University of Alberta

Library Release Form

Name of Author: Richard Melvin Krueger

Title of Thesis: A Polynomial Time Algorithm for Line Segment Diagram Iso-
morphism

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Richard Melvin Krueger
#289, 52465 Range Road 213
Ardrossan, Alberta

Canada, T8G 2E7

Date:

University of Alberta

A POLYNOMIAL TIME ALGORITHM FOR LINE SEGMENT DIAGRAM ISOMORPHISM

Richard Melvin Krueger

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2002

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled A Polynomial
Time Algorithm for Line Segment Diagram Isomorphism submitted by
Richard Melvin Krueger in partial fulfillment of the requirements for the degree of
Master of Science.

Dr. Ryan Hayward
Supervisor

Dr. Martin Muller

Dr. Gerald Cliff

Date:

To everyone who has taught me,
intentionally or not,
thank you.

Abstract

In this thesis we examine the problem of determining whether two board positions
in the game of Amazons are equivalent. In particular, we present a polynomial time

algorithm for solving this problem.

We start with the notion of a line segment diagram, a combinatorial object which
captures the essential information about a board position in Amazons (line segment
diagrams were introduced independently by Miiller and Tegos in their development
of a competitive computer program to play Amazons). A line segment diagram
extends the notion of a graph by adding a feature allowing the representation of

collinear point sequences.

Based on a planar graph isomorphism algorithm of Hopcroft and Tarjan, we
develop a polynomial time algorithm for determining isomorphism of line segment

diagrams.

Acknowledgements

I would like to thank my supervisor Dr. Ryan Hayward for introducing this problem
to me and engaging in numerous battles over notation, nomenclature and many failed
ideas. And thank you to my entire committee for careful reading of this thesis and
suggestions for improvement. I thank the University of Alberta, the Government of

Alberta and NSERC for financially supporting the work on this thesis.

I thank my parents, Felix and Joan, for raising me, challenging me, and pushing
me to succeed in everything. Thank you to all my family and friends who have
supported me in whatever I chose to do, and putting up with me while doing it. 1

couldn’t have done it without you!

I thank the faculty, staff and students in the Department of Computing Science
for a most enjoyable time at the University. The faculty was excellent and provided
a comfortable learning environment. The staff did an outstanding job supporting
me and providing anything I might need, whether it was a last minute set of trans-
parencies for a talk or rescheduling my defense due to the September 11th, 2001

terrorist attacks.

I must specially acknowledge Dr. Piotr Rudnicki, an inspiration since my first-
year logic class. Never one to accept garbage, he insisted that knowing what you
do not know is more important than just knowing, a mantra I hold dear to this
day. He was an excellent coach for the ACM Programming Contest team, of which
I was proud to be a member competing internationally for two years. I thank the

department and Faculty of Science for financially supporting our fun!

But my students were perhaps the most enjoyable of my time in Alberta. I thank
the department for allowing me to corrupt their minds, fill them with crazy ideas,
and once in a while inspire someone to accomplish something of which they never

dreamed, and University Teaching Services for helping me to do it more effectively.

Contents

Introduction

1.1 Contributions and Related Work

Background

2.1 Graph Terminology e

2.2 Graph Isomorphism 000,
2.2.1 Planar Graph Isomorphism
2.2.2 Triconnected Components

2.2.3 Trivalent and Bounded Degree Graph Isomorphism

Preliminaries

3.1 Grid Point Sets oL oo
3.2 Amazon Positions as Graphs 0 o000
3.3 Line Segment Diagrams,

3.4 A Representation by Coloured Graphs

An Algorithm

4.1 Clumps o o e e e e e

4.2 Clump Adjacency Graphs

4.3 The Isomorphism Algorithm
4.3.1 Dividing Up the Clump Adjacency Graph
4.3.2 Assigning Isomorphism Codes to 3-Leaves
4.3.3 Combining the Isomorphism Codes

4.4 Exampleso e e

4.5 Correctnesso i i e e e e e e

4.6 Complexity e

N

[NN BT NN

10
11

13
13
17
19
22

4.7 Enumeration i e e e e e e e e e e

5 Conclusions

5.1 Further Work e
Bibliography

A The Rules of Amazons

58
59

61

63

List of Figures

3.1 Examples of grid point sets.o o000 14
3.2 “Similar” grid point sets which are non-isomorphic. 17

3.3 Two pairs of indistinguishable positions when using graph represen-

tations. Lo L 18
3.4 Mapping line segment diagrams to coloured graphs.. 23
3.5 Line segment diagram to coloured graph mapping does not preserve

planarity. Lo 24
4.1 Some solid and nonsolid line segment diagrams. 27
4.2 Constructing a clump. L 27
4.3 Nonsolid clumps. L L e 28
4.4 Some examples of solid clumps. 28
4.5 Why some clumps aresolid. oL 29
4.6 Creating a clump adjacency graph. 33
4.7 Ordering attachment points around a clump with holes. 34
4.8 Double linked clumps. o oo oo 34
4.9 List of attachment environments. 36
4.10 The labelled clump adjacency graph encoding. 37
4.11 Line crossings in a line segment diagram not at a grid point.. 39
4.12 Preparing the isomorphism test: an example. 46
4.13 Building 7" from biconnected components: an example. 48
4.14 Building T": anexample. 49
4.15 Orienting triconnected components. 50

A.1 Initial configuration of the Amazons board. 63

List of Tables

4.1 Edge indistinguishability partitioning with bad edge orientation. . . 51
4.2 Edge indistinguishability partitioning with better edge orientation. . 52

4.3 Number of grid point sets and nonisomorphic line segment diagrams. 57

List of Definitions

2.1.1
2.1.2
2.1.3
214
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14
2.1.15
2.1.16
2.1.18
2.1.19
2.1.20
22.1
2.2.2
2.2.3
3.1.1
3.1.2
3.3.1
3.3.2

Simple grapho
Multigrapho
Directed and undirected graphs L.

Induced subgrapho oo oo

Graph minor e

Cut point (articulation point)

Biconnected graph oo oo oo

Q
=
Qo
=]
o
ES TR Y- N = = N~ N - N NS TS, S, BN S, SRNS; SRS, SRS, B, S U O NG

Isomorphism of graphs o oo

Cut pair (biarticulation point pair) 10
Triconnected grapho oo 10
Grid point set (GPS) L 13
Isomorphism of GPS’so o oo 14
Ordered point set Lo 19
Equality of line segments L. 20

3.3.4
3.3.5
3.3.6
3.3.7
4.1.1
4.1.2
4.1.3
4.2.1
4.2.2
4.2.3

Line segment diagram (LSD) 21

Induced subdiagram of an LSD00, 21
Isomorphism of LSD’s 21
Strong isomorphism of LSD’s o000 22
Solid 26
Clump . . . e e e 27
Hole e 28
Clump adjacency graph (CAG) 32
Canonical planar representation of a CAG 32
Clump and attachment environments 35

List of Theorems

Theorem
Theorem
Proposition
Corollary
Corollary
Theorem
Corollary
Theorem
Lemma
Lemma
Theorem
Theorem
Theorem
Lemma,

Theorem

2.1.17 Forbidden minors in a planar graph

2.1.21 Complexity of finding biconnected components

3.1.3
3.3.3
3.3.8
4.14
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.24
4.2.5
4.6.1
4.6.2

Isomorphism of GPS’s
Properties of line segments
Isomorphism of LSD’s
Solid clumps oL
Maximal clumps are unique
Complexity of finding maximal clumps
Complexity of solid clump isomorphism
Complexity of nonsolid clump isomorphism
Complexity of clump isomorphism
Equivalence of CAG’sand LSD’s
Clump adjacency graphs are planar
Complexity of labelled triconnected partitioning . . .

Complexity of LSD isomorphism

15
20
22
28
30
30
31
31
31
36
39
54

List of Algorithms

1 Edge partitioning by indistinguishability
2 Triconnected CAG isomorphism

3 Isomorphism of line segment diagrams

Chapter 1

Introduction

Suppose you are playing a game with a friend. You play many games: some games
you win, others you lose. But being an astute player, you realize that sometimes
you reach a position in the game which you have encountered in a previous game.
You can improve your playing by remembering that previous game and recalling

what moves were later made, and which player won the game.

This scenario is a standard strategy for human learning, particularly when play-
ing games. It is also a valuable tool for teaching computers to play games, for their

memory can be vast and perfect, qualities seldom realized biologically.

This thesis is inspired by such a story, that of a player learning the game of
Amazons. The player has realized that a game position can reoccur from previous
games (as is the case in almost every game) and perhaps even local positions can
reoccur multiple times within a single game. Using the experience of these previous
encounters and the knowledge thus gained (whether by playing to game end or
by computational simulation), a player can improve his game. This strategy leads
not only to making better moves, but also enabling more move possibilities to be

analyzed in a short period of time.

The key to such a strategy is discovering when we have repetition, be it an
exact copy of a known position or a similar position which will lead to the same
results. This thesis will answer the question of “are these positions similar?” with
an asymptotically efficient computation. Combinatorial structures will be created
to encode the essence of a game position in Amazons, followed by the presentation of

a new polynomial time algorithm to determine whether two positions are essentially

similar, a concept usually known as isomorphism. Incorporating these developments
into a system capable of playing Amazons is not discussed in this thesis, and is left

to the experts in heuristic search and related areas.

Chapter Two briefly presents some basic concepts in graph theory and discusses
previous work establishing the basis for this problem. Chapter Three discusses
the advantages and disadvantages of several combinatorial structures with which a
game position can be encoded. In Chapter Four we select a particular structure,
the line segment diagram, for which we construct a polynomial time isomorphism
algorithm, which is the main result of this thesis. We show that this structure
leads to an asymptotically efficient method for determining similarity of Amazons
positions. This thesis concludes with a survey of its significant contributions and
a discussion of future work which may yield better algorithms for this and related
problems. We also discuss the practicality of the presented algorithm in the context

of simpler yet theoretically intractable approaches.

1.1 Contributions and Related Work

The problem of testing isomorphism of game positions in Amazons was posed by
Theodore Tegos and Martin Miiller during their efforts to write programs to play
the game well. Through my supervisor, Ryan Hayward, the problem was introduced
to me. Its graph theoretic nature was analyzed in collaboration between myself and
Ryan Hayward, and much of the early work and characterization is significantly due

to his efforts.

Translation of this problem into line segment diagrams was a collaboration be-
tween Hayward and myself, though it was independently studied previously (under
the slightly different name of line segment graph) by Miiller and Tegos [MTO01].
The representation of such diagrams as coloured graphs as a practical solution to

isomorphism was suggested independently by Brendan McKay to Miiller and Tegos.

Chapter four describes in detail the main result of this thesis, namely the first
polynomial time algorithm for line segment diagrams isomorphism. The outline of
this algorithm (including the notion of clump and the planarity based framework)
was developed jointly with Hayward; the details were worked out by me. The

planar graph isomorphism algorithms of Hopcroft and Tarjan formed the basis of

this work, and the new algorithm presented by this thesis is simply theirs with
appropriate modifications recognizing our labelings. The clump adjacency graph
is a new construction bridging the gap between line segment diagrams and labeled

planar graph isomorphism.

Chapter 2

Background

In this chapter we will introduce some basic definitions of graph theory, and then

discuss some important graph isomorphism results related to this thesis.

2.1 Graph Terminology

This section will quickly recap important graph terminology. The reader is directed
to any of the numerous introductory graph theory textbooks (such as [Wes01]) for

more detail.
We begin with definitions.
Definition 2.1.1. A graph G = (V,E) is a set V of points (vertices) and a set

E CV x V of pairs of points (edges). We say the size of the graph is n = |V| and
let m = |E|.

Definition 2.1.2. A graph is simple if there is at most one edge connecting any

pair of vertices and no edge connects a vertex to itself.

Definition 2.1.3. A multigraph is a graph whose edges form a multiset.

It will be understood throughout this paper that the term “graph” refers to a

simple graph, unless explicitly indicated to be a multigraph.

Definition 2.1.4. If the elements of the edge set of a graph are ordered pairs, the
graph is said to be directed (and forms a digraph), u is the head and v the tail of
the edge (u,v), the edge is said to be directed or oriented, and the directed edge is

sometimes called an arc. If the edges are unordered (where (v,u) refers to the same
edge), the graph is said to be undirected and the edge is undirected. An orientation

can be imposed on the edges of an undirected graph to make the graph directed.

Unless we state otherwise, all graphs in this thesis will be undirected. We also
mention an abuse of notation common in graph theory where the edge consisting
of vertices u,v is written as (u,v), regardless of whether the edge is directed or

undirected.

We now discuss the concept of planarity, introducing some related ideas along

the way.

Definition 2.1.5. A path of length k from vy to vy is a set of edges (vg,v1),
(v1,v2), ..., (Vg—1,vx) such that all the vertices vy,...,v; are distinct (except pos-

sibly vy = vy).

Definition 2.1.6. A cycle is a path except vy = v, and all cyclic permutations are

the same cycle.

Definition 2.1.7. A graph is connected if there is a path between any pair of

vertices.
Definition 2.1.8. A tree is a graph with no cycles.

Definition 2.1.9. A graph is complete if an edge exists between every pair of dis-

tinct vertices. A complete graph on n vertices is denoted by K,.

Definition 2.1.10. An (induced) subgraph of a graph G is a clique of size k (or a
k-clique) if it is isomorphic to the complete graph K. A 3-clique is called a triangle.

Definition 2.1.11. A complete bipartite graph is a graph whose vertex set can be
partitioned into two parts, one of size n and the other of size m, such that an edge
exists iff the two endpoints are from different parts. Such a graph is abbreviated as

Kpm-

Definition 2.1.12. A graph Go = (Va, E») is a subgraph of Gy = (V1, E1) if Vo C W
and E2 g El.

Definition 2.1.13. A graph Gy = (Vs, E») is an induced subgraph of Gy = (V1, Ey)
if Vo C Vi and Ey = {(u,v) € Ei|u,v € Va}, the set of all edges from G; whose
endpoints are in Vo. We say that the subgraph G, is induced by the vertex set Vo,
and write Gy as G1[V5].

Definition 2.1.14. A graph M is a minor of a graph G if M can be obtained from
G by a sequence of zero or more edge deletions, edge contractions (merging the two
endpoints of an edge) and deletions of isolated (disconnected) vertices. Equivalently,
M is a minor of G if some sequence of edge divisions (adding a new vertex in the

middle of an edge) of M is a subgraph of G.

Definition 2.1.15. A crossing-free embedding of a graph G in the plane is a draw-
ing of G in the plane such that

e vertices are represented by points,
e edges are represented by continuous, smooth curve segments (curves),
e 1no two points intersect,

e the only points a curve intersects are the edge’s end vertices, and the intersec-

tion occurs only at the curve’s endpoints, and

e two curves intersect only at common end vertices.

Definition 2.1.16. A graph G is said to be planar if there is a crossing-free em-
bedding of G in the plane.

Theorem 2.1.17. (Kuratowski [Kur30]) A graph is planar iff it does not contain

a K5 or K33 as a minor.

Proofs of this theorem are well known in the literature and omitted here. This
theorem will be useful later in showing certain graphs not to be planar. We now

proceed to some basic connectivity definitions.

Definition 2.1.18. An n-bond is a multigraph consisting of a pair of vertices con-

nected by n edges.

Definition 2.1.19. A vertex is a cut point or an articulation point if its removal

increases the number of components in the graph.

Definition 2.1.20. A graph is said to be biconnected or 2-connected if it does not

contain a cut point.

We conclude this section with an easy yet important use of depth first search.

Theorem 2.1.21. (Hopcroft and Tarjan [HT73b]) The cut points and biconnected

components of a graph can be found in time linear in the size of the graph.

2.2 Graph Isomorphism

A natural question to pose is when two graphs are essentially the same. A graph is
an abstract object, and must be represented in some manner. Graphs which are in
some sense similar may have different representations. Isomorphism is a mechanism

for identifying similarity.

Definition 2.2.1. Two graphs G; = (Vi, E1) and Gy = (V3, E9) are isomorphic if
there exists a bijection 7 : Vi — Vs such that (u,v) € Ey iff (7(u), 7(v)) € Es.

One can discuss how quickly one can determine whether two graphs are iso-
morphic. Unfortunately, there is no known polynomial time algorithm to provide
the answer for general graphs. Despite extensive effort, no one has been able to
show graph isomorphism is NP-complete. The graph isomorphism decision prob-
lem is polynomial time equivalent to its counting problem (counting the number of
isomorphisms between two graphs), a phenomenon not found in NP-complete prob-
lems [Mat79]. Another piece of evidence against NP-completeness is that it would
collapse the polynomial time hierarchy to the second level [BHZ87, Sch88], a pos-
sibility widely disbelieved. There are also other theoretical results also suggesting

graph isomorphism should not be NP-complete (for example, [KST92]).

Tordn [Tor00] surveys facts suggesting graph isomorphism does not contain
enough structure or redundancy to be hard. It is also noted that all lower bounds
are quite weak, a notable embarrassment to complexity theorists. Fortunately the
isomorphism problem has been shown to be polynomial time for several classes of
graphs including planar graphs, graphs of bounded degree, and trees. We now dis-
cuss algorithms for the first two of these classes; algorithms for the third class are

easy to derive, and are omitted.

2.2.1 Planar Graph Isomorphism

Whereas graph isomorphism in general is not known to be polynomial, polynomial
time isomorphism algorithms are known for certain special classes of graphs. Two
of particular interest to this thesis are planar graphs and graphs of bounded degree.
This section will summarize planar graph isomorphism, and the next shall discuss

trivalent (and by generalization, all bounded degree) graph isomorphism.

Hopcroft (with Tarjan and later Wong) showed planar graph isomorphism is
polynomial time with a series of algorithms with O(n?) [HT71], O(nlogn) [HT72]
and eventually linear O(n) time [HWT74]. We briefly summarize the contributions of
these algorithms, but make special mention of the O(n log n) algorithm indicating its
usefulness to an isomorphism algorithm derived later in this thesis. Other algorithms
exist, many of which are purported to be simpler. Fontet’s algorithm [Fon76] and
Colbourne and Booth’s algorithm [CB81] are not discussed in detail here, since we

will be concentrating on Hopcroft and Tarjan’s algorithm for much of this thesis.

Hopcroft and Tarjan’s O(n?) planar graph isomorphism algorithm operates by
assigning ad hoc numbers (isomorphism codes) to pieces of the graphs such that
two pieces have the same number if and only if the two pieces are isomorphic. The
algorithm begins with small pieces of the graph (say, for example, the individual
vertices) and combines the codes from smaller pieces to compute codes for bigger
pieces (and eventually the entire graph). Though this approach is not known to
work in polynomial time for general graphs, a graph’s planarity permits a clever

application of this approach to obtain a polynomial time algorithm.

The algorithm begins by dividing the two graphs into connected components.
Clearly once we obtain codes for each component we simply need to compare the list
of codes (which are really multisets) from each graph for equality. Each component
is subdivided into biconnected components, and a new structure is created, called a
2-tree. The vertices in a 2-tree are all the biconnected components and articulation
points in the component, with edges present between a biconnected component B
and articulation point a exactly when a € B. This inclusion relation creates a tree.
Assuming we have assigned codes to each vertex in a 2-tree, we simply apply a
labeled tree isomorphism algorithm to determine isomorphism of the components.

Labeled tree isomorphism can be solved in linear time (using standard algorithms

[HT72]) or sublinear time (using parallel methods [Lin92]).

We assign isomorphism codes to the biconnected components by subdividing
each biconnected component into triconnected components (see Section 2.2.2 for a
discussion of triconnected components and an important note on requirements for
uniqueness). The triconnected components and biarticulation point pairs become
vertices in a 3-tree, whose edges are defined by the inclusion of biarticulation point
pairs within a triconnected component (similar to the 2-tree construction). Again a

tree is formed to which we can apply tree isomorphism algorithms.

The final step is to determine isomorphism classes of the triconnected compo-
nents. Indeed this is the true work of the algorithm and is dealt with separately in
Section 2.2.2. To summarize, a triconnected component has a unique embedding in
the sphere (and hence the plane). The component is tested for planarity and (assum-
ing planar) a planar representation constructed using an O(nlogn) time algorithm.
From this planar embedding we can derive face information, which can be used to
determine similarity properties of the vertices in the graph. A finite automaton is
constructed corresponding to the planar representation. Hopcroft showed that two
triconnected components are isomorphic if and only if their automata are equivalent
[Hop70a]. Equivalence of the automata is determined with an O(nlogn) algorithm

[Hop70b], from which ad hoc integer isomorphism codes are assigned.

General finite automata are in fact more powerful than this problem requires, an
observation leading to a simplified partitioning algorithm for assigning isomorphism
codes for triconnected components. Hopcroft and Tarjan describe this algorithm
in [HT73c]. The partitioning algorithm is also used extensively as the basis for

Algorithm 1 later in this thesis, at which time it is more fully explained.

Hopcroft and Wong present a linear time algorithm for isomorphism of planar
graphs in [HW74]. Though their algorithm is asymptotically efficient, the hidden
constant seems too large for practical use. This algorithm works with a specific
labeled planar representation of the graphs, applying a number of reductions of
varying priority. The result is a canonical form of the graph: either a regular
polyhedra or a single vertex. These can be quickly tested for isomorphism using

exhaustive matching.

This linear time algorithm uses several independent reductions, with several

special cases. Since we choose the simpler O(n logn) algorithm for use in this thesis,
the details of the linear algorithm are omitted. It remains as future work to modify
this (or any other linear time algorithm) to operate on the structures introduced by

this thesis below.

2.2.2 Triconnected Components

The planar graph isomorphism problem essentially reduces to the case where the

graphs are triconnected. We must define what we mean by a triconnected graph.

Definition 2.2.2. A cut pair or separation pair (or biarticulation point pair) in a
biconnected (multi)graph G is a pair of vertices {u,v} such that the removal of the

pair increases the number of components in G.

Definition 2.2.3. A biconnected (multi)graph is triconnected (or triply connected

or 3-connected) if it contains no cut pairs.

Small (multi)graphs (on at most three vertices) cannot contain a cut pair. We are
usually interested in 3-bonds and triangles K3 as small “triconnected” (multi)graphs,

as we will see below.

Hopcroft and Tarjan give a linear algorithm in [HT73a] for dividing a multigraph
into triconnected components. To obtain a unique decomposition, Tutte’s definitions
[Tut66] are used to specify triconnected components. We now briefly outline their

algorithm.

The procedure begins by partitioning into connected components and separating
multiple edges into groups of 3-bonds. This step is unnecessary if we begin with
a connected graph. Biconnected components are then discovered using depth first
search. Each biconnected component is divided by performing a number of biar-
ticulation point pair splits. The last step is to merge adjacent triple bonds into
n-bonds, and merge adjacent triangles into polygons. The result is a set of unique
triconnected components of the original (multi)graph. This uniqueness is critical to

efficient isomorphism algorithms.

To split a biconnected component G, we find a cut pair {u,v} in G. We partition
G — {u,v} into connected components By, ..., Bg (there must be at least two since

{u,v} is a cut pair). For each component B;, a cleavage graph is formed by adding

10

a virtual edge (u,v) to the subgraph induced on the vertices V; = V(B;) U {u, v}
(the vertices of B; plus the cut pair). Formally, G; = (V;, E(G[V;]) U (u,v)). The
idea behind the virtual edge is to effectively replace the portion of the graph on
the “other” side of the cut pair. This newly constructed cleavage graph remains

biconnected since paths are retained (but possibly shortened).

By repeated application of this procedure we eventually obtain a collection of
cleavage graphs, each of which is either large and triconnected (no cut pairs) or
contains at most three vertices (hence being either a 3-bond or a triangle). The
merge step simply makes the set of components unique regardless of the order in
which we process the cut pairs. The results are called the triconnected components

of G.

Once found, we must answer the isomorphism question on the triconnected com-
ponents. If the original graph is planar, it is obvious that the triconnected compo-
nents will also be planar. Hopcroft and Tarjan present an algorithm for determining

isomorphism of triconnected planar graphs in [HT73c]|.

2.2.3 Trivalent and Bounded Degree Graph Isomorphism

The isomorphism problem for trivalent graphs (graphs of vertex degree at most 3)
has close ties to group theory. It is well known that graph isomorphism is polynomial
time reducible to finding a set of generators for the group Aut(G) of automorphisms

of a graph G.

Luks [Luk80, Luk82] shows how finding the generators of Aut(G) is reducible
to the colour automorphism problem, where the generators for the subgroup of
permutations preserving the colourings of a set are found. Specifically, isomorphism
testing of graphs of degree ¢ is reduced to the colour automorphism problem for
groups whose composition factors are subgroups of S; 1. For trivalent graphs, we
have primitive Sylow 2-groups, which can only have order 2. Generators of primitive

2-groups can be found in polynomial time.

Indeed the property extends: primitive p-groups can only have order p. Though
groups resulting from higher valence graphs are not p-groups, they are almost so,

and p-subgroups of polynomial index can be found in polynomial time.

Applying divide-and-conquer strategies, Luks derives a polynomial time algo-

11

rithm for isomorphism of trivalent graphs, and shows the extension to graphs of
bounded degree. Though the polynomial bound for Luks’ algorithm is elementary
to prove, a naive implementation takes O(n'%) time. Exploiting several tricks, a
running time of O(n%) can be obtained. Several other techniques can improve the
bound. Galil et al. [GHL"87] deeply exploit underlying group theory to improve
Luks’ algorithm to a running time of O(n®logn) for a deterministic algorithm, and
O(n?®) as a Las Vegas algorithm (a probabilistic algorithm allowed to flip coins,
yet does not make errors — the improvement comes from a procedure showing

nonemptiness of a set).

As these results are not central to our result, we will not discuss them here
in any further detail. The main importance of these algorithms to this thesis is
merely in their existence, for possible application to structures later mentioned. An
excellent and entertaining discussion of the details can be found in [Luk82] and
[GHL*87], and a monograph by Hoffmann [Hof82] discusses much of the associated
group theory and related algorithms.

12

Chapter 3

Preliminaries

This chapter introduces the concept of grid point sets, and proceeds to motivate
further constructions and structures to encode additional knowledge and problem
structure. We will see that a grid point set is a very basic representation, whereas
more abstract concepts such as Amazon position graphs and line segment diagrams

capture more information crucial for proper analysis.

3.1 Grid Point Sets

We first define the basic combinatorial object we will be using throughout this

chapter.

Definition 3.1.1. Consider a grid of horizontal and vertical lines and the squares
thus formed (as in a chess or checkers board). A grid point set (or GPS for short)
is a finite subset of squares on the grid. We say two squares in a grid point set are
adjacent in the GPS if they are adjacent on the grid in any of the eight primary

directions (horizontal, vertical or diagonal).

Figure 3.1 illustrates some grid point sets. The shaded squares compose a single
grid point set. Throughout this thesis, a primary direction will consist of the eight
directions of movement possible on a chess board: specifically (using map directions)
north, south, east, west, northwest, northeast, southwest and southeast. Observe
that squares are considered adjacent if they share an edge or corner. Refer to the

arrows in Figure 3.1 for illustration.

13

Figure 3.1: Examples of grid point sets.

We say a grid point set is connected if a path (a sequence of adjacent squares
in the set) exists between any two squares in the set. We usually concentrate on
connected grid point sets for convenience, since the extension to disconnected grid

point sets tends to be trivial.

Henceforth when illustrating grid point sets, only squares included in the set will

be indicated.

One can now examine the structure inherent in a grid point set. It is clear
that the physical placement of squares relative to each other is important, but not
necessarily the placement of the set on a particular grid. Furthermore, only the
squares in the set are relevant: the size of the grid upon which we draw a grid point

set is irrelevant (assuming it is large enough to fit the set).

Definition 3.1.2. Two grid point sets G and H are isomorphic if there exists a

bijection 7 : G — H such that for all p;,ps € G, either

(I) p1 and py are adjacent horizontally (respectively vertically) in G iff 7(p;) and

m(p2) are adjacent horizontally (resp. vertically) in H, or

(IT) p; and po are adjacent horizontally (respectively vertically) in G iff w(p;) and

m(p2) are adjacent verically (resp. horizontally) in H
and either

14

(ITI) p; and ps are adjacent diagonally northwest-southeast (respectively northeast-
southwest) in G iff (p;) and 7(p2) are adjacent diagonally northwest-southeast

(respectively northeast-southwest) in H, or

(IV) p; and po are adjacent diagonally northwest-southeast (respectively northeast-
southwest) in G iff 7(p1) and 7(p2) are adjacent diagonally northeast-southwest

(respectively northwest-southeast) in H.

We now describe all such isomorphisms.

Proposition 3.1.3. Two connected grid point sets G and H are isomorphic if and
only if G can be transformed into H by a sequence of the following operations on

an infinite sized grid:

(i) translations,
(ii) rotations by 90°, and
(iii) flips over a line in one of the primary directions.

Proof. We first label the squares of the grid with an ordered pair of integers in a
fashion similar to coordinates in the Euclidean plane: we arbitrarily choose an origin
(which is labelled (0,0)) and increase the value of the first label as we move right,

and increase the value of the second label as we move up.

Case “«<”: Consider a grid point set G which can be transformed into a grid point
set H by a sequence of translations, rotations and flips. For each operation in the
sequence, we define a bijection below. To form the isomorphism function we simply
compose the bijections according to the sequence. Composition of bijections (and

hence isomorphisms) are bijections, hence the composition will be an isomorphism.

Consider a translation operation. It can be expressed as “move n squares right

and m squares up.”

Define 77, .. (P2 Py) = (Pz + n,py + m), where (pz,py) is the
label of a point p € G. Horizontal/vertical adjacency of points is preserved since
(Pz»,py) and (pg +1,py) are mapped to (pg +n,py+m) and (pgy +n+1,py,+m) (and
symmetrically for vertically adjacent points). Diagonal adjacency is also preserved
since (pg,py) and (p; +1,py + 1) is mapped to (p; +n,py+m) and (py +n+1,py +
m + 1), and since (pg,py +1) and (p; + 1,p,) is mapped to (pg + n,py +m+ 1) and

(pz+n+1,py+m). Conditions (I) and (IIT) are satisfied, so 7, ,, is an isomorpism.

15

Consider now a rotation by 90°. We note that any additional rotation (say
by 180° or 270°) can be completed by a sequence of rotations by 90°. Without
loss of generality we assume rotation counterclockwise around the origin. Define
TR(Px,Py) = (—Py,Pz). Again horizontal/vertical adjacency and diagonal adjacency

are preserved (by argument similar to above). So 7g is an isomorphism.

Consider now a flip over a line in a primary direction. Without loss of generality
we assume the flip is over the horizontal line though the origin (flips over other
horizontal lines can be expressed with a sequence of translations before and after
the flip, and flips over lines in other primary directions can be expressed with a
suitable sequence of rotations and translations). Define g (pz,py) = (Pz, —Py)-

Again adjacency is preserved by a similar argument, so wp is an isomorphism.

Case “=": For the forward direction, assume that G and H are isomorphic and let

7 be an isomorphism between G and H.

Let us suppose conditions (I) and (III) in Definition 3.1.2 hold, that for p1,py €
G, p1 and po are adjacent horizontally (resp. vertically) iff 7(p;) and w(p2) are
adjacent horizontally (resp. vertically) in H, and p; and po are adjacent diagonally
northwest-southeast (resp. northeast-southwest) iff 7(p;) and w(p2) are adjacent
diagonally northwest-southeast (resp. northeast-southwest) in H. Then, respecting
7, G can be transformed into H by simply applying a translation (if the order of
points are preserved from G to H) or by applying a rotation by 180° followed by a

rotation (if the order of adjacent points is reversed by).

Now let us suppose the conditions (I) and (IV) hold. Then G can be trans-
formed into H by applying a flip either over a vertical line or over a horizontal line
(depending whether 7 reverses adjacent points), followed by a translation. We may
choose any vertical (resp. horizontal) line to flip over since the result is different

only in a translation.

Next suppose that conditions (IT) and (III) hold. Then G can be transformed
into H by applying a rotation by 90°, then a flip over either a vertical line or a
horizonatal line (depending whether 7 reverses diagonally adjacent points), followed

finally by a translation.

Finally, if conditions (II) and (IV) hold, then G can be transformed into H by
applying a rotation either by 90° or by 270° (depending whether 7 reverses adjacent

16

Figure 3.2: “Similar” grid point sets which are non-isomorphic.

points), followed by a translation. O

We now mention the focus of our problem: we wish to represent, in addition
to the grid point set, the moves and operations possible in the game of Amazons.
Abstractly, a move is a movement of any number of squares in one of the eight
primary directions. A move must only pass over squares in the grid point set. An

operation is to remove a single square from the grid point set.!

It is clear that isomorphism of grid point sets is insufficient for representing sim-
ilar configurations when discussing the set of possible moves. Figure 3.2 illustrates
this shortcoming. Two non-isomorphic grid point sets have exactly the same sets of
moves, and hence should be considered similar. (The fact these grid point sets are
non-isomorphic should be immediate considering Proposition 3.1.3.) We will soon

introduce a structure sufficient for capturing this similarity.

3.2 Amazon Positions as Graphs

An Amazon position can be represented by a simple graph. By identifying a vertex
with each square and including an edge exactly when a piece can move between the
two squares in exactly one move, we can represent all the possible movements in
the position. Standard graph algorithms can be applied for analysis. In particular,

standard graph isomorphism can be used to compare two Amazon positions.

Figure 3.3 illustrates two pairs of positions and their corresponding graph rep-
resentations. It is clear that both the four-square box and four-square line are both

represented by K, a clique on four vertices. The question should be raised, are

!The rules from the game Amazon are somewhat more precise and restrictive. Refer to Appendix
A for the full game rules.

17

RS

o 1

(b)

Figure 3.3: Two pairs of indistinguishable positions when using graph representa-
tions.

18

these two Amazon positions similar when playing the game? In some regard, the
answer should be yes: all squares can be reached within one move regardless of the
starting square. But there are some differences we may want to quantify, such as

how the move is completed.

This graph representation captures the static relationship between a position
and the adjacency of movements upon this position. It completely represents the
adjacency of squares, and the paths (the sequence of moves) one can follow to reach
a particular square from a starting square. We can talk of paths and translate the
concept directly to the position, and path length translates directly to the number
of moves required. Hence isomorphic diagrams suggest the range of movements are
identical among the corresponding Amazon positions. Consider, for example, the
pair of positions in Figure 3.3(a). Each square can be reached in one move from
any other square in the position. If this is all that needs to be considered, graph

representation is adequate.

3.3 Line Segment Diagrams

We now consider the removal of a square from an Amazon position, in addition to
simply moving pieces within the position. We wish to describe and represent the

resulting position after applying such an operation.

Consider the position in Figure 3.3(a). After removing one of the squares in the
left figure, the representation of the position is merely the original representation
with the corresponding point removed (along with any incident edges). If we remove
one of the internal squares from the right position, we obtain a disconnected position.
Simply removing the corresponding point (and incident edges) from the original
representation is no longer sufficient. A finer representation is required to adequately

capture the relationship of “moving through squares.”

Definition 3.3.1. An ordered point set P = [p1,p2,...,Pk),k > 1, is a nonempty

sequence of points from a grid point set. We say P is

(i) contiguous if p; is adjacent to p;+1 for i = 1,2,...,k — 1 (where adjacency is

as for a GPS, in the primary directions on the grid),

(ii) collinear if p; is adjacent to p; i1, pi+1 is adjacent to p; 12, and both adjacencies

19

are in the same primary direction, for all : = 1,...,k — 2, and

(iii) mazimal if P cannot be extended within the grid point set to include another

point (on either end).

We can restate the natural meaning of these definitions informally using common

chess terminology.

(i) Contiguous means a chess king could move from p; to p;+1 in one move, for

each 3.

(ii) Collinear means a chess queen could move from p; to p; in one move, for each

distinct ¢ and j.

(iii) Mazimal means a chess queen could not move any farther in this direction

within this grid point set.

For brevity, a maximal collinear contiguous ordered point set will be called a line
segment, or perhaps (slightly incorrectly) referred to as simply a line. A collinear
contiguous ordered point set (or when maximal, a line segment) [p1,...,px] has

length k£ and will be called a k-line. Note that a k-line is not necessarily maximal.

Definition 3.3.2. Two ordered point sets (or line segments) Iy = [p1,...,px] and
lo =[q1,--.,qm] are considered equal if kK = m and either p; = ¢; fori =1,...,k or

Pi = gm—i for i =1,... k. We write [; = [5.
This definition states that the direction in which we view a line segment is
irrelevant. We now describe these objects further.

Corollary 3.3.3. Line segments have the following properties.

1. Each line segment can be uniquely defined by its two end points, and may

pass through additional points: | = [p1,...,pgl, k > 1.
2. Each point appears on a particular line at most once: p; = p; <= i =j.

3. Line segments are distinguished simply by the relative order of their points:
line segments may be read either forward or reverse (as per the equality con-

dition in Definition 3.3.2).

20

4. Each line segment corresponds to a possible movement of an amazon or an

arrow in Amazons.

We now introduce a combinatorial object which describes all line segments for a

particular grid point set.

Definition 3.3.4. A line segment diagram (or LSD for short) D = (P, L) consists
of a grid point set P (the vertices) and the collection of maximal collinear contiguous

ordered point sets L (the lines).

Line segment diagrams have a number of useful properties, including the follow-
ing. The reader may note that these are conditions inherited from the planarity of

the underlying grid point sets.

1. Each point of a grid point set which is in a connected component (of the grid

point set) of size at least two is contained on at least one line.
2. Two distinct points have at most one line in common.

3. Two distinct lines have at most one point in common.

Miiller and Tegos discuss the relationship of line segment diagrams (graphs)
to computer playing of Amazons in [MTO01], including inspiration to why efficient

isomorphism testing is desirable.
Frequently we are interested in only portions of a line segment diagram.

Definition 3.3.5. A subdiagram (sub-line segment diagram) S = (P, L') of a line
segment diagram D = (P, L) is induced if every line segment I’ € L' is a maximal

ordered subset of some line segment [€ L with respect to P'.

We now turn our attention to the isomorphism question concerning line segment
diagrams. Due to the fact that the set of line segments of a line segment diagram is
determined by the underlying grid point set, we define two variants of line segment

diagram isomorphism.

Definition 3.3.6. Two line segment diagrams Di = (Pi,L1) and Dy = (P, Lo)
are isomorphic if there exists a bijection m : Pi — P, such that [p1,...,px] € L1
if and only if [7(p1),...,7(pk)] € L2. That is, n(L1) = Lo. We write D1 ~ D5 to

indicate D1 is isomorphic to Ds.

21

Recall that grid point set isomorphism (Definition 3.1.2) corresponded to flips,

rotations and translations.

Definition 3.3.7. Two line segment diagrams (P, L1) and (P, Lo) are strongly
isomorphic if their underlying grid point sets P; and P, are isomorphic. That is, P,

can be obtained from P; by a finite combination of

(i) flips over a grid line in a primary direction,
(ii) rotations by 90°, and

(iii) translations.

Recall that grid point sets are embedded in the grid, thus the above operations
are meaningful. The following corollary immediately justifies our choice of language.

We sketch its proof as not to obscure its idea.

Corollary 3.3.8. Two strongly isomorphic line segment diagrams are isomorphic.

Proof (sketch). Translate, flip, and rotate the two grid point sets so that they are
equal. This defines both the grid point set isomorphism and line segment diagram

isomorphism. O

3.4 A Representation by Coloured Graphs

The line segment diagrams capture all structural information regarding an Amazons
region, but does so by creating a new abstract object. In this section, an equiva-
lent coloured undirected graph is constructed, upon which existing isomorphism

algorithms can be applied.

The mapping discussed here was originally proposed by Brendan McKay [MT01],
resulting in a format compatible with his nauty program [McK81, McK], a practi-
cally efficient program for computing canonical labellings and automorphism groups

of graphs and digraphs.

To speak of the mapping, we must first introduce some notation. A coloured

graph G = (V, E, col) is a graph (V, E) together with a partition col of V', where each

22

(i) Grid point set (i) Line segment diagram

(iii) Coloured graph (iv) Simplified coloured graph

Figure 3.4: Mapping line segment diagrams to coloured graphs.

partition set corresponds to a colour. For convenience these sets can be numbered

or ordered, such that col = {V7,...,V;}.2

The mapping proceeds as follows. Given a line segment diagram D = (P, L),

construct a coloured graph G = (V, E, col) where

e V = PUL, i.e., each point and each line corresponds to a vertex,

e col = {P, L}, i.e., all point vertices are given the first colour (black) and all

line vertices are given the second colour (white), and

e F consists of two types of edges: edges between two point vertices if they are
adjacent on some line, and edges between a line vertex and each point on that

line (i.e., E = {(p1,p2) : p1,p2 adjacent on some line I} U {(p,1) : p € I}).

An immediate observation is that the mapping may be simplified by omitting
any lines of length 2 (the length 2 line vertices are redundant since they are encoded
by edges between the point vertices). It should also be clear that G determines a
unique line segment diagram up to isomorphism (simply construct the line segment

diagram by reversing the construction just described).

2The reader should not confuse a coloured graph as used here with the concept of valid colourings
of a graph and the graph colouring problem, which is well studied in the literature.

23

(i) Planar LSD (ii) Non planar coloured graph (iii) K3,3 minor in (ii)

Figure 3.5: Line segment diagram to coloured graph mapping does not preserve
planarity.

Figure 3.4 illustrates this mapping. Note that the edges connecting point (black)

and line (white) vertices are dotted for the reader’s convenience.

Benefits of this mapping centre around the fact that it produces a graph — a well-
understood combinatorial object. There has been much prior work to solve assorted
problems on graphs. In particular, very effective algorithms and programs exist to
test isomorphism (in particular, McKay’s aforementioned nauty). Unfortunately,
isomorphism of coloured graphs is polynomial time equivalent to isomorphism of
uncoloured graphs. We remind the reader that we saw in Section 2.2 that no efficient
algorithm is known for solving (uncoloured) graph isomorphism in general. We
recognize that these coloured graphs have some structure to them, and we may
ask whether they are of bounded degree. The point vertices are bounded in their
degree, but the lines may be of arbitrarily long length. This yields line vertices of
unbounded degree, hence we cannot apply the polynomial algorithm for graphs of

bounded degree.

Though we can apply McKay’s practical algorithms, we have not (to this point)
made any progress towards a polynomial time isomorphism algorithm. The near-
planarity of the line segment diagrams and associated coloured graph mapping sug-
gest approaches similar to planar graph isomorphism algorithms (see Section 2.2.1).
Unfortunately, even a small “planar” line segment diagram can be mapped to a non-
planar graph. For example, in Figure 3.5 a simple 9-vertex line segment diagram is
mapped to a graph containing a K3 3 minor, one of the forbidden subgraphs for pla-
narity (recall Kuratowski’s Theorem 2.1.17). Thus we surmise the coloured graph

mapping is only of practical interest. In the next chapter we present a polynomial

24

time algorithm to solve the line segment diagram isomorphism problem using other

ideas.

25

Chapter 4

An Algorithm

We now develop a line segment diagram isomorphism algorithm which does run in
polynomial time. The basis of this algorithm is the identification of subdiagrams
with unique embeddings (up to strong isomorphism) in the grid. We proceed to
encode local isomorphism properties and global structure with a labelled graph, and
extend a planar graph isomorphism algorithm to determine isomorphism classes of

components.

4.1 Clumps

We now introduce the concept of “solid.” Given a line segment diagram, its grid
point set can be translated, flipped or rotated into other isomorphic grid point sets.
If these are the only isomorphic line segment diagrams, our original diagram has
an essentially unique embedding the grid. This solidity makes the isomorphism

question easy to answer.

Definition 4.1.1. A line segment diagram D is called solid if each line segment

diagram isomorphic to D is strongly isomorphic to D.

Figure 4.1 illustrates a selection of line segment diagrams, some solid and some

not.

Solid diagrams can appear in many interesting ways, and we know of no char-
acterization for all such diagrams. However, some classes of solid diagrams can
be easily recognized, which motivates the next few paragraphs. We introduce one

recursively defined class which is particularly useful and easy to recognize.

26

(a) Solid line segment diagrams.

N]
N

(b) Nonsolid line segment diagrams.

Figure 4.1: Some solid and nonsolid line segment diagrams. Isomorphic, but not
strongly isomorphic, diagrams are presented vertically in (b).

i
I
I . clump ;
\
\

@ (ii)

Figure 4.2: Constructing a clump.

Definition 4.1.2. A subdiagram S of a line segment diagram D is a clump if

e S consists of a pair of adjacent vertices, or

e S is the union of a clump S’ and a vertex v such that v and two vertices of S’

induces a triangle of D.

Figure 4.2 illustrates this construction. A clump is said to be mazimal if no addi-

tional operations can be applied.

We will be particularly interested in maximal clumps. Unless otherwise stated,

we will assume clumps are maximal.

27

c
c c d d
o—0
b a b a a
b
(i) Dumbbells (i) Triangle (iii) Square (iv) Double triangle

Figure 4.3: Nonsolid clumps.

RN

e

Figure 4.4: Some examples of solid clumps. The bottom two clumps each contain
one hole (with one point and six points repectively).

Definition 4.1.3. Consider the grid upon which the grid point set of a line segment
diagram lies. A clump set is the set of grid points composing a clump. Given a
clump, a hole set in the clump is a nonempty connected set of grid points completely

surrounded by the clump set. A maximal hole set is a hole in the clump.

It should be noted that a clump may have more than one hole, and often no
holes at all. Some examples of clumps are presented in Figure 4.4, with the bottom

two examples each containing one hole.

The usefulness of clumps in isomorphism testing is stated by the following the-

orem.

Theorem 4.1.4. A clump is solid if and only if it is not a dumbbell, triangle,

square or double triangle (see Figure 4.3).

28

Figure 4.5: Why some clumps are solid.

Proof. We first show the objects described are not solid. It is clear such objects are

clumps. Consider the labellings of the following clumps in Figure 4.3.

Dumbbell: The dumbbell can be oriented horizontally or vertically, or it can be
oriented diagonally. Diagonal and horizontal/vertical grid point sets are not strongly

isomorphic.

Triangle: Define 7a : [a, b, c] — [a,c,b]. The line [a, b] is changed from horizontal

to diagonal, so the triangle is not strongly isomorphic.

Square: Define m : [a,b,¢,d] — [a,c, b,d] and we have the same case as for the
triangle. We comment that adding any corner vertex to the perimeter of the square

solidifies the subdiagram, and any other vertex merely enlarges the clump.

Double triangle: Again switching b and ¢ causes the same problem as in the

triangle.

Consider now any other clump. It is constructed by recursive operations per

Definition 4.1.2. We proceed via induction on the construction process.

The base case is a dumbbell, which is covered above. Consider the operation
of adding a vertex to a vertical or horizontal line forming a triangle illustrated in
Figure 4.5(i). The smaller gray clump C is either solid or one of the smaller non-
solid clumps. Adding a vertex to the triangle either forms a 3-line solidifying the
clump, or forms the square or double triangle. Adding to the square or the double

triangle forms a 3-line, also distinguishing the location of the added point.

Assume now that C' is solid in Figure 4.5(i). Then the new clump is solid if we

29

can distinguish between the vertex being added at the only two possible locations,
which are labelled 1 and 2. The lines within the clump will be different depending
whether the vertex is at 1 or 2 (assuming the vertices within C' are not also moved).
If C is simply a dumbbell, we have constructed a triangle, which is covered above.
Otherwise each of ¢ and b are part of a triangle within the clump, which implies
some of 3 through 10 are part of C. If any of 3, 4, 9 or 10 are in C, then 1 and 2 are
distinguished and we are done. If either 5 or 7 (or, by symmetry, 6 or 8) are part of

the clump, we have a 3-line through 1 (or 2), distinguishing these cases from others.

Consider now the operation of adding a vertex to a diagonal line forming a
triangle illustrated in Figure 4.5(ii). Since a must be part of a triangle, at least two
of 3 through 7 must be in C. If any of 3, 4, 6 or 7 are included, we are distinguished
by adjacency, leaving 5 as our only option. This is not enough to form a triangle,
contradicting a being in a solid clump. Hence we can distinguish between 1 and 2,

and the new clump is solid. O

We remark that a clump with a hole is solid, which is easily verified considering

the above theorem.

Corollary 4.1.5. The maximal clumps in a line segment diagram are unique.

Proof. This follows directly from the recursive definition in 4.1.2. O

One may ask how quickly clumps can be found within a line segment diagram,
and once found, how quickly can we determine if two clumps are similar. The
following two theorems address these questions. To analyze the theoretical efficiency
of our algorithms, we use a uniform cost random access machine as our model of
computation. We assume the numbers encountered are bounded by a constant
multiple of the size of the line segment diagram, and hence small enough to fit into

a single memory location.

Theorem 4.1.6. The set of all maximal clumps of a line segment diagram can be

found in time linear in the number of vertices in the diagram.

Proof. Begin by finding a pair of adjacent vertices in the line segment diagram. To
extend this clump we must apply the operation of Definition 4.1.2. Create a list of

possible grid points and add all points adjacent to both clump vertices. For every

30

vertex we add to the clump, add those grid points adjacent to the new vertex and at
least one adjacent old vertex. Since each vertex is considered at most once, and the
addition operation is constant time, maximal clumps can be found in time bounded

by the number of vertices. O

A string can be constructed to represent a clump. For example, within the grid
where we draw a clump we can choose an origin (0,0) such that all grid points in
the clump have nonnegative coordinates, and in each of the two coordinates there
exist at least one grid point with coordinate value zero. By imposing an ordering on
the grid points (such that they are nondecreasing in the first coordinate, and when
the first coordinate is constant they are nondecreasing in the second coordinate),
we can construct a string representation of the clump by listing each grid point’s
coordinates. This is by no means the only possible string encoding, nor do we claim
it is the best. Once we have chosen an arbitrary string representation scheme, we
can speak of lexicographic ordering of the representations of clumps. We use such

a strategy in the proof of the following lemma.

Lemma 4.1.7. Isomorphism of solid clumps can be determined in time linear in

the number of vertices in the clump.

Proof. Since solid clumps have a unique embedding in the grid, we can easily de-
termine a canonical form: of all the 4 rotations and 4 flip+rotations possible for
a clump, determine the lexicographically first according to an arbitrary represen-
tation scheme. The representations and choosing the lexicographically first can be
computed in time proportional to the number of vertices in the clump. Isomorphism

testing is merely checking equality of these canonical embeddings. O

Lemma 4.1.8. Isomorphism of nonsolid clumps can be determined in constant

time.

Proof. By Theorem 4.1.4 there are four types of nonsolid clumps, each of constant

size. .
Theorem 4.1.9. Isomorphism of clumps can be determined in linear time.

Proof. By Lemmas 4.1.7 and 4.1.8. O

31

Clumps, into which any line segment diagram can be decomposed, can be ef-
ficiently classified into isomorphism classes. For example, hashing or data trees
can provide a mapping from isomorphism classes to ad-hoc integers, which can be
assigned to the clumps. Equality of clump labels would thus be equivalent to iso-

morphism of the clumps.

4.2 Clump Adjacency Graphs

We have shown a technique for determining the “similarity” of certain pieces of line
segment diagrams. We now proceed to describe strategies for determining similar-
ity of larger pieces of a line segment diagram. First we describe a labelled graph

embedding describing the interaction of clumps.

Informally, a clump may be attached to other clumps. Formally we call a grid
point shared between two clumps an attachment point. Each clump may have sev-
eral attachment points (bounded by the number of points in the clump), and each
attachment point may be a part of up to four clumps (an obvious bound considering

Definition 4.1.2).

Definition 4.2.1. A clump adjacency graph (or CAG for short) A(D) of a line
segment diagram D is defined by the following.

e The vertices of A(G) are the set of clumps and the set of attachment points.

e An edge (c,a) exists in A(G) exactly when the attachment point a is contained

within clump c.

Figure 4.6 illustrates the conversion process, from grid point set, via line segment
diagram, to the clump adjacency graph. It should be noted that a clump adjacency
graph is bipartite: the clump vertices are indicated by shaded dashed circles con-

taining the clumps, while attachment vertices are indicated by solid circles.

Definition 4.2.2. The canonical representation of a clump adjacency graph A(D)

in the plane is as follows:

e If a clump has no holes, the clockwise order of its attachment points is pre-

served in A(D).

32

(i) Grid point set (i) Line segment diagram

Figure 4.6: Creating a clump adjacency graph.

33

Figure 4.8: Double linked clumps.

e If a clump has holes, consider its lexicographically first grid embedding (as
according to some arbitrary encoding scheme). Order the attachment points
beginning along the outside edge starting from the top-right-most grid point
and proceeding clockwise. Determine the top-right-most grid point belonging
to the perimeter of a hole and order the attachment points proceeding counter-
clockwise. Continue ordering attachment vertices in other holes in the same

manner. (See Figure 4.7.)

Consider two adjacent clumps joined by at least two lines, with portions of
each line being within both clumps (for example, Figure 4.8). The orientation and
composition of one clump defines the orientation of the other. One clump cannot
be changed without suitably changing the other (where “changes” include flips,

rotations, etc.). Hence joining such double-linked clumps and treating them as

34

one object reflects this dependence better than simple clump adjacency. We will

incorporate this feature into our algorithm presented below.

It is clear that the clump adjacency graph can be simplified by joining adjacent
collinear dumbbells into sub-lines, but this improvement does not affect asymptotic

running time. We will not apply this simplification in our examples.

One additional detail is needed for a true equivalence between line segment dia-
grams and clump adjacency graphs: the inherent structure of the attachments must
be preserved. Collinearity of clumps is an important invariant which is destroyed
when simply considering clumps. Attachment points are thus encoded with the lo-
cal attachment structure, both where they occur in the clump and how they are

connected to other clumps.

Definition 4.2.3. An attachment environment is an attachment point together
with the orientation of attachments indicated (in other words, the neighborhood

of the attachment point).

A clump environment is a clump (or group of double-linked clumps) with the
attachment points distinguished and the orientation of attachments indicated (the

neighborhoods of the attachment points).

Figure 4.9 lists the different types of attachment environments possible. Note
that collinearity and shape of the clumps are the only importance here, which for
example is why a ‘V’ shape is not included (it is the same as the second environ-
ment listed, two single noncolinear lines). Notice that attachments of double-linked
clumps as per Figure 4.8 are not included in the list since we join them into a single

object prior to considering attachment environments.

Maintaining the attachment point mapping within each clump and including the
attachment structure within each attachment point vertex allows us to determine
isomorphism of line segment diagrams using suitably modified graph isomorphism
algorithms. Using labels we store the clump and attachment environments with the
clump adjacency graph, and maintain the mapping of attachment point vertices to

attachment points within the clumps.

Figure 4.10 illustrates the full labelled graph encoding of the diagram from Fig-

ure 4.6. The numbers and letters within the graph vertices indicate isomorphic

35

+ KA
R A A
2 A XX

ETER

Figure 4.9: List of attachment environments.

clump environments or attachment environments. White points within the clumps

distinguish their attachment points.

From now on we assume a clump adjacency graph is labelled with clump envi-

ronments and attachment environments as described above.

Theorem 4.2.4. Isomorphism of clump adjacency graphs is equivalent to isomor-

phism of line segment diagrams.

Proof. Let Dy = (P1,L1) and Dy = (P», L) be two line segment diagrams, and let
A1 = A(Dq) and Ay = A(D3) be the associated labelled clump adjacency diagrams.

To simplify discussion, let us name some mappings:

Dy —— Dy

LD

A —2— A
Let « (8) map a point of D; (D3) into the vertices of A; (A2) containing the point,
and a4 (B4) map only into attachment environment vertices. Analogously, let a~*

(871) map a vertex of A; (Az) into the set of points of D1 (D,) mapping into that

36

I \
l

/

1@2@89 OO 20
_ [
, \

P

\
< !
I

N

L L
6

oo U 33 By

Figure 4.10: The labelled clump adjacency graph encoding.

37

JOSE
@ 5

vertex by a (). The mappings 7 and p will be constructed or assumed below as

appropriate.

We begin with the reverse direction. Assume D; and D are isomorphic, call the
isomorphism 7 : P, — P». Since the lines of each diagram are in correspondence
by m, Corollary 4.1.5 tells us that the clumps of D; are mapped to clumps of Ds.

Hence, attachment points are also mapped to attachment points.

We construct the function p : V(4;) — V(A2) as follows. Let v € V(A;). If
v is an attachment environment, it contains a single grid point p = o !(v). Let
p(v) = Ba(n(p)), the attachment environment containing 7(p). On the other hand,
if v is a clump environment, it contains at least one 2-line (p1,p2). This is mapped
to a 2-line (w(p1),m(p2)) in D2, which appears in a unique clump environment; let

p(v) be this clump environment.

We claim that p is an isomorphism between A; and As. Consider some edge
(u,v) € E(A;). Assume without loss of generality that u is a clump environment
vertex and v is an attachment enviroment vertex. There is some grid point shared
between 4 and v (namely the attachment point a=1(v)), call it p. Then 7(p) is an
attachment point in Dy which corresponds to attachment vertex B(m(p)), which is
exactly p(v). But p(u) contains the 2-lines of u according to the isomorphism ,
hence 7(p) € p(u). Since 7(p) is in both p(u) and p(v), we have (p(u), p(v)) € E(As).

The reverse direction is analogous, thus A; and Ay are isomorphic.

For the other direction, assume that A; and A are isomorphic and call this
isomorphism p : V(A4;) — V(Az). Considering the partition of D; and D into
clumps, we construct the mapping = : P| — P, sending attachment points in D; to
attachment points in Dy. Specifically, if p is an attachment point in Dy, it appears
in exactly one attachment vertex v = a4(p) in A;. Similarly, p(v) corresponds to
exactly one attachment point ¢ in Do. Hence we define 7(p) = ¢ = 8~ (p(ca(p)))

according to these inclusions.

Consider now the points of D; which are not attachment points. They are in
clumps. Suppose p € P; is in a solid clump ¢. Then a(p) is a clump environment
vertex mapped to p(a(p)) in the other diagram. So ¢’ = 87! (p(a(p))) represents an
equivalent clump in D9, which is also solid. From the attachment points mapping

7 defined above and solidity of the clumps, we can extend 7 into a mapping for

38

the entire clump ¢ into clump ¢’. For non-solid clumps, the same idea can be
used, except lines must explicitly be maintained (using the mapping pi and the

attachment/clump environments).

We claim 7 is an isomorphism. Consider a line [€ Ly. If [is entirely within a
clump of Dy, it is mapped to a line within a clump of Dy. If [passes through more
than one clump, it will pass through an attachment point p. This attachment point
is mapped to an attachment point in Dy by the isomorphism p. The line on either
side of p is within a clump and respected by w. Since the attachment environment
is respected by p, the line will be respected through the clump, hence 7 (l) is a line

in Ly. The reverse mapping is analogous. O

Recalling that polynomial time algorithms exist for determining isomorphism of
planar graphs, the following theorem suggests the utility of the clump adjacency
graph object.

Theorem 4.2.5. Clump adjacency graphs of a line segment diagram are planar.

Proof. Consider the edges in a clump adjacency graph: they join an adjacency point
with a clump. For each adjacency point, consider the set of 2-lines (not necessarily
maximal) including this grid point. The set of edges incident to this adjacency point
in the CAG is a subset of this set of 2-lines, with the restriction that only one 2-line
per clump can be chosen. So the edges in the CAG is a particular subset (with

possible repetition) of 2-lines from the line segment diagram.

The grid point set of a line segment diagram is embedded in the plane. Consider
the associated line segment diagram embedding in the plane and the 2-line crossings
(i.e., those line intersections not occurring at a grid point). The only such crossing

is diagrammed in Figure 4.11. The two solid lines cross away from a grid point.

Figure 4.11: Line crossings in a line segment diagram not at a grid point.

It is clear that the dashed lines are forced in such a situation. Hence all four grid

points belong to the same maximal clump. So no such crossings need appear in the

39

clump adjacency graph: if we chose one of the solid lines in our subset of 2-lines, we
can choose one of the dashed lines instead. Thus a crossing-free CAG embedding in

the plane can be constructed from the planar embedding of the grid point set. [

4.3 The Isomorphism Algorithm

Minding Theorem 4.2.5, we now adapt a planar graph isomorphism algorithm to
complete our LSD isomorphism algorithm. We reference the results of Section 2.2.1

for background on planar graph isomorphism.

We draw attention to the algorithm of Hopcroft and Tarjan as documented in
[HT72]. Tt is not the asymptotically best algorithm — it runs in O(|V|log|V]) time
— but we found that it served well for adaptation. We outline the Hopcroft and

Tarjan algorithm and indicate our modifications.

Roughly the algorithm divides a line segment diagram into connected compo-
nents, and finds clumps (storing information about their adjacency environment).
Clumps are useful because they are easy to process for assignment of isomorphism
codes. We form the clump adjacency graph, which happens to be planar. We can
apply the ideas of known algorithms to efficiently test clump adjacency graphs for
isomorphism. Our algorithm divides the clump adjacency graph into biconnected
components, which are related by inclusion of articulation points. The relation de-
fines a tree, so when the nodes are labelled with isomorphism codes, we can move
through the tree from the leaves revising our labelling until we obtain a single num-
ber for the graph. The question is how to assign a unique isomorphism code to a
biconnected component. The answer is to divide it into triconnected components
(using a suitable definition to make such components unique) and do the same thing.
This leaves the question of how to code the triconnected components, which is the
only true difficulty in the process. Fortunately, triconnected components of planar
graphs have a unique embedding in the sphere (up to looking from the inside or

outside), which provides us an efficient technique to assign the codes.

Since isomorphism of triconnected components is the only difficult portion of
our algorithm, we devote special mention and encapsulate our discussions as Algo-

rithm 1. We return to the main process as Algorithm 3.

40

4.3.1 Dividing Up the Clump Adjacency Graph

We now describe the details of the algorithm. Given a connected clump adjacency
graph A, it is subdivided into biconnected components, then further subdivided into
triconnected components. We remind the reader that the biconnected components of
a graph are unique, and that (when using Tutte’s definition [Tut66]) the triconnected

components are also unique.

The graph A is represented by a tree T%, with one vertex for each biconnected
component B and one vertex for each articulation point a. The vertex vp is adjacent

to the vertex v, in T if B contains a. The leaves of this tree are called 2-leaves.

Similarly, each biconnected component B is itself represented by a tree T, with
one vertex for each triconnected component C' within B and one vertex for each cut
pair (biarticulation point pair) (a,b). The vertex v¢ is adjacent to the vertex vg in

Tg if both a and b are in C. The leaves of this tree are called 3-leaves.

Consider now the 2-leaves, and in particular the 3-leaves contained therein. The
next step is to assign numbers to these 3-leaves such that two 3-leaves are isomorphic

if and only if their codes are equal.

A 3-leaf has an orientation with respect to its cut pair: we can look either from
the front or back of the embedding plane, which is equivalent to switching the points
in the cut pair. Hence each 3-leaf is assigned a pair of integers (which are equal
exactly when the 3-leaf is symmetric regarding the biarticulation points). Whereas
the Hopcroft and Tarjan algorithm tests the 3-leaf for planarity and constructs a
planar representation, we are already working with a planar representation, saving
some work. It is noted that since the 3-leaf is triconnected, its planar representation
is unique (up to viewing from inside or outside). A O(|V|log|V|) algorithm is

applied to partition the isomorphic 3-leaves into equivalence classes.

4.3.2 Assigning Isomorphism Codes to 3-Leaves

We refer to Hopcroft and Tarjan’s algorithm for triconnected planar graph iso-
morphism in [HT73c] and [HT72], and proceed to describe our version, noting the
differences. To allow us to speak of the left and right faces to an edge, we now

consider an arbitrary orientation of the edge, distinguishing its head and tail.

41

Hopcroft and Tarjan let A be a mapping of edges to (adhoc) integers where
A(e1) = A(e9) if and only if the number of edges on the face to the right of e; is the
same as the number of edges on the face to the right of e and the degrees of the heads
of e; and ey are the same. We require additional information to properly process
clump adjacency graphs, and thus also partition edges based on the isomorphism
codes of the clump environments and attachment environments of the heads and
tails. We call the new mapping with all these restrictions p, which is computed in

the first three steps of Algorithm 1.

For each edge e in a 3-leaf, let f(e, R) and f(e,L) be the edges adjacent to
the head of e which are to the immediate right and left respectively. Clearly this
depends on a planar embedding, which we constructed earlier. We partition the
edges into equivalence blocks B(1),...,B(k) based on their mapping by p. A list
PROCESS of block index-direction pairs is created by combining all block indices
with the symbols R and L.

While possible, we select a pair (i, D) from PROCESS for processing, where 4
is a block number and D is either the symbol R or L. Each block B(j) is split into
B(j) and B(j') such that no edge in B(j) is to the immediate right of an edge in
B(i) and all edges in B(j') are to the immediate right of an edge in B(7) (if one of
the new blocks is empty, it is discarded). We update the work list by adding (5, D)
to PROCESS if (j, D) € PROCESS, and if (j, D) ¢ PROCESS we add only one
of (j', D) or (j, D), choosing the index of the smaller cardinality block.

The partitioning algorithm, similar to that presented in [HT73c], is summarized

in Algorithm 1 below.

The result is a partitioning of the edges into indistinguishability classes. Follow-
ing [HT72, HT73c|, two edges e; and ey are distinguishable if there exist edges e3
and ey, a primary path p; from e; to e3 and ps and a corresponding primary path po
from e to e4 such that A(e3) # A(es), and indistinguishable otherwise. We extend
the function A to p for clump adjacency graphs by including clump attachment code

and attachment location information.

Isomorphism of the 3-leaves is simply checking if there is an edge in one graph
which is indistinguishable from an edge in the other graph, i.e., some block contains

an edge from each graph. As noted by Hopcroft and Tarjan [HT73c|, both an

42

Algorithm 1 Efficient edge partitioning by indistinguishability in a triconnected
component (adapted from [HT73c])

Input: oriented triconnected clump adjacency graph(s)
Output: partitioning of edges into indistinguishability classes
1: partition edges by clump environment isomorphism codes
2: partition edges by attachment environment isomorphism codes

@

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

partition edges by A values into blocks B(1),..., B(k)
{completed the partitioning by p}
PROCESS + {1,...,k} x {L,R} {process left and right for all blocks}
while PROCESS # () do
choose and remove (i, D) from PROCESS
for each edge e € B(i) do
em < f(e, D), the edge to the immediate left/right of e
j < index of block containing eps
move ey from B(j) to B(j')
end for
{now only add small groups for reprocessing}
for each B(j') just created do
if (j,D) € PROCESS then
add (', D) to PROCESS
else
it ()

< |B(j)| then
dd (j', D) to

PROCESS
else
add (4, D) to PROCESS
end if
end if
end for
end while

43

orientation of the second graph and its reverse orientation (where the orientation of
each arc is reversed) must be tested. It may be that two indistinguishable edges are
oriented in opposite directions, meaning the partitioning algorithm cannot match
them. By reversing the orientation on all edges for one graph, we can now ensure

matching of indistinguishable edges.

This completes the algorithm for determining isomorphism between triconnected

clump adjacency graph components, and is summarized in Algorithm 2 below.

Algorithm 2 Efficient isomorphism of triconnected components

Input: two triconnected clump adjacency graphs, G and H
Output: whether the two graphs are isomorphic
, H < arbitrary orientation on edges of graphs G, H
< reverse orientation of
partition edges of 8, ﬁ and ﬁ by indistinguishability using Algorithm 1
if there is a block containing edges from G and either H or H then
return “yes”
else
return “no”

end if

4.3.3 Combining the Isomorphism Codes

We now assign pairs of integers to the 3-leaves’ cut pair vertices such that equality of
codes is equivalent to isomorphism. Each 3-leaf is then replaced with a edge joining
its biarticulation points in the graph. This creates new 3-leaves within the 2-leaves,

and the process is repeated.

Eventually every 2-leaf will be reduced to a single edge. These edges are removed
from the graph, with their codes being assigned to the corresponding articulation
points. The new 2-leaves are found and the process is repeated. Eventually the

graph will be reduced to a single vertex with an attached isomorphism code.

Applying the above algorithm to all clump adjacency graphs from two line seg-
ment diagrams can answer whether they are isomorphic: sort the isomorphism codes

for each line segment diagram and check for equality.

The entire algorithm is sketched in Algorithm 3 below. We emphasize the use of
clump and attachment environments in lines 16 and 20. Knowledge of the environ-

ments is critical to ensure that the isomorphism coding (equal codes iff isomorphic)

44

is consistent during graph reductions: if two clumps have equal codes, not only must
their respective sets of neighboring clumps have equal codes, but the neighboring

clumps must be attached at corresponding locations, in corresponding ways.

Algorithm 3 Isomorphism of line segment diagrams (adapted from [HT72])

Input: two line segment diagrams
Output: whether the diagrams are isomorphic
1: partition line segment diagrams into connected components
2: for each connected LSD component do
3: partition component into maximal clumps, storing clump environments and
attachment environments

4: join adjacent double-linked clumps

5: assign isomorphism codes to clump environments

6: construct clump adjacency graph

7. repeat

8: partition graph into biconnected components

9: construct tree T" of biconnected components and articulation points
10: for each 2-leaf do

11: repeat

12: partition into triconnected components

13: construct tree T" of triconnected components and cut pairs

14: partition 3-leaves into labelled isomorphism classes using Algorithm 2
15: for each 3-leaf do

16: add its isomorphism codes to its biarticulation vertex (the parent)
17: replace leaf in graph with edge

18: end for

19: until the 2-leaf is reduced to a single edge

20: add its isomorphism code to its articulation point (the parent)

21: remove the 2-leaf from the graph

22: end for

23: until 7" reduced to single labelled vertex

24: end for

25: sort vectors of isomorphism codes for each graph and compare for equality

4.4 Examples

We illustrate the isomorphism algorithm presented above with some examples. Fig-
ures 4.6 and 4.10 above exemplify the preliminaries: the process of encoding a grid
point set as a line segment diagram, and then a clump adjacency graph. We now

illustrate the process of comparing two line segment diagrams for isomorphism.

Figure 4.12 lists two line segment diagrams. The left diagram, labelled (a), is
quite similar to the right diagram, labelled (b). We apply our isomorphism algorithm

45

€Y (b)

Line segment diagrams

AR (4, (5)
213 v 23 @(1 ‘,
5% 5} ‘5) 4}
Clump adjacency graphs
Clump labels:
‘1) (2} 3} () 5}

Figure 4.12: Preparing the isomorphism test: an example.

46

(Algorithm 3) to test whether these diagrams are the same.

Since each diagram is connected, we proceed to identify maximal clumps. Each
diagram contains two types of clumps, the dumbell (the 2-line) and a triangle. There
are no double-linked clumps, so we identify attachment vertices and construct at-
tachment environments. When constructing the clump adjacency graphs, as shown
in the second part of Figure 4.12, simply storing clumps is insufficient to determine
isomorphism. Thus isomorphism codes are assigned to the five clump environments,
as shown in the third part of Figure 4.12, and the clump adjacency graphs are con-

structed. These labelled clump adjacency graphs are now tested for isomorphism.

Let us now concentrate on the left clump adjacency graph. Its biconnected
components consist of the 8-cycle (the diamond) and each of the four edges not part
of the cycle. The tree T" is simply a path, as illustrated in Figure 4.13. There are
no nontrivial triconnected components within any biconnected component, so 7"
trivially consists of a single vertex for each node of T'. The 2-leaves are the leaves
of the tree T, and the algorithm simply adds arbitrary isomorphism codes to each

biconnected component.

This process is illustrated in Figure 4.13. Note that the isomorphism codes (in-
dicated by uppercase letters in the example) are actually generated by Algorithm 2
when processing the 3-leaves. Since this example does not contain any interesting
triconnected components, we do not show this process in detail. Instead we present

another example to illustrate this assignment.

Consider the line segment diagram in Figure 4.14. Its clump adjacency graph is
biconnected (the clump environment labelling is obvious and thus omitted), so its

tree T" trivially consists of a single node representing the entire graph.

Partitioning the graph into triconnected components results in nine components,
as illustrated. The dashed lines indicate virtual edges added to the components to
preserve triconnectedness (roughly, the dashed edge represents a path between the
endpoints passing through the “rest” of the graph; this is as Tutte’s notation in
[Tut66]). Though the vertices are not uniquely labelled, the mapping should be

apparent from the figure.

The tree T" is constructed and contains each triconnected component and each

biarticulation pair. Note that each triconnected component has a unique embedding

47

i
\
-0 O 00 @
[
. N 7
Biconnected components @

Pruning 2-leaves

New T

Figure 4.13: Building 7" from the biconnected components, using the clump adja-
cency graph in Figure 4.12(a) as an example.

48

@
Line segment diagram @ }:(j
\®) - ’/ Clump adjacency graph
@ (biconnected)

1} RN
(o) RO,
| L

Figure 4.14: Building T"': an example.

49

SR S
o Forlo e

(i (iii)

Figure 4.15: Orienting triconnected components.

in the sphere (the reader may study the component ¢, c,c, ¢, e to convince himself).
The next step of the isomorphism algorithm partitions the 3-leaves into isomorphism

classes using the modified Hopcroft and Tarjan partitioning.

Let us for example consider two copies of the 5-cycle from Figure 4.14. We
arbitrarily orient the edges, let us say as Figure 4.15(i) and (ii), and we name the
edges with uppercase letters as shown. The first step is to initialize the blocks based
on p. Recall that the p partitioning is by clump and attachment codes and the A
function expressing the number of edges defining the face to the right. The first line
of Table 4.1 shows this partitioning and initialization of the PROCESS list.

Each following line chooses the first member of the PROCES S list and processes
each edge in the block. Any edge to the immediate left or right of the edge being
processed is removed from its old block B(j) and placed in a new block B(j'). The
PROCESS list is updated and any empty blocks are purged (for simplicity).

Since the graphs are cycles, the left and right edges are the same — this is not
true in general. It is important to note that at the (4,L) step, no block contains
edges from different graphs, so we know that we have not found an isomorphism.
Following the process to completion verifies this observation. This is not to say no
isomorphism exists, simply that we have chosen a bad orientation on all the edges.
It is for this reason both the oriented graph and its reverse orientation are tested.

Ounly if both orientations fail can we conclude they are not isomorphic.

To illustrate this, consider the orientation of the second graph in Figure 4.15(iii).
This differs only by the orientation of one edge, and we now find two indistinguish-
able edges. We follow the same process in Table 4.2. Examining the partitioning
into blocks after the final step one notices B(2) contains edge E from (i) and edge

G from (iii). Since edges from each graph are in the same indistinguishability class,

50

Table 4.1: Edge indistinguishability partitioning with bad edge orientation.

(i, D)

Block index B(%)
1 2 3 4 5 6 7 8 9 10

AF B,E C,D G,J HI
PROCESS = {(1L), (1R), (2,L), (2.R), (3,.L), (3,R), (4,L), (4,R),
(5,L), (5.R)}

AF E CD G HI B J
PROCESS = {(1LR), (2.L), (2R), (3.L), (3.R), (4L), (4,R), (5.L),
(5R), (6,L), (7.L)}

AF E CD G HI B J
PROCESS = {(2,L), (2,R), (3,L), (3,R), (4,L), (4,R), (5,L), (5,R),
(6,L), (7,L)}

AF E C G HI B J D
PROCESS = {(2,R), (3,L), (3,R), (4,L), (4,R), (5,L), (5,R), (6,L),
(7.L), (8,L)}

AF E C G HI B J D
PROCESS = {(3,L), (3,R), (4,L), (4,R), (5,L), (5,R), (6,L), (7,L),
(8,L)}

AF E C G HI B J D
PROCESS = {(3,R), (4,L), (4R), (5L), (5R), (6,L), (7.L.), (8,L)}

AF E C G HI B J D

6
A E C G HI B J
PROCESS = {(4,R), (5,L), (5,R), (6,L), (7.L), (8,L), (9,L)}

A E ¢ G HI

A E ¢ G H B J D F 1T
PROCESS =

51

Table 4.2: Edge indistinguishability partitioning with better edge orientation.

(i,D) Block index B(7)
1 2 3 4 5 6 7 8 9
— AF B,E,G,J CDHI
PROCESS = {(LL), (LR)? (27L)’ (25R)a (3,L)a (35 R)}
L) AF EG CDHI B,J
PROCESS = {(1’ R)’ (2’ L)7 (27 R)’ (3’ L)’ (3’ R)7 (4’ L)}
,R) AF EG C,D,HI B,J
PROCESS ={(2,L),(2,R),(3,L),(3,R), (4,L)}
2L A E,G C,H,I B,J D F
PROCESS ={(2,R),(3,L),(3,R),(4,L),(5,L), (6, L)}
2R) A E.C C,HI B,J D F
PROCESS = {(3,L), (3, R), (4, L), (5, L), (6, L)}
BL A E,G C.H B D F I J
PROCESS = {(35R)7 (47L)a (55L)7 (GaL)a (77L)7 (SaL)}
BR) A E,G C,H B D F I J
PROCESS ={(4,L),(5,L),(6,L),(7,L),(8,L)}
4Ly A4 E,G H B D F I J C
PROCESS ={(5,L),(6,L),(7,L),(8,L),(9,L)}
GL) A4 E,G H B D F I J C
PROCESS ={(6,L),(7,L),(8,L),(9,L)}

OL) A E,G H B D F I J C
PROCESS =)

52

the two original triconnected graphs are isomorphic. Hence they would receive the

same isomorphism code within 7".

4.5 Correctness

Correctness of Algorithm 3 is now argued using results from the previous sections.

The arguments establishing those results will generally not be repeated here.

Consider connected line segment diagrams. Steps 3 through 5 partitions into
clumps and joins any adjacent double linked clumps. Solid clumps can only be
isomorphic to (a rigid transformation of) themselves, so isomorphism codes suffice.
Non-solid clumps are of constant size and are treated with special consideration,
namely the clump environment. The clump environment imposes solidity onto dou-
ble linked clumps, which is easily included into the algorithm by their joining. Hence

this assignment of isomorphism codes respects any possible isomorphism.

The algorithm proceeds by checking isomorphism of the clump adjacency dia-
grams, as per Theorem 4.2.4. Steps 7 through 23 are a straight-forward adaptation
of Hopcroft and Tarjan’s algorithm: the clump adjacency graphs are converted into
trees T" of biconnected components and each biconnected component is assigned an
isomorphism code. Well known labeled-tree isomorphism is applied to generate an
isomorphism code for the entire clump adjacency graph. Step 20 must respect the
clump and attachment environments to properly propogate isomorphism codes up
the tree. The isomorphism code must be added respecting where the attachment
point is located. Step 25 simply combines the results for connected components in

the obvious way.

To assign isomorphism codes to the biconnected components, it is partitioned
into unique triconnected components, as described in [HT73a]. Such a unique par-
titioning is always possible by [Tut66]. The triconnected components are organized
into a tree T", allowing application of labeled-tree isomorphism to determine iso-
morphism of the biconnected components. Step 16 must respect the clump and

attachment environments to properly propogate isomorphism codes up the tree.

To assign isomorphism codes to the triconnected components (step 14), one must
be more careful. The partitioning is performed using the test in Algorithm 2, which

in turn simply uses the edge partitioning procedure in Algorithm 1. Since this is only

53

a minor variation of Hopcroft and Tarjan’s partitioning algorithm from [HT73c], we
repeat here only those portions of the proof affected by our modifications. The
reader is directed to [HT73c, HT72, Hop70a] for the lemmas and theorems relating

indistinguishability and isomorphism.

The only notable modification to Algorithm 1 from Hopcroft and Tarjan’s is the
original partitioning function for the edges. Whereas Hopcroft and Tarjan partition
only on A, we partition both on A and the isomorphism codes assigned to the ver-
tices. This starting partitioning is finer than Hopcroft and Tarjan’s, so we cannot
incorrectly answer in the affirmative (claim to find an pair of indistiguishable edges
when none exists). We can, however, answer negatively when an indistinguishable
pair does exist. But for such an answer to be generated, the pair must be placed
in distinct blocks by our algorithm. This can only happen if the edges are distin-
guished by some other edge (hence distinguishable), or if they were originally placed
in different blocks. Thus the only way this can happen is if p distinguished them,
which means the isomorphism codes did not match. This is precisely the distinction

we desire.

Because of the arbitrary orientation imposed on edges of the graphs in step 1
of Algorithm 2, we cannot guarantee the process will find an indistinguishable pair
if such a pair exists. The only way this can happen is if the orientation is reversed
for each such pair of edges. Hence we also apply the procedure to the graph with
reversed edge orientations (steps 2 and 3), guaranteeing indistiguishability will be

recognized.

4.6 Complexity

We now discuss the run time complexity of the above algorithm. We will derive an

asymptotic upper bound showing this problem is in the class P.

We begin with Algorithm 1. We assume sets and blocks can be represented such
that addition, selection, deletion elements can be performed in time independent of

the size of the set.

Lemma 4.6.1. Algorithm 1 can be computed in O(|V|log|V|) steps on a oriented
triconnected clump adjacenct graph G = (V, E).

54

Proof. We refer the reader to [HT73c] for a proof that the Hopcroft and Tarjan
algorithm is in O(|E|log|E|). Since the graph is planar, |E| < 3|V| — 6, showing
the algorithm is in O(|V|log |V'|). We simply show our modification cannot increase

this complexity.

The only modification we applied in Algorithm 1 is the original partitioning into
blocks: we add additional constraints that if e; and ey are in the same block, the
isomorphism codes for the endpoints of e; and e; are equal and the attachment
point locations are the same. This simply means we are using a labelled graph, or
indeed we start with a partition of the edges by isomorphism codes and attachment
locations and then refine it based on the size of faces and degrees of vertices (its A
value). This operation, depending whether we consider such partition part of input
or to be computed, is clearly either free or takes a linear number of steps — well

within the O(|V|log|V|) bound. O

We now turn to the entire algorithm to show its complexity.

Theorem 4.6.2. Algorithm 3 can be computed in O(n?) steps, where n is the

number of grid points in a line segment diagram.

Proof. Partitioning a line segment diagram into connected components takes only a
linear number of steps (for example, by a graph traversal algorithm such as breadth-
first search or depth-first search). Partitioning components into maximal clumps is
linear by Theorem 4.1.6. Finding clump protrusion information is linear in the size
of each clump, which aggregates into linear in the size of the LSD. Finding double-
linked clumps is a byproduct of finding protrusion information, so joining adjacent

double-linked clumps is free.

Assigning isomorphism codes to maximal clumps requires the isomorphism ques-
tion to be answered, and some method for assigning the codes. Theorem 4.1.9 states
isomorphism is linear in the size of the clump, and trivial partitioning algorithms
can operate within n? steps. Summing over all clumps, partitioning clumps into iso-
morphism classes is O(n?). Constructing the clump attachment graph simply uses

information already obtained, thus linear in the size of the line segment diagram.

The outer loop is dominated by the triconnected component partitioning pro-

cess, which is basically Algorithm 1. This partitioning takes O(|V|log|V|) steps,

55

which aggregated over all triconnected components is O(nlogn) steps. Finding bi-
connected and triconnected components each take O(n) steps. We refer to [HT72]

for the analysis of the original algorithm.

We end with sorting the two vectors of isomorphism codes. There are O(n)
components, thus the sort takes at most O(nlogn) steps. Checking equality of

vectors requires at most O(n) steps, completing the algorithm.

Thus, the number of steps required is dominated by partitioning maximal clumps
and partitioning triconnected components into isomorphism classes. The former can

be performed in O(n?) steps, dominating the latter’s O(nlogn) steps. O

4.7 Enumeration

The ability to test for isomorphism naturally suggests examination of the enumera-

tion problem. Can we generate all non-isomorphic line segment diagrams efficiently?

It is not clear how to adapt the algorithm from the previous section into a
generation algorithm. Yet, using elementary techniques, one can systematically
generate each possible line segment diagram, but with many duplicates. The dupli-
cate line segment diagrams can be recognized and discarded using any isomorphism
algorithm: either brute-force backtracking, McKay’s nauty, or the above presented

algorithm.

To illustrate the relative growth in number of line segment diagrams as we in-
crease the number of grid points, we completed the above process using a simple
brute-force backtracking isomorphism algorithm. This process is far from efficient,

and is only of interest to the curious.

Table 4.3 illustrates the relative growth of grid point sets and line segment
diagrams. The first data column indicates the total number of different grid point
sets on n grid points. The second column indicates the number of these grid point
sets which are distinct given our concept of isomorphism. The last column gives the
number of distinct line segment diagrams using n grid points. The representation
we used only permitted generation up to eight vertices due to space limitations,
though other researchers have examined similar problems up to ten vertices. We

present their results for 9 and 10 vertices to further illustrate the rate of growth.

56

Table 4.3: Number of grid point sets and nonisomorphic line segment diagrams.

n All GPS’s Nonisomorphic GPS’s Nonisomorphic LSD’s
1 1 1 1

2 4 2 1

3 20 5 3

4 110 22 11

5 638 94 42

6 3832 524 199

7 23592 3031 960

8 147841 18770 4945

9 — 118133* 25786**
10 758381* 137988**

* These values are sequence A030222 from [Slo].
** These values are from [MTO1].

We comment that grid point sets are equivalent to n-polyplets (polyominoes
connected at edges or corners) permitted to contain holes. There is no other com-

binatorial object known to be similar to line segment diagrams.

We also comment that the results reported by Tegos [MTO01] are only correct
up to 7 vertices: his encoding only supported grid point set generation on boards
containing up to 56 elements (for example, a 7 x 8 board size). The results he
presents in [MTO1] beyond 7 vertices are incorrect for number of nonisomorphic

grid point sets, but are probably correct for line segment diagrams.

o7

Chapter 5

Conclusions

The goal of this thesis is to capture the information contained within a position
during the game of Amazons. A player may want to know when two positions are
essentially the same, a necessary step in using knowledge from the past to gain

insight towards the next move.

This thesis discussed the progression from a grid point set, a primitive structure,
towards more useful encodings such as the line segment diagram. The main problem
discussed in this thesis is determining when two line segment diagrams are isomor-
phic. Deriving an efficient algorithm for solving line segment diagram isomorphism
required that the representation graphs be planar, a property realized except for the

representation of the moves available within a two by two square (Figure 4.11).

A clump allows all such planarity violations to be grouped within a solid set.
A clump, once large enough, is not malleable, and hence can be easily tested for
isomorphism. Clumps can be reduced to labeled vertices based on isomorphism
classes, and the relationship between clumps can be represented with a planar clump
adjacency graph. The significant contribution of this thesis is an efficient algorithm
to test isomorphism of clump adjacency graphs, which by trivial extension, answers

our original isomorphism question.

By efficient we mean polynomial time: the work performed by this algorithm
grows polynomially with the size of the line segment diagrams. If the size of the
diagram (in terms of number of points) is n, the time required by this algorithm
is bounded by some constant factor of n?. No claim is made as to the size of this

factor in relation to other algorithms, and this factor may be large enough as to make

58

this algorithm impractical in practice. The contribution made by this algorithm is
showing that isomorphism of line segment diagrams is polynomial, leading the way

to building more efficient algorithms.

For practical use, an encoding using coloured graphs compatible with McKay’s
nauty program is discussed. Nauty is one of the fastest isomorphism testing and
enumerating programs in the world. It is highly tuned to work quickly in most cases.
It is well known that hard instances seldom occur in graph isomorphism, and we
see no evidence suggesting our problem is any different. In most cases (especially
those encountered on a standard Amazons board) an exhaustive matching algorithm

should be sufficient to efficiently answer the isomorphism problem.

5.1 Further Work

We have stressed that the isomorphism algorithm for line segment diagrams derived
in this thesis is of theoretical interest, though perhaps not of practical interest.
An open question is whether the presented algorithm can be simplified sufficiently
to encourage implementation. It would be encouraging to obtain a clean, simple
algorithm. As the author has no knowledge of a cleaner isomorphism algorithm
for planar graphs, such a development seems unlikely. But there is some recent
work concerning planar graphs (for example that of Boyer [BM01]) which may be
applicable.

Another direction for future work is to study the time bottlenecks in the algo-
rithm. Can these ideas be applied to modify either Hopcroft and Wong’s [HWT74]
or Fontet’s [Fon76] linear time planar graph isomorphism algorithms? Or can any
other structural properties be applied to improve the running time or analysis to
linear time? The author believes both these approaches to be promising. Consider-
ing the structure of planar graphs and their isomorphism algorithms, there is strong
evidence suggesting line segment diagram isomorphism is equivalent. Showing this

equivalence seems possible.

To build a database of positions, it is necessary to generate all line segment
diagrams of a certain size. Is it possible to modify this algorithm to perform enu-
meration and generation? What is the complexity of generation, and how can a line

segment diagram be efficiently encoded for generation?

59

The graph isomorphism problem is equivalent to the automorphism counting
problem. It seems reasonable to assume that the same can be shown for line segment

diagrams. If true, does it shed light on the enumeration problem?

Obviously there is still much work to be done in this area. This thesis merely
opens the door to a number of new questions. It is hoped that the structures and
definitions are sufficient to explore these questions. What other games and fields
can be encoded with similar structures? Our notion of clump depends on the points
being arranged in a square grid. Eric Mendelsohn (personal communication) made
the observation that similar notions likely exist for triangular or hexagonal grids
(which are used for example in Chinese Checkers or Hex). With this observation,

adaptation of our algorithm to such grids should be possible.

More generally, a line segment diagram is a graph with the notion of line added.
When considering the application to other games without the strict point embedding
in a grid, our algorithm no longer applies as presented. What can be said with the
general line segment diagram? Does it give us more than graphs? Clearly, the
notion of a graph (where collinearity is only between adjacent vertices) is subsumed
in the notion of a line segment diagram (when the base set is not restricted to lie in
a grid). It would be interesting to determine whether the two structures are in some
sense equivalent. If so, algorithms for isomorphism, generation and other properties

could be translated, possibly yielding better, more understandable algorithms.

60

Bibliography

[BHZ87]

[BMO1]

[CB81]

[FonT76]

[GHL*87]

[Hof82]

[Hop70a)

[Hop70b]

[HT71]

[HT72]

[HT73a]
[HT73b)

[HT73c]

Ravi Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have
short interactive proofs? Information Processing Letters, 25:127-132,
May 1987.

John M. Boyer and Wendy Myrvold. Simplified O(n) planarity algo-
rithms, 2001. Submitted to Journal of Algorithms.

C. J. Colbourn and K. S. Booth. Linear time automorphism algorithms
for trees, interval graphs, and planar graphs. SIAM J. Computing,
10:203-225, 1981.

M. Fontet. A linear algorithm for testing isomorphism of planar graphs.
In Proceedings of the 3rd Internation Conference on Automata, Lan-
guages and Programming, pages 411-423. Springer-Verlag, 1976.

Zvi Galil, Christoph M. Hoffmann, Eugene M. Luks, Claus P. Schnorr,
and Andreas Weber. An O(n®logn) deterministic and an O(n3) Las

Vegas isomorphism test for trivalent graphs. Journal of the ACM,
34(3):513-531, July 1987.

Christoph M. Hoffmann. Group-Theoretic Algorithms and Graph Iso-
morphism. Springer-Verlag, Berlin, 1982.

John E. Hopcroft. An nlogn algorithm for isomorphism of planar triply
connected graphs. Technical Report CS-192, Stanford University, Stan-
ford, California, 1970.

John E. Hopcroft. An nlogn algorithm for minimizing states in a finite
automaton. Technical Report CS-190, Stanford University, Stanford,
California, 1970.

John E. Hopcroft and Robert E. Tarjan. A V2 algorithm for determining
isomorphism of planar graphs. Information Processing Letters, 1:32-34,
1971.

John E. Hopcroft and Robert E. Tarjan. Isomorphism of planar graphs
(working paper). In R. E. Miller and J. W. Thatcher, editors, Complezity
of Computer Computations, pages 131-152. Plenum Press, 1972.

John E. Hopcroft and Robert E. Tarjan. Dividing a graph into tricon-
nected components. SIAM Journal on Computing, 2(3):135-158, 1973.

John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372-378, 1973.

John E. Hopcroft and Robert E. Tarjan. A V' log V algorithm for isomor-
phism of triconnected planar graphs. Journal of Computer and System
Sciences, 7:323-331, 1973.

61

[HW74]

[KST92]
[Kur30]

[Lin92]

[Luk80]

[Luk82]

[Mat79]
[McK]
[McKS81]

[MT01]

[Sch88]
[Slo]

[Tor00]
[Tut66]

[Wes01]

[Zam94]

J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Conference Record of Sixth An-
nual ACM Symposium on Theory of Computing, pages 172-184, Seattle,
Washington, 30 April-2 May 1974.

J. Kobler, U. Schoéning, and J. Toran. Graph isomorphism is low for PP.
Journal of Computational Complexity, 2:301-310, 1992.

Casimir Kuratowski. Sur les problémes des courbes gauches en Topologie.
Fundamenta Mathematicae, 15:271-283, 1930.

Steven Lindell. A logspace algorithm for tree canonization (extended
abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium
on the Theory of Computing, pages 400—404, Victoria, British Columbia,
Canada, 46 May 1992.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. In Proceedings of the 21st IEEE Symposium
on Foundations of Computer Science, pages 42-49, New York, 1980.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of Computer and System Sciences,
25:42-65, 1982.

Rudolf Mathon. A note on the graph isomorphism counting problem.
Information Processing Letters, 8(3):131-132, 1979.

Brendan McKay. The nauty page.
http://cs.anu.edu.au/people/bdm/nauty/.

Brendan McKay. Practical graph isomorphism. In Congressus Numer-
antium 30, pages 45-87, 1981.

M. Miller and T. Tegos. Experiments in computer amazons. In
R. Nowakowski, editor, More Games of No Chance. Cambridge Univer-
sity Press, 2001. To appear.

Uwe Schoning. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 37:312-323, 1988.

Neil J. A. Sloane. The on-line encyclopedia of integer sequences.
http://www.research.att.com/"njas/sequences/index.html.

Jacobo Toran. On the hardness of graph isomorphism. In FOCS, 2000.

W. T. Tutte. Connectivity in Graphs. University of Toronto Press,
Toronto, 1966.

Douglas B. West. Introduction to Graph Theory. Prentice-Hall, Upper
Saddle River, NJ, 2nd edition, 2001.

Walter Zamkauskas. Amazons — the rules. Usenet posting, December
1994.

62

Appendix A

The Rules of Amazons

Amazons, invented by Walter Zamkauskas [Zam94], is a simple game to explain, but
a complicated game to play.

The game is played on a 10x10 grid, with two players (red and blue) each having
4 tokens representing amazons. Black tokens are used to indicate landing spots for
arrows.

10 R R

9

8

7| R R
6

5

4| B B
3

2

1 B B

Figure A.1: Initial configuration of the Amazons board.

Each player (red and blue) has 4 amazons initially placed on the board (Figure
A.1). Red starts and players alternate turns.

Each turn consists of moving one amazon (like a queen in chess) and firing an
arrow (again like a queen in chess) from that stopping location. Both parts are
mandatory. The location the arrow is fired is marked with a black token.

No amazon or arrow can move into or move over an occupied location, occupied
either by an amazon or a previous arrow. An arrow’s landing place becomes a
permanent hindrance to movement.

A player who cannot make a legal move loses. The winner is the last player able
to make a move.

63

