 LGA775 (2.66GHz/1333FSB/12MB) desktop with 2GB RAM.

5.6.1 Feature Contributions

Initially our solver was DFS-based, so we provide the feature contribution data for this version first.

See Table 5.2.

Featuref off % time % nodes
Mustplay move ordering 656 2550

Decompositions 129 151
Transposition table 128 140
Acute 4-3-2 pruning 115 112

H-search border templates 111 126
Solved state deductions 108 111

Winning carrier reduction 98 101

Table 5.2: DFS solver feature contributions for 7× 7 Hex.

This version of the DFS solver took roughly 10 minutes to solve all 7× 7 openings, with a

search tree containing 8.3e4 internal nodes. At that time, solved state deductions only encompassed

winning carrier deductions and player exchange deductions, and decompositions only included split

decompositions and four-sided captured decompositions. The transposition table (with220 entries)

stores recently solved states to avoid resolving transpositions. Computing H-search using borders

as AND rule midpoints is too slow for solvers; the improvement in pruning does not compensate for

the increase in computing time. As a result, solvers never use the crossing rule.

As Rasmussen observed, mustplay move ordering is a major factor in the solver’s performance.

Disappointingly, winning carrier reduction only results in minimal search space reduction, and actu-

ally worsens time performance. Note the significant gap between time and search space factors for

both decompositions and border templates; although these additions are worthwhile, their algorith-

mic cost per node is significant.

Now our solver is FDFPN-based. The TT size is fixed and entriescan be overwritten, so we

approximate the size of the search tree using two metrics: the number of MID calls and the number

of static knowledge computations. For the FDFPN child limit, we use a default base of one and

factor of 0.25, rather than optimizing the parameter choicefor different board sizes and openings; see

Figure 5.5. Star decomposition domination is not yet fully implemented, and so currently involves

only one hard-coded inferior cell pattern at this time, shown as the leftmost diagram in Figure 3.14.

Also, the following features have not yet been implemented for the FDFPN solver:

1. split decompositions,

2. common miai substrategy,

3. winning carrier deductions,
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4. player exchange deductions,

5. domination deductions, and

6. unique probe deductions.

Featuref off % time % MID % knowledge
Focused DFPN 141.1 128.2 133.3

Permanently inferior cells 100.5 100.2 100.1
Captured-reversible cells 95.7 99.8 100.1

Acute 4-3-2 pruning 99.2 102.2 102.2
Star decomposition domination 103.0 102.3 102.5

Captured decompositions 110.8 117.7 115.5
H-search border templates 156.1 215.9 209.8

H-search captured intersection 104.3 218.7 212.6
Winning carrier pruning 103.3 103.9 104.2

Strategy-stealing deduction 99.2 102.8 103.1

Table 5.3: FDFPN solver feature contributions for 7× 7 Hex.

This FDFPN-based solver solves all 7× 7 openings in roughly 6.5 minutes, with 88,236 MID

calls and 53,954 knowledge computations. Its feature contribution data is summarized in Table 5.3.

Disappointingly, the only features that seem to contributesignificantly are focused DFPN, captured

decompositions, and H-search base case enhancement via border templates. All other features have

a negligible, or even negative, effect on time. Search spaceis not a major concern as memory use is

essentially fixed.

Featuref off % time % MID % knowledge
Focused DFPN 214.4 165.2 217.2

Permanently inferior cells 117.0 115.5 115.0
Captured-reversible cells 106.7 105.9 105.8

Acute 4-3-2 pruning 105.3 103.4 103.6
Star decomposition domination 89.8 94.1 94.6

Captured decompositions 209.3 237.1 229.3
H-search border templates 186.1 444.2 458.1

H-search captured intersection 141.8 302.7 315.0
Winning carrier pruning 107.2 106.0 106.2

Strategy-stealing deduction 93.9 96.6 94.9

Table 5.4: FDFPN solver feature contributions for one 9× 9 Hex opening.

The data thus far suggests that most of our theoretical enhancements are not of much practical

use when solving 7× 7. We decided to see if this was also true for more difficult problems, and so

remeasured the feature contributions with respect to solving a single 9× 9 Hex opening. The results

appear in Table 5.4.

In almost all cases, we see that feature contributions improved with board size. We believe this is

partly because the computational complexity of most of our algorithmic improvements is polynomial
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in the board size, while the corresponding increase in search space pruning grows exponentially.

Furthermore, as the average game length increases, more weak moves are no longer immediately

losing nor easily detectable via previous methods, and so these features become more likely to save

significant search time.

It is somewhat surprising that pruning moves via the strategy-stealing argument or via star de-

composition domination is a net loss. The computing cost of these checks is quite small, although

the change in branching factor that they induce could cause solver to pursue weaker moves. In the

future we will try modifications of these features, such as restricting the strategy-stealing argument

to shallower search depths, and implementing the full version of star decomposition domination.

5.6.2 Benchmarks

Ultimately the main test of Hex solvers has been solving the opening positions of successively larger

Hex boards. As of 2007, the best known automated solver (by Rasmussenet al. ) could solve all 7

× 7 openings in roughly 61 hours [140]. By contrast, our current solver performs the task in about

6.5 minutes.
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Figure 5.11: Solved 8× 8 opening moves.

We are the first to solve any, and all, 8× 8 openings via an automated solver. Our DFS-based

solver first accomplished this task in 301 hours in 2008. Our FDFPN-based solver currently takes

31 hours. See Figure 5.11.

Another person/group has since independently solved all 8× 8 openings, although they have

only published this informally, announcing their results as they were produced on Little Golem’s

Hex forum [114]. We have requested details of their algorithm, computing resources, and search

space statistics, but have received no reply. However, fromtheir postings it is known that it took

them over one month of computation time, and that they were using “about 10 computers” [114].

Thus a conservative estimate is that our solver outperformstheirs by a factor of 100.

Our solver is also the first and only automated algorithm to have solved any 9× 9 Hex open-

ings. Thus far we have solved 55 of the 81 openings, each opening taking between 1 and 25 days,

with the hardest openings requiring roughly 120 million MIDcalls and 70 million static knowledge

computations. This marks the first time that automated solvers have solved all human-solved Hex

openings. See Figure 5.12.
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Figure 5.12: Solved 9× 9 opening moves.

Despite the number of solved 9× 9 openings, the work to date likely represents only a small

fraction of the time needed to solve all 9× 9 openings. On smallern × n boards, solving the

openings adjacent to a White border takes more than half of the total time. Based on the pattern

of previous board sizes, we estimate that most of the remaining openings will take on the order of

100 days each, with the exception of a6, a8, a9, which we estimate will take on the order of 1000

days each. Thus a rough estimate is that solving all 9× 9 openings will take our current solver

approximately 10 years.

Board size Fastest opening All openings
7 × 7 0.5s 384s
8 × 8 155s 112,121s
9 × 9 96,168s unknown

Table 5.5: Current solving opening times by board size.

Given the data presented in Table 5.5, it appears that solving all n × n openings requires about

the same time as solving the easiest(n + 1) × (n + 1) opening. Thus with current hardware and

software we expect that a single 10× 10 opening can also be solved in a decade, but that solving all

10× 10 openings would take more than 1,000 years.
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Chapter 6

Automated Hex Players

Like Go, Hex has a large branching factor that limits automated players to shallow and/or selective

search. Unlike Go, Hex has a reasonably strong evaluation function, and so straightforward alpha-

beta techniques have been successful [9, 121]. Thus, our initial aim was to improve on the existing

alpha-beta framework, and produce a stronger Hex AI via improved inferior cell analysis, stronger

connection strategy deduction algorithms, and adjustments of the evaluation function; the resulting

player is called Wolve. However, recently Monte Carlo Tree Search (MCTS) has been attaining great

success in a variety of games, most notably Go [46, 49, 56, 70,105]. As a result, we also pursued

a MCTS-based Hex player called MoHex (in honour of Sylvain Gelly et al.’s Go program, MoGo).

Lastly, our success with PNS and its variants in solving Hex positions suggested that perhaps a

PNS-based Hex player was possible. This recent experimental player is called PNS-Hex.

In this chapter we describe the common tools used by these automated players, and then de-

scribe each of their distinct aspects. Experimental results against the open source 2003–2006 gold-

medallist Six are also provided, and Appendix C provides a thorough analysis of all 2008 and 2009

olympiad games.

Unless otherwise stated, all experiments are on boards of dimension 11, the board dimension

used in Hex olympiads. Since olympiad games are played with the swap rule, an automated Hex

player needs to respond competently to every opening move the opponent might select. Thus, in

our testing one round iterates over all openings with the swap rule off, with each program playing

each opening once as Black and once as White. To reduce the standard error, we typically run

experiments for several rounds.

While this testing format is helpful in identifying weaknesses (e.g.,openings where we perform

poorly as both Black and White), it significantly dampens anystrength differences, as polarized

openings are played twice, which essentially guarantees some wins for the weaker player. Thus the

strength gains reported in our experiments underestimate the expected tournament performance; in

practice we have found that a 75% win rate in our tournaments corresponds to a nearly insurmount-

able difference in olympiad play. For instance, the 2006 Wolve program wins 30% of its games

against Six in iterated opening tournaments, but lost all four of its games against Six in the olympiad
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[80].

Lastly, in addition to percentage wins, we also refer to Elo differences. The Elo rating system

uses the following formula to convert between Elo differences and expected win percentage:

EP =
1

1 + 10(RP
−RP )/400

(6.1)

For instance, surpassing an opponent’s Elo rating by 100, 200, 300, and 400 points corresponds to

expected win rates of approximately 64, 76, 85, and 91 percent respectively.

6.1 Tools

All previously-described inferior cell analysis and connection strategy deduction algorithms are ac-

cessible to both players. In addition, players can run the solver in a parallel thread, so that positions

solvable within tournament time settings are played perfectly by the solver: in winning positions,

any known winning move is played, and in losing positions, the losing move requiring the most

MID calls to solve is played (i.e., the move that provides the most resistance). Aside from perfect

endgame play, the solver also results in faster endgame play, allowing the allocation of more com-

puting time to earlier stages of the game. At this time the parallel solver only informs the automated

player if it solves the root position. In the future we hope tohave the solver inform the player of any

solved positions within its search tree.

Another common tool for the players that we developed is an opening book. This opening book

is automatically constructed using the player’s evaluation function, and is based on the algorithm

developed by Lincke [113], which makes a tradeoff between book depth and evaluation score; that

is, the opponent must sacrifice more of their evaluation score in order to exit the book at a shallower

depth. However, we made a few modifications to Lincke’s algorithm to improve performance:

1. Rather than using a tree structure, positions explored bythe algorithm are stored in a database,

thereby avoiding repeat work for transpositions.

2. Rather than considering all legal moves in the opening book, a branching factor limit is en-

forced. When a position is explored often enough, the branching factor limit is increased.

3. After the book expansion process, we iterate over all bookpositions with a polarized evalua-

tion, and try to solve these positions. Any solved positionsare stored, and the book values are

updated accordingly.

Because different automated players prefer different types of positions, in practice we found that

such opening books only improve performance when built by the player using it. For instance, a

book built using Wolve’s evaluation function does not improve MoHex’s performance.
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6.2 Wolve

Wolve is the successor to the University of Alberta’s 2003 and 2006 silver-medallist alpha-beta

based programs, Mongoose and Wolve; see previous olympiad reports [80, 122, 177]. Although

Wolve is the common name of the 2006 and current alpha-beta player by the University of Alberta

Hex research group, the Hex code base was entirely rewrittenby Broderick Arneson in 2007, so the

only commonality of these two automated players is their name; thus, from now on we refer to the

older program as Wolve2006.

As with Hexy, Six, Mongoose, and Wolve2006, Wolve is based oncomputing connection strate-

gies with H-search, and using the resulting VCs to augment Shannon’s circuit-based evaluation

function. However, Wolve benefits from the following improvements:

1. connection strategies are computed on fillin-reduced boards, resulting in improved connection

strategy knowledge and possibly smaller mustplay, and

2. fillin and inferior cell pruning reduces the set of moves tobe considered.

Wolve is also improved via iterative deepening, searching to 1-ply, 2-ply, and then 4-ply if

enough time remains. Wolve uses a narrower 1-ply alpha-betabranching factor than Six (15-15-

15-15 versus 20-15) to make this deeper search viable in tournament time conditions, but since Six

often considers (and plays) inferior moves, especially dead-reversible moves, this difference is less

significant in terms of the non-inferior moves considered.

To increase the chance of alpha-beta cutoffs, the best move from the previous iteration is moved

to the front of the ordered move list for the next iteration. Iterative deepening allows Wolve to

identify more fillin-domination from previous iterations,and it uses this information to prune more

moves from consideration.

The circuit evaluation function is somewhat pathological with respect to fillin-domination, as it

often prefers fillin-dominated positions due to their greater quantity of connection strategies (i.e.,

fillin can exponentially decrease the number of connection strategies if their carriers only differ

within the captured sets). The circuit evaluation functionalso exhibits a pronounced odd/even-ply

behaviour, and so 3-ply Wolve is actually slightly weaker (and of course slower) than 2-ply Wolve.

As a result, we skip 3-ply during iterative deepening, although 1-ply is retained for the purposes of

move ordering adjustments and fillin-domination pruning.

Since Wolve’s evaluation function is based on a VC-augmented version of Shannon’s electric

circuit evaluation function, Wolve’s playing strength greatly depends on the connection strategies

that are deduced. Recall that using borders as AND rule midpoints greatly slows down H-search

computations. For this reason, whenever H-search uses borders as midpoints, the H-search VC/SC

heuristic limits(lV , lS) are decreased from (25, 50) to (10, 25) to help manage the timeincrease.

Table 6.1 summarizes the relative strengths and computation times of several Wolve variants

against Six. Since both programs are nearly deterministic,only one round was played. Wolve did
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Wolve variant Win % Time per game (avg, max)
2-ply 20-15 border midpoints 65.7± 3.1 167.0, 519.4

2-ply 20-15 border midpoints, augmented 61.6± 3.1 169.7, 551.2
2-ply 20-15 border midpoints, augmented, crossing63.6± 3.1 194.5, 608.5

4-ply 15-15-15-15 52.1± 3.2 183.6, 624.4
4-ply 15-15-15-15 augmented 81.8± 2.5 397.9, 1183.8

4-ply 15-15-15-15 border midpoints 82.2± 2.5 2238.5, 6900.8

Table 6.1: Wolve variants: performance against Six.

not use a parallel solver nor an opening book. Since Six uses a2-ply 20-15 alpha-beta search, the

top Wolve entry is essentially identical to Six except for our much stronger inferior cell analysis,

including iterative deepening fillin-domination pruning;that is, inferior cell analysis alone accounts

for a 113 Elo gain. However, application of our H-search augmentations does not improve the

performance of 2-ply Wolve.

4-ply Wolve with borders as midpoints is 153 Elo stronger than 2-ply Wolve with borders as

midpoints. However, even with decreased VC/SC heuristic limits, this 4-ply variant requires 37

minutes per game on average and, due to high variance in H-search computation time, can require

nearly 2 hours for one game. Since olympiad time constraintsare 30 minutes per player, this Wolve

variant will often be constrained to a weaker 2-ply search later in the game, even when using an

opening book and parallel solver. By contrast, the 4-ply Wolve variant that uses regular H-search is

far too weak, and is actually outperformed by all of the above2-ply variants. However, by augment-

ing H-search with border templates and captured set carrierintersection, we obtain a 4-ply Wolve

that matches the strength of our previous best 4-ply Wolve variant, and is also five to six times faster.

Wolve has been successful in the International Hex Olympiads, winning the gold and silver

medals in 2008 and 2009 respectively. Wolve has also dominated Six, winning 5 of their 6 olympiad

games. In the future we hope to improve Wolve via the parallelization of its alpha-beta search

engine, and the incorporation of killer/history heuristics [2, 179].

6.3 MoHex

Although historically the best automated Hex players have been based on an alpha-beta framework,

the success of Monte Carlo Go encouraged us to apply Monte Carlo Tree Search to Hex. Below we

describe MoHex, our MCTS Hex player that won silver and gold in the 2008 and 2009 olympiads

respectively.

6.3.1 MoHex Framework

Monte Carlo Tree Search

Monte Carlo Tree Search is a best-first search algorithm thatis guided by the outcome of random

game simulations. One iteration of the algorithm is composed of three basic phases:
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1. tree traversalfrom the root to some leaf node,

2. random game simulationfrom the leaf node’s corresponding game position, and

3. tree updateusing information from the simulated game.

The algorithm is anytime, in that it repeats these steps until no more time remains. After the tree

traversal phase, the search tree is expanded by adding the children of the selected leaf node. When

MCTS terminates, the child with the largest subtree (i.e., the child whose subtree produced the most

simulations) is selected as the best move.

MoHex’s MCTS is built on the codebase of Fuego, the Go programdeveloped by M̈uller et al.

at the University of Alberta [49].

Tree Traversal and Update

MoHex uses the upper confidence bounds applied to trees (UCT)framework combined with the

all-moves-as-first (AMAF) heuristic to select the best child during tree traversal [71, 105].

The UCT framework tracks a value for each node, based on the sum of its average win/loss

performance (based on all random simulated games that started in its subtree) plus an exploration

term (that increases the value for less explored nodes). Thetree traversal starts at the root, recursively

proceeding to the child of highest value until it reaches a leaf node. This formula is designed

to balance the complementary concerns of exploitation (i.e., applying the best performing move)

versus exploration (i.e., trying moves that have largely been ignored).

The AMAF heuristic uses each random simulated game to updatewin/loss statistics for all moves

in the simulated game, rather than for only the first move in the simulated game. Each move played

by the winner is assigned a win, and each move played by the loser is assigned a loss. Thus the

AMAF heuristic accelerates the rate at which MCTS accumulates data, although the resulting data

may be less accurate. Tree updates occur at each node along the path from the leaf to the root,

thereby influencing leaf node selection in future tree traversals.

Like Fuego, MoHex plays strongest when it uses an exploration constant of zero, effectively

turning off UCT exploration and relying solely on the AMAF heuristic to find strong candidate

moves.

Random Game Simulation

Recall that completion Hex (see§3.5) has the same outcome as Hex, so a random game simula-

tion can be played until the board is completely filled, rather than checking for game termination

after each random move. Hence Hex game simulations can be efficiently implemented: add all

uncoloured cells to an array, shuffle them randomly, and playthe remaining moves in order. A con-

sequence of this implementation is that each legal move’s AMAF statistics are updated after each

game simulation.
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As with Go, we have found that a MCTS player is improved by adding some knowledge to the

game simulations, rather than playing completely randomly. MoHex uses a single pattern during

random game simulation: if a player probes an opponent’s bridge, then the opponent always replies

so as to maintain the connection. If multiple bridges are probed simultaneously, then one such bridge

is randomly selected and then maintained.

Yopt, a competing MCTS Hex program produced by Cazenave and Saffidine, uses an additional

game simulation pattern based on the 4-3-2 VC [146]. However, Cazenave and Saffidine report that

this pattern only seems to be beneficial in self-play, and in our tests MoHex shows no strength gain

from this pattern.

6.3.2 Applying Hex Knowledge

Like many other MCTS players, MoHex uses knowledge-intensive algorithms in important parts

of the tree, as well as flags to indicate solved states [178]. Using a fixedknowledge threshold

parameter, if any node is visited often enough during tree traversal, then both inferior cell analysis

and the H-search algorithm are run on that position. There are two possible outcomes:

1. fillin or H-search solves the position, or

2. the position value is still unknown.

In the first case, all child subtrees are deleted, and the treenode is marked such that any tree

traversal that encounters this node omits the random game simulation, and simply updates its ances-

tor nodes using the correct outcome.

In the second case, subtrees corresponding to moves that canbe pruned via inferior cell analysis

or mustplay results are deleted from the tree. Furthermore,the fillin of this position is stored per-

manently at the tree node, and applied to every tree traversal. Since fillin is computed statically at

each such tree node, there can be disagreement between the fillin of a node and the fillin of its child

(i.e., a child’s fillin-reduced position is not necessarily a continuation of the parent’s fillin-reduced

position), so the descendant node’s fillin takes precedence, and any prior fillin knowledge is ignored.

Fillin produces two benefits. Firstly, the random game simulations are shorter (since the number

of uncoloured cells has decreased), which allows more game simulations per second. Secondly,

the accuracy of the game simulations improves, since by definition fillin computes the correct local

outcome.

Although each child node corresponding to a fillin move is deleted, a fillin move might still be

available in some child’s subtree, possibly yielding an illegal game sequence in which a fillin move

is played. To avoid this problem, when fillin is computed, each unpruned child’s subtree is deleted

excepting their roots and relevant statistics (e.g.,UCT and AMAF data). Note that any subsequent

tree expansions below the parent node will not conflict with its fillin. This process is illustrated in

Figure 6.1.
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Figure 6.1: Applying Hex knowledge to the Monte Carlo tree.

The knowledge threshold is typically fairly small (e.g.,the 2009 olympiad version of MoHex

had a knowledge threshold of 50 node visits), so the size of any truncated subtree is small and, as

we shall show, the subsequent loss of information is in practice more than compensated by the gain

in performance.

Lock-Free Parallelization

MoHex uses the Fuego codebase, and so benefits from Fuego’s lock-free parallel MCTS [49]. Mo-

Hex’s knowledge computations are handled within this lock-free framework. It is possible for dif-

ferent threads to perform duplicate knowledge computations concurrently, but this is extremely rare

in practice, and causes no theoretical problems (i.e.,only a marginal waste of computing resources).

Time Management

Unlike Wolve, MoHex is an anytime algorithm, so a more refinedtime management system is pos-

sible. In olympiad conditions, each player has 30 minutes togenerate all of their moves. Since

MoHex uses the parallel solver in these conditions, then MoHex needs to generate on average about

20 moves. Thus MoHex can easily allot one minute per move.

As noted earlier, MoHex selects the move whose subtree generates the most simulations. It is

possible to abort search early if the gap in number of simulations between the top two candidates

cannot be overcome in the time remaining; this greatly reduces computation time without affecting
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performance. Because of this, in the 2009 olympiad MoHex allotted 96 seconds per move, and never

experienced any time difficulties.

6.3.3 Experimental Results

We now discuss how MoHex’s playing strength is affected by these various factors.

Scaling

MCTS is a parallelizable anytime algorithm, so the scaling of its performance with respect to time

and number of threads is important. As with many other MCTS programs, MoHex’s strength seems

to scale logarithmically versus time, with each doubling ofthe game simulations producing roughly

an additional 36 Elo of strength: 8s/move MoHex defeats 1s/move MoHex 65.1% of the time. See

Figure 6.2.
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Figure 6.2: Performance of locked, lock-free, and time-scaled single threaded MoHex against single
threaded 1s/move MoHex.

As with Fuego, the lock-free version of multithreaded MoHexscales far better than the locked

alternative. Indeed, the effect here is even more dramatic than that in Go — scaling of the locked

version is worse with two threads, and performance actuallydegrades with only four threads —

presumably because the game simulations in Hex are so much faster than in Go, and the threads

spend most of their time in the tree.
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Heuristic Techniques

Both the bridge pattern and AMAF heuristic give major strength gains for MoHex. The bridge

pattern produces a 105 Elo strength gain against a naive UCT implementation; this improved version

is surpassed by another 181 Elo by adding the AMAF heuristic.Based on the scaling information

above, this total strength gain is roughly equivalent to a 250-fold increase in computing time. See

Table 6.2.

Incrementally Added Feature Win % Elo gain
Bridge pattern 64.7%± 1.4% 105

AMAF heuristic 73.9%± 1.3% 181

Table 6.2: The bridge pattern and AMAF heuristic improve playing strength by 286 Elo.

We tested many inferior cell analysis patterns as game simulation patterns. In all cases these

patterns gave MoHex no strength gain, or even worsened performance. This provides evidence that

provably correct information in game simulations can weaken MCTS players.
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Figure 6.3: Threaded 8s/move MoHex with knowledge against 2-ply Wolve. A knowledge threshold
of zero means that no knowledge is computed.

Adding connection strategy and inferior cell knowledge within MoHex’s Monte Carlo tree is

roughly equivalent to doubling the number of game simulations. The optimal knowledge threshold
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seems to be about 400 for the single threaded version, and to decrease proportionally with the num-

ber of threads. We note that a low knowledge threshold can worsen performance, as not enough time

is spent on random game simulations. See Figure 6.3.

Opening Book

The opening play of MoHex can be inconsistent (see Appendix C), perhaps because there is so

little existing structure to guide the random game simulations. Our initial opening book results are

promising: an opening book for 9× 9 Hex that was constructed in one day produces gains of 85

Elo, which is worth more than a doubling of simulations on that board size. As book size increases,

playing strength gains grow logarithmically. We have foundthat it is important for the opening book

to be computed using a MoHex evaluation that is at least as strong as the MoHex player using the

book; otherwise the book’s strength gains are diminished. See Figure 6.4.
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Figure 6.4: MoHex with books of increasing size against 100k/ move MoHex with no book.

H-search Augmentations

MoHex uses connection strategies only to determine captured decomposition fillin, to define the

mustplay, and to identify solved node positions. In generalwe have found more complete versions of

H-search to be not as useful in MoHex, as the slight improvement in pruning does not compensate for

H-search’s time increase (which decreases the number of game simulations that can be performed).

Thus our best version of MoHex does not use borders as AND rulemidpoints, even though this
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variant of H-search is preferred by Wolve. However, MoHex does use border template base case

augmentations.

We have tried to incorporate connection strategies into random game simulations. Two such

attempts were to heuristically select connections to maintain during the simulation, and to add con-

nection strategy maintenance choices as moves in the Monte Carlo tree. Unfortunately, all such

techniques greatly worsened performance, with the best variation to date using common responses

in the Monte Carlo tree to guide responses in the simulated game. If connection strategies can be

used more effectively by MoHex, it is possible that H-searchaugmentations could prove worthwhile.

Tournament Strength

As stated earlier, MoHex won the silver and gold medals in the2008 and 2009 Hex Olympiads. In

these two tournaments, MoHex won 4 of its 6 games against Six and 5 of its 6 games against the

competing MCTS Hex player Yopt. Furthermore, all of MoHex’slosses were in 2008, prior to many

algorithmic improvements. We summarize MoHex’s playing strength (without the use of an opening

book or parallel solver) against Six and Wolve in Table 6.3. Basically, MoHex dominates Six and is

evenly matched with Wolve.

Opponent MoHex Win %
Six 76.6± 3.6

Wolve 4-ply 20-20-20-20 augmented 49.2± 3.2

Table 6.3: MoHex: performance against Six and Wolve.

6.4 PNS-Hex

While applying our FDFPN-based Hex solver to olympiad positions and puzzles, we observed that

the solver typically focused its efforts on the best move long before it proved the position’s value.

Thus, the solver’s early efforts served as a good predictor of what would end up being the best move

(i.e.,either winning, or losing but giving the greatest resistance).

This is not surprising, since an effective solver must spendmore of its time exploring stronger

moves. Based on this observation we speculated that the solver could work as an anytime Hex

player, running within the given time constraints until it either solved the position, or else selected

a move heuristically using its relative efforts on each child’s subtree thus far. Two possible metrics

were considered, the latter suggested by Broderick Arneson:

1. select the child with the most MID calls, or

2. select the child whoseφ is largest.

Only the first metric has been implemented so far. We tested this basic player against MoHex
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on both 9× 9 and 11× 11 boards, with MoHex generating 10,000 random game simulations per

move. The results are shown in Figure 6.5.
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Figure 6.5: PNS-Hex: performance against MoHex-10k.

On a per-second basis, this basic automated player is roughly equal with MoHex on the 9× 9

board: MoHex-10k’s total time per game (10s) is about halfway between the total time required by

1s and 2s PNS-Hex (7.7s and 14s respectively). However, on the olympiad-sized 11× 11 board,

PNS-Hex requires 3.5 times as much computation time as MoHexto produce equal playing strength

(42s total time for MoHex versus total times of 94s and 191s for 8s and 16s PNS-Hex respectively).

This is largely due to PNS-Hex’s very weak opening play, as the lack of any mustplay for early

positions results in nearly-uniform branching factors, where PNS-Hex is essentially unguided in its

search.

Given the initial success of this basic player, we plan to investigate the following adjustments of

PNS-Hex:

1. Test theφ metric (versus MID call metric) for move selection.

2. Test various focused child limit parameters for FDFPN.

3. Test the use of a database that accumulates (dis)proof number values for opening positions

over time (i.e.,as PNS-Hex plays many games).

4. Test the benefits of using an opening book.
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If this concept proves useful, it can easily be generalized to other games, as well as general game

playing.
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Chapter 7

Conclusion

The research presented in this thesis represents a significant contribution to the mathematical and

algorithmic knowledge of Hex. Inferior cell pruning, fillin, and decomposition analysis have all

been improved, and several efficient augmentations of connection strategy deduction algorithms

have been developed.

Applying this new theory has resulted in the world’s best Hexsolver, an algorithm that has

surpassed all previous benchmarks, provides the first instance of an automated solver dominating

humans, and outperforms all competing automated solvers byat least two orders of magnitude.

Applying this new theory has also helped produce the world’stwo strongest automated Hex

players — Wolve and MoHex — who have dominated the International Hex Computer Olympiads

since their introduction, and far surpass the previous goldmedallist Six.

Many important open questions and challenges remain, and this research raises many new ques-

tions and challenges (see Appendix D).

Hex is a game that has interested mathematicians and computer scientists since its invention.

The graph-theoretic, combinatorial game theoretic, and artificial intelligence aspects of this game

ensure that it will continue to do so in the forseeable future.
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Appendix A

Probing the 4-3-2 Virtual Connection

Border bridge carrier fillin resulted in roughly a tenfold speedup when Haywardet al. first solved

the 7× 7 Hex openings [83]. Given these benefits and the fact that the4-3-2 VC appears fre-

quently, Hayward posed the question: “When are probes of a Black 4-3-2 inferior?”. This appendix

summarizes what is known thus far.

A.1 Winning Probes

Probes of an opponent’s border bridge are dead-reversible moves, so such probes cannot be unique

winning moves in any Hex position. However, probes of an opponent’s 4-3-2 are not in general

inferior, since probes 1, 2, 4 of an opponent’s 4-3-2 can be unique winning moves. See Figure A.1,

and recall the 4-3-2 carrier labelling from Figure 3.3.

1
2

4

Figure A.1: Probes 1, 2, 4 of a Black 4-3-2 VC can each be a unique winning move for White.

It follows that one cannot unconditionally prune these three probes. It might be speculated that

these three probes dominate all other 4-3-2 probes, howeverthis also turns out to be false as probes

3 and 5 can be winning moves when probes 1, 2, 4 are all losing moves. See Figure A.2.

3

5

Figure A.2: White’s only winning moves are the dotted cell and 4-3-2 probes 3 and 5.

In this last example, probes 3 and 5 are not the only winning moves for White, as an external
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winning move exists. Furthermore, probes 3 and 5 merely delay an eventual external winning move,

and are not necessary for White’s win. More formally, probes3 and 5 are not part of any shortest

White winning strategy.

We know of no Hex state in which one of the 4-3-2 probes 3, 5, 6, 7, 8 is a unique winning move,

nor of a Hex state in which one of the 4-3-2 probes 6, 7, 8 wins but probes 1, 2, 4 all lose. Probes 1,

2, 4 seem to be stronger than the others, so we conjectured [88] the following:

Conjecture 1 LetH be a Hex position, and letC be the carrier of a Black 4-3-2 inH. If White has

a winning move inHW , then White has a winning move that is not probe 3, 5, 6, 7, or 8 of C.

This conjecture is still open. In the rest of this appendix wefind supporting evidence and condi-

tions under which it holds.

A.2 Maintained 4-3-2 Virtual Connections

The first set of conditions under which Conjecture 1 holds, isthe assumption that the 4-3-2 VC will

be maintained against all opponent probes; we call this themaintenance assumption. This is often

the case in practice, although admittedly it is rare to know this with absolute certainty. Given the

maintenance assumption, our result is actually slightly stronger in that we prove the domination of

probes{3, 5, 6, 7, 8} by probes{1, 4}.

Theorem 16 LetH be a Hex position, and letC be the carrier of a Black 4-3-2 inH for which the

maintenance assumption holds. Then the White probes 3, 5, 6,7, 8 ofC are each dominated by at

least one of the White probes 1, 4 ofC.

To prove Theorem 16, we must consider Black’s possible maintenance responses to these probes.

We start by considering the dominating probes 1 and 4.

Lemma 16 LetH be a Hex position, and letC be the carrier of a Black 4-3-2 inH for which the

maintenance assumption holds. If White probes at cell 1 ofC, then Black will respond at cell 2 or

cell 4 ofC.

Proof: First note that cells 2 and 4 do indeed maintain the Black 4-3-2 against White probe 1.

In H + W (1) + B(2), set{3,5,6,7} is Black captured. InH + W (1) + B(4), set{7,8} is Black

captured. By capture-domination the result follows. 2

Lemma 17 LetH be a Hex position, and letC be the carrier of a Black 4-3-2 inH for which the

maintenance assumption holds. If White probes at cell 4 ofC, then Black will respond at cell 2 of

C.
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Proof: First note that cells 2, 3, 5, 6, 7 are the only moves that maintain the Black 4-3-2 against

White probe 4. InH +W (4) +B(2), set{3, 5, 6, 7} is Black captured. By capture-domination the

result follows. 2

We shall prove domination by showing that if White probes 1 and 4 are losing, then probes 3, 5,

6, 7, 8 are also losing. If White probes 1 and 4 are losing, thenthe maintenance assumption implies

the following by Lemmas 16 and 17:

• At least one ofH +W (1) + B(2) andH +W (1) +B(4) is a Black win.

• H +W (4) +B(2) is a Black win.

We can relate these three positions to those obtained by other probes, as in the following lemma:

Lemma 18 LetH be a Hex position with a Black 4-3-2. ThenH+W (1)+B(2) ≥W H+W (6)+

B(4).

Proof: In positionH +W (6) + B(4), set{7, 8} is Black captured, and Black can adopt a pairing

strategy on{1, 3} and{2, 5} that maintains the 4-3-2. Thus we need only show that this pairing

strategy always results in a completion that is White dominated byH +W (1) + B(2).

Since cell 3 is White dead-reversible to cell 1 and they are paired, then without loss of generality

we can assume White probes at 1 and Black maintains at 3. Giventhat cells 3 and 7 are Black,

then the White cell 6 is actually dead, and so can be recoloured Black. But then cells 2 and 5

are Black captured, and so Black’s pairing strategy there will ensure that any White move to 2 or 5

becomes dead. Thus any completion of the 4-3-2 inH+W (6)+B(4) with Black adopting the given

pairing strategy is equivalent toH +W (1) +B({2, 3, 4, 5, 6, 7, 8}). SinceH +W (1) +B(2) ≥W

H +W (1) +B({2, 3, 4, 5, 6, 7, 8}), this concludes the proof. 2

Applying Lemma 18 to the assumed conditions of our Theorem, we can conclude that either

White probe 6 is losing (to Black maintaining at 4) or White probe 1 wins against Black maintaining

at 2, the latter implying that White probe 1 loses against Black maintaining at 4.

Many 4-3-2 probe-maintenance position domination resultscan be deduced using neighbour-

hood domination and induced path domination, as illustrated in §3.4 and§3.5; some of these results

are summarized in Figure A.3. We now have all the tools required to prove Theorem 16:

Proof: Assume White probes 1, 4 ofC lose to Black maintaining the 4-3-2. Then we need only

show that White probes 3, 5, 6, 7, 8 all lose to Black maintaining the 4-3-2.

By neighbourhood domination,H +W (4) +B(2) ≥W H +W (3) +B(2) since set{ 5, 6} is

Black captured. Similarly,H +W (4) + B(2) ≥W H +W (7) + B(2) since set{ 5, 6} is Black

captured. By induced path domination,H +W (4) + B(2) ≥W H +W (8) + B(2) since set{ 3,

5, 6, 7} is Black captured. Since by assumption White probe 4 is losing to Black maintaining the

4-3-2, then by Lemma 17 White probes 3, 7, 8 all lose to Black maintaining at cell 2.
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Black

White
1 3 5 6 7 82 4

2

3

4

Figure A.3: Some White domination relations among 4-3-2 White probe, Black maintenance po-
sitions. Each unidirectional arc points from a position to aWhite dominating position, while bidi-
rectional arcs indicate equivalent positions. X indicatesan impossible position. Arcs which can be
deduced by domination transitivity are omitted for clarity.

By Lemma 18,H + W (1) + B(2) ≥W H + W (6) + B(4). By induced path domination,

H+W (1)+B(4) ≥W H+W (6)+B(4) since set{ 7, 8} is Black captured. Since by assumption

White probe 1 is losing to Black maintaining the 4-3-2, then by Lemma 16 White probe 6 loses to

Black maintaining at cell 4.

If White probesC at 5, then consider a Black response at cell 2. In the positionH+W (5)+B(2),

cell 5 cannot be on any minimal White winning paths without further moves inC. If White follows

up with a probe at 1, Black can respond at cell 4. InH + W ({1, 5}) + B({2, 4}), set{3, 6, 7, 8}

is Black captured and cell 5 is dead, so this position Black dominates bothH +W (1) + B(2) and

H +W (1) +B(4), and thus must be a Black win by our assumption.

If White follows up with probe 6, then Black can respond at cell 4. In positionH+W ({5, 6})+

B({2, 4}), set{7, 8} is Black captured, and so cell 6 is White induced path dominated by cell 1.

Thus this position Black dominatesH +W ({1, 5}) + B({2, 4}), which as we have just shown is a

Black win.

If White instead follows up with one of the probes 3, 4, 7, or 8 then Black can respond at cell 6.

In H +W ({x, 5}) + B({2, 6}) with x ∈ {3, 4, 7, 8}, cell 5 is dead, so each of these four positions

is equivalent to or Black (neighbourhood or induced path) dominatesH+W (4)+B(2). Thus these

four positions are all Black wins by our assumption.

Thus White has no winning follow up probes inC, and thus positionH + W (5) + B(2) is a

Black win. 2

A.3 Acute Corner 4-3-2 Virtual Connections

Next we consider restrictions of Conjecture 1 where the 4-3-2 VC carrier is in an acute corner.

The 4-3-2 can be oriented in two ways, depending on the location of the non-border endpoint. See

Figure A.4. Due to the coordinate system commonly used in Hex, we call them the a3 4-3-2 and b3
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4-3-2 respectively.

1 2
3

4
5

6
7

8

1

2
3

4

5
6

7
8

Figure A.4: Acute corner a3 4-3-2 and b3 4-3-2 virtual connections.

When probing such 4-3-2s, the nearby White border makes capturing easier, yielding the fol-

lowing probe results:

Lemma 19 LetH be a Hex position, and letC be the carrier of a Black a3 4-3-2 inH. Then White

probes{ 2, 3, 5, 7} of C are inferior.

Proof: White probe 4 creates a star decomposition in the acute corner, soH + W (4) ≡ H +

W ({2, 4, 5}) ≡ H +W ({3, 4, 7}), and thus probe 4 capture-dominates probes 2, 3, 5, 7. 2

Note that White probe 6 also capture-dominates probes 2 and 5due to the border bridge it creates.

Thus probes 1, 4, 6, 8 dominate probes 2, 3, 5, 7 for the a3 4-3-2, which is both stronger and weaker

than our original conjecture: stronger because it prunes out probe 2, weaker because probes 6 and 8

remain.

Lemma 20 LetH be a Hex position, and letC be the carrier of a Black b3 4-3-2 inH. Then White

probes{ 1, 3, 4, 5, 6, 7, 8} ofC are inferior.

Proof: All White probes in{ 1, 3, 4, 5, 6, 7, 8} are dead-reversible with Black reverser cell 2.2

Aside from pruning acute 4-3-2 probes from consideration, one can also prune moves when the

acute corner is still uncoloured:

1
2

3
4

5

6
7

8
9

Figure A.5: The two dotted cells Black dominate all other shaded cells in the uncoloured acute
corner.

Theorem 17 LetH be a Hex position, and assume the nine cells forming a 4-3-2 shape in an acute

corner are all uncoloured, labelled as in Figure A.5. Then Black can prune cells{ 2, 4, 5, 6, 7, 8, 9

} from consideration.
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Proof: As shown in Figure 3.1, cell 3 capture-dominates cells{ 4, 5, 6, 7, 8, 9}, thus all that remains

is to prune cell 2 from consideration. We shall do so by proving thatH +B(1) ≥B H +B(2).

If Black is the first to play in the acute corner, we note thatH + B({1, 3}) captures all other

cells in the acute corner. Thus by monotonicityH + B({1, 3}) ≥B H + B({2, x}) for all x ∈

{1, 3, 4, 5, 6, 7, 8, 9}.

If White is the first to play in the acute corner, then by Lemma 20 White must probeH + B(1)

at cell 3. This creates a star decomposition, soH + B(1) + W (3) ≡ H + B(1) + W ({3, 5, 9}).

By neighbourhood domination,H + B(1) + W ({3, 5, 9}) ≥B H + B(2) + W ({3, 5, 9}). Once

again, due to a star decompositionH + B(2) + W ({3, 5, 9}) ≡ H + B(2) + W (3). Combining

these results, we conclude thatH +B(1) +W (3) ≥B H + B(2) +W (3).

Since Black prefersH + B(1) to H + B(2) regardless of who moves first, then by definition it

follows thatH + B(1) ≥B H + B(2). 2

Since in practice the acute corner is often uncoloured or with only one coloured cell, these results

are often applicable when solving or playing positions.
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Appendix B

Handicap Strategy

We give an explicit⌈n+1
6 ⌉ handicap strategy for Hex on then×n board: the first player is guaranteed

victory if they are allowed to colour⌈n+1
6 ⌉ cells on their first move.

Our handicap strategy colours handicap cells in the second row — so that all cells in the first

row are Black fillin via dead, captured, and permanently inferior cells — and applies Shannon’s

pairing strategy for irregular boards to the fillin-reducedboard. The resulting handicap strategy is

both explicit and efficient.

B.1 Handicap Locations and Fillin

We begin by describing the location of Black’s initial⌈n+1
6 ⌉ cell colourings on then × n Hex

board. Since trivial first player strategies are known forn× n boards withn at most five, we focus

exclusively onn× n boards withn at least six.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

Figure B.1: Handicap cell colouring: handicap cells are Black-coloured and primary cells are dotted.

Thehandicap cellsare always in the second row from the Black border, and located in column

4 and in columnsn − 1 − 6j for eachj in {0, . . . , ⌊n
6 ⌋ − 1}. Theprimary cellsare the first row

cells adjacent to a handicap cell; that is, the cells in the carrier of a handicap cell border bridge. See

Figure B.1.

107



Lemma 21 For anyn × n Hex board withn ≥ 6, the above handicap initialization specifies the

colouring of⌈n+1
6 ⌉ handicap cells.

Proof: Sincej ≤ ⌊n
6 ⌋ − 1, it follows thatn − 1 − 6j ≥ 5, so the handicap cell in column four is

distinct. Sincej iterates from zero to⌊n
6 ⌋ − 1 inclusive, there are exactly⌊n

6 ⌋ + 1 handicap cells

including the one in column four. Finally,⌊n
6 ⌋+ 1 = ⌈n+1

6 ⌉. 2

We now show that colouring the handicap cells results in the entire first row being Black fillin.

Figure B.2: Gaps between consecutive handicap cells.

Lemma 22 LetH1 be the Hex position obtained from the handicap cell colouring of an × n Hex

board, and letH2 be the position obtained fromH1 by Black-colouring the entire first row. Then

H1 ≡ H2.

Proof: All handicap cells are on the second row, so all primary cellsare in border bridge carriers,

and so are Black captured. See the two leftmost cases in Figure B.2.

The handicap cells are never separated by more than five uncoloured cells in the second row,

so their respective primary cells are never separated by more than four uncoloured cells in the first

row. If a primary cell gap is of size one, the uncoloured cell is dead, and can be coloured Black

without changing the value ofH1. If a primary cell gap is of size two, the uncoloured cells are

Black captured. See the next two cases in Figure B.2.

If the primary cell gap is of size three or four, then the first row uncoloured cells neighbouring

primary cells are Black permanently inferior. See the rightmost case in Figure B.2. Colouring all

such permanently inferior cells and iterating on this reduced board, any remaining first row gap is

of size one or two, so once again the uncoloured first row cellsare dead or Black captured.

For the gap between the column four handicap cell and the White border, the first row uncoloured

cell neighbouring a primary cell is permanently inferior, and the fillin-reduced first row gap of size

two is Black captured.

SinceH1 has been transformed toH2 via Black fillin, it follows that these two positions have

the same value. 2

B.2 Existence Proof and Explicit Strategy

Theorem 18 On a Hex board of dimensionn ≥ 6, Black has a winning⌈n+1
6 ⌉ handicap strategy.
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Proof: By Lemma 21,⌈n+1
6 ⌉ handicap cells are coloured on a Hex board of dimensionn ≥ 6. By

Lemma 22, this initial handicap position produces Black fillin that colours the entire first row, and

so is equivalent to an(n−1)×n Hex board in Black’s favour (i.e.,with Black traversing the shorter

distance) with⌈n+1
6 ⌉ Black-coloured cells on the first row of this irregular board. By monotonicity

this position Black dominates an initial(n− 1)× n Hex board in Black’s favour, and the latter is a

Black win by Shannon’s pairing strategy. 2

Theorem 18 claims the existence of a handicap strategy. However, by the proofs of Lemma 22

and Theorem 18, simply maintaining the fillin with the corresponding inferior cell strategies (in the

order deduced, when there are conflicts; see Theorem 5) and combining this with Shannon’s pairing

strategy yields an explicit handicap strategy:

• Colour the⌈n+1
6 ⌉ handicap cells, as specified above.

• In response to each White move, follow the earliest rule thatis both applicable and legal:

1. If White colours a primary cell, then colour a neighbouring primary cell (i.e., its killer

in the primary cell captured set).

2. If White colours a dead-reversible cell in the carrier of afirst row permanently inferior

cell, then colour its killer within the permanently inferior carrier.

3. If White colours a dead-reversible cell in a first row Blackcaptured set, then colour its

killer.

4. If White colours a first row dead cell, then colour any uncoloured cell.

5. If White colours a cell outside of the first row, then colourits partner in the(n− 1)× n

Shannon pairing strategy.

6. Colour any uncoloured cell.

This is the most efficient handicap strategy known for Hex on all unsolved board sizes (i.e.,

boards of dimension at least ten). In particular, we note that the late Claude Berge, who was a

Hex enthusiast [21, 22], would often give beginners three handicap cells on 11× 11 Hex boards,

suggesting that he did not expect them to find a winning strategy requiring fewer than four handicap

cells. We would like to think that our two-cell handicap strategy for 11× 11 Hex would have

surprised him.

109



Appendix C

Olympiad Games

This chapter summarizes the performance of Wolve and MoHex in the 2008 and 2009 International

Computer Olympiads. In both of these tournaments the participants were Wolve, MoHex, Six, and

Yopt.

For each game we display the entire game sequence, the first and second player (with the winner

in bold), any endgame states our solver can identify as Blackor White winning, and any additional

observations. Similar commentary appears in our tournament reports [12, 13]. However, because

our solver has improved significantly since these tournaments took place, the commentary below is

more thorough.

C.1 2008 Olympiad

Wolve MoHex Six Yopt total result
Wolve 1-3 4-0 4-0 9-3 gold
MoHex 3-1 2-2 3-1 8-4 silver

Six 0-4 2-2 2-2 4-8 bronze
Yopt 0-4 1-3 2-2 3-9 4th

Table C.1: 2008 Hex Computer Olympiad results.

As mentioned in Chapter 6, MoHex and Wolve share many features, such as their algorithms for

computing connection strategies and identifying inferiorcells. However, sometimes features which

aided one program were detrimental to the other. For this reason, during this competition MoHex

had stronger inferior cell and connection strategy computations, and only Wolve used an opening

book.

Gábor Melis did not attend this tournament, so Six’s opening moves were selected by Nathan

Sturtevant. The tournament had two rounds, played on distinct days. In each round, each player

opened once against each opponent.
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Game 1: Six - MoHex
Black winning: 17–19
White winning: 20+

Commentary: 20.B[f8] is a blunder as 20.B[f3] is winning.
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Game 2: MoHex - Six
Black winning: 20+
White winning:

Commentary: Throughout the game MoHex seems to have the advantage, as Six is
constantly defending and is never given the chance to form a reasonable
counterattack.
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Game 3: Wolve - Yopt
Black winning:
White winning: 16+

Commentary: The opening move of f3 seems imbalanced, givingYopt an initial ad-
vantage. However, Wolve plays an interesting opening, confusing the
situation well (e.g.,move 9.W[e6]). 18.B[b7] by Yopt seems a bit weak,
and is far easier for our solver to refute than 18.B[c7].
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Game 4: Yopt -Wolve
Black winning:
White winning: 13+

Commentary: Wolve’s first four moves were generated by its opening book. The open-
ing is fairly standard and seems reasonably even until 9.B[c8]. Yopt
played outside of the mustplay with 15.B[d6], resulting in an easy win
for Wolve (15.B[c6] offered much stronger resistance).
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Game 5: Wolve - Six
Black winning: 27–39
White winning: 40+

Commentary: Six blunders with 40.B[e9], as 40.B[e8] is a (unique) winning move.
Six’s play seems strong until then.
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Game 6: Six -Wolve
Black winning: 33–39, 41+
White winning: 32, 40

Commentary: Six blunders with 33.W[i8] as 33.W[i7] is winning. Later Wolve blun-
ders with 40.B[c7] as 40.B[e3] is winning. Six immediately returns
the favour, making a major blunder with 41.W[d4] when 41.W[e3] is a
simple win for White.
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Game 7: MoHex - Yopt
Black winning:
White winning: 20+

Commentary: Yopt’s 22.B[c5] is outside of the mustplay; this weak move could have
been avoided with a basic implementation of H-search. 22.B[k2] pro-
vides much more resistance according to our solver. Move 20.B[f4] by
Yopt is captured-reversible, and MoHex responds with its reverser.
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Game 8: Yopt - MoHex
Black winning:
White winning: 16+

Commentary: Move 6.B[j2] by MoHex seems very weak, giving Yopt a free move to
strengthen the centre and/or create important border connections. Un-
surprisingly, Yopt is winning in all solved continuations.
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Game 9: Six - Yopt
Black winning:
White winning: 24+

Commentary: Opening play seems reasonable for both players. Move 26.B[b4] by
Yopt is both dead-reversible and outside of the mustplay, greatly sim-
plifying Six’s advantage.
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Game 10: Yopt - Six
Black winning: 25–35
White winning: 22–24, 36+

Commentary: 25.W[d2] is a dead-reversible move by Yopt, anda blunder as 25.W[e2]
is winning. 36.B[i7] is a major blunder by Six, as 36.B[h8] isa trivial
win.
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Game 11: MoHex - Wolve
Black winning: 20+
White winning:

Commentary: Wolve’s 22.W[c3] is a dead-reversible move, and it is killed by Mo-
Hex’s response at 23.B[b4]. Such poorly-conceived probes occur fre-
quently with the circuit evaluation function used by Six andWolve.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

1S

3

4
5

6 7
8

9

10

11
12

13

14
15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30
31

32

33

34
35

36
37

38

39
40

41

42
43

44
45

46

47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62

63
64

65
66

67

68

69
70

71

72
73

7475
76

Game 12: Wolve -MoHex
Black winning: 27+
White winning: 26

Commentary: Wolve’s 27.W[e9] is a blunder as 27.W[h9] is winning. 21.W[b3] is
also a bit weak since it is star decomposition dominated by 21.W[d2].
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C.1.1 Round 1

In the first round of the tournament, all games either had a fairly biased opening (i.e., game states

within the first 20 moves can be solved in a reasonable amount of time) or else there were blunders

in the endgame stages. Games 2–4, 7–8, 11 are in the first category, games 5–6, 9–10, 12 are in the

second category, and game 1 is in both.

Given this fact, stronger endgame play would have helped significantly (i.e.,whenever the open-

ing was not overly biased), and so for the second round we added a simple endgame solver to Wolve

and MoHex. This solver ran for 15 seconds prior to the player’s normal search, but only after move

15 due to tournament time conditions. The success of this last-minute addition eventually led to our

parallel solver.

C.1.2 Round 2
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Game 13: Six -MoHex
Black winning: 21+
White winning:

Commentary: Six’s play along the 9th row is quite weak, as it gives MoHex a strong
wall of influence. Move 25.W[i11] by Six is dead-reversible,and Mo-
Hex kills it with 26.B[k10].
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Game 14: MoHex -Six
Black winning: 27+
White winning: 20

Commentary: 21.W[b10] is likely a blunder by MoHex, as 21.W[b7] is winning and
MoHex is losing shortly thereafter; our solver is not strongenough to
solve the intermediate positions.
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Game 15: Wolve - Yopt
Black winning:
White winning: 14+

Commentary: Wolve dominates this game throughout. Move 22.B[e6] by Yopt is par-
ticularly weak, being both dead-reversible and outside of the mustplay.
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Game 16: Yopt -Wolve
Black winning:
White winning: 25+

Commentary: Again Wolve seems to have a strong advantage throughout. Move
33.B[f8] by Yopt is dead-reversible.
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Game 17: Wolve - Six
Black winning: 28+
White winning:

Commentary: After 16.W[b2] it seems as though Wolve has fallen into a bad opening
trap, with Six gaining all the influence. However, Wolve’s probes of
Six’s VCs give ample compensation and allow Wolve to win.
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Game 18: Six -Wolve
Black winning: 45–47, 49+
White winning: 48

Commentary: This close game between Six and Wolve is the toughest to solve in the
entire olympiad (in the number of moves played before it can be solved).
48.B[e8] is a blunder by Wolve, as 48.B[d8] is winning. 49.W[d9] is a
blunder by Six, as 49.W[h6] and 49.W[f8] are both winning.
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Game 19: MoHex - Yopt
Black winning:
White winning: 30+

Commentary: 30.B[h7] by Yopt seems weak, as 30.B[h6] gives far greater resistance
to our solver.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11
1S

3
4

5
6

7

8

9
10

11

1213

14

15

16

17
18

19
2021

22
23

24

25

26

27

28

29
30

31
32

3334
35

36
37

38
39

40

41

42
43

44
45

46

Game 20: Yopt -MoHex
Black winning: 19+
White winning:

Commentary: 17.W[d3] by Yopt is dead-reversible, and MoHexresponds by killing it.
Yopt’s mustplay remains small from move 20 onwards.
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Game 21: Six -Yopt
Black winning: 17+
White winning:

Commentary: Yopt is winning this game very early on, presumably because of Six’s
imbalanced opening move. 15.W[g2] by Six also looks weak.
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Game 22: Yopt -Six
Black winning: 41, 55+
White winning: 42–54

Commentary: 42.B[b6] is a blunder by Six as 42.B[b5] is winning, and 55.W[c6] is a
blunder by Yopt as 55.W[b7] is winning. The latter blunder isdetectable
both by inferior cell analysis (it is dead-reversible) and by mustplay.
This game ensures that Six gets the bronze medal and that Yoptfinishes
in fourth place.
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Game 23: MoHex -Wolve
Black winning: 19+
White winning:

Commentary: MoHex’s opening play seems quite weak, especially 9.W[j2]. A com-
mon flaw of MoHex is to favour b10 and j2, even when these moves are
seemingly irrelevant to the current threats. This game clinches the gold
medal for Wolve.

118



a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

1S 3
4

5
6

7

8

9

10

11
12

13

14
15

16
17

18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36 37
38

39

40
41

42

43

44

45
46

4748

49

50

51
52

53
54

55
56

57
58

59
60

Game 24: Wolve -MoHex
Black winning: 43+
White winning: 34–42

Commentary: Even with the 15-second solver, Wolve played anendgame blunder with
43.W[i10] as 43.W[h9] is a winning move. Our current solver requires
20 minutes to identify the winning move, but Wolve’s move is found to
be losing in well under 1 minute.

Unlike in the first round, some games in the second round were neither overly biased in the open-

ing, nor marred by endgame blunders. Examples include games16, 17, and 19. It is unclear what

contribution the solver made, as the number of (detectable)endgame mistakes by Wolve and Mo-

Hex was unchanged; the game positions were not rerun withoutsolver to determine this difference.

However, given situations like game 24, partial results from the solver could prove more useful.

C.1.3 Summary

Given that Six easily won the gold medal in the 2003-2006 competitions, its relative performance in

the 2008 competition suggests that the level of automated Hex players improved greatly.

Overall Yopt played reasonably well in the opening and midgame, but its lack of mustplay prun-

ing and inferior cell analysis resulted in several obvious blunders. MoHex’s greatest weakness

seemed to be inconsistent opening play. For instance, games8 and 23 illustrate its capacity for

catastrophic openings. On the other hand, MoHex was the onlyprogram to defeat gold medallist

Wolve. Six and Wolve usually play well, but make a surprisingnumber of endgame blunders as

illustrated by games 5, 6, 10, 12, 18, 22 and 24.

C.2 2009 Olympiad

MoHex Wolve Six Yopt total result
MoHex 2-0 2-0 2-0 6-0 gold
Wolve 0-2 1-1 2-0 3-3 silver

Six 0-2 1-1 1-1 2-4 bronze
Yopt 0-2 0-2 1-1 1-5 4th

Table C.2: 2009 Hex Computer Olympiad results.
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A fifth program, Bit2, registered but withdrew before the competition. Due to time constraints,

the four remaining programs only opened once against each opponent. The tournament was played

entirely in one day, with no program alterations between games.

Gábor Melis did not attend the tournament, so Six’s opening moves were selected by Yngvi

Björnsson and Jakub Pawlewicz. Wolve used three threads: two for parallelized board evaluation

and one for a parallel solver. MoHex used eight threads: seven for parallelized Monte Carlo tree

search, and one for a parallel solver. At this time our solverwas still based on depth-first search.

C.2.1 Round 1
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Game 1: Wolve -MoHex
Black winning:
White winning: 29+

Commentary: Neither program made an obvious error, and MoHex’s evaluation scores
suggest that this was a close game throughout.
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Game 2: MoHex - Wolve
Black winning:
White winning: 28+

Commentary: B[c4] provides far greater resistance to our solver then Wolve’s moves
27, 29, 31, etc. By 17.W[e4] MoHex likes its position.
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Game 3: Wolve -Six
Black winning:
White winning: 21+

Commentary: The opening seems balanced, but Wolve’s situation seems to deteriorate
badly around 17.B[d7]. Six’s 24.W[g2] is a strong move.
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Game 4: Six -Wolve
Black winning: 27+
White winning:

Commentary: Six plays dead-reversible moves 17.W[e2] and 31.W[k1]. The former
is killed by Wolve with 18.B[f2], but for the latter Wolve ignores killer
j2 since it evaluates 32.B[j7] to be more important.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

1

2
3

4
5

6
7

8
9

10
11

12

13

14

15

16

17

18 19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

Game 5: MoHex - Six
Black winning: 14+
White winning:

Commentary: MoHex thinks 14.W[h2] is weak, as its evaluation score jumps to 0.75
when generating 15.B[i5].
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Game 6: Six -MoHex
Black winning: 33–36, 38
White winning: 37, 39+

Commentary: MoHex’s opening play is weak, with Six having a strong wall of influ-
ence by move 19. MoHex manages to make the game close, and both
players repeatedly blunder near the end until the parallel solver takes
over for MoHex. Some winning alternatives are 37.B[c10], 38.W[j5],
and 39.B[d4].
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Game 7: Six -Yopt
Black winning: 33+
White winning:

Commentary: 37.W[i7] is a dead-reversible move by Six, but Yopt chooses not to kill
it; our solver suggests that killer 38.B[k2] would have resulted in a sim-
pler win. Nevertheless, Yopt seems to have the advantage throughout.
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Game 8: Yopt -Six
Black winning: 37+
White winning:

Commentary: This is a close game, with Six pulling ahead. Yopt’s play along the
first row only helps Six, 36.B[f2] kills White’s f3 chain, and56.B[e6]
is an elegant move by Six. Our solver suggests that Yopt’s endgame
resistance was a little weak.
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Game 9: Yopt -Wolve
Black winning:
White winning: 21+

Commentary: The opening of this game is rather unusual, particularly moves 9.B[j4]
and 20.W[j1]. Wolve realizes it is winning by 28.W[b7], and so plays
seemingly unusual moves from here on. Yopt has no endgame solver
and does not see the win; during this endgame its evaluation score
climbs above 0.9 before eventually identifying its loss.
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Game 10: Wolve - Yopt
Black winning: 22+
White winning:

Commentary: Solver finds the winning 25.B[b10] for Wolve during the game. This
result ensures gold for MoHex.
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Game 11: Yopt -MoHex
Black winning: 20–30
White winning: 31+

Commentary: The game’s opening is somewhat unusual, with parallel bridges forming
and MoHex letting Yopt connect to one border easily. Yopt plays a dead-
reversible move with 25.B[i5], but MoHex does not kill it. Yopt blun-
ders with 31.B[d4], as both 31.B[j2] and 31.B[c4] are winning. This
result ensures silver for Wolve.
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Game 12: MoHex - Yopt
Black winning: 35
White winning: 36+

Commentary: This game is complicated, and very close until near the end. 36.B[b2]
is a blunder by Yopt, as 36.B[b3] is winning. Identifying this winning
move requires roughly two weeks of solving time, but Yopt’s move is
proven to be losing within ten seconds. This result ensures bronze for
Six.

C.2.2 Summary

The quality of play in the 2009 tournament seems to have improved somewhat on the 2008 tour-

nament performance. For instance, the number of solver-detectable blunders decreased from an

average of 0.583 to 0.416 per game. Similarly, the average number of coloured cells in a game’s

shallowest solvable position increased from 22.79 to 26.25, suggesting that the 2009 opening posi-

tions are less polarized.

MoHex performed exceptionally well, not losing a single game despite its occasional weak open-

ing play (e.g.,game 6). Wolve unfortunately did quite poorly compared to its normal measured

performance, losing all of its games against MoHex and surprisingly even one against Six. Six was

unchanged from the previous year and Yopt, while showing improvement from its previous version,

again suffered from a lack of connection strategy deductionalgorithms and inferior cell pruning.
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Appendix D

Open Questions

Many important questions about Hex remain unsolved. We listthem here in the hope that they will

inspire and guide future research in this area. Questions are organized by category, and within each

category are ordered by perceived difficulty level.

D.1 Winning Opening Moves and Strategies

• Solve all remaining 9× 9 openings.

• Solve one or more 10× 10 openings.

• Determine whether every first player win Hex position contains a cell that is a winning move

for both players (posed by Ryan Hayward).

• Identify a winning opening move for alln× n Hex boards.

• Determine whether the centre is a winning opening move for all n× n boards.

• Determine whether all cells on the main diagonal are winningopening moves for alln × n

Hex boards.

D.2 Graph Theory and Computational Complexity

• Identify graph classes where Generalized Hex is solvable via pairing strategies.

• Identify graph classes where Generalized Hex is solvable inpolynomial-time. Paths, trees, and

cycles are trivial, but investigate interval graphs, chordal graphs, bounded degree, bounded

treewidth, etc.

• Determine mathematical properties and invariants of vertex implosion.

• Determine mathematical properties of graphs derived from planar graphs via vertex implosion.

• Determine the computational complexity of identifying live/dead cells on Hex graphs.
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• Determine whether knowing the sequence of vertex implosions and vertex deletions from a

given planar graph can reduce the computational complexityof problems on the resulting

graph.

• Determine whether P equals PSPACE.

• Determine whether P equals NP.

D.3 Combinatorial Game Theory

• Find sufficient properties for reversible moves to be pruned, rather than bypassed, from com-

binatorial games.

• Find other combinatorial games where decomposition domination exists.

• Resolve van Rijswijck’s open problems regarding the expression of Hex positions using com-

binatorial game theory and surreal numbers.

D.4 Hex Variants

• Develop results for the Hex variant Vex.

• Develop results for the Hex variant Tex.

• Determine the computational complexity of random-turn Hex.

• Find an explicit handicap strategy that requires fewer than⌈n+1
6 ⌉ handicap cells on then× n

Hex board.

• Find an existence proof for a handicap strategy that requireso(n) handicap cells on then× n

Hex board.

• Solve Hex on the annulus when the ring dimension is odd.

D.5 Inferior Cell Analysis

• Find all dead cell patterns of radius at most two.

• Find all captured set patterns of radius at most two.

• Find all dead-reversible, capture-dominated, and captured-reversible patterns of radius at most

two.

• Find an efficient algorithm that computes all possible deduced state values from a solved Hex

state.
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• Improve efficiency and generality of algorithms identifying chain combinatorial decomposi-

tions.

• Find an algorithm to recognize permanently inferior cell patterns, and find all such patterns of

radius at most two.

• Determine whether captured-reversible cells can be unconditionally pruned.

• Develop an algorithm to automate domination deduction using existing base case domination

techniques, and use this algorithm to produce more domination patterns.

• Resolve the 4-3-2 probe conjecture.

D.6 Connection Strategies

• Parallelize the H-search algorithm.

• Implement Anshelevich’s generalized H-search with a boundon handicap set size, and test its

performance.

• Determine if the partition chain algorithm can be generalized to compute larger sets of parti-

tion chains.

• Develop a deduction framework for incorporating union-connections into H-search.

• Generalize the common miai substrategy algorithm to allow for larger common substrategies.

• Determine how to efficiently recognize and store important learned connections during search.

• Determine whether there is a seventh row border template in Hex that requires no coloured

cells.

• Determine whether there is a bound on border template distance in Hex when there are no

coloured cells.

D.7 Solver

• Improve FDFPN’s performance.

• Eliminate FDFPN’s reliance on an (external) heuristic moveordering.

• Resolve the problem of PNS and its variants preferring movesthat produce fillin when no

mustplay exists.

• Parallelize PNS and its variants.

• Improve PNS and its variants for games with initially uniform branching factors.
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D.8 Players

• Improve alpha-beta framework for Wolve, including parallelization and use of the killer or

history heuristics.

• Build a strong 11× 11 opening book.

• Further develop the PNS-based Hex player, attaining strongplay on 11× 11 boards.

• Beat top humans on 11× 11.

• Find an evaluation function that outperforms the electric circuit model.

• Incorporate connection strategies into Monte Carlo simulations.

• Dynamically identify strategy decompositions in MCTS, anduse this to improve its perfor-

mance.

• Beat top humans on 14× 14.
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