University of Alberta

Library Release Form

Name of Author: James Nastos
Title of Thesis: $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs
Degree: Master of Science
Year this Degree Granted: 2006

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.

[^0]Date: \qquad

University of Alberta

$\left(P_{5}, \bar{P}_{5}\right)$-free Graphs

by

James Nastos

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2006

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled (P_{5}, \bar{P}_{5})-free Graphs submitted by James Nastos in partial fulfillment of the requirements for the degree of Master of Science.

Ryan Hayward
Supervisor

Lorna Stewart

Mazi Shirvani
External Examiner

Date:

Abstract

Cographs are graphs arising from various applications and the study of these has been pivotal in the development of various algorithmic graph theory techniques and properties, such as modular decomposition.

Perfectly orderable graphs do not typically arise from application modeling. Instead, they are defined as those graphs with a desirable property making certain optimization problems solvable on them in a simple and efficient manner.
$\left(P_{5}, \bar{P}_{5}\right)$-free graphs generalize cographs and have attracted much attention in recent years. The class of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs is a self-complementary class of perfectly orderable graphs on which several optimization problems are solvable in linear time, yet the recognition problem for this class has no known algorithm faster than $\Theta\left(n^{3}\right)$-time. When applying modular decomposition, recognizing $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs is sufficient to recognize $\left(P_{5}, \bar{P}_{5}\right)$-free graphs.

We investigate the structure of $\left(P_{5}, \bar{P}_{5}\right)$-free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs. This thesis reveals some properties, gives counterexamples, and develops some conjectures concerning this structure.

Acknowledgements

Engaging in graduate studies at the University of Alberta has been both an honour and a privilege, so I wish to thank everyone contributing to this opportunity. I am indebted to my family, former teachers and professors and all my supportive friends.

The faculty and graduate students in the department of Computing Science have made my (too many) years here a pleasurable and rewarding experience. The friendliness and openness of the researchers with whom I associated made scientific research a joy beyond my expectations. I would like to thank my fellow graduate and undergraduate students who have always been available for general chatting, encouragement, discussion of research, helping with technical issues and sharing of thesis woes. I wish to acknowledge W. Sean Kennedy's graph-drawing program, which I found very useful in my thesis work.

I thank my supervisor, Ryan B. Hayward, for his patience with me, confidence in my abilities and for taking me as his student. Lunch outings were always a delight, especially when he shared personal stories of his days as a graduate student. The financial assistance during the terms he supported me was generous and of great help. Working alongside him has been an enlightening and humbling experience; an hour of his thoughts, observations and conjecture-forming would often surpass a week's worth of my work. Our trip to the Perfect Graph Theorem workshop in Palo Alto will always be remembered. Above all, I appreciate the eternally-frank and often-jocular relationship we have had.

Finally, I thank Vivian for moving with me to Edmonton, whose companionship I would have longed for had she not.

Contents

1 Introduction to Graphs and Graph Classes 1
1.1 Graphs 1
1.1.1 Notation and Definitions 2
1.2 Optimization and Complexity 4
1.3 Graph Classes 5
1.3.1 Classes from Application Modeling 5
1.3.2 Classes from Generalizations or Specifications 6
1.4 Recognition 7
2 Graph Tools 8
2.1 Lexicographic Breadth-First Search 8
2.2 Greedy Colouring 9
2.2.1 Perfectly Orderable Graphs 9
2.2.2 Optimizing with a Perfect Order 11
2.3 Modular Decomposition 11
2.3.1 Homogeneous Sets 12
2.3.2 Prime Graphs 13
2.3.3 Modular Decomposition and Partial Closure 14
2.4 Relevant Properties of Prime Graphs 15
3 Motivating (P_{5}, \bar{P}_{5})-free Graphs 17
$3.1 \quad\left(P_{5}, \bar{P}_{5}\right)$-free as a Generalization of Subclasses 17
3.1.1 Split Graphs 17
3.1.2 Recursively Split Substitute Graphs 18
3.1.3 Cographs 19
$3.2\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free Graphs as a Special Case of Superclasses 19
3.2.1 Welsh-Powell Perfect Graphs 19
3.2.2 Meyniel Graphs 20
3.2.3 Weakly Chordal and Murky Graphs 21
3.2.4 Brittle and HHD-free Graphs 22
3.2.5 Domination and HH-free Graphs 24
4 Previous Work on $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs 26
$4.1\left(P_{5}, \bar{P}_{5}\right.$, bull)-free Graphs 26
4.2 Semi- P_{4}-Sparse Graphs 27
$4.3\left(P_{5}, \bar{P}_{5}\right)$-Sparse Graphs 29
5 Four Other Self-Complementary Classes of Perfectly Orderable Graphs 30
6 Contributions: The Structure of Prime $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs 36
6.1 Prime Non-Split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free Graphs 36
6.2 Relationships Between Vertex Partition Sets 38
6.2.1 Refinement of the V_{B}-Vertex Set 38
6.2.2 $\quad P_{4}$-wing Orientations 40
6.3 Structures Within Prime (P_{5}, \bar{P}_{5})-free Graphs 43
6.4 Towards the H_{6}-Conjecture 45
6.4.1 Adjacency Properties 45
6.4.2 Bipartite Substructures 49
7 Conclusions and Future Research 53
Bibliography 55

List of Figures

1.1 A cycle 3
2.1 An obstruction 10
2.2 The fork and its complement 12
2.3 Various graphs 13
2.4 A prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph with a C_{4} (filled) that is not in an H_{6}. 14
4.1 The other forbidden induced subgraphs of P_{4}-sparse graphs 27
5.1 An orientation from a PO4 vertex ordering 31
5.2 The net graph 32
5.3 Two minimal non-PO4 graphs with one-in-one-out orientations 33
5.4 Three distinct PO4 orderings of a P_{5} 35
6.1 Orientations corresponding to Lemma 6.2.10 42
6.2 The arms of an H_{6} and the tunnel of an \bar{H}_{6} (induced by solid vertices) 44
6.3 A prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph with a P_{4} in both an H_{6} and an \bar{H}_{6} 45
6.4 A prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph G with no vertex of degree one in G or \bar{G} 47
6.5 A prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph with a vertex of smallest degree that is not simplicial 48
6.6 The complement of a perfect matching joining sets A and B from Figure 6.5 49
6.7 Some prime P_{5}-free bipartite graphs 49
6.8 In a maximal $P_{3,3}$, an a_{1} that is not simplicial 51

Chapter 1

Introduction to Graphs and Graph Classes

1.1 Graphs

A graph can be thought of as a pictorial representation of objects and relations between the objects, typically by denoting objects with dots (called vertices) and relations between objects with lines (called edges) joining the dots.

To formally define a graph, the vertices are denoted by a set $V(G)$ and the edges are denoted by the set $E(G)$ which is a set of pairs of elements from $V(G)$. When the graph in context is clear, $V(G)$ and $E(G)$ are often simplified to V and E. To specify a graph with vertex set V and edge set E, we write $G=(V, E)$. Graphs can model a wide variety of problems and scenarios. For instance, the vertices could be communication centres and the edges could represent communication channels, such as a network of computers or a collection of cities connected by train tracks. Visual examples of graphs are available in Figure 2.3, and examples of objects and relations that are represented by graphs are discussed in Section 1.3.1.

The terms we use are standard, and will be defined later in Section 1.1.1. Chapter 1 covers some fundamentals in graph theory algorithms and analysis, and also provides examples which motivate the general study of graph classes. Chapter 2 reviews some important notions in algorithmic graph theory that are necessary to fully appreciate and understand the approach taken in the study of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs following. Chapter 3 provides motivation for the study of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs by showing that they are a relevant and important graph class to study, particularly for the associated recognition problem. Chapter 4 reviews three papers which characterize and recognize classes related to (P_{5}, \bar{P}_{5})-free graphs: $\left(P_{5}, \bar{P}_{5}\right.$, bull)-free graphs, the semi- P_{4}-sparse graphs, and (P_{5}, \bar{P}_{5})-sparse graphs. Chapter 6 presents new work on prime $\left(P_{5}, \bar{P}_{5}\right)$-free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs by categorizing the vertices depending on how they exist in induced P_{4} s in the graph. Chapter 7
recaps and concludes our thesis.
We will quickly describe the goal of the thesis here, noting that the following will be discussed in further detail in the chapters to come. The task of recognizing a graph class involves deciding whether a graph belongs to the class in question. Modular decomposition, discussed in Chapter 2, allows us the liberty of restricting our effort to recognizing those graphs in the $\left(P_{5}, \bar{P}_{5}\right)$-free and ($\left.P_{5}, \bar{P}_{5}, C_{5}\right)$-free classes without modules. Split graphs (discussed in Section 3.1.1) are an easily-recognizable subclass of these two classes, and so we can remove these graphs from our consideration. A theorem of Hayward, Hougardy and Reed [31] tells us that every vertex in a non-split prime graph is in an induced P_{4}, and so, in an attempt to characterize the structure of prime $\left(P_{5}, \bar{P}_{5}\right)$-free and ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs, we partition the vertex set into vertices that exist as the ends of $P_{4} \mathrm{~s}$, the middle of $P_{4} \mathrm{~s}$, or both. Some simple properties follow, such as the end-only vertices are the simplicial vertices in the graph and so necessarily form an independent set. Similarly, the mid-only vertices are the co-simplicial vertices and so always form a clique. The remaining vertices are classified into several different types depending on how they relate to the end-only and mid-only vertices, and properties of each type are investigated. Even though many of these properties seem to be local to a vertex and its neighbourhood, they lead to some theorems and conjectures on the global structure of prime $\left(P_{5}, \bar{P}_{5}\right)$-free and ($\left.P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs.

1.1.1 Notation and Definitions

In this subsection we present many of the basic graph theoretic definitions we will use in this thesis. A reader familiar with the field of algorithmic graph theory will be able to skip this section without any loss of continuity.

For vertices u and v in the vertex set V of a graph G, we say that u and v are adjacent is $\{u, v\}$ is in the edge set $E(G)$. We also say that vertex u sees vertex v if u is adjacent to v, and u misses v otherwise. We say an edge $\{u, v\}$ is adjacent to vertex u and to vertex v. We write $G=(V(G), E(G))$ to describe the (undirected) graph G with vertex set $V(G)$ and edge set $E(G)$. If the elements of E are ordered pairs (u, v) instead of sets $\{u, v\}$, then G is a directed graph. Unless otherwise stated, any graph mentioned in this thesis will be an undirected graph. When the context is clear, V and E will be used in place of $V(G)$ and $E(G)$. The size of a graph is the cardinality of V.

The open neighbourhood of a vertex v, denoted $N(v)$, is the set of all vertices adjacent to v. The closed neighbourhood of a vertex v, denoted $N[v]$, is $N(v) \cup\{v\}$. The nonneighbourhood of v is the set $V-N[v]$. We call elements of $N(v)$ (respectively, $V-N[v]$) the neighbours (respectively, nonneighbours) of v.

A subgraph H of a graph G is a graph $\left(V_{H}, E_{H}\right)$ where V_{H} is a subset of V and E_{H} is a subset of E. Given a subset S of vertices of a graph $G=(V, E)$, the induced subgraph on S

Figure 1.1: A cycle
is the graph $\left(S, E_{S}\right)$ where an edge $\{u, v\}$ is in E_{S} if and only if u and v are in S and $\{u, v\}$ is in E. We will use $H \subseteq G$ to mean H is an induced subgraph of G.

Two graphs G_{1}, G_{2} are isomorphic if there exists a bijection $f: V\left(G_{1}\right) \mapsto V\left(G_{2}\right)$ such that $\{u, v\}$ is in $E\left(G_{1}\right)$ if and only if $\{f(u), f(v)\}$ is in $E\left(G_{2}\right)$. The complement \bar{G} of a graph G is the graph (V, \bar{E}) where for every pair of distinct vertices $u, v \in V$ we have $\{u, v\} \in \bar{E} \Leftrightarrow\{u, v\} \notin E$.

A path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E(G)$ for $i=1 \ldots k-1$. Note that this definition uses an ordered sequence of the vertices in a path. For instance, in Figure $1.1 b, c, e, a$ is a path while b, c, d is not. For a path $v_{1}, v_{2}, \ldots, v_{k}$, an edge $\left\{v_{i}, v_{j}\right\}$ for $|i-j| \neq 1$ is called a chord. A path is a chordless path (equivalently, an induced path) if it has no chord. An induced path on k vertices is denoted P_{k}. A cycle is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\}$ is an edge for $i=1 \ldots k-1$ as well as $\left\{v_{k}, v_{1}\right\}$. In Figure $1.1 a, d, b, c, e$ is a cycle while a, b, c, d, e is not. For a cycle $v_{1}, v_{2}, \ldots, v_{k}$, any edge $\left\{v_{i}, v_{j}\right\}$ for $i-j \not \equiv \pm 1$ (modulo k) is called a chord. A cycle is a chordless cycle (equivalently, an induced cycle) if it has no chord. A hole is a chordless cycle on five or more vertices. Chordless cycles on k vertices are denoted C_{k}, and the complement of a hole is referred to as an antihole.

Given a path v_{1}, \ldots, v_{k} we call the vertices v_{1} and v_{k} the endpoints of the path. Any vertex in the path which is not an endpoint is called a midpoint of the path. A graph G is connected if for every pair of vertices v and w there exists a path in G with endpoints v and w. A graph is disconnected if it is not connected. The (connected) components of G are the subgraphs of G which are maximally connected ("maximal" here meaning with respect to subgraph inclusion.) The wings of a $P_{k \geq 3}$ are the two edges adjacent to the endpoints.

A subset H of the vertices V of a graph is called a stable set (also known as an independent set) if every pair of vertices in H are nonadjacent, and a clique (also known as a complete graph) if every pair of vertices of H are adjacent. A (vertex) colouring of a graph is a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that $\{u, v\} \in E \Rightarrow f(u) \neq f(v)$. The size of the colouring is the value k. The clique number (or clique size) of a graph G, denoted $\omega(G)$, is the
size of the largest induced subgraph of G that is a clique. Similarly, the stability number (or independence number) of a graph G, denoted $\alpha(G)$, is the size of the largest induced subgraph of G that is a stable set. For simplicity, we will say "a graph is a certain other graph" in place of "a graph is isomorphic to a certain other graph." The chromatic number of a graph G, denoted $\chi(G)$, is the size of the smallest colouring of G.

For more details of the above concepts and for other graph theoretic definitions not mentioned here, refer to [23] or [60].

1.2 Optimization and Complexity

The reader is assumed to have prior exposure to basic complexity theory including algorithm time/space analysis, polynomial time algorithms and the theory of NP-Completeness, which are concepts covered in a standard introductory undergraduate algorithms course. A suitable introduction to these topics is covered in [10]. A deeper, more advanced treatment can be found in [49].

The problems of finding a maximum independent set, maximum clique, and minimum colouring of a graph are all NP-hard and so polynomial-time algorithms to solve these are currently unknown and may not even exist. As a result, one is often interested in solving these problems on a certain class of graphs, perhaps general enough for certain applications but restricted enough so that these problems can be efficiently solved. One such class of graphs is the set of perfect graphs, defined as those graphs G such that for every induced subgraph $H \subseteq G$, we have $\chi(H)=\omega(H)$. In 1977, Grötschel, Lovász and Schrijver [25], found that the above-mentioned optimization problems can be solved in polynomial time on perfect graphs. These algorithms are not considered efficient for use in applications. They rely on Khachiyan's ellipsoid method [42] from linear programming, an algorithm that is rarely preferred over the simplex method and its variants despite the polynomial runtime of the ellipsoid method [8]. Finding efficient optimization algorithms in both theory and practice is one reason perfect graphs have been extensively studied, as well as many subclasses of perfect graphs.

As is common in graph theory, for a graph $G=(V, E), n$ refers to $|V(G)|$ and m refers to $|E(G)|$. Labeled graphs (graphs whose vertices are labeled from 1 to n) are commonly represented either as an adjacency matrix or as an adjacency list.

The adjacency matrix M of a graph G is a matrix of dimension $n \times n$ whose rows and columns are indexed by the vertices of the graph and entry $M[i, j]=1$ if vertices with labels i and j are adjacent in G, and $M[i, j]=0$ otherwise. M is thus a symmetric $\{0,1\}$-matrix with main diagonal all zeroes, and so even with the removal of redundant information, this representation requires $\Theta\left(n^{2}\right)$ space. Testing the adjacency of two vertices takes constant time. In general, all algorithm runtimes mentioned are with respect to the RAM model of
computation using a single processor machine. Algorithm runtimes will always be given as a measure of the worst-case analysis, unless otherwise mentioned.

The adjacency list of a graph is a list of rows indexed by the vertex labels. The $i^{\text {th }}$ row is a list of all vertices adjacent to vertex i. This representation of a graph requires $\Theta(m+n)$ space. Testing the adjacency of two vertices by scanning these lists $\mathrm{O}(n)$ time.

Algorithms are, unless otherwise noted, described in a manner which is representationindependent and the analysis of algorithms will assume constant-time adjacency testing. This is a reasonable assumption, as creating a $\mathrm{O}\left(n^{2}\right)$-space representation of a graph with constant-time adjacency testing from an adjacency list is a standard textbook problem [1].

1.3 Graph Classes

The study of graph classes and algorithmic graph theory has flourished over the past fifty years, resulting in various books surveying the general field of graph classes (for example, the survey by Brandstädt, Le and Spinrad [3], or the book by Golumbic [23]) as well as books on specific graph classes (for example, tolerance graphs [24] or perfect graphs [50].) In this section we show how some graph classes are introduced, both from applications and from the natural generalization or restriction of other classes.

1.3.1 Classes from Application Modeling

Consider an individual trying to decide on what lectures to attend during a one-day conference. Every lecture at this conference spans a contiguous time interval and can be of any length. Two lectures are said to conflict if their time frames overlap, and so this individual can only attend non-conflicting lectures. We are interested in finding a largest set of nonconflicting lectures. Thus, if we create a graph whose vertex set is the set of lectures on that day and create an edge between two vertices if and only if the corresponding lectures conflict, then the task is solved by finding a maximum independent set in the resulting graph. If, instead, the individual wants to hire note-takers, and the fewest number of such note-takers, so that every lecture can be recorded, then we are interested in the size of the maximum clique of the graph as this will be the largest number of lectures that are occurring at any one instant in time. An optimal colouring of the graph will provide the schedule each note-taker should take, as each colour class will provide a conflict-free list of lectures.

As noted above, maximum independent set and clique are NP-hard optimization problems. However, since the graph created for this application was constructed from a specific structure (time intervals on a single time line,) the resulting graph will have some exploitable properties. For instance, if there exists any cycle of size four or more in this graph, then that cycle must have a chord. We call graphs obtained (as described in the preceding paragraph) from the intersection of intervals on a line interval graphs. The NP-hard problems of max-
imum clique, maximum independent set, minimum colouring all become polynomial-time solvable when the graph considered is an interval graph [26].

Now consider this individual allowing a few minutes to be spared at the beginning or end of each lecture, since sometimes arriving several minutes late does not affect the overall value of attending the lecture. In our problem formulation, we associate a tolerance with each time interval. If we define two intervals to be in conflict if and only if their intersection size is greater than at least one of the two tolerances, then the resulting graphs obtained from this problem are called tolerance graphs. See [24] for more information on these graphs.

1.3.2 Classes from Generalizations or Specifications

Here we describe a class of graphs and derive from it other graph classes whose definitions may have seemed artificial when removed from the context of the original graph class.

To solve a problem such as maximum clique on a graph G, it is clear that if the graph is disconnected, with components C_{1} and C_{2}, then we may treat each connected component separately, find $\omega\left(C_{1}\right)$ and $\omega\left(C_{2}\right)$, and use the maximum of each as $\omega(G)$. This provides a simple decomposition into smaller problems. We can take this further by noting that if we are looking for a clique in a graph, then this is equivalent to finding an independent set in the complement of the graph. We further decompose our problems by now taking complements of each component and decomposing these into their connected components while keeping in mind that any maximum independent set of a graph is formed by taking the union of the maximum independent sets of its components.

Such a decomposition is natural to consider and is useful for a simple approach to solving some potentially hard problems. A problem, of course, occurs when the complement of a large graph is also connected and so no further decomposition is available. We henceforth define a class of graphs for which this never happens: G is a complement reducible graph (or simply a cograph) if it can be decomposed in the above way until every subproblem is reduced to a single vertex.

The class of cographs is a widely-studied class that arise in applications. A simple characterization of such graphs is through a forbidden induced subgraph characterization, namely, a list of graphs that never appear as induced subgraphs. For instance, the interval graphs never contain a chordless four-cycle, and so C_{4} is one forbidden induced subgraph of interval graphs. For interval graphs in particular, there exists an infinite list of minimal such forbidden induced subgraphs. On the other hand, this list is very short for cographs: G is a cograph if and only if G is P_{4}-free [55].

Since restricting P_{4} s results in useful structural properties in the graphs, many cograph generalizations have been considered. For instance, Hoàng [33] defined P_{4}-sparse graphs as those graphs with the property that every set of five vertices induces at most one P_{4}.

Jamison and Olariu [39] define P_{4}-reducible graphs as those graphs such that every vertex is contained in at most one P_{4}. Many other similar graph classes have been defined to restrict the P_{4} s in some way, such as P_{4}-extendible graphs [40], P_{4}-lite graphs [41], and P_{4}-laden graphs [22]. Later, we will discuss semi P_{4}-sparse graphs, introduced in [19]. All these classes lead to useful decomposition schemes and generalize cographs (in the sense that if a graph is a cograph then it also belongs to any of these classes.)

1.4 Recognition

Now that we are aware of many graph classes, a natural question should be asked: Given a graph, is it a member of a particular graph class? This is called the recognition problem for a graph class. For the above cases, cographs (and all the other P_{4}-restricting classes mentioned) can be recognized in linear time. It can be the case that a recognition problem is NP-complete, as with the case of perfectly orderable graphs [47]. Interval graphs can be recognized in linear time, while tolerance graph recognition is still unknown to be polytime solvable.

The purpose of this thesis is to explore the recognition of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs, which are introduced and discussed in Chapter 3. To the best of the author's knowledge, this is performed in $\mathrm{O}\left(n^{3}\right)$ time using the HHD-free graph recognition algorithm [36], or $\mathrm{O}\left(n m+m^{2}\right)$ time using the Meyniel graph recognition algorithm [52]. A deeper structural understanding often helps improve an algorithm, and structural results on $\left(P_{5}, \bar{P}_{5}\right)$-free graphs are presented in Chapter 6.

Chapter 2

Graph Tools

2.1 Lexicographic Breadth-First Search

The standard breadth-first (BFS) search algorithm is well known and often taught in any introductory algorithms course, so is omitted here. Refer to [10] for a description of BFS. Here, we describe a variant of BFS called Lexicographic Breadth-First Search [53] (LexBFS). LexBFS is an algorithm producing an ordering of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of a graph which is a BFS ordering but of a specific type. The algorithm begins as a normal BFS, starting at an arbitrary start vertex which will become vertex v_{1}, and all vertices are intialized with an empty label. For every neighbour u of of v_{1}, concatenate the label ' 1 ' to the end of the label of u. Vertex v_{1} is marked as having been seen or visited, and of the unvisited nodes, we select a vertex of lexicographically strongest label (at this point, a vertex with label ' 1 ' is the "strongest" label.) Visiting one of these vertices and calling it v_{2}, we concatenate the label ' 2 ' to (the end of) all of the labels of v_{2} 's neighbours. The earliest labels are considered lexicographically strongest (i.e. ' 1 ' is stronger than ' 2 ') and any non-empty label is considered stronger than an empty label. The possible labels of a vertex in our graph at this point are ' 12 ', ' 1 ', ' 2 ', '', and these are presented in a lexicographically decreasing order. LexBFS chooses the next vertex to visit as the vertex with the strongest lexicographical label. This process is continued until all nodes are visited. The labelling scheme essentially serves as a tie-breaking measure with respect to vertex choices in the standard BFS. In the case that two or more vertices share the lexicographically strongest label, any vertex with the strongest label may be chosen arbitrarily.

As one more example of a lexical comparison, label ' 125 ' comes before label ' 13456 ', since ' 125 ' is stronger in its second component. A search similar to BFS, called maximum cardinality search (MCS), will favour the longer labels over the shorter labels regardless of what the contents of the labels are. In the case that two or more vertices have the longest labels, an arbitrary vertex of longest label may be chosen next. The term "maximum cardinality" refers to the choice of picking a vertex whose set of already-visited neighbours
is of maximum cardinality. For some classes of graphs, it has been shown that an MCS is equivalent to a LexBFS ordering [53].

MCS and LexBFS can be implemented to run in linear $(\mathrm{O}(m+n))$ time. See [53] for details.

2.2 Greedy Colouring

We defined earlier the concept of graph colouring and mentioned that computing an optimal (minimum) colouring is NP-hard. Here, we present a simple algorithm to colour a graph in a not-necessarily-optimal manner.

We will equate colours with the integers $1,2, \ldots, k$, and use the term 'smallest' colour to mean the colour with smallest corresponding integer. One obvious colouring method is to colour vertex v_{i} with colour i. This provides a trivial upper bound to the chromatic number $(\chi(G) \leq|V|$,$) and this upper bound is realized when the input graph is a clique. Note$ that any valid colouring of the graph provides an upper bound on the chromatic number. The greedy colouring algorithm, in its most general form, takes an arbitrary ordering of the vertices of a graph and proceeds to visit the vertices in this order, colouring each vertex with the lowest colour available (that is, the lowest colour not already assigned to a neighbour of that vertex.) This process runs in $\mathrm{O}(m+n)$ time and provides a valid colouring size less than or equal to $|V|$. Graphs exist with specific vertex orders for which the difference between the greedily obtained colouring size and the chromatic number of the graph are arbitrarily large [59].

2.2.1 Perfectly Orderable Graphs

It is interesting to note that for any graph there does exist some ordering of the vertices such that the greedy colouring algorithm will provide an optimal colouring. This is easy to see, since from any optimal colouring, if we first list out the vertices of colour 1 and then the vertices of colour 2 , and so on, a greedy colouring of this order will always produce a colouring with $\chi(G)$ colours. Thus, for general graphs, finding such an order is sufficient to find an optimal colouring, and so the problem of finding this vertex order is NP-hard.

In 1984, Vašek Chvátal [6] defined perfectly orderable graphs as those graphs for which there exists a vertex ordering such that, for every vertex subset, if that ordering is observed for that subset, then the greedy colouring method optimally colours the associated induced subgraph. Such an ordering, if it exists, is called a perfect order. To illustrate the usefulness of such a definition, imagine a colouring problem on a graph, say, a channel assignment problem to a set of cell phone users. Given a perfect order, we can colour the entire graph optimally. Now if any subset of cell phone users turn off their phones, the resulting users (creating an induced subgraph of remaining vertices) can also be coloured greedily using the

Figure 2.1: An obstruction
already-known perfect order, without having to recompute anything. Two worthy questions are now asked: given a graph, is it perfectly orderable? Given a perfectly orderable graph, how quickly can we find a perfect order?

As an example of a small graph and an ordering which is not perfect, consider a P_{4} $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and an ordering $v_{1}, v_{4}, v_{2}, v_{3}$. Then the two endpoints v_{1} and V_{4} receive colour 1 and then v_{2} must take colour 2 and v_{3} is assigned colour 3. A P_{4}, however, is easily coloured with two vertices. A simple way to capture this scenario is to orient every edge from v_{i} to v_{j} if v_{j} comes before v_{i} in the ordering. Then in the above case, since the two endpoints come earliest in the ordering, the wings of the P_{4} are oriented outward, while the middle edge is oriented arbitrarily (see Figure 2.1.) When a P_{4} is oriented as in Figure 2.1, we call it an obstruction.

For graphs with oriented edges, we call an directed cycle a sequence of vertices v_{1}, \ldots, v_{k} where $\left\{v_{i}, v_{i+1}\right\}$ is an edge oriented from v_{i} to v_{i+1} and $\left\{v_{k}, v_{1}\right\}$ is an edge oriented from v_{k} to v_{1}. If a directed graph has no directed cycle, we call it acyclic.

For an orientation of a graph to represent a perfect order, it must be acyclic (so that a corresponding linear order exists) and it can not have such an obstruction.

Chvátal showed that these necessary conditions are also sufficient.

Theorem 2.2.1 [6] A graph is a perfectly orderable graph if and only if there exists an acyclic obstruction-free edge orientation.

The above-mentioned questions were answered by Middendorf and Pfeiffer in 1986 [47] when they proved that perfectly orderable graph recognition is NP-Complete. It follows that finding a perfect order (even in a graph known to be perfectly orderable) is NP-hard, since if we had an algorithm to find a perfect order we could apply it to any graph, construct the associated acyclic orientation and check if it is valid simply by checking the wings of every P_{4} to ensure all P_{4} s are obstruction-free. The validity of the orientation would then answer the question of whether the original graph is perfectly orderable.

Many subclasses of perfectly orderable graphs have been introduced. Brittle graphs [7] are perfectly orderable and polynomially recognizable, but no forbidden induced subgraph characterization is known for them. A subclass of brittle graphs which have are characterizable by forbidden subgraph is the class of (house, hole, domino)-free graphs [34] (HHD-free graphs). These two classes are described in subsection 3.2.4, as HHD-free graphs are an important class in relation to the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs.

2.2.2 Optimizing with a Perfect Order

Chvátal [6] showed that perfectly orderable graphs are perfect; that is, he showed that for every induced subgraph of a perfectly orderable graph, the maximum clique size is equal to the chromatic number. Since the definition of a perfect order provides an optimal colouring in linear time when a perfect order is known, the fact that these graphs are perfect also gives the maximum clique size as well.

To find a maximum clique in a perfectly orderable graph G, consider a perfect order $<$ on the vertices. Consider a vertex v of largest colour, and due to the colouring scheme, we know it must have a neighbour in each colour class corresponding to colours smaller than $\chi(G)$. We can initialize the clique with two vertices, v and one of its neighbours of the next highest colour, call it w. Chvátal proved the following lemma:

Lemma 2.2.2 [6] Let G be a graph with a perfect order $<$ and a clique C with every w in C having a neighbour $p(w)$ not in C. Let $P=\{p(w)$, for every $w \in C\}$. If P forms a stable set, then some $p(w)$ in P is adjacent to all of C.

Here, we have a $C=\{v, w\}$, and choose the neighbours $p(v)$ and $p(w)$ to be in the next lowest colour class so that we know they have no edge between them. The proof of the lemma is algorithmic, as so provides us with the desired $p(w)$ vertex adjacent to all of C. The clique is extended to include this vertex, and the process is repeated.

The problem of finding a maximum independent set in a perfectly orderable graph can be solved in polynomial time by virtue of the fact that perfectly orderable graphs are perfect. However, as we discussed earlier, the algorithms on perfect graphs are not very practical. The problem of finding a maximum independent set of a perfectly orderable graph with a polynomial-time combinatorial algorithm is still open, with or without a given perfect order. In fact, it is still unknown as to how one could produce an optimal colouring and maximum clique in a perfectly orderable graph with a purely combinatorial method in polynomial time when a perfect order is not provided.

2.3 Modular Decomposition

A common problem-solving technique is to break a large problem into smaller subproblems, usually in hopes of making the subproblems simple enough to solve and whose solutions can be somehow combined to solve the original, large problem. This section discusses a method for decomposing graphs using a method called modular decomposition. When modular decomposition is applied to cographs, it is exactly the same as cograph decomposition already discussed (in Subsection 1.3.2,) and so it can be considered a kind of generalization of the cograph decomposition.

Figure 2.2: The fork and its complement

When a graph is no longer decomposable with respect to successive graph complementations or modular decomposition, it is called prime. The prime cographs are single vertices. Later, we will see how the modular decomposition has been used to recognize (P_{5}, \bar{P}_{5}, bull)free graphs, whose prime graphs are simply bipartite or complements of bipartite graphs. The prime semi- P_{4}-sparse are either bipartite graphs, complements of bipartite graphs, or a special kind of split graph.

2.3.1 Homogeneous Sets

Cographs were introduced in Subsection 1.3.2. Recall that cographs are those graphs totally decomposable (to single vertices) by successively taking complements of connected components. A co-connected component (or co-component) is a set of vertices which form a connected component in the complement of the graph. Hence, the cograph decomposition breaks the graph into its components and then each component into co-components, and so on. Observe that a component C_{1} has the property that every vertex in $V-C_{1}$ sees none of C_{1}, and similarly a co-component C_{2} has the property that every vertex in $V-C_{2}$ sees every vertex in C_{2}. We say that with respect to a graph, a vertex subset S is indistinguishable if every vertex outside the set either sees every vertex in S or misses every vertex in S. Indistinguishable sets have also been called homogeneous sets or modules.

Definition 2.3.1 $S \subseteq V$ is a module if $1<|S|<|V|$, and every $v \in V-S$ either sees every $s \in S$ or misses every $s \in S$.

Definition 2.3.2 A graph is prime if it has four or more vertices and contains no module.
An example of a graph which is connected and co-connected (and so can not be decomposed in the way that cographs can be) while still having a module is the fork, whose graph and complement are depicted in Figure 2.2. If a set $M \subseteq V$ is a module of G, then that set is also a module in \bar{G} since the sets of vertices in $V-M$ that miss all of M and see all of M switch roles.

Note some basic properties of modules:

Figure 2.3: Various graphs

Proposition 2.3.3 [3] Let $G=(V, E)$ be a graph and let A, B be two modules of G. Then the following properties hold:
(i) $A \cap B$ is a module
(ii) if $B \nsubseteq A$, then $A \backslash B$ is a module
(iii) if $A \cap B \neq \emptyset$, then $A \cup B$ is a module.

These properties allow us to have a well-defined notion of maximal modules, since if two modules intersect, either one is completely contained in another or the union of the two modules form a larger module.

2.3.2 Prime Graphs

Recall that graphs with no modules are called prime. Any graph with more than one vertex that has no P_{4} (and hence is a cograph) will have a module (a component or a co-component,) and so any prime graph must have a P_{4}. In fact, the only prime graph on four or fewer vertices is the P_{4}. The prime graphs on five vertices are the bull, $P_{5}, \bar{P}_{5}, C_{5}$ (see figure 2.3).

It was earlier stated that modules are invariant under complementation, so a graph G is prime if and only if \bar{G} is prime. More prime graphs include the $P_{k>6}, \bar{P}_{k>6}, C_{k>6}, \bar{C}_{k>6}$.

Even though a graph such as C_{4} is not prime itself, the definition of primality does not restrict C_{4} from existing in a prime graph. The definition of primality simply implies that the rest of the graph must adjoin to the C_{4} so that the modules in the C_{4} are not modules in the entire graph. This suggests the existence of theorems of the sort if a graph is prime

Figure 2.4: A prime (P_{5}, \bar{P}_{5})-free graph with a C_{4} (filled) that is not in an H_{6}.
and has a certain non-prime subgraph, then that non-prime subgraph must extend in some way to some prime structure. One of the first theorems of this sort is given by Hoàng and Reed:

Theorem 2.3.4 [35] If a prime graph has an induced C_{4} then the graph must have at least one of a D_{6}, H_{6} or a \bar{P}_{5} (Figure 2.3).

Graphs such as D_{6}, H_{6} and \bar{P}_{5} are called minimal prime extensions of the graph C_{4}, since any prime graph containing a C_{4} must contain one of these. The minimal prime extensions of small graphs (those one five or fewer vertices) have been completely characterized; some graphs have an infinite number of minimal prime extensions [2].

It should be noted here that the term "prime extension" may be misleading. Let S be set of four vertices inducing a C_{4} in a prime graph G. Theorem 2.3.4 tells us that G must contain six vertices which induce one of D_{6} or H_{6} or else has five vertices inducing \bar{P}_{5}. Let T be a set of five or six vertices in G inducing one of the minimal prime extension of S. The reason "extension" may be misleading is because it is not necessarily the case that S is a subset of T. Figure 2.4 shows such an example.)

In a graph G with a module M, we can shrink M to a single vertex v_{M} such that v_{M} sees the vertices in G that were universal on the module M and sees no other vertices. This leaves behind the graph induced by the vertex set $V \backslash\left(M \backslash v_{M}\right)$, where v_{M} can be taken as any vertex in M. When each maximal modules of G has been replaced by a single vertex, we call the resulting graph G^{*} the characteristic graph of G. Note that G^{*} is prime and is an induced subgraph of G.

2.3.3 Modular Decomposition and Partial Closure

When a module M of a graph G has been replaced with a single vertex, the graph G is said to have been decomposed into the following two graphs: the graph induced by $V \backslash\left(M \backslash v_{M}\right)$
and the graph induced by M, and these two graphs can be decomposed further. This procedure of successively decomposing a graph is the modular decomposition. The linear time recognition algorithm for decomposing cographs by Corneil, Perl and Stewart [11] led to the development of a linear time algorithm for constructing the modular decomposition tree (by McConnell and Spinrad [44] and by Cournier and Habib [12].)

The general linear time decomposition algorithm is difficult and not discussed here. A simpler linear time algorithm for modular decomposition exists for various classes, for example, chordal graphs [37].

For computer-aided searches during the research for this thesis, a modular decomposition was not used. We found all prime graphs on ten or fewer vertices using a simple recognition algorithm. For a set of vertices S in G, if v is a vertex in $V(G)-S$ we call v partial on S if v sees a vertex in S and misses a vertex in S. Following [31], for any vertex subset S of V with $|S|>1$, define $P T L(S)$ to be the set of vertices in S together with any vertices in $V-S$ which are partial on the set S. As is usual with functional notation, we let $P T L^{1}(S)=P T L(S)$ and $P T L^{i}(S)=P T L\left(P T L^{i-1}(S)\right)$, for $i>1$. Since $|P T L(S)| \geq|S|$, we are guaranteed to have some k_{S} for which $P T L^{k_{S}}(S)=P T L^{k_{S}-1}(S)$. Define the partial closure of $S, P T L^{*}(S)$, as the set of vertices obtained after iterating the $P T L(S)$ function k_{S} times. In particular, notice that if S is homogeneous in G, then $\operatorname{PTL}(S)=S$.

A simple (while not necessarily efficient) algorithm to determine whether a graph is prime relies on the fact that if there exists a module M in a given graph, and if S is some set of vertices with $S \subseteq M$ and $|S|>1$, then $P T L^{*}(S)=M_{2}$ where M_{2} is some module such that $M_{2} \subseteq M$ with possibly $M_{2}=M$. It follows that the partial closure just needs to be tested for all S with $|S|=2$, and if any such partial closure is a strict subset of the whole graph then we have found a module, otherwise the graph is prime.

2.4 Relevant Properties of Prime Graphs

There are some important properties of prime graphs to note. For any pair of vertices $\{x, y\}$ in a proper vertex subset S of V in a prime graph, there must be some vertex d_{1} that sees x and not y, or sees y and not x. However, since the three vertices $\left\{d_{1}, x, y\right\}$ also cannot form a module, there must be another vertex d_{2} partial on this set, and by continuing this process we do not explicitly know which d_{i} vertices are inside or outside the set S (even though we know S is not a module and there must exist a vertex outside S which is partial on it, possibly seeing multiple vertices and missing multiple vertices of S.) For specific local information, the following lemma is indispensable. Call a set big if it has size at least two.

Lemma 2.4.1 [19] Let G be a prime graph and S a strict subset of $V(G)$ with $|S|>1$. Let the big connected components of S be $Q_{1}, Q_{2}, \ldots, Q_{k}$, (respectively, co-connected components
$R_{1}, R_{2}, \ldots, R_{l}$.) Then for any $1 \leq i \leq k(1 \leq j \leq k)$ there exists some vertex in $V(G) \backslash S$ which is partial on some edge in Q_{i} (non-edge in R_{j}).

Recall that a vertex in a graph is called simplicial if its neighbourhood induces a clique. Call a vertex co-simplicial if the vertex is simplicial in the graph's complement. That is, a vertex is co-simplicial if its non-neighbours induce a stable set.

Lemma 2.4.2 The set of simplicial vertices in a prime graph induces a stable set.
Proof. Let v and w be two simplicial vertices in a prime graph. There must exist some d distinguishing $\{v, w\}$, so say d sees v and misses w. If v sees w then v sees both d and w, but d was chosen to miss w which is contrary to v being simplicial. Thus v must miss w.

Applying the above argument to the graph complement, we have:

Corollary 2.4.3 The set of co-simplicial vertices of a prime graph induces a clique.

Chapter 3

Motivating $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs

The purpose of this chapter is to reveal the connection between $\left(P_{5}, \bar{P}_{5}\right)$-free or $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$ free graphs and other other well-known classes. Later, we will see theorem 4.1.1 of Fouquet telling us that, with respect to prime graphs on six or more vertices, the (P_{5}, \bar{P}_{5}) -free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are identical.

$3.1\left(P_{5}, \bar{P}_{5}\right)$-free as a Generalization of Subclasses

A natural use of generalization is to take known results on certain graph classes and try to extend those results to a larger class, thereby solving a larger problem. Here, we present some important subclasses which are contained in the class of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs.

3.1.1 Split Graphs

A graph is bipartite if its vertices are partitionable into two stable sets; equivalently, a graph is bipartite if it can be coloured with two colours. By changing the vertex partition property from two stable sets to one stable set and one clique, we arrive at the split graphs.

Definition 3.1.1 A graph is split if its vertices can be partitioned into two sets S and C, where S is empty or induces a stable set and C is empty or induces a clique.

Note that the complement of a split graph is a split graph, as the stable set S and clique set C switch roles in the complement. In fact, the class of split graphs is set of graphs which are both chordal and co-chordal.

Theorem 3.1.2 [16] A graph G is split if and only if G and \bar{G} are chordal.

Through forbidden induced subgraphs, one may also characterize split graphs as ($C_{4}, C_{5}, 2 K_{2}$)free graphs [16] (where $2 K_{2}$ is a graph on four vertices with two disjoint edges.)

There are many other characterizations of these graphs, including an intersection model (involving the intersections of disjoint stars on a tree, mentioned in [45]) as well as vertex-
ordering properties involving degree sequences [27], [58], which lead to a linear time recognition algorithm (in fact, if the degree sequence is given, the algorithm runs in $\mathrm{O}(n)$-time.)

Since recognizing split graphs can be performed in linear time, when testing whether a graph is a $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, we can afford to first test if the graph is split. If it is, having no $2 K_{2}$ ensures that there is no P_{5} and having no C_{4} tells us that there is no \bar{P}_{5}. The forbidden induced subgraph characterization for split graphs provides the fact that split graphs are a (strict) subclass of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs. In the case that testing for split-ness fails, we still gain from our attempt: there are linear time algorithms to recognize split graphs such that if the input graph is not split, a $C_{4}, 2 K_{2}$ or C_{5} is found [51]. When testing a graph for containment in $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs, knowing that it is not split provides us with information on the location of one of these subgraphs.

Yet another benefit from first testing the split-ness of a (prime) graph is that if the graph is not split, we can apply the following theorem:

Theorem 3.1.3 [31] If a prime graph is not split, then every vertex is in a P_{4}.

This theorem appears in the context of P_{4}-structure [31]. However, this formulation of the theorem aides our study into the structure of prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs.

3.1.2 Recursively Split Substitute Graphs

The operation of substitution is the opposite of contracting a module to a single vertex: we replace a vertex v in a graph G with a graph H making every vertex in H adjacent to all the vertices in G that were adjacent to v. In the resulting graph, the subgraph induced by H is a module. For any class of graphs, we can ask whether the substitution of a graph of that class into any vertex of a graph of that class maintains containment within that class. For instance, in the case of split graphs, if we substitute a split graph into another split graph, is the result necessarily a split graph? The answer here is 'no' as we can substitute two nonadjacent vertices into the middle-vertex of a P_{3} and obtain a C_{4}.

The class obtained from substituting split graphs into split graphs is called the recursively split substitute graphs. The forbidden induced subgraphs for this class are the $C_{5}, P_{5}, \bar{P}_{5}, H_{6}$, and the \bar{H}_{6} (see Figure 2.3) [35] [32].

There is a theorem that characterizes a graph class obtained from substitution:

Theorem 3.1.4 [61] Let Z be a hereditary class of graphs with forbidden induced subgraphs $\left\{F_{1}, F_{2}, F_{3}, \ldots\right\}$ (possibly infinite list) then the class obtained from substituting a Z-graph into a vertex in a Z-graph has forbidden induced subgraphs $\operatorname{MPE}\left(F_{1}\right) \cup \operatorname{MPE}\left(F_{2}\right) \cup \ldots$, where $\operatorname{MPE}\left(F_{i}\right)$ is the set of all minimal prime extensions of F_{i} [61].

As a corollary to that theorem, if all the F_{i} graphs are already prime, the class of graphs
is closed under substitution. For instance, $\left(P_{5}, \bar{P}_{5}\right)$-free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are closed under substitution.

The weak bipolarizable graphs [48] are defined as the chordal substitute graphs; that is, a graph is weak bipolarizable if it is obtained from substituting a chordal graph into any chordal graph. The forbidden induced subgraphs of weak bipolarizable graphs are $C_{k \geq 5}$ and all minimal prime extensions of C_{4}, namely \bar{P}_{5}, H_{6}, and D_{6}. Note that these graphs can be characterized as those for which every prime induced subgraph is chordal.

The split substitute graphs can be easily recognized through the fact that a graph is split substitute if and only if it and its complement are both weak bipolarizable. This follows from the forbidden induced subgraph definition of weak bipolarizable graphs by Olariu in [48]. The paper also gives a linear time recognition algorithm for weak bipolarizable graphs. Since $\left(C_{5}, P_{5}, \bar{P}_{5}, H_{6}, \bar{H}_{6}\right)$-free graphs can be recognized in o $\left(n^{3}\right)$ time, it is natural to wonder if the ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs can be as well.

3.1.3 Cographs

Much discussion has already been devoted to cographs (P_{4}-free graphs) and their importance in the study of graph classes and graph algorithms. One might wonder if the simple generalization from P_{4}-free graphs to P_{5}-free graphs would yield as fruitful a study as the study of cographs has been. Surprisingly, very little is known about P_{5}-free graphs. In fact, the max independent set problem is of unknown complexity [21] on this class of graphs, while it is easily polytime solvable on P_{4}-free graphs (as already described) and it is known to be NP-complete on P_{6}-free graphs.

The cograph decomposition tree (through graph complements) and its use in solving such problems as max independent set, max clique, min colouring and min clique cover relies heavily on the fact that P_{4}-free graphs are self-complementary. Since P_{5}-free graphs do not share this property, the self-complementary class of $\left(P_{5}, \bar{P}_{5}\right)$-free free graphs may exhibit generalizations of properties of cographs.

$3.2\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free Graphs as a Special Case of Superclasses

Rather than relaxing restrictions to arrive at more general graph classes, one may impose further restrictions to gain more structure and properties in graphs. We will see here how our ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs serve as an important subclass of other well-studied classes.

3.2.1 Welsh-Powell Perfect Graphs

Early investigations into graph colouring led to the empirical analysis of heuristic methods to colour graphs. One such heuristic was to sort the vertices of a graph by their degree
(from largest to smallest) and then to apply a greedy colouring to this ordering [59]. The intuition here being to colour the potentially most-constrained vertices first. The vertex ordering based on degree is sometimes referred to as a Welsh-Powell ordering. In 1987, Chvátal et. al. [9] defined and studied several subclasses of perfectly orderable graphs, one of which they called Welsh-Powell perfect graphs:

Definition 3.2.1 [9] A graph G is Welsh-Powell perfect if every Welsh-Powell ordering is a perfect ordering for that graph.

In [9], a forbidden induced subgraph characterization is given for Welsh-Powell perfect graphs, which includes 17 forbidden subgraphs. One of these is the C_{5}, and it was observed that every other forbidden subgraph contained a P_{5} or its complement, and so the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are Welsh-Powell perfect. Hence, it is easy to find a perfect ordering for $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs using the degree sequence, and moreover, these graphs are self-complementary. Linear time algorithms were given in [9] to solve clique, colouring, independent set and clique cover on Welsh-Powell perfect graphs, and thus on ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs.

These ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs are not the largest self-complementary class of perfectly orderable graphs. Clearly, the largest such class is the class of perfectly orderable graphs intersected with the co-perfectly orderable graphs, but no alternate characterization for this class is known to exist (particularly, no forbidden induced subgraph characterization is known for this.) We will see in Subsection 3.2 .4 the self-complementary class of brittle graphs that do not include all perfectly orderable co-perfectly orderable graphs, but do include the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs as a subclass.

3.2.2 Meyniel Graphs

Recall that a graph G is is perfect if for every induced subgraph H of G the clique size of H is equal to the chromatic number of H. The long-standing Strong Perfect Graph Conjecture ("SPGC" resolved in 2003, [5]) conjectured that a G is perfect if and only if G and \bar{G} had no induced odd cycles of size five or more. (Calling a graph G Berge if G contains no odd holes of size five or more, nor complements of odd holes, we can re-state the SPGC to be: G is perfect if and only if G is Berge.)

Note that the statement "no induced odd cycles" is equivalent to saying "every odd cycle has a chord." In the 1970's, Meyniel proved a theorem weaker than the SPGC:

Theorem 3.2.2 [46] Let G be a graph where every odd cycle has at least two chords. Then G is perfect.

Such graphs are now called Meyniel Graphs. Meyniel graphs have been studied for their recognition problem extensively, and graph tools such as the amalgam (not described here,
see [4]) have been developed as a result of investigations into Meyniel graphs. Recognition algorithms for Meyniel graphs have often been useful in the recognition of other graph classes such as i-triangulated graphs [52] and quasi-Meyniel graphs [15]. Meyniel graph recognition has been improved to $\mathrm{O}\left(m^{2}+m n\right)$ by Roussel and Rusu [52].

The forbidden induced subgraphs for Meyniel graphs are odd holes and odd cycles with exactly one chord. In particular, C_{5} and \bar{P}_{5} are two of the forbidden subgraphs. The remainder of the forbidden graphs - the next smallest of which are the 7-cycle and the two ways that a 7 -cycle can have a single chord - contain a P_{5}.

Theorem 3.2.3 A graph G is a P_{5}-free Meyniel graph if and only if it is a $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph.

Using the fact that Meyniel graphs are \bar{P}_{5}-free, we see that co-Meyniel graphs are P_{5} free, and since the C_{5} is self-complementary, the largest self-complementary class of Meyniel graphs (the Meyniel co-Meyniel graphs) are exactly the ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs [3].

Theorem 3.2.4 [3] A graph G is $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free if and only if G and \bar{G} are Meyniel.

3.2.3 Weakly Chordal and Murky Graphs

Meyniel graphs were a natural special class of Berge graphs and were shown to be perfect. Another natural special class of Berge graphs can be formed, not by forcing more chords in the odd cycles, but instead by forbidding all large cycles rather than just the odd ones.

Definition 3.2.5 [28] A graph G is weakly chordal if neither G or \bar{G} has a chordless cycle of size five or more.

Recalling that chordal graphs are graphs with no induced cycles of size four or more, and noting that the complements of odd holes of size six or larger must have an induced subgraph isomorphic to a C_{4}, it follows that weakly chordal graphs contain both chordal graphs and complements of chordal graphs.

As chordal and co-chordal graphs are known to be perfect [23], the generalization to weakly chordal graphs as a step closer to the SPGC as weakly chordal graphs are Berge graphs. In 1985, Hayward showed the following:

Theorem 3.2.6 [28] Weakly chordal graphs are perfect.

Weakly chordal graphs have come to be known as a large class of graphs containing many other well-studied classes such as brittle graphs (see Section 3.2.4,) HHD-free graphs (Section 3.2.4,) HH-free graphs (Section 3.2.5,) domination graphs (Section 3.2.5,) ($P_{5}, \bar{P}_{5}, C_{5}$)-
free graphs, and many others not mentioned in this thesis. Recently, weakly chordal graphs have found themselves used in the field of bioinformatics ${ }^{1}$ [43].

In continuing the class-broadening towards Berge graphs from weakly chordal graphs, Hayward introduced murky graphs.

Definition 3.2.7 [29] A graph is murky if it contains no C_{5}, P_{6}, or \bar{P}_{6}.

Murky graphs were also shown to be perfect [29], but have received little attention since then. Taking these definitions a step further would call for restricting the $C_{5}, C_{7}, \bar{C}_{7}, P_{8}$ and \bar{P}_{8}, which is a class which has not been studied to the best of the author's knowledge.

In the same way that murky graphs are a subclass of Berge graphs by the use of a finite number of forbidden subgraphs, the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are a subclass of weakly chordal graphs, as the P_{5} and the \bar{P}_{5} are the common subgraphs to the holes and antiholes of size six and larger. Perhaps an improved recognition of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs could be useful in recognizing weakly chordal graphs, which can be currently recognized in $\mathrm{O}\left(\mathrm{m}^{2}\right)$ [57] or $\mathrm{O}\left(n^{4}\right)$-time [30].

3.2.4 Brittle and HHD-free Graphs

After introducing perfectly orderable graphs [6], Chvátal introduced a subclass of perfectly orderable graphs called the brittle graphs [7].

Definition 3.2.8 A graph G is brittle if for every induced subgraph H of G either there exists a vertex that is not the midpoint of any P_{4} in H or there exists a vertex that is not the endpoint of any P_{4} in H.

Since mid- P_{4} vertices and end- P_{4} vertices swap roles under graph complementation, brittle graphs are self-complementary. To see that brittle graphs are perfectly orderable, note that for an ordering to be obstruction-free, it suffices to colour - for each P_{4} - the two mid-vertices before colouring the two end-vertices. So, if a graph is brittle and there is a vertex which is not the end of some P_{4}, then we can safely put that vertex at the start of a vertex ordering knowing that it will not lead to any obstruction. Similarly (as is seen through complementation) if there is a vertex that is not the mid of some P_{4}, then we can put that vertex at the end of a vertex ordering. Once one such vertex is placed in a vertex ordering, the remaining graph (without the already-placed vertex) can be considered, and since it is an induced subgraph of the original graph, the definition of brittle graphs tells

[^1]us that there is another vertex which can be properly placed into this ordering. Continuing this process until all vertices have been placed yields an obstruction-free ordering. This proves that brittle graphs are perfectly orderable.

The ordering described is more specific than a perfect order and does not necessarily exist for all perfectly orderable graphs, so sometimes this ordering is referred to as a brittle ordering [3].

Brittle graphs are difficult to study for their general structure. For instance, no complete characterization through forbidden induced subgraphs is known. Clearly, an induced cycle of size five or more is not brittle since every vertex is a mid-point and an end-point of a P_{4}, so brittle graphs are hole-free. In [34], Hoàng and Khouzam show that HHD-free graphs are brittle graphs.

Theorem 3.2.9 [34] Graphs with no \bar{P}_{5}, D_{6}, and $C_{k \geq 5}$ are brittle.
These graphs have come to be known as house, hole, domino free graphs, or HHD-free graphs. Using the forbidden subgraph characterization, HHD-free graphs can be recognized in $\mathrm{O}\left(n^{6}\right)$ time. It is not difficult to describe a faster, and perhaps just as simple, algorithm to recognize these graphs [50]. For every edge $\{x, y\}$ find $N_{x y}$, the common neighbourhood of x and y, N_{x}, the neighbours of x and not y, and N_{y}, the neighbours of y and not x. Let $M=V(G)-N_{x, y}-N_{x}-N_{y}-\{x, y\}$. To test whether the edge $\{x, y\}$ is the bottom of a house or the bottom of a domino, perform a path-searching algorithm (say, BFS) from the set of vertices in N_{x}, through the set M, to the set of vertices in N_{y}. If a path is found from some s in N_{x} to some t in N_{y} using only one vertex from M, then the vertices on the s to t path, together with $\{x, y\}$ form a house if s and t are adjacent or a C_{5} if they are not. If two vertices from M are in the s to t path, then a domino is found if s sees t, or a C_{6} is s and t are not adjacent. If more than two vertices from M are in the found s to t path, then a large hole is found regardless of whether s sees t.

Building the sets $N_{x y}, N_{x}, N_{y}$, and M and performing path-searching can be implemented to run in $\mathrm{O}(m+n)$-time. This process may need to be repeated for every choice of $\{x, y\}$, so this algorithm runs in $\mathrm{O}\left(m^{2}+m n\right)$, or $\mathrm{O}\left(m^{2}\right)$ time, an improvement on the brute-force $\mathrm{O}\left(n^{6}\right)$-time algorithm.

The recognition of HHD-free graphs has been improved to $\mathrm{O}\left(n^{3}\right)$-time by Hoàng and Sritharan [36] using an algorithm that decides whether a given simplicial vertex is the top of a house. In general, HHD-free graphs do not necessarily have simplicial vertices, but they make use of the following theorem:

Theorem 3.2.10 [34] Every HHD-free graph has a simplicial vertex or a homogeneous set.
By restricting the consideration of HHD-free graphs to prime HHD-free graphs, Hoàng and Sritharan are able to find simplicial vertices. Since the only way a simplicial vertex
can be in a house, hole, or domino is if the vertex is a top of a house, this is the only condition that need be checked. Verifying that a simplicial vertex is not the top of a house allows for the removal of the vertex without affecting the graph's containment in the class of HHD-free graphs, thus reducing the recognition problem to than on a smaller graph on which a modular decomposition can again be applied and the process of checking simplicial vertices repeated.

The only benefit of considering the HHD-free graphs with no modules is to guarantee the existence of a simplicial vertex. The authors of that algorithm comment that a significant improvement will likely utilize new information about the structure of prime HHD-free graphs. This was the first motivation for the author of this thesis to study the class of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs, as these are the largest self-complementary class of HHD-free graphs.

3.2.5 Domination and HH-free Graphs

Recall that a graph is chordal if and only if it has a perfect elimination ordering, namely, an ordering of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ where v_{j} is simplicial in the graph induced by v_{1}, \ldots, v_{j-1} for every j. By generalising the notion of a simplicial vertex and maintaining the elimination ordering property, a new class of graphs will be described. Firstly, we note that if v is a simplicial vertex then each neighbour u of v sees all of $N(v)$. This motivates the definition of domination in graphs:

Definition 3.2.11 [13] Let u and v be vertices in a graph. Then u dominates v if $N(v) \subseteq$ $N(u) \cup\{u\}$. Furthermore, u strictly dominates v if $N(v)$ is a strict subset of $N(u)$.

For notational purposes, u dominates v can be represented by $v<u$. We say that u is comparable to v if either $u<v$ or $v<u$. Note that domination is self-complementary in that if $u<v$ in $G, v<u$ in \bar{G}. If there are vertices u, v such that $u<v$ and $v<u$, then $\{u, v\}$ forms a nontrivial module. Thus, in a prime graph, comparable vertices will always come from strict domination.

Akin to the idea of a perfect elimination ordering, a domination elimination ordering (or d.e.o.) is an ordering v_{1}, \ldots, v_{n} such that every v_{j} is dominated by some v_{i} with $i<j$. This leads to the class of domination graphs:

Definition 3.2.12 [13] A graph is a domination graph if it has a domination elimination ordering.

Again, analogous to the characterization of chordal graphs which states that a graph is chordal if and only if every induced subgraph has a simplicial vertex, domination graphs can be characterized as those graphs which have a pair of comparable vertices in every induced
subgraph. The inherent properties of vertex domination provide the fact that domination graphs are self-complementary. Domination graphs do not share all the convenient properties of the chordal graphs; for instance, while chordal graphs can be recognized in linear time [53], there are no known polynomial-time recognition algorithms for domination graphs, and it is unknown whether this recognition problem is polytime or NP-complete.

In a C_{4} the nonadjacent vertices dominate each other, but in chordless cycles of size five or more there are no comparable vertices. Hence domination graphs can not contain chordless cycles of size five or more. Since domination graphs are self-complementary, it follows that domination graphs are a subset of weakly chordal graphs. This subset relation was shown to be strict when a weakly chordal graph with no comparable vertices on 24 vertices was found by Hayward [28]. It is unknown if this graph is the smallest such example. Though it would seem that domination graphs and weakly chordal graphs form similar classes considering the size of the smallest known graph distinguishing them, Rusu and Spinrad [54] show this is not the case when large graphs are considered. They constructed infinitely many weakly chordal graphs which are minimal non-domination graphs.

Recall that it is NP-complete to recognize perfectly orderable graphs [47]. As a result, HHD-free graphs were developed as they form class having the properties of perfectly orderable graphs while being easier to recognize. Similarly, domination graphs are not yet easily recognized, so the class of house, hole-free graphs (HH-free graphs) were introduced in [13] and shown to be domination graphs. Furthermore, the authors showed that every MCS ordering (that is, the breadth-first search ordering where ties between vertices are broken by choosing a vertex adjacent to the largest numbers of vertices already visited) on any HH-free graph is a d.e.o.

As HH-free graphs have been studied in their own right, this provides more motivation to study the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs since they are exactly the class of graphs G for which G and \bar{G} are HH-free.

To summarize this chapter, $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are exactly the class $\Sigma \cap \bar{\Sigma}$, and also P_{5}-free Σ, where Σ is any of the well-studied classes of Meyniel graphs, HHD-free graphs or HH-free graphs. $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs also form a natural subclass of the WelshPowell perfect graphs and a superclass of other well-known classes. In addition to all this, $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are interesting in their own right, as they can be optimized in linear time, though it takes significantly longer to recognize when a graph is in this class.

Chapter 4

Previous Work on $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs

In this chapter we recite the results of three different papers on classes that are either subclasses of - or closely related to - the class of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs.

$4.1 \quad\left(P_{5}, \bar{P}_{5}\right.$, bull)-free Graphs

In a paper titled " A decomposition for a class of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs", J.L. Fouquet [17] studies the class of (P_{5}, \bar{P}_{5}, bull)-free graphs. As the bull and P_{5} are prime, it is sufficient to show how to recognize prime (P_{5}, \bar{P}_{5}, bull)-free graphs (that is, prime with respect to the homogeneous set, or modular, decomposition.) Before attacking the problem, a relationship between $\left(P_{5}, \bar{P}_{5}\right)$-free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs was given:

Theorem 4.1.1 [17] For each $\left(P_{5}, \bar{P}_{5}\right)$-free graph G at least one of the following holds:
i) G has a homogeneous set
ii) G is isomorphic to C_{5}
iii) G is C_{5}-free

This theorem implies that prime $\left(P_{5}, \bar{P}_{5}\right)$-free graphs are exactly the prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$ free graphs on six or more vertices. The task of characterizing the prime (P_{5}, \bar{P}_{5}, bull)-free graphs was completed with a fairly elegant solution resulting in a simple structure of these graphs.

Theorem 4.1.2 [17] Let G be a prime (P_{5}, \bar{P}_{5}, bull)-free graph on 6 or more vertices. Then G is either bipartite or the complement of a bipartite graph.

It is not hard to see that every bipartite graph is bull-free and \bar{P}_{5}-free, so the $\left(P_{5}, \bar{P}_{5}\right.$, bull)free graphs which are bipartite are exactly the P_{5}-free bipartite graphs. Recognizing prime

Figure 4.1: The other forbidden induced subgraphs of P_{4}-sparse graphs
$\left(P_{5}, \bar{P}_{5}\right.$, bull)-free graphs thus reduces to recognizing P_{5}-free bipartite graphs. Fouquet's analysis of the recognition algorithm lead to an $\mathrm{O}\left(n^{3}\right)$ runtime, but this result predates the linear time modular decomposition algorithms of [12] or [44], and so (P_{5}, \bar{P}_{5}, bull)-free can now be recognized in linear time [18].

4.2 Semi- P_{4}-Sparse Graphs

As cographs are an important class in the study of algorithmic graph theory, many generalizations to this class have been studied which exhibit similar properties. P_{4}-sparse graphs were introduced in [33] as a natural generalization of cographs and for which a forbidden induced subgraph characterization is easily obtainable. The class is algorithmically significant because of its linear time recognition through another decomposition scheme, generalizing the standard cograph decomposition.

Definition 4.2.1 [33] A graph G is P_{4}-sparse if every set of five vertices in G induces at most one P_{4}.

Since a set inducing a P_{4} in G will also induce a P_{4} in \bar{G}, this class is self-complementary. In the C_{5}, as an example, every set of four vertices induces a P_{4}, so the C_{5} is a minimal forbidden induced subgraph of P_{4}-sparse graphs. Similarly, it is easily seen that the P_{5} and \bar{P}_{5} are minimal forbidden graphs, and so P_{4}-sparse graphs form a subset of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$ free graphs. The other forbidden induced subgraphs for P_{4}-sparse graphs are shown in Figure 4.1.

In 1997, Fouquet and Giakoumakis introduced a broader class called the semi- P_{4}-sparse graphs. This class generalizes the P_{4}-sparse graphs through a relaxation of the forbidden induced subgraphs. They continue restricting the P_{5} and \bar{P}_{5}, and only additionally restrict the kite graph (which is the complement of the fork. See Figure 4.1.) Through a modular
decomposition, and using theorem 4.1.1, nontrivial semi- P_{4}-sparse graphs are also C_{5}-free.
The structural theorem is almost as simple as the (P_{5}, \bar{P}_{5}, bull)-free case; however, we require the definition of another graph form.

Definition 4.2.2 [19] A thin spider is a graph whose vertex set can be decomposed into a clique, K, and a stable set, S, such that $|K|=|S|$ or $|K|=|S|+1$, and the edges between S and K form a matching, leaving at most one vertex of K unsaturated. If there is an unsaturated vertex in K, it is called the head of the thin spider.

The following structural theorem for prime semi- P_{4}-sparse graphs is simple, yet not sufficient for recognizing the class of graphs.

Theorem 4.2.3 [19] Let G be a semi-P P_{4}-sparse graph. Then one of the following holds:
i) G has a homogeneous set
ii) G is bipartite
iii) \bar{G} is bipartite
iv) G is a thin spider
v) \bar{G} is a thin spider

In the $\left(P_{5}, \bar{P}_{5}\right.$, bull)-free case, recognition was accomplished by the fact that the forbidden graphs were prime, and so the original graph before decomposing would be free of those configurations if the graphs obtained from the modular decomposition were also free of them. Since the kite is not a prime graph, the semi- P_{4}-sparse graphs do not share the convenience of only verifying the primality of the leaves in the modular decomposition tree. The kite has two vertices forming a homogeneous set which could potentially vanish under modular decomposition if the rest of the graph around them does not distinguish them. Fouquet and Giakoumakis show that it is easy to detect if this has indeed happened using a trick of marking certain vertices during the decomposition scheme. During the decomposition, when a module is removed and replaced by a single vertex, if that module was not a stable set then the vertex replacing that module will be marked. This implies that if, in a resulting prime graph, there is a P_{4} having a middle vertex marked, then that middle vertex must have replaced some edge, and with the rest of the P_{4} it would create a kite. Hence the ends of P_{4} may be marked without any consequence of having kites in the original graph.

The authors fully characterize the allowable positions of marked vertices in the resulting bipartite graph or thin spider, and show that those facts lead to a recognition algorithm in linear time. Whether a module has an edge can be determined in linear time if certain data structures are used [56].

A 4-pan (sometimes called the P graph) is the graph formed by substituting two nonadjacent vertices for a middle vertex in a P_{4}. The 4 -pan can be thought of as a kite whose two vertices forming a homogeneous set are non-adjacent, rather than adjacent. One might investigate $\left(P_{5}, \bar{P}_{5}, 4\right.$-pan)-free graphs and expect them to be recognized similarly to the semi- P_{4}-sparse graphs, only with the difference of marking vertices when they replace nonstable modules, instead of non-clique modules. However, the structure of prime (P_{5}, \bar{P}_{5}, 4-pan)-free graphs is not as simple as the structure of prime semi- P_{4}-sparse graphs and so recognition does not reduce to simply recognizing P_{5}-free bipartite graphs or spiders. The resulting prime graphs have not yet been characterized, and recognition would further require a complete characterization of the valid and invalid markings of such prime structures.

There is another characterization for the prime ($P_{5}, \bar{P}_{5}, 4$-pan)-free graphs:
Theorem 4.2.4 The set of prime (P_{5}, \bar{P}_{5}, 4-pan)-free graphs is equal to the set of prime P_{5}-free chordal graphs.

Proof. Clearly, a P_{5}-free chordal graph is $\left(P_{5}, \bar{P}_{5}, 4\right.$-pan)-free. To see that prime $\left(P_{5}\right.$, $\bar{P}_{5}, 4$-pan)-free graphs are also prime P_{5}-free chordal graphs, recall that prime (P_{5}, \bar{P}_{5})-free graphs have the property of being C_{5}-free, and if a prime graph contained a C_{4}, it must contain either a \bar{P}_{5} or a 4-pan.

There is no known characterization of P_{5}-free chordal graphs which allows linear time recognition, despite the many distinct characterizations of chordal graphs and their associated recognition algorithms.

$4.3 \quad\left(P_{5}, \bar{P}_{5}\right)$-Sparse Graphs

Recently, Fouquet and Vanherpe [20] began the study of a class of graphs generalizing the $\left(P_{5}, \bar{P}_{5}\right)$-free graphs in the same way that P_{4}-sparse graphs generalize cographs.

Definition 4.3.1 [20] A graph is called $\left(P_{5}, \bar{P}_{5}\right)$-sparse if in every set of six vertices, the number of induced $P_{5} s$ and induced $\bar{P}_{5} s$ is at most 1.

This study led to analogues of some theorems on $\left(P_{5}, \bar{P}_{5}\right)$-free graphs, such as the restriction of the C_{5} in prime graphs.

Theorem 4.3.2 [20] Let G be a prime $\left(P_{5}, \bar{P}_{5}\right)$-sparse graph. Then G is either isomorphic to a C_{5} or is $C_{5}-$ free.

After establishing this property, the authors fully characterize the prime (P_{5}, \bar{P}_{5}, bull)sparse graphs, leading to a linear-time recognition algorithm.

Chapter 5

Four Other Self-Complementary Classes of Perfectly Orderable Graphs

Since the recognition of perfectly orderable graphs is NP-complete, subclasses of perfectly orderable graphs for which recognition is polynomial time are desirable. Some subclasses have already been mentioned, such as the brittle graphs (see section 3.2.4). Brittle graphs have no known forbidden induced subgraph characterization, but they are known to contain HHD-free graphs [34] (see section 3.2.4 for information on HHD-free graphs.) The intersection of HHD-free graphs and co-HHD-free graphs is the set of $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs, as mentioned earlier, and self-complementarity is an elegant and useful property to have in a graph class.

We can define several natural classes of self-complementary perfectly orderable graphs:

Definition 5.0.3 Let < represent a total ordering on the vertices, and > represent the reverse order of $<$. We can define the following four classes.

PO1: perfectly orderable \cap co-perfectly orderable
PO2: graphs G which admit a perfect ordering $<$ such that at least one of $<$ or $>$ is perfect in \bar{G}

PO3: graphs G which admit a perfect ordering $<$ such that $<$ is also perfect in \bar{G}
PO4: graphs G which admit an ordering $<$ such that both $<$ and $>$ are perfect in both G and \bar{G}

Note that $\mathrm{PO} 4 \subset \mathrm{PO} 3 \subset \mathrm{PO} 2 \subset \mathrm{PO} 1$. Since brittle graphs are self-complementary and perfectly orderable, we have that brittle graphs are PO1. We can go further, noticing that a brittle ordering in the complement graph is the reverse of a brittle ordering, and so brittle graphs are PO2. It is not clear how brittle graphs relate to the other two classes.

Figure 5.1: An orientation from a PO 4 vertex ordering
We note that PO4 is not a subset of HHD-free graphs or $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs since the house is PO4. All these classes are subsets of weakly chordal perfectly orderable graphs, since perfectly orderable graphs are $\bar{C}_{k \geq 5}$-free. Later, we show a $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph which is not PO4, so the ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs and PO4 graphs form two sets which are incomparable with respect to set containment.

When a graph has a total ordering on its vertices, there is an associated orientation of its edges which orient edge $\{u, v\}$ from u to v if and only if v comes before u in the vertex order. Recall that perfectly orderable graphs are characterized as those graphs which admit an ordering for which the associated edge-orientation is obstruction-free, where an obstruction is a $P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that $v_{1}<v_{2}$ and $v_{4}<v_{3}$. Let us decompose this orientation into the possible orderings that would bring about this obstruction. If a P_{4} is labeled ($v_{1}, v_{2}, v_{3}, v_{4}$), then this P_{4} being obstruction-free is equivalent to saying that the ordering on these four vertices cannot be any of

$$
\begin{aligned}
& v_{1}<v_{2}<v_{4}<v_{3}, \\
& v_{1}<v_{4}<v_{2}<v_{3}, \\
& v_{1}<v_{4}<v_{3}<v_{2}, \\
& v_{4}<v_{1}<v_{2}<v_{3}, \\
& v_{4}<v_{1}<v_{3}<v_{2}, \\
& v_{4}<v_{3}<v_{1}<v_{2} .
\end{aligned}
$$

The edge-orientation groups these six cases into one equivalence class.
Unfortunately, the classes above are not as easily described with the edge-orientation. As an example, if every $P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ in a graph is ordered $v_{2}<v_{4}<v_{1}<v_{3}$ then the graph would belong in class PO4. However, it would not be correct to say that every P_{4} can be oriented as in figure 5.1, since an ordering $v_{2}<v_{4}<v_{3}<v_{1}$ leads to the same orientation but is not a valid P_{4} ordering for the class PO4. There is, however, a simple way to characterize the PO4 graphs with a Chvátal-like characterization:

Theorem 5.0.4 A graph G is in PO4 if and only if G admits an ordering such that every $P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ has its vertices visited in the order $v_{i}<v_{j}<v_{k}<v_{l}$ where $i+l=j+k=5$.

Proof. The theorem statement is simply a compact way of saying that every $P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ must have its vertices visited in one of the four following ways:

Figure 5.2: The net graph

$$
\begin{aligned}
& v_{1}<v_{2}<v_{3}<v_{4} \\
& v_{1}<v_{3}<v_{2}<v_{4} \\
& v_{4}<v_{2}<v_{3}<v_{1} \\
& v_{4}<v_{3}<v_{2}<v_{1}
\end{aligned}
$$

First, we show that if we have such an orientation on G, then G is in PO4. Observe that in the complement graph, the two end-vertices switch roles with the two mid-vertices, so the above property of an ordering is independent of graph complementation, and it is also independent of order reversal. The six forbidden orderings which correspond to an edgeoriented obstruction are given above, and so it is easily verified that an ordering with our given property never creates an obstruction. Thus the ordering and its reverse are perfect for G and \bar{G}.

To prove that a PO 4 graph must admit such an ordering we can exclude forbidden orders from the $4!=24$ possible orders on four vertices. Removing the six orderings corresponding to an obstruction, as well as all of their reverse orderings, leaves 12 possible permutations left. Under complementation, a $P_{4} a, b, c, d$ maps to b, d, a, c (or the reverse, but we need not be concerned with that since our properties are reversal-independent). The 12 forbidden orderings already removed from consideration will map to 12 more orderings under this morphism, and it is a simple task to identify any new forbidden orderings. These 12 orderings contain four more forbidden orderings, so removing those four as well as their respective reverses leaves behind the four orderings given above, completing the proof.

Since paths P_{k} are all in the class PO4 and long holes are not, we have that $C_{k \geq 5}$ and $\bar{C}_{k \geq 5}$ are minimal non-PO4 graphs. Much in the same way that no minimal non perfectly

Figure 5.3: Two minimal non-PO4 graphs with one-in-one-out orientations
orderable graph has a homogeneous set [50], the property exists for these graph classes as they are defined in terms of perfect orders. The only other minimal non PO4 graphs on six or fewer vertices are D_{6}, \bar{D}_{6}, the net and its complement. The net graph is shown in Figure 5.2. Before proving that the net graph is not PO4, we first mention another class of perfectly orderable graphs sometimes referred to as one-in-one-out graphs:

Definition 5.0.5 [50] A graph is one-in-one-out if its edges can be oriented so that every P_{4} has one wing oriented inward and the other wing oriented outward.

It is currently unknown whether one-in-one-out graphs can be recognized in polynomial time [50]. We note that every PO4 ordering will have an associated orientation which is one-in-one-out, but not every one-in-one-out orientation gives a PO4 ordering. For instance, the $P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ could be ordered $v_{1}<v_{3}<v_{4}<v_{2}$ but this is not a permissible PO4 ordering. The important property of one-in-one-out graphs we will use here is that if $v_{1}<v_{2}$ then we must have $v_{3}<v_{4}$. The one-in-one-out class was defined as a special case of perfectly orderable graphs along with several other classes by creating special conditions on the allowable orientations of $P_{4} \mathrm{~s}$. Of those classes defined, the recognition complexity has been classified as either polytime or NP-complete for all except for the one-in-one-out graphs.

Proposition 5.0.6 The net graph is a minimal non-PO4 graph.
Proof. Consider the net as labeled in Figure 5.2, and assume there is some PO4 ordering on it. Because of the symmetry of the graph, we can assume without any loss of generality that $a<b$. By the property mentioned above, we must have $c<d$ and $e<f$, but then we have the $P_{4}(d, c, e, f)$ which does not satisfy the conditions for a PO4 ordering.

Corollary 5.0.7 The net graph is a minimal forbidden graph for both PO4 graphs and one-in-one-out graphs.

The corollary follows since the removal of any one vertex leaves behind only a single P_{4} which could be oriented in any way desirable. Since the net graph is split, and thus $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free and HHD-free, we have that the PO4 class is not comparable to these three mentioned classes. The \bar{P}_{5} is an example of a graph which is not split, HHD-free, nor ($P_{5}, \bar{P}_{5}, C_{5}$)-free while being in PO4. Graphs on four or fewer vertices are examples of graphs belonging to all of the HHD-free, $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free, and PO4 graphs.

Two more graphs which are minimal non-PO4 graphs are shown in Figure 5.3, along with edge orientations showing that these are one-in-one-out graphs, unlike the net graph. The details showing these are minimal non PO4 graphs are omitted, but we outline the reasoning which can lead to proof.

An exhaustive search can show that any valid PO4 orderings of a P_{5} is the reverse of, or equivalent to, one of the three shown in figure 5.4. Here, "reverse" implies a reading of the P_{5} s from right to left, and "equivalent" means equivalent under the mapping i to $6-i$. For example, the reverse of case B) in Figure 5.4 is $4,5,2,3,1$ while an equivalent ordering would be $5,3,4,1,2$. Using those three ways to visit the vertices of a P_{5}, one can add a vertex seeing the middle vertex of the P_{5} and find three (again, up to equivalence and reversals) valid orderings of this graph. After adding the final vertex to make either of the two graphs shown, it is seen that no suitable ordering exists to accommodate the final vertex.

To the best of the author's knowledge, the recognition status of the four classes PO1 PO 4 is open.

Since LexBFS serves as a natural method to order vertices in graphs, and many types of orderings that have been studied such as the perfect elimination ordering, semiperfect elimination ordering, domination elimination ordering, perfect ordering mentioned in this thesis so far, there is an associated class of graphs which admit such properties under any LexBFS ordering. For example, we have the following theorems:

Theorem 5.0.8 [53] Every LexBFS ordering of G is a perfect elimination ordering if and only if G is a chordal graph.

Theorem 5.0.9 [38] Every LexBFS ordering of G is a semiperfect elimination ordering if and only if G is HHD-free.

Theorem 5.0.10 [13] Let G be a HH-free graph. Then every LexBFS ordering is a domination elimination ordering.

Since we have defined the PO4 ordering, we are inclined to state the following property:
Theorem 5.0.11 Every LexBFS ordering of a graph G is a PO4 ordering if and only if G is a cograph.

Figure 5.4: Three distinct PO4 orderings of a P_{5}

Proof. If G is P_{4}-free, then clearly it is PO 4 since there are no P_{4} s that can violate the characterizing property. If G has a $P_{4} a, b, c, d$ then there is a LexBFS ordering that takes $b<c<a<d$ which is not a valid PO4 ordering.

This BFS ordering on the P_{4} is also not a one-in-one-out ordering.

Corollary 5.0.12 Every LexBFS ordering of a graph G is a one-in-one-out ordering if and only if G is a cograph.

Chapter 6

Contributions: The Structure of Prime (P_{5}, \bar{P}_{5})-free Graphs

The fast recognition algorithms in Chapter 4 depend on a structural characterization of the prime graphs of the considered graph class. Hence, the investigation of properties of prime $\left(P_{5}, \bar{P}_{5}\right)$-free graphs is worthwhile if one would like to improve the recognition time of these graphs through a modular decomposition.

6.1 Prime Non-Split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free Graphs

Recall that a graph is split if and only if it is $\left(C_{4}, C_{5}, 2 K_{2}\right)$-free, where a $2 K_{2}$ is the complement of a C_{4}. Since $2 K_{2}$ and C_{4} are subgraphs of P_{5} and \bar{P}_{5}, respectively, split graphs are $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free so we are interested in properties of graphs that are $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free but not split. A theorem related to P_{4}-structure (a graph concept which is not discussed here; the interested reader is referred to [31]) is of use to us here:

Theorem 6.1.1 [31] Let G be a prime graph. Then either every vertex of G is in a P_{4} or G is split.

When considering prime non-split graphs, we are thus able to partition the vertex set into the three disjoint sets based on how a vertex appears in P_{4} s.

Definition 6.1.2 Let $G=(V, E)$ be a prime non-split graph. Define $V=V_{E} \cup V_{M} \cup V_{B}$ where

- $v \in V_{E}$ if v is an end of all $P_{4} s$ it is contained in,
- $v \in V_{M}$ if v is a midpoint of all $P_{4} s$ it is contained in,
- $v \in V_{B}$ if v is an end of some P_{4} and a midpoint of some P_{4},

Note that the three defined sets are disjoint and their union contains all vertices, so they serve as a proper partition of the vertex set.

We can immediately begin to state properties of some of these individual sets by using a theorem of Hoàng and Khouzam. We state it here in terms of our notation:

Theorem 6.1.3 [34] Let x be a vertex in V_{E} (respectively, V_{M}) of a prime graph G. Then x is simplicial in G (simplicial in \bar{G}.)

It is not hard to see that the converse is true. For instance, a simplicial vertex can never be a midpoint of a P_{4} and so simplicial vertices must belong to V_{E}. Using Lemma 2.4.2 and Corollary 2.4.3, we have that in a prime non-split graph, V_{E} forms the set of simplicial vertices and is a stable set, while V_{M} is the set of co-simplicial vertices and is a clique. All that can be said about V_{B} at this point is that it contains those vertices which are not simplicial nor co-simplicial. Note that under taking the complement of a graph, the sets V_{E} and V_{M} switch roles while the vertices in V_{B} remain in the same set.

Hoàng and Khouzam prove, in the same paper, a theorem regarding the existence of simplicial vertices.

Theorem 6.1.4 [34] Let G be a prime HHD-free graph. Then G contains two nonadjacent simplicial vertices.

Since ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs are HHD-free graphs we can apply this theorem to prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs. Noting that the complement of a $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph is an HHD-free thus allows us to assert the following:

Corollary 6.1.5 Let G be a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph. Then $\left|V_{E}\right| \geq 2$ and $\left|V_{M}\right| \geq 2$.

This follows since we will not have a vertex which is both simplicial and co-simplicial in a non-split graph. If a vertex was simplicial and co-simplicial, then its neighbourhood is a clique and its non-neighbourhood is a stable set, which would imply the graph is split.

We can establish a similar property on the V_{B} set by the use of minimal prime extensions. Since we are considering non-split graphs, such a graph must have at least one of a C_{4}, a $2 K_{2}$ or a C_{5}, so a non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph must have one of a C_{4} or $2 K_{2}$. Theorem 2.3.4 tells us that if a prime graph contains a C_{4} then it must contain at least one of an H_{6}, D_{6} or \bar{P}_{5} but note that ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs can not have a D_{6} nor a \bar{P}_{5}. This means that if there is a C_{4} in such a prime graph we must also have an H_{6}, and if there is a $2 K_{2}$ there must exist an \bar{H}_{6}.

Corollary 6.1.6 Let G be a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph. Then G contains H_{6} or \bar{H}_{6}.

The H_{6} and \bar{H}_{6} each have two vertices which are both endpoints and midpoints of a P_{4} and so these two vertices will be in V_{B} and thus $\left|V_{B}\right| \geq 2$.

6.2 Relationships Between Vertex Partition Sets

Here, we accumulate information on how the vertices in V_{E}, V_{M}, and V_{B} relate to each other. In particular, the nature of the V_{B} set is of interest.

We will be reasoning about vertices around induced P_{4} S often, so the following lemma will be useful to shorten proofs.

Lemma 6.2.1 Let G be $a\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph and the vertex subset $\{a, b, c, d\}$ induces $a P_{4}$ in G. If some vertex v sees a and misses b then v must also see c and miss d.

Proof. First note that v must see at least one of the vertices in the P_{4} since otherwise it forms a P_{5}. If v sees d, this forms a \bar{P}_{5} (respectively, a C_{5}) if it also sees (respectively, does not see) vertex c. Since both \bar{P}_{5} and C_{5} are forbidden, v cannot see d, and so must see only c.

6.2.1 Refinement of the V_{B}-Vertex Set

When a vertex sees every vertex in a set S, we say that vertex is universal on S. If the vertex sees none of the vertices in S, then we say it is null on S. If a vertex sees some of S and misses some of S, then we say it is partial on S. Say that a vertex v in V_{B} belongs to the set $B_{i j}$ where $i, j \in\{0,1, *\}$ and $i=0,1$, or $*$ if v is, respectively, null, universal, or partial on V_{E}, and j is defined similarly depending on the adjacency with V_{M}. Thus, these are the possible sets a vertex in V_{B} can belong to, and the associated description of each set:
$B_{11}=$ vertices of V_{B} universal on V_{E} and universal on V_{M}
$B_{1 *}=$ vertices of V_{B} universal on V_{E} and partial on V_{M}
$B_{10}=$ vertices of V_{B} universal on V_{E} and null on V_{M}
$B_{* 1}=$ vertices of V_{B} partial on V_{E} and universal on V_{M}
$B_{* *}=$ vertices of V_{B} partial on V_{E} and partial on V_{M}
$B_{* 0}=$ vertices of V_{B} partial on V_{E} and null on V_{M}
$B_{01}=$ vertices of V_{B} null on V_{E} and universal on V_{M}
$B_{0 *}=$ vertices of V_{B} null on V_{E} and partial on V_{M}
$B_{00}=$ vertices of V_{B} null on V_{E} and null on V_{M}

We claim that most of these sets are in fact empty and that V_{B} can be partitioned into exactly three of the above types.

To show this claim, we will only require the knowledge that vertices in V_{E} (resp. V_{M}) are simplicial (resp. co-simplicial) for these properties.

Proposition 6.2.2 Assume some $b \in V_{B}$ in a prime non-split $\left(P_{5}, \bar{P}_{5}\right)$-free graph sees some $e \in V_{E}$. Then b is V_{M}-universal.

Proof. Assume, on the contrary, that b misses some $m \in V_{M}$. Since m is cosimplicial, it cannot miss the $\{b, e\}$ edge, so m must see e. But since e is simplicial, all of its neighbours must be adjacent, and so b must see m.

In terms of refining the set V_{B}, we have:
Corollary 6.2.3 Each of the sets $B_{10}, B_{1 *}, B_{* 0}, B_{* *}$ is empty.
The above property in the complement graph happens to be equivalent to the contrapositive statement, but we state it as it is still worth noting:

Corollary 6.2.4 If some $b \in V_{B}$ misses a vertex in V_{M}, then b is V_{E}-null.
Next, we show that B_{00} is empty:
Proposition 6.2.5 No vertex $b \in V_{B}$ in a prime non-split $\left(P_{5}, \bar{P}_{5}\right)$-free graph is V_{E}-null and V_{M}-null.

Proof. Assume the set B_{00} is nonempty, and let b_{1} be a vertex in B_{00} of smallest degree. Since it is not simplicial it must see two nonadjacent vertices, say $\{\mathrm{u}, \mathrm{v}\}$. Since b_{1} sees no vertices in $V_{E} \cup V_{M}$, this non-edge must also be from the V_{B} set. Every $m \in V_{M}$ is cosimplicial and misses b_{1}, so every m is universal on $N\left(b_{1}\right)$. The pair $\{u, v\}$ must have some vertex distinguishing them since our graph is prime, so say vertex b_{2} misses u and sees v. Since b_{2} misses u, it is not from the V_{M} set. Note that if b_{2} sees any $m \in V_{M}$ then we would have a \bar{P}_{5}, so b_{2} can not be a vertex from V_{E} or from $B_{0 *} \cup B_{01} \cup B_{11}$. So b_{2} is also from the B_{00} set. If b_{1} is adjacent to b_{2}, then there is a \bar{P}_{5}.

Since b_{1} was chosen as a vertex from B_{00} with smallest degree, b_{2} must see some vertex z that b_{1} does not. If z misses v, we have the $P_{4} u, b_{1}, v, b_{2}$ with z seeing b_{2} and missing v, so by lemma $6.2 .1 z$ must see b_{1}. So if b_{1} misses some $z \in N\left(b_{2}\right)$ this z must see v. Every m is universal on $N\left(b_{2}\right)$ so if z misses u then for any m in $V_{M},\left\{b_{1}, u, v, z, m\right\}$ induces a \bar{P}_{5}. We must then have that z sees both u and v. But now $\left\{b_{1}, u, v, b_{2}, z\right\}$ induces a \bar{P}_{5}, and so it must be the case that b_{1} dominates b_{2}, contradicting the fact that b_{1} was chosen with minimal degree.

The complementary property eliminates yet another subset of V_{B} :

Corollary 6.2.6 The set B_{11} is empty.

Thus the set V_{B} is reduced to only three types of vertices, corresponding to the sets $B_{01}, B_{0 *}, B_{* 1}$. The set of vertices in the first set remain in that set under graph complementation, while the vertices in the other two sets swap with each other.

6.2.2 $\quad P_{4}$-wing Orientations

Because our vertices are characterized by how they belong in $P_{4} \mathrm{~s}$, it would be beneficial to investigate how the P_{4} s exist around the vertices. Recall that the two edges of a P_{4} are called the wings of the P_{4}. As a way of encoding information, for each P_{4} orient the wings inward (from an endpoint to its adjacent midpoint.) This should not be confused with an oriented graph or a digraph, as there may be some edges which are not oriented and some edges that may be oriented in both directions. With respect to the vertex types introduced, we see that any vertex in V_{E} can only have incident edges oriented away from it, any vertex in V_{M} can only have incident edges oriented towards it, and any vertex in V_{B} must have at least one edge oriented away from it and at least one edge oriented towards it, with no restriction on both these orientations possibly coming from the same edge. For brevity, we will use the notation $a \rightarrow b$ to refer to the oriented edge from a to b, and $a \leftrightarrow b$ for a doubly-oriented edge. Having an edge $a \rightarrow b$ does not exclude the possibility that the same edge may also be oriented from b to a.

This wing orientation will help us prove a key property regarding vertices in V_{E} and V_{M}. Clearly, in any prime graph there must be a P_{4}. In our case of non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free prime graphs we can say something stronger.

Theorem 6.2.7 Let G be a prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free non-split graph. Then there exists a P_{4} in G whose endpoints are in V_{E} and whose midpoints are in V_{M}.

Note that this theorem is sharp in that it does not hold for the prime non-split graphs C_{5}, the P_{5} or the \bar{P}_{5} (the C_{5} itself would have all vertices in V_{B}, the P_{5} has only one V_{M} vertex, and the \bar{P}_{5} has only one V_{E} vertex.)

To prove Theorem 6.2.7, first notice that it would suffice to prove that the set of vertices induced by $V_{E} \cup V_{M}$ is always connected. To see why this is sufficient, let $S=V_{E} \cup V_{M}$, and notice that S is complement-independent. Proving that S is connected also proves that S is co-connected, so S cannot induce a cograph and thus must contain a P_{4}. To prove that S is connected, recall that it is a split graph with V_{M} forming a clique. Hence it would be sufficient to prove that every vertex in V_{E} sees some vertex in V_{M}. To prove Theorem 6.2.7 we can then prove this stronger theorem instead:

Theorem 6.2.8 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex of V_{E} sees some vertex in V_{M}.

Proof. Let $e \in V_{E}$. Assume on the contrary that e sees no vertex in V_{M}. Since the V_{E} set is stable, e must only see vertices in V_{B}. Let the neighbourhood of $e, N(e)$, be partitioned into N_{1} and N_{2} where N_{1} are the vertices $b_{i} \in N(e)$ for which the edge $\left\{e, b_{i}\right\}$ is oriented $e \rightarrow b_{i}$, and the set N_{2} is the set of vertices for which the edges joining e and any vertex in N_{2} are not oriented.

Since e is simplicial, $N(e)$ is a clique as is N_{1} in particular. Since $N_{1} \subset V_{B}$, every vertex in N_{1} must have an out-oriented edge. We now require some lemmas to proceed. In an H_{6}, let the edge joining the two vertices of degree two be called the bottom edge, or simply the bottom, of the H_{6}.

Lemma 6.2.9 If $x \leftrightarrow y$ then $\{x, y\}$ is the bottom of some H_{6}.

Proof. Since $x \rightarrow y$, there must be vertices a and b such that (x, y, a, b) (as an ordered set) forms a P_{4}, and since $y \rightarrow x$ we also have vertices c and d so that (y, x, c, d) is a P_{4}. Notice that either a, b, c and d are either all distinct or we have b coinciding with d. If, indeed, $b=d$ then the $P_{4} \mathrm{~S}(x, y, a, b)$ and (y, x, c, b) would form a C_{5} unless c sees a in which case we have a \bar{P}_{5}. Thus it must be the case that b and d are distinct.

Since (x, y, a, b) forms a P_{4} and vertex c sees x and not y, lemma 6.2.1 applies so c must see a and miss b. Notice that if d sees a then we have a \bar{P}_{5} and if d sees b then we have a P_{5}. Hence edge $\{x, y\}$ is the bottom of an H_{6}.

This lemma is useful to us here since every vertex in N_{1} must have an out-edge and now we can assert that there are no doubly-oriented edges in N_{1}. If there is an edge $\{x, y\} \in N_{1}$ which is doubly-oriented, lemma 6.2.9 tells us it is the bottom of an H_{6}. Since e and everything in $N(e)$ see both x and y, the $\{x, y\}$ edge must form the bottom of an H_{6} with four vertices outside of $N(e) \cup\{e\}$. Since $\{x, y\}$ forms a C_{4} with two vertices outside of $N(e)$, and e sees both x and y, we have a house, which is not allowed.

We need a second lemma on this orientation to continue:

Lemma 6.2.10 Assume vertex $a \rightarrow b$ and $b \rightarrow c$. If there is no $\{a, c\}$ edge, then $a \leftrightarrow b$. (See Figure 6.1)

Proof. Since $b \rightarrow c$, there must be a $P_{4}(b, c, x, y)$, and note that both x and y must be distinct from a. Since a sees b and misses c, we apply 6.2 .1 and so a sees x and misses y. Since b must miss both x and y, we have the $P_{4}(b, a, x, y)$ and so $b \rightarrow a$.

Figure 6.1: Orientations corresponding to Lemma 6.2.10

Since every vertex in N_{1} has an out-edge, we now know every such out-edge cannot end at a vertex outside $N(e)$, as the above lemma tells us that e is on a doubly-oriented edge which is impossible for a vertex in V_{E}. Hence every oriented edge from N_{1} leads to a vertex in $N(e)$. We will prove something stronger, that every oriented edge from N_{1} leads to a vertex in N_{1}. The following lemma asserts that if there was an edge oriented from N_{1} to a vertex v in N_{2} then it must be that $e \rightarrow v$, but this contradicts $v \in N_{2}$.

Lemma 6.2.11 Let $a \rightarrow b$ and $b \rightarrow c$. If there is an $\{a, c\}$ edge, then either $a \leftrightarrow b$ or $a \rightarrow c$.

Proof. Again, we have the vertices x and y so that (b, c, x, y), with x and y distinct from a. We assume that $\{a, b\}$ is not doubly oriented and prove that $a \rightarrow c$. If a misses both x and y then we are done, and if a sees y only, we have a \bar{P}_{5} so it must be the case that a sees x. Now a must also see y since if it did not, the $\{a, b\}$ edge would be doubly oriented due to the $P_{4}(b, a, x, y)$.

Since $a \rightarrow b$, we need u and v such that (a, b, u, v) forms a P_{4}. Now we have a seeing all of $\{b, c, x, y\}$ so we know that u and v must be distinct from x and y. To avoid a P_{5}, u will have to see some of $\{c, x, y\}$. Note that if u sees either x or y, then it must see both x and y or else we have a \bar{P}_{5} or a C_{5}. Since (a, b, u, v) is a P_{4} and y sees a, then Lemma 6.2.1 tells us that y sees u and misses v. So u sees both x and y and now must also see c or else a \bar{P}_{5} is formed.

If we now prove v misses c, then the $P_{4}(a, c, u, v)$ provides the $a \rightarrow c$ property sought for. If it was the case that v sees c, v would have to also see y or else we would have the \bar{P}_{5} $\{a, c, u, v, y\}$. But now there is the forced \bar{P}_{5} on the vertices $\{a, b, u, v, y\}$, and so v cannot see c and thus $a \rightarrow c$.

Corollary 6.2.12 If $a \rightarrow b, b \rightarrow c$ and $c \rightarrow a$, then there must be either $a \leftrightarrow b$ or $a \leftrightarrow c$.
When looking at the neighbourhood $N_{1} \cup N_{2}$ of a simplicial vertex, Lemma 6.2.11 tells us that there will not be oriented edges from N_{1} to N_{2}. Combining this with the previous
lemmas tells us that all the oriented edges in N_{1} must terminate in N_{1} and so the oriented vertices in N_{1} must have a directed cycle.

Corollary 6.2.12 follows from Lemma 6.2 .11 just by adding the extra oriented edge $c \rightarrow a$ in the hypothesis, and using Lemma 6.2 .9 we can see that N_{1} can not have any oriented triangles. Assume there are oriented cycles in N_{1} on more than three vertices, so $a \rightarrow b$ and $b \rightarrow c$ without c pointing to a. Recall that N_{1} is a clique, and so there must be an $\{a, c\}$ edge. Lemma 6.2.11 tells us that either we have a doubly-oriented edge, which is not allowed, or $a \rightarrow c$. This shows that any oriented cycle on n vertices implies the existence of an oriented cycle on $n-1$ vertices, and in particular an oriented triangle which has already been shown to not exist ${ }^{1}$.

We have thus shown that N_{1} can not accommodate the arrows that must exist in the case that $N(e) \subseteq V_{B}$, and so any $e \in V_{E}$ must see some vertex of V_{M}, as required.

Due to prior discussion, the proof of Theorem 6.2.8 also establishes Theorem 6.2.7, that a non-split prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph has a P_{4} whose endpoints are in V_{E} and whose midpoints are in V_{M}.

6.3 Structures Within Prime $\left(P_{5}, \bar{P}_{5}\right)$-free Graphs

Recall that any prime graph must contain a P_{4}, and we just showed that a prime $\left(P_{5}, \bar{P}_{5}\right)$ free graph must contain a P_{4} of a particular type - one whose vertices belong to the V_{M} and V_{E} sets. Since we are considering non-split graphs, we know there is some H_{6} or \bar{H}_{6} in our graph as well. We believe that prime $\left(P_{5}, \bar{P}_{5}\right)$-free graphs contain a special type of H_{6} or \bar{H}_{6} as well:

Conjecture 6.3.1 Let G be a non-split prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph. Then in G or \bar{G} there exists an H_{6} whose two vertices of degree one (the top vertices) are end- P_{4} only and whose neighbouring vertices are mid- P_{4} only.

Much of the investigation into the V_{E}, V_{M}, and V_{B} sets was motivated by this conjecture. The lack of knowledge in characterising the V_{B} set is an obstacle in the way of proving Conjecture 6.3.1. For example, if we let $\left|V_{E}\right|=\left|V_{M}\right|=2$ the conjecture still resists proof, even with the knowledge that the four vertices in $V_{E} \cup V_{M}$ must induce a P_{4}. We hope that this difficulty can add to the appreciation of the refinement properties of the V_{B}.

One observation that can be made regarding V_{E} - V_{M}-type P_{4} s extending to H_{6} s and \bar{H}_{6} S is that such a P_{4} is exclusive to one type. Namely,

[^2]

Figure 6.2: The arms of an H_{6} and the tunnel of an \bar{H}_{6} (induced by solid vertices)

Theorem 6.3.2 Let G be a non-split prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph and $E_{1}, M_{1}, M_{2}, E_{2}$ induce a P_{4} with $E_{1}, E_{2} \in V_{E}$ and $M_{1}, M_{2} \in V_{M}$. Then there can not be vertices u, v, x, y such that $\left\{E_{1}, M_{1}, M_{2}, E_{2}, u, v\right\}$ and $\left\{E_{1}, M_{1}, M_{2}, E_{2}, x, y\right\}$ induce an H_{6} and \bar{H}_{6} simultaneously.

Just as we showed that every vertex in V_{E} sees some vertex in V_{M} by proving a stronger theorem, we shall show Theorem 6.3 .2 similarly. First, we introduce some terminology. There are several P_{4} s in an H_{6} and so we want to give a name to a specific P_{4} to simplify discussion.

Definition 6.3.3 The arms of an H_{6} is the unique P_{4} in the H_{6} whose endpoints are the two vertices of degree one. The tunnel of an \bar{H}_{6} is the complement of an arms. (See Figure 6.2)

Now we prove a strengthening of Theorem 6.3.2.

Lemma 6.3.4 Let G be a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, and let $\{a, b, c, d\}$ induce a P_{4} in G. Then $\{a, b, c, d\}$ cannot simultaneously be the arms of an H_{6} and the tunnel of an \bar{H}_{6}.

Proof. Assume some u and v exist such that they form an H_{6} with the four vertices in the P_{4} with the edges $\{u, b\}$ and $\{v, c\}$. Assume x, y extend the P_{4} to an \bar{H}_{6}, with x adjacent to a, b, c and y adjacent to b, c, d. Note that x, y must be distinct from u, v since u and v must each miss one of the mid- P_{4} vertices, while x and y do not. Then u, v, b, c, x induce a \bar{P}_{5}, unless x sees at least one of u or v. If x sees v, then we must have that y sees v as well or else d, y, b, x, v will form a P_{5}. But then a, x, v, y, b must induce a \bar{P}_{5}, and so it cannot be the case that x sees v. Similarly, y cannot see u and so x sees u and similarly, y sees v. But then a, x, u, v, y is a P_{5}, and this is unavoidable. Hence it is impossible that such u, v, x, y exist.

Figure 6.3: A prime (P_{5}, \bar{P}_{5}) -free graph with a P_{4} in both an H_{6} and an \bar{H}_{6}

This proves the theorem as well, when combined with the observation that the only way a P_{4} from $V_{E} \cup V_{M}$ can exist in an H_{6} or \bar{H}_{6} is by being the arms of the H_{6} or the tunnel of the \bar{H}_{6}.

Lemma 6.3.4 can not be strengthened by removing the arms or tunnel restriction on the P_{4}. Figure 6.3 shows a prime (P_{5}, \bar{P}_{5}) -free graph with a P_{4} extending to an H_{6} as well as an \bar{H}_{6}.

6.4 Towards the H_{6}-Conjecture

The H_{6}-conjecture (Conjecture 6.3.1) was the primary focus during much of this research, and from it sprung a host of properties regarding vertices in prime non-split ($P_{5}, \bar{P}_{5}, C_{5}$)free graphs. This chapter presents the key results.

6.4.1 Adjacency Properties

One of the theorems already proven was that every vertex in V_{E} sees some vertex in V_{M} (Theorem 6.2.8.) The complementary property gives another adjacency rule. Recall that the vertices in V_{E} are the simplicial vertices and the V_{M} vertices are the cosimplicial vertices.

Corollary 6.4.1 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex in V_{M} misses some vertex in V_{E}.

Also recall that every vertex in V_{B} falls into exactly one of the sets $B_{* 1}, B_{01}$ or $B_{0 *}$. This translates to: a vertex in V_{B} is either partial on V_{E} and universal on V_{M}, null on V_{E} and universal on V_{M}, or null on V_{E} and partial on V_{M}, respectively. Hence we have already proven the following property:

Corollary 6.4.2 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex in V_{B} sees a vertex in V_{M} and misses a vertex in V_{E}.

More vertex-adjacency properties follow:
Proposition 6.4.3 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex in V_{M} sees a vertex in V_{B}.

Proof. Assume some m in V_{M} is V_{B}-null. This implies $B_{* 1}$ and B_{01} are empty, and so any b vertex must be of type $B_{0 *}$. Let b be a vertex in V_{B}. Since b is the mid-vertex of some P_{4} it must be adjacent to a vertex, v, which is the end of that P_{4}. Now v can not be in V_{E} since b is from $B_{0 *}, v$ can not be from V_{M} since those vertices are never the end of a P_{4}, thus v must be another vertex from V_{B}. But then $\{b, v\}$ forms an edge that misses, contradicting the fact that it is cosimplicial.

Corollary 6.4.4 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex in V_{E} misses a vertex in V_{B}.

It was observed earlier that if a P_{4} from $V_{E} \cup V_{M}$ was in an H_{6}, then it must be the arms of the H_{6}. Further note that in order for this P_{4} to extend to an H_{6}, it would be necessary for there to be two adjacent vertices from $B_{0 *}$. As a possible step towards proving the H_{6} conjecture, a $B_{0 *}$ edge is a good starting point.

Proposition 6.4.5 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every edge $\{x, y\}$ in $B_{0 *}$ extends to a C_{4} with two vertices from V_{M}.

Proof. Every vertex in $B_{0 *}$ sees a vertex and misses a vertex in V_{M}. Say x misses $m_{1} \in V_{M}$ and y misses $m_{2} \in V_{M}$. Since m_{1} is cosimplicial, it can not miss the $\{x, y\}$ edge, so m_{1} sees y and similarly, m_{2} sees x. Since V_{M} forms a clique, m_{1} sees m_{2} and this forms a C_{4}.

Corollary 6.4.6 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every pair of nonadjacent vertices in $B_{* 1}$ extends to a $2 K_{2}$ with two vertices from V_{E}.

This proposition has not helped resolve the H_{6} conjecture, but it has lead to a other interesting properties.

Proposition 6.4.7 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, the set $B_{0 *}$ is $2 K_{2}$-free.
Proof. Let $\{x, y\}$ and $\{v, w\}$ be the two edges of the $2 K_{2}$. Using 6.4.5, we have m_{1} adjacent to y and m_{2} adjacent to x, forming a C_{4}. Since the cosimplicial vertices cannot miss the $\{v, w\}$ edge, let m_{1} see v. Also, m_{2} must see v or w, and if m_{2} sees v then $\left\{x, y, m_{1}, m_{2}, v\right\}$ forms a \bar{P}_{5}. So m_{2} must miss v and see w. If m_{1} sees w then $\left\{x, y, m_{1}, m_{2}, w\right\}$ is a \bar{P}_{5}, but if instead m_{1} misses w then w, v, m_{1}, y, x is a P_{5}.

Figure 6.4: A prime $\left(P_{5}, \bar{P}_{5}\right)$-free graph G with no vertex of degree one in G or \bar{G}

Corollary 6.4.8 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, the set $B_{* 1}$ is C_{4}-free.

Proposition 6.4.9 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex of B_{01} sees at least one vertex of every edge in $B_{0 *}$.

Proof. Proposition 6.4.5 gives us a C_{4} on any $B_{0 *}$ edge, and since a b from B_{01} sees both V_{M} vertices of the C_{4}, we will have a \bar{P}_{5} unless b sees some of the $B_{0 *}$ edge.

Corollary 6.4.10 In a prime non-split ($\left.P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, every vertex of B_{01} misses at least one vertex of every non-edge pair in $B_{* 1}$.

Proposition 6.4.11 In a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, either $B_{0 *}$ is a stable set or $B_{* 1}$ is a clique.

Proof. Suppose neither of the two holds, so $B_{0 *}$ has an edge $\left\{v_{1}, v_{2}\right\}$ and $B_{* 1}$ has a non-edge $\left\{w_{1}, w_{2}\right\}$. Proposition 6.4.5 tells us that there are m_{1} and m_{2} from V_{M} such that $v_{1}, v_{2}, m_{2}, m_{1}$ is a C_{4}, and similarly we have e_{1} and e_{2} from V_{E} forming a $2 K_{2}$ with edges $\left\{w_{1}, e_{1}\right\},\left\{w_{2}, e_{2}\right\}$. Since w_{1} and w_{2} see both m_{1} and m_{2}, there is a $P_{5}\left(e_{1}, w_{1}, m_{i}, w_{2}, e_{2}\right)$, for $i=1,2$ unless m_{1} and m_{2} are seen by e_{1} and/or e_{2}. Now, there can not be any vertex from V_{E} seeing both m_{1} and m_{2} or else we have a \bar{P}_{5}, so e_{1} and e_{2} must form a P_{4} with m_{1} and m_{2}. Notice then that $\left\{v_{1}, v_{2}, m_{1}, m_{2}, e_{1}, e_{2}\right\}$ is an H_{6} with $\left\{e_{1}, e_{2}, m_{1}, m_{2}\right\}$ forming its arms, while this P_{4} is also the tunnel of the \bar{H}_{6} formed by $\left\{w_{1}, w_{2}, e_{1}, e_{2}, m_{1}, m_{2}\right\}$. Lemma 6.3.4 tells us that this is impossible.

On small (nine or less vertices) prime non-split, $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs, every graph G has the property that either G or \bar{G} has a vertex of degree one. Note that a vertex of degree one is always simplicial, and so its single neighbour must be a vertex from V_{M}. A vertex of degree one will never be in a C_{5} or \bar{P}_{5}, and the only way it can be in a P_{5} is if it is an endpoint of the P_{5}. The neighbour of an endpoint of a P_{5} is an end- P_{4} vertex, but

Figure 6.5: A prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph with a vertex of smallest degree that is not simplicial
the only neighbour of the degree one vertex in our graph is a vertex from V_{M}, implying that the degree one vertex can not be the end of a P_{5}. Hence, degree one vertices (in the graph or in its complement) can always be removed from consideration when testing for $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs. It would be nice if it were true that there is always such a vertex, but this fails when looking at graphs on ten vertices. That is, the smallest prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs G with no degree one vertex in G or \bar{G} have ten vertices.

Counterexample 6.4.12 Figure 6.4 is a prime non-split $\left(P_{5}, \bar{P}_{5}\right)$-free graph G without a degree one vertex in G or \bar{G}.

In the counterexample graph, the vertices of smallest degree are still simplicial. One might wonder if the vertices of minimum degree are always simplicial. Figures 6.5 and 6.6 depict a family of graphs on at least 16 vertices with minimum degree three, one such vertex being from the V_{B} set. In Figure 6.5, the sets A, B, C, D represent collections of vertices, A and C being stable sets while B and D being cliques. $|A|=|B|$ and must have at least three vertices each. A perfect matching between two sets of vertices is a set of edges forming a one-to-one correspondence between the two sets. The vertices of A and B are joined by the complement of a perfect matching, as is shown in Figure 6.6. The adjacency of a vertex in figure 6.5 to one of the sets A, B, C, D represents a complete adjacency from that vertex to

Figure 6.6: The complement of a perfect matching joining sets A and B from Figure 6.5

Figure 6.7: Some prime P_{5}-free bipartite graphs
every vertex of the set. When each of the four sets contain exactly three vertices each, there are many vertices of degree three in the graph, including the V_{B} vertex of type B_{01}. To have the B_{01} as the only vertex with smallest degree, we can increase the sizes of A, B, C, D to four each, giving the resulting graph 20 vertices in total. This is the smallest known example showing that a vertex of minimum degree is not simplicial.

6.4.2 Bipartite Substructures

Recalling the theorems of Fouquet (Theorem 4.1.2) and Fouquet and Giakoumakis (Theorem 4.2.3,) P_{5}-free bipartite graphs play an important role in recognizing classes of $\left(P_{5}, \bar{P}_{5}\right)$ free graphs. The prime graphs have a simple description and can be recognized in linear time [19]. In each (stable set) partition of a prime P_{5}-free bipartite graph, there is always exactly one vertex of degree i for all i from 1 to $|V| / 2$ [19]. Examples of prime P_{5}-free bipartite graphs are given in Figure 6.7.

We will define some notation to make our discussion of these graphs simpler. Let the bipartitions of a prime P_{5}-free bipartite graph be the stable sets A and B, and the vertices
in these respective sets will be called a_{i} and b_{j}, where the subscripts coincide with the degree of the vertex. So, for example, vertex a_{3} sees exactly three vertices from B. We will call a prime P_{5}-free bipartite graph with $2 n$ vertices a $P_{n, n}$. Note that P_{4} is equal to $P_{2,2}$ and H_{6} is $P_{3,3}$.

It is interesting to see how vertices in a prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs form around one of these $P_{n, n}$ subgraphs.

Lemma 6.4.13 Let H be a subgraph of a prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph isomorphic to a $P_{n, n}$ for some $n \geq 3$, and let v be a vertex not in H that sees some a_{k} of H and misses all vertices in B. Then v sees a_{i} for all i from $k+1$ to n.

Proof. Note that a_{k} must see the k vertices in B of highest degree, so if a_{k} misses any vertices in B it must miss $b_{1}, b_{2}, \ldots, b_{n-k}$. Assume v misses some a_{t} for some $k+1<t \leq n$. Now $v, a_{k}, b_{n}, a_{t}, b_{1}$ form a P_{5}, so v must see a_{t}.

If two vertices have the same neighbourhood, they are called twins. Twins may or may not be adjacent. The above lemma showed that v is the nonadjacent twin of b_{j} for some j from $n-k+1$ to n.

Lemma 6.4.14 Let H be a subgraph of a prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph isomorphic to a $P_{n, n}$ for some $n \geq 3$, and let T be the set of all twins of a_{1} with respect to H. Then T forms a stable set.

Proof. Assume T has an edge. There must be a distinguisher which is partial on some edge of T, and this distinguisher can not be in H. Let d see t_{1} and miss t_{2} where $\left\{t_{1}, t_{2}\right\}$ is an edge in T. Since d is not in T, it must miss b_{n}. Now $t_{1}, b_{n}, a_{n}, b_{j}$ induces a P_{4} for every $1 \geq j \geq n-1$, and since d sees t_{1} and misses b_{n}, lemma 6.2.1 tells us that d must see miss every b_{j} for $1 \geq j \geq n-1$. Also, $t_{1}, b_{n}, a_{i}, b_{n-1}$ forms a P_{4} for $2 \geq i \geq n$, so the lemma says that d sees all such a_{i}. Now $t_{2}, t_{1}, d, b_{n}, a_{2}$ is a \bar{P}_{5}, a contradiction.

We end this chapter with an example showing that identifying maximal $P_{n, n}$ structures is not sufficient to find two V_{E} vertices in an H_{6}.

Counterexample 6.4.15 If H is a maximal $P_{n, n}$ in a prime non-split ($P_{5}, \bar{P}_{5}, C_{5}$)-free graph G, then the vertices a_{1} and b_{1} are not necessarily simplicial in G, as shown in Figure 6.8.

What can be shown, however, is that the neighbourhood of a_{1} will not have a non-edge containing b_{n}.

Figure 6.8: In a maximal $P_{3,3}$, an a_{1} that is not simplicial

Proposition 6.4.16 If H is a maximal $P_{n, n}$ in a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph and v is a vertex not in H but sees a_{1} in H, then it must also see b_{n}.

Proof. Assume v misses b_{n}. The proof of the previous lemma used 6.2.1 to show that v must see all a_{i} and miss all b_{j}, so v is a twin of b_{n}. Some distinguisher d must be partial on $\left\{v, b_{n}\right\}$, but then $H \cup\{v, d\}$ induces a $P_{n+1, n+1}$.

Interpreting a P_{4} as a $P_{2,2}$ and generalizing this to larger $P_{n, n}$ forms all bipartite graphs in our class. Consider the operation that takes any V_{M} vertex m, creates a nonadjacent twin of m, and then adds a new vertex of degree one distinguishing m and its twin. Given a prime non-split ($P_{5}, \bar{P}_{5}, C_{5}$)-free graph G, call G^{m} the resultant graph after applying this operation on G and m.

Proposition 6.4.17 Let G be a prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph and m be a vertex in V_{M}. Then G^{m} is prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free.

Proof. The creation of a twin will not create a P_{5}, a \bar{P}_{5} nor a C_{5} as those are prime graphs. Since m was cosimplicial, its twin will also see every edge and be cosimplicial as well so it can not be the end of any P_{4}. The addition of a vertex with degree one could only possibly form a P_{5}, specifically by being the end of a P_{5}. But since its only neighbour is not the end of a P_{4}, we can be sure that no P_{5} is created, so G^{m} is $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free .

When applying this operation to $P_{n, n}$ it creates $P_{n+1, n+1}$. This operation need not be applied to just the non-split graphs; for instance, it can be applied to the bull and still create a prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph, even when picking the vertex of the bull which is not in a P_{4}. A P_{5} will never be created as long as the vertex chosen to duplicate is not the end of a P_{4}. If m_{1} is the chosen vertex to duplicate, m_{2} is its twin, and distinguisher d sees
m_{2} and misses m_{1}, then m_{1} becomes the end of a P_{4} and so it moves to the V_{B} set. The distinguisher d belongs to the V_{E} set, and m_{2} is in the V_{M} set. Any vertices e_{1} from V_{E} adjacent to m_{1} before the duplication will see the nonedge $\left\{m_{1}, m_{2}\right\}$ so they are no longer simplicial and are the midpoint of the $P_{4}\left(m_{1}, e_{1}, m_{2}, d\right)$. Such vertices, e_{1}, move to the V_{B} set, specifically into the $B_{0 *}$ set. The complementary operation also applies, which would be to copy a vertex in V_{E} with an adjacent twin and create a distinguisher which is universal on the graph but misses the new copied vertex.

Clearly, this operation can not generate all prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs since it will always create a graph with a vertex of degree one (or degree $|V|-2$, in the case of the complementary operation.) Figure 6.4 shows an example of a ten vertex graph without a vertex of degree one or eight.

Chapter 7

Conclusions and Future Research

The recognition problem for perfectly orderable graphs is an NP-complete problem [47] yet their optimization problems are simple to solve when given a perfect order, as described in Chapter 2. (P_{5}, \bar{P}_{5})-free and ($\left.P_{5}, \bar{P}_{5}, C_{5}\right)$-free graph classes form important subclasses of perfectly orderable graphs, having key connections to many other well-studied graph classes discussed in Chapter 3. The techniques used in Chapter 4 to recognize the (P_{5}, \bar{P}_{5}, bull)-free and semi- P_{4}-sparse graphs suggested that understanding the structure of prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs could help in recognizing them.

Partitioning the vertex set of prime non-split $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs into the V_{M}, V_{E} and V_{B} sets is straightforward and can apply to any non-split prime graphs. The V_{M} and V_{E} sets are easy to describe, as they form a clique and stable set, respectively. The V_{B} set was much harder to describe until it was refined down to three possible types of adjacencies with the V_{E} and V_{M} sets. Namely, a vertex in V_{B} either sees a V_{E} and is universal on V_{M} or else it misses V_{E} and can be either partial or universal on V_{M}. Some adjacency properties within and between the sets were given, for instance $B_{0 *}$ is $2 K_{2}$-free and every vertex in B_{01} sees every edge of $B_{0 *}$.

Future refinements could include the property of $V_{E} \cup V_{M}$-type P_{4}-inclusion. For instance, every V_{E} is the end of some P_{4}, but there are V_{E} vertices that are only in P_{4} s containing vertices from V_{B}. A full characterization of the nature of V_{B} would be an asset in a description of prime $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs. We are inclined to formally state this special case of the H_{6} conjecture as an open problem:

Open problem 7.0.18 Let G be a prime non-split $\left(P_{5}, \bar{P}_{5}\right)$-free graph with $\left|V_{E}\right|=2=$ $\left|V_{M}\right|$. Prove or disprove that there exists an H_{6} with arms from $V_{E} \cup V_{M}$ in G or \bar{G}.

The P_{4}-wing orientation lemmas provide a framework for solving problems that may otherwise not fall easily to proofs relying on adjacency properties. The orientation has the
power to hold and use a lot of information on just one or two edges, for instance, Lemma 6.2.9 deduces information over six vertices from only one doubly-oriented edge. The orientation lemmas may be instrumental in a characterization of prime ($P_{5}, \bar{P}_{5}, C_{5}$)-free graphs.

Chapter 5 introduced four self-complementary classes of perfectly orderable graphs and gave results only for the PO 4 class. The polynomial-time status of the recognition problem is open for all four classes. Some forbidden subgraphs were given for PO4, but is not exhaustive. A forbidden induced subgraph characterization for any of those classes would gain significant attention. The brittle graphs are a subset of PO2 but its precise position in the hierarchy of the four nested classes is unclear. It would be interesting to know this as well.

Finally, we leave open the problem of recognizing $\left(P_{5}, \bar{P}_{5}\right)$-free and $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs in o $\left(n^{3}\right)$-time. Even assuming the H_{6} conjecture to be true, there is no clear way of using it towards recognizing the graph class. Furthermore, the $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs are perfectly orderable, and the vertex degrees are all that is needed to create a Welsh-Powell ordering and thus a perfect ordering of the vertices. Such an ordering is a strong property to have, but aside from finding max clique, max independent set, min clique cover and min colouring, we have found no added benefits from the ordering. It would be interesting to derive some structural properties of, or prove some propositions on, $\left(P_{5}, \bar{P}_{5}, C_{5}\right)$-free graphs from a perfect order.

Bibliography

[1] A. Aho, J. Hopcroft and J. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, Massachusettes, 1974.
[2] A. Brandstädt, C. T. Hoàng and J.M. Vanherpe, On minimal prime extensions of a four-vertex graph in a prime graph, Discrete Mathematics 288 (2004), 9-17.
[3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math and Applications, 1999.
[4] M. Burlet and J. Fonlupt, Polynomial algorithm to recognize a Meyniel graph, Progress in combinatorial optimization (Waterloo, Ont., 1982), 69-99, Academic Press, Toronto, Ont., 1984.
[5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem, Annals of Mathematics, to appear.
[6] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs (C. Berge, V. Chvátal, eds.), Ann. Discrete Math., 21 (1984), 279-280.
[7] V. Chvátal, On the P_{4}-structure of perfect graphs III. Partner Decompositions, J. Comb. Theory (B) 431987 349-353.
[8] V. Chvátal, Linear Programming, W.H.Freeman, New York, 1983.
[9] V. Chvátal , C. T. Hoàng , N.V.R. Mahadev and D. de Werra, Some classes of perfectly orderable graphs, J. of Graph Theory, 11 (1987), 481-495.
[10] T. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, The MIT Electrical Engineering and Computer Science Series. The MIT Press, 2nd edition, 2001.
[11] D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput., 14 (1985), 926-934.
[12] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, Lecture Notes in Comput. Sci., 787 (1994) 68-84.
[13] E. Dahlhaus, P.L. Hammer, F. Maffray and S. Olariu, On domination elimination orderings and domination graphs, Lecture Notes in Comput. Sci., 903 (1994), 81-92.
[14] E. Eschen, R.B. Hayward, J.P. Spinrad and R. Sritharan, Weakly triangulated comparability graphs, SIAM J. Comput. 29 (1999), 378-386
[15] C.M.H. de Figueiredo and K. Vuskovic, Recognition of quasi-Meyniel graphs, Discrete Appl. Math., 113 (2001), 255-260.
[16] S. Földes and P.L. Hammer, Split graphs, Congres. Numer., 19 (1977), 311-315.
[17] J.L. Fouquet, A decomposition for a class of $\left(P_{5}, \bar{P}_{5}\right)$-free graphs, Discrete Math., 121 (1993), 75-83.
[18] J.L. Fouquet, Re: $\left(P_{5}, \bar{P}_{5}\right.$, bull)-free graphs, private communication, Jan. 20 (2003)
[19] J.L. Fouquet and V. Giakoumakis, On semi- P_{4}-sparse graphs, Discrete Math., 165/166 (1997), 277-300.
[20] J.L. Fouquet and J.M. Vanherpe, On $\left(P_{5}, \bar{P}_{5}\right)$-sparse graphs and other families, Proceedings of CTW04 Workshop on Graphs and Combinatorial Optimization, (2004), 142146.
[21] M.U. Gerber and V.V. Lozin, On the stable set problem in special P_{5}-free graphs, Rutcor Research Report, 24 (2000).
[22] V. Giakoumakis, P_{4}-laden graphs: a new class of brittle graphs, Inform. Process. Lett., 60 (1996), 29-36.
[23] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[24] M.C. Golumbic and A.N. Trenk, Tolerance Graphs, Cambridge Studies in Advanced Mathematics (No. 89), 2004.
[25] M. Grötchel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs. Ann. Discrete Math., 21 (1984), 325-356.
[26] U.I. Gupta, D.T. Lee, and J.Y.T. Leung, Efficient algorithms for interval graphs and circular-arc graphs, Networks, 12 (1982), 459-467.
[27] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica, 1 (1981), 275-284.
[28] R.B. Hayward, Weakly triangulated graphs, J. Combin. Theory B, 39 (1985), 200-208.
[29] R.B. Hayward, Murky graphs, J. Combin. Theory B, 49 (1990), 200-235.
[30] R.B. Hayward, C. T. Hoàng , F. Maffray, Optimizing weakly triangulated graphs, Graphs Combin., 5 (1989), 339-349; Erratum, Graphs Combin., 6 (1990), 33-35.
[31] R.B. Hayward, S. Hougardy and B.A. Reed, Polynomial time recognition of $P_{4^{-}}$ structure, Proc. 13th SODA (2002) 382-389
[32] R.B. Hayward and W. Lenhart, Bichromatic P_{4}-composition schemes for perfect orderability, Disc. Applied Math., 141 (2003), 161-183.
[33] C.T. Hoàng, Perfect Graphs, Ph.D. thesis, School of Computer Science, McGill University, Montreal (1985).
[34] C.T. Hoàng and N. Khouzam, On brittle graphs, J. Graph Theory, 12 (1988), 391-404.
[35] C.T. Hoàng and B.A. Reed, Some classes of perfectly orderable graphs, J. Graph Theory, 13 (1989), 445-463.
[36] C.T. Hoàng and R. Sritharan, Finding houses and holes in graphs, Theoret. Comput. Sci., 259 (2001), 233-244.
[37] W.L. Hsu and T.H. Ma, Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs, SIAM Journal on Computing, 28 (1999), 1004-1020.
[38] B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. Appl. Math., 9 (1988), 364-376.
[39] B. Jamison and S. Olariu, P_{4}-reducible graphs - a class of uniquely tree representable graphs, Studies in Appl. Math., 81 (1989), 79-87.
[40] B. Jamison and S. Olariu, On a unique tree representation for P_{4}-extendible graphs, Discrete Appl. Math., 34 (1991), 151-164.
[41] B. Jamison and S. Olariu, A new class of brittle graphs, Studies in Appl. Math., 81 (1989), 89-92.
[42] L. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Doklady, 20 (1979), 191-194.
[43] G. Lancia, V. Afna, S. Istrail, R. Lippert and R. Schwartz, SNPs Problems, Complexity and Algorithms, ESA 2002, LNCS 2161, Springer-Verlag Berlin Heidelberg (2001), 182193.
[44] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, Symposium on Discrete Algorithms, Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, (1994), 536545.
[45] F.R. McMorris and D.R. Shier, Representing chordal graphs on $K_{1, n}$, Comment. Math. Univ. Carolin., 24 (1983), 489-494.
[46] H. Meyniel, The graphs whose odd cycles have at least two chords, In: Topics on Perfect Graphs, C. Berge and V. Chvátal eds., Annal of Disc. Math., 21 (1984), 115-119
[47] M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Math., 80 (1990), 327-333.
[48] S. Olariu, Weak bipolarizable graphs, Discrete Math., 74 (1989), 159-171.
[49] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[50] Various, Perfect Graphs, (J. Ramirez-Alfonsin, B. Reed, eds.), J.H. Wiley and Sons, Chichester U.K., (2001).
[51] T. Raschle, Generalized Modular Decomposition and the Recognition of Classes of Perfectly Orderable Graphs, Ph.D. thesis, Swiss federal institute of Technology, Zurich (1999).
[52] F. Rousell and I. Rusu, Holes and dominoes in Meyniel graphs, Internat. J. Found. Comput. Sci. 10 (1999) 127-146.
[53] D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimination on graph, SIAM J. Compt., 5 (1976), 266-283.
[54] I. Rusu and J.P. Spinrad, Domination graphs: examples and counterexamples, Disc. Applied Math., 110 (2001), 289-300.
[55] D.P. Sumner, Graphs indecomposable with respect to the X-join, Discrete Math., 6 (1973), 281-298.
[56] J.P. Spinrad, P_{4}-trees and substitution decomposition, Discrete Appl. Math., 39 (1992), 263-291.
[57] J.P. Spinrad and R. Sritharan, Algorithms for weakly triangulated graphs, Discrete Appl. Math., 59 (1995), 181-191.
[58] R.I. Tyshkevich, Once more on matrogenic graphs, Discrete Math., 51 (1984), 91-100.
[59] D.J.A. Welsh and M.B. Powell, An upper bound on the chromatic number of a graph and its applications to timetabling problems, Compt. J., 10 (1967), 85-87.
[60] D.B. West, Introduction to Graph Theory, Prentice Hall, 2nd edition, (2001).
[61] I. E. Zverovich and I. I. Zverovich, The reducing copath method for simple homogeneous sets, Rutcor Research Report, 19 (2001)

[^0]: James Nastos
 1128113 Street S.W.
 Edmonton, Alberta
 Canada, T6W 1P5

[^1]: ${ }^{1}$ A special case of the bioinformatics problem "Single Nucleotide Polymorphism Haplotyping" was reduced to finding a maximum independent set in a class of graphs, and the paper proved their class of graphs were weakly chordal, which allowed for the use of the $\mathrm{O}\left(n^{3}\right)$-time algorithms for maximum independent set on weakly chordal graphs. The authors overlooked the fact that they had, in fact, proven their graphs were weakly chordal co-comparability graphs on which there exist linear-time algorithms for maximum independent set. Weakly chordal co-comparability graphs have been studied in their own right, see [14].

[^2]: ${ }^{1}$ One can show that the P_{4}-wing orientation is in fact acyclic in general, but the proof is longer and not required for our needs here, as we only need that the N_{1} portion of the neighbourhood of a simplicial vertex has no doubly-oriented edges.

