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Abstract

Relatively little is known about Neighborhood Subtree Tolerance (NeST) represen-
tations and the associated class of NeST graphs. Nevertheless, it can be shown that
NeST representations and NeST graphs are of practical and theoretical interest: As
a modeling tool, NeST representations generalize interval representations and toler-
ance representations while maintaining certain desirable properties of those represen-
tations. As a mathematical construct, NeST graphs fill a void within the literature
and possess a theoretical richness of their own.

We will investigate NeST representations and NeST graphs by examining their
historical context, presenting several applications, refining the definition of NeS'T
representations and exploring various subclasses of NeST graphs. Along the way,
several important questions and open problems from the literature are resolved, in
particular, it is shown that: standard NeST representations are sufficient to represent
all NeST graphs, fixed distance NeS'T graphs are exactly threshold tolerance graphs,
proper NeST graphs are exactly unit NeST graphs and the class of NeST graphs is a

proper subclass of weakly triangulated graphs.
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Chapter 1

Introduction

1.1 Historical Background

1.1.1 Interval Graphs

A graph! (G is an inlerseclion graph if there exists a family F of nonempty sets and
a function S which identifies vertices of G with sets of F such that two vertices form
an edge in G if and only if their associated sets in F have a nonempty intersection.

In 1957 Hajos asked which graphs can be represented as the intersection graphs
of intervals on a line [12], that is, which graphs are interval graphs. Since then,
interval graphs have become a widely studied class of graphs which have appeared
in many diverse areas of study: archaeology (sequence dating), molecular biology
(Benzer’s problem), discrete mathematics (interval orders) and scheduling problems
(room reservations), to name only a few. A detailed discussion of interval graph

applications can be found in Golumbic [9] and Roberts [17].

1See section 1.3.1 for a formal definition of graph and other graph theoretic constructs.
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Defined formally, a graph G is an interval graph if there exists an indexed set,
I =A{L, : v € V(G)}, of closed intervals on the line such that the following edge
condition holds:

ry€e E(G)s L.NL,£0.

I is called an interval representation of G and G is called the graph associated with
the interval representation I.
For an example of how interval representations can be used to model real problems,

consider the problem of scheduling the sharing of a resource without preemption:

Example 1 Let D be a system resource and S = {p1,p2,...,p.} a collection of
clients requesting access to D. Let R be an irreflexive and symmetric relation on S
defined such that p; Rp; if and only if p; and p; may access D simultaneously. We
may perceive the pair (S, R) to be an undirected simple graph.

The relation R is of relevance to a system scheduler trying to coordinate the access
of clients to D. If D were a file storage system then a system scheduler might define
pi Rp; if and only if p; and p; are not requesting access to the same individual storage
units within D. Similarly, if D were a file system then a system scheduler might
define p; Rp; if and only if p; and p; are not requesting access to the same file within
D. In either case, R characterizes when two processes can access D simultaneously
without causing an error.

The scheduling task is to produce a schedule which describes the access intervals
of each p; to D such that, if the access intervals of p; and p; overlap, then it must be
that p; Rp;. Restated, if p; and p; are not permitted to access D simultaneously, as
determined by R, then their access intervals in the schedule cannot overlap. We will

refer to this as the resource scheduling problem (D, S, R).
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A solution schedule to the resource scheduling problem can be modeled by an
interval representation I = {L,, : p; € S} where L is a time line and each interval
L,, represents the access interval of p; to D. If we do not allow preemption, an
access interval can be modeled as a contiguous segment of time?. This is a plausible
assumption since, for many resources, preemption is costly or impossible. If G is
the graph associated with the interval representation I then V(G) = S and E(G) is
defined by

pipj € E(G) & Ly N Ly, #0.

Since [ represents a solution schedule to the resource scheduling problem (D, S, R),
we have that L, N L, # () implies that p; Rp;. Hence, E(() is a subset of R which is
equivalent to saying that (i is a subgraph of (S, R). It follows that a solution schedule
to the resource scheduling problem for (D, S, R) is some subgraph of (.S, R) which is
an interval graph.

A system scheduler may be satisfied with any interval subgraph of (.S, R) but most
likely an economic solution will be desired. Suppose we define solution schedule I to
be better than solution schedule .J if the number of overlapping access intervals in [
is greater than the number of overlapping access intervals in .J. That is, the interval
graph associated with solution schedule I will have more edges than the interval graph
associated with solution schedule .J. This economy criteria is plausible since a system
scheduler might want to maximize the simultaneous use of resource D. Hence, an
optimal solution is defined to be a largest (edgewise) subgraph of (.S, R) which is an

interval graph.

2However, the model is powerful enough to model an access interval L,, which is composed of
multiple contiguous segments of time. For each segment we create a vertex in the associated graph.
The associated graph is then a hypergraph with p; being the hypernode composed of all vertices
associated with contiguous segments of L,,.
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1.1.2 Interval Graphs are Perfect

This section introduces the concept of a perfect graph. Our main interest in perfect
graphs is that there are efficient algorithms to solve several common optimization
problems on perfect graphs, however, these problems are NP-complete for arbitrary
graphs. We will not discuss perfect graph theory in depth but will present only the
terminology and results necessary for our discussion.

Below are four (classic) parameters definable on a graph G along with the four

optimization problems commonly associated with these parameters:

1. The elique number of G, w((), is the size of the largest clique in . Finding a

largest clique in G is called the mazimum clique problem.

2. The stability number of G, a(G), is the size of the largest stable set in G.

Finding a largest stable set of GG is called the mazimum stable set problem.

3. The chromatic number of G, x((), is the least number of stable sets required
to cover the vertices of ¢. Finding a smallest stable set cover of (& is called the

minimum coloring problem.

4. The clique cover number of GG, k((), is the least number of cliques required
to cover the vertices of . Finding a smallest clique cover of G is called the

minimum clique cover problem.

Claude Berge [3] defined a graph G to be perfect® if the following two properties,

3In fact, the perfect graph theorem states that G satisfies P1 if and only if G satisfies P2. This
result is due to Lovasz [15].
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P1 and P2, are satisfied by all induced subgraphs H of G"

w(H) = x(H) (P1)
a(H) = r(H) (P2)

The above four optimization problems occur frequently in graph theoretic ap-
plications. For arbitrary graphs, these problems are known to be NP-complete [6].
However, for the class of perfect graphs, these problems can be solved in polynomial
time [11]. Hence, applications based upon perfect graphs benefit from the existence
of algorithms which can solve these problems efficiently.

It has been shown that interval graphs are perfect [9]. Hence, applications based
upon interval representations and interval graphs may utilize the fact that the above
four optimization problems can be solved efficiently. To illustrate this we present an
application modeled by an interval representation which requires a solution to the

minimum coloring problem:

Example 2 Suppose that B is an important binary file that must be stored securely
within some archiving system. To do this, a collection of contiguous subfiles of B,
Bi, By, ..., B,,, are defined such that, for any bit b in B, b appears in at least two
of the contiguous portions of B. The division of B into contiguous subfiles can be
modeled by an interval representation I where B is represented by a line and each B;
is an interval on this line.

Given the division of B into contiguous subfiles, an archiver needs to determine
the least number of remote sites to store each B; such that if B; N B; # () then B;
and B; must be located at different sites. This is a security measure which ensures
that no single bit b is located at only one site.

The archiver’s problem is equivalent to finding a smallest stable set cover of the
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interval graph G associated with I, that is, the archiver must find a minimum coloring
of GG. This is seen by observing that we are attempting to assign remote sites (colors)
to each subfile such that, if two subfiles intersect, i.e. they form an edge in the
associated graph, then they are assigned different remote sites. The solution can be

obtained in linear time [9].

1.1.3 Tolerance Graphs

The numerous applications modeled by interval representations is testimony to the
power of this construct as a modeling tool. Furthermore, interval graphs are per-
fect which implies the existence of efficient algorithms to solve the four optimization
problems of section 1.1.2. However, an interval representation is a simple model,
insufficient for modeling many problems. Tolerance representations, introduced by
Golumbic and Monma [8], generalize the interval representation model, allowing them
to model a greater number of applications than interval representations. Furthermore,
those graphs which have a tolerance representation, namely, tolerance graphs, are also
perfect graphs.

Defined formally, a graph G is a tolerance graph if there exists an indexed set,
I'={L,:v e V(G)}, of closed intervals on the line and an indexed set of positive
numbers, t = {t, : v € V((G)}, called tolerances, such that the following edge condition
holds:

ry € B(G) & |L N Ly| > min{t;, t,}.

The pair (/,1) is called a tolerance representation of G and G is called the graph

associated with the tolerance representation (/,1).
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Tolerance representations generalize interval representations by introducing tol-
erances for overlap. The following intuitive descriptions of the edge conditions, as
defined by interval and tolerance representations, demonstrate this generalization.

Interval representations model the following edge condition:
Two objects are associated if and only if their intervals on a line overlap.
Tolerance representations model a similar, though more general, edge condition:

Two objects are associated if and only if their intervals on a line overlap
and the size of this overlap exceeds at least one of their lolerances for

overlap.

Observe that if a graph G has an interval representation then it also has a tolerance
representation; simply define all tolerances to be sufficiently small. However, there
are graphs (applications) which are associated with (modeled by) tolerance represen-
tations but not by interval representations. For example, the cycle on four vertices,
(4, 1s a tolerance graph but not an interval graph. With respect to applications,
tolerance representations are a more flexible model than interval graphs. Below is an
example, reminiscent of Example 1 from section 1.1.1, of an application modeled by

a tolerance representation but not by an interval representation.

Example 3 Let D, S and R be defined as in Example 1. We call p; and p; conflicting
clients if —p;Rp;. In Example 1 there was the constraint that conflicting clients
could not have overlapping access intervals in a solution schedule [ to the resource
scheduling problem (D, S, R). In this example, the system scheduler knows that D
can tolerate a certain amount, ¢, of overlap of the access intervals of conflicting clients.

Such a situation arises naturally. For example, each access interval to D may begin
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with an initialization period of length ¢ which does not interfere with other clients’
access intervals to D.

A solution schedule I must satisfy the condition
—piRp; = |I,, N1, | <t.

That is, if p; and p; are conflicting clients then their access intervals cannot overlap
more than the allowable tolerance t. Hence, a solution schedule will be a tolerance
representation whose associated graph is a subgraph of (S, R).

See Golumbic, Monma and Trotter [10] for a brief discussion of other applications

modeled by tolerance applications.

Interval graphs have the desirable property of being perfect graphs. It has been
shown that the generalization of interval representations by tolerance representations
preserves this property, that is, tolerance graphs are perfect [10]. This implies the
existence of efficient algorithms to solve the four optimization problems of section
1.1.2 for tolerance graphs.

It is of interest that tolerance graphs are a superclass of many well-known classes of
perfect graphs besides interval graphs. Among these are permutation graphs, thresh-
old graphs and the complement of threshold tolerance graphs. See Golumbic [9] and

Monma, Reed and Trotter [16] for more on these classes of graphs.

1.2 NeST Graphs

Interval representations are generalized to tolerance representations by the introduc-
tion of tolerances. Furthermore, tolerance graphs, despite being a superclass of inter-

val graphs, are also a class of perfect graphs. The natural question to ask is whether
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there is a generalization of tolerance representations which is also associated with a
class of perfect graphs. Neighborhood subtree tolerance (NeST) representations, re-
cently introduced by Bibelnieks and Dearing [4], generalize tolerance representations
and are associated with a class of perfect graphs, namely, neighborhood subtree toler-
ance graphs. NeS'T representations and NeST graphs are formally defined in section
1.3.2.

NeST representations generalize tolerance representations in the following way:
o the line is generalized to a tree embedded in the plane,

e intervals on the line are generalized to neighborhood subtrees of the embedded

tree and
e interval size is generalized to neighborhood subtree diameter.
Intuitively, tolerance representations model the following edge condition:

Two objects are associated if and only if their intervals on a line overlap
and the size of this overlap exceeds at least one of their tolerances for

overlap,
whereas NeST representations model the edge condition:

Two objects are associated if and only if their neighborhoods in an embed-
ded tree overlap and the size of this overlap exceeds at least one of their

tolerances for overlap.

More formally, if a graph G has a tolerance representation, then this tolerance repre-
sentation is also a NeS'T representation of (G since the line can be considered to be an

embedded tree and intervals on the line as neighborhood subtrees of this line. Hence,
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all tolerance graphs are NeST graphs and it follows that NeST representations are a
generalization of tolerance representations. For examples of applications modeled by

NeST representations see section 1.2.2.

NeST graphs are perfect graphs. Bibelnieks and Dearing demonstrated this by
proving that NeST graphs are weakly triangulated [4]. A graph G is weakly trian-
gulated if neither itself nor its complement contains an induced cycle of five or more
vertices. It is known that weakly triangulated graphs are perfect graphs [13]. Hence,
NeST graphs are also perfect and, as a result, polynomial time algorithms exist to

solve the four optimization problems of section 1.1.2 for NeST graphs..

1.2.1 Motivating NeST Graphs

In this section we attempt to motivate the study of NeST graphs. We have already
seen that NeST representations generalize tolerance representations and that NeST
graphs are perfect graphs. These properties alone make the class of NeST graphs

interesting. However, there are other motivations for studying NeST graphs.

Trees are a naturally occurring structure and appear frequently in applications.
Hence, generalizing the line to an embedded tree will allow NeST representations to

model a greater number of applications than tolerance representations.

The generalization of the line to an embedded tree has been studied before. In-
terval graphs and interval representations have been generalized to the intersection
graphs of subtrees in a tree. These graphs are called subtree graphs. Defined for-
mally, a graph (G is a subtree graph if there is an embedded tree T' and an indexed

set, S = {T, : x € V(G)}, of subtrees in T such that the following edge condition
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holds:
rye E(G)&eT.NnT,£0.

(T,5) is called a subtree representation of GG and (7 is called the graph associated with
(T,5).

It has been shown that subtree graphs are exactly the triangulated graphs?* [7].
This interesting characterization motivates the analogous generalization of tolerance
representations by subtree tolerance representations.

A graph G is a subtree tolerance graph if there is an embedded tree 7', an indexed
set, S = {T, : z € V(G)}, of subtrees in T and an indexed set, t = {t, : z € V(G)},

of positive numbers called tolerances, such that the following edge condition holds:
ry € B(G) < |T,NT,| > min{t,t,}.

(T,5,t) is called a subtree tolerance representation of G and G is called the graph
associated with (T, 5,1).

All graphs have a subtree tolerance representation [4]. Hence, subtree tolerance
representations are too general. A problem with subtree tolerance representations
is that any subtree of the embedded tree is permitted in the representation. To
generalize tolerance representations, in an interesting way, the permissible subtrees in
a subtree tolerance representation must be restricted. A natural solution is to restrict
the subtrees so that they are neighborhood subtrees. This restriction to subtree
tolerance representations yields NeST representations. Restriction to neighborhood

subtrees is a natural solution in the following two ways:

1. NeST representations are intended to be a generalization of tolerance repre-

sentations. We would like the intervals in a tolerance representation to have a

*A graph G is called triangulated if it has no induced cycle on more than three vertices.
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interval > subtree
graphs and representations graphs and representations

intersection
representations \ /
neighborhood subtreé
graphs and representations

neighborhood subtree tolerance

intersection graphs and representations
tolerance
representations \J \ \J
tolerance > subtree tolerance
graphs and representations graphs and representations
| | I |
intervals of aline neighborhood subtrees subtrees of atree
of atree

Figure 1.1: Generalizing interval graphs and representations.

natural analogue in a NeST representation. Since intervals on the line can be
perceived as neighborhoods of the line, neighborhood subtrees of an embedded

tree are a natural analogue.

2. With respect to applications, neighborhood subtrees occur naturally. That is,
often it is the case that an object can be modeled by a neighborhood subtree

of an embedded tree. For examples, see section 1.2.2.

The above discussion is summarized in Figure 1.1. The only undefined class of
graphs in Figure 1.1 are neighborhood subtree graphs®. G is a neighborhood subtree
graph if it has a subtree representation (7', 5) where the subtrees in S are neighbor-
hood subtrees. (7,5) is called a neighborhood subtree representation of GG and G is

called the graph associated with (T, .5).

5These will be discussed in section 3.5
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The three classes of graphs appearing in the top half of Figure 1.1 are intersection
graphs of, from left to right, intervals of a line, neighborhood subtrees of an embed-
ded tree and subtrees of an embedded tree. The three classes of graphs appearing in
the bottom half of Figure 1.1 are those classes produced when the three aforemen-
tioned representations are generalized by the introduction of tolerances. From left to
right, these are tolerance representations, NeST representations and subtree tolerance
representations.

We may also perceive Figure 1.1 as three columns composed of two classes of
graphs each. The leftmost column are those representations based on intervals of
a line. The rightmost column are those representations based on subtrees of an
embedded tree. The middle column are those representations based on neighborhood
subtrees of an embedded tree.

In closing, we summarize our motivation for studying NeST graphs:
1. NeST representations generalize tolerance representations.
2. NeST graphs are perfect graphs.

3. The generalization of the line by an embedded tree will allow NeST represen-

tations to model a greater number of applications.

4. The generalization of interval representations by subtree representations re-
sulted in an interesting characterization of triangulated graphs. The analogous
generalization of tolerance representations by subtree tolerance representations,
however, is not interesting. By restricting subtrees to be neighborhood subtrees
it is likely that the resulting generalization of tolerance representations, and the

class of associated graphs, will be of practical and theoretical interest.
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1.2.2 NeST Graph Applications

Here we present a few applications which can be modeled by NeST representations
(but not by tolerance representations). These applications will also utilize the efficient

algorithms which solve the four optimization problems of section 1.1.2.

Application 1 Let R be an acyclic, connected road system on which centers for
various emergency response vehicles, say ambulances, are located. Let A be the set of
ambulance centers. An administrator wishes to decide the service radius, r,, for each
ambulance center p in A, where distances are measured along the road system. The
service radius, together with the location of an ambulance center, defines an area of
responstbilily, R, for each ambulance center. Observe that each area of responsibility
is a neighborhood subtree of R. The three conditions that must be met when assigning

service radii are:

e Each point in R is within the responsibility of at least one ambulance center.

e The service radius of any ambulance center does not exceed an upper bound r.
The upper bound reflects the policy that no person should wait longer than a

prespecified amount of time for ambulance response.

e The size of the overlap of the area of responsibility of any two ambulance centers
does not exceed some upper bound ¢. This tolerance for overlap is introduced
to enforce economy in the assignment of service radii to the ambulance centers.
That is, it would be inefficient to allow two ambulance centers to have areas of

responsibility which overlap more than t.

Let G be a graph where V(G) = A and E(G) = (). The administrator must find

a NeST representation (R, S, T) of (G, where S is the set of ambulance center areas
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of responsibility and 7, = ¢, for each p in A, such that

e S covers R and

o forallpe A, r, <r.

Observe that the third condition above is satisfied if (R, S, T ) is a NeST representation
of . An approximate solution to the problem is one in which |F(G)] is minimized.

That is, the first two conditions take priority over the third.

Application 2 Let R be a road system as in Application 1; assume here that the
emergency response service is the fire department. Let fi,..., f,, be the location of
m fire stations on R and let sq,...,s, be the location of n suburbs on R. We assume
that each fire station f; has a service radius ry, and each suburb s; can be represented
as a neighborhood subtree of R with radius ry;,.

A fire insurance company wishes to sell a new policy to the home owners of the
n suburbs. The policy offers better rates to those home owners who live in a suburb
which falls completely within the area of responsibility of more than one fire station.
Furthermore, the greater the number of fire stations which are responsible for a suburb
the better the policy rates for the home owners in that suburb. The following model
will aid the insurance company in determining which policy a particular home owner
is eligible for. Assign an infinite (that is, very large) tolerance to each fire station.
Let the tolerance of any suburb be exactly twice the radius of that suburb. Define a

graph GG where the vertices of G are the fire stations along with the suburbs by
ry € BE(G) & |R,N Ry > mind{t,,t,},

where R, t,, R, and {, are the neighborhood subtrees and tolerances associated with

x and y. We observe that
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o [if; & E(G) for all f; and f;,

o s5;5; ¢ E(G), since |R,, N Ry | > min{l,,, 1, } implies that R, C R, or R,, C

Rs,, which implies that s; = s; (we do not allow suburbs within suburbs) and

o fis; € E(G) & |R;N R, | > min{ty,ts} =2r; & R, C Ry & s;is

within the area of responsibility of station f;.

We can see that the model is a NeST representation of the graph G in which the
degree of vertex s; is the number of fire stations which share responsibility for s; and
the neighbors of vertex f; are the suburbs f; is responsible for.

The insurance company would like to determine the best policy (from the home
owner’s point of view) for which a customer is eligible given the above representation,
regardless of whether the customer lives in a suburb or in a rural district along
R. To model this we alter the above representation. Remove all suburbs from the
representation and allow all fire station tolerances to be arbitrarily small (but still
positive). Let H be the graph where V(H) is the set of fire stations and E(H) is
defined by

ry € E(H) < |R, N Ry| > min{t,, t,}.

That is, the vertices f; and f; form an edge in H if and only if their areas of respon-
sibility overlap. Observe that if some home owner is within the area of responsibility
of k fire stations, then those k fire stations form a complete subgraph of H. Further-
more, a collection of neighborhood subtrees satisfies the Helly property: A collection
of sets S satisfies the Helly property if, for any S’ C S, if every pairwise intersection
between sets in S’ is nonempty then the intersection of all sets in S’ is nonempty.

Hence, if a set M of fire stations form a complete subgraph of GG then there is a
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location on R which is in the area of responsibility of all fire stations in M. It follows
that determining the best possible policy is equivalent to solving the maximum clique

problem on H. Since NeST graphs are perfect, this can be solved in polynomial time.

Application 3 Let T be an embedded tree, X a set of locations in T" and k some

positive number. Define the relation £ on X by
ry € B & dr,y) <k.

That is, we associate x and y if and only if they are “k-close” in T'. We call (T, X, k)
a proximity representation of the graph (X, F) and (X, F) the graph associated with
(T, X, k).

We can generalize the above model by defining a set of positive numbers K =

{k; : x € X} and the relation £ by
ry € B & d(x,y) < min{ks, ky}.

That is, we associate z and y if and only if they are either “k,-close” or “k,-close”. We
call (T, X, K) a generalized proximity representation of the graph (X, F) and (X, F)
the graph associated with (T, X, K).

In future sections we will see that the class of graphs associated with proximity
representations are exactly fixed tolerance NeST graphs (see section 3.5) and that
the class of graphs associated with generalized proximity representations are exactly
proper NeST graphs (see section 3.3).

There are numerous applications which might utilize one of the above representa-

tions:

1. Suppose T is a tree network of computer sites where V(T') denotes the computer

sites within the network and F(T') denotes the communication links between
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sites within the network. Furthermore, suppose the network is designed, for
security measures, such that a site v € V(T') can only communicate, directly or

indirectly via other sites, with sites which are within r communication links.

We can represent the above network by the proximity representation (7, V/(T'), r)
where T" is an embedding of T' where each link in £(7') is mapped to a line seg-
ment of unit length. The edge set of the graph G associated with (77, V(T'),r)

satisfies the following condition:

zy € F(G) < 2 and y can communicate.

Suppose we need to distribute data to all sites in the network. To minimize
the number of sites we need to “seed” with the data, we must find a minimum
dominating set of G. That is, we must find a minimal subset W of V() such
that, for all v € V((), either v € W or v is adjacent to a vertex in W. This

problem can be solved in polynomial time.

. Let T be a weighted phylogenetic tree over some species set X [1]. We wish to

investigate the relationship £ between species which are within k& evolutionary
units of each other. Hence, (T, X, k) is a proximity representation of the graph

(X, E') which characterizes this evolutionary proximity relation.

1.3 Definitions

1.3.1 General Definitions

A binary relation R on the set W is a subset of W x W. We will abbreviate (z,y) € R

to zy € R and also to x Ry. Ris reflexiveif, for all w € W, wRw. R is called irreflexive
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if not wRw, for all w € W. R is called symmetric if, for all z,y € W, xRy implies

yRx. R is called transitive if, for all z,y,z € W, x Ry and yRz implies = Rz.

A graph G is specified by its vertez set V(G) and its edge set E(G) where E(G) is
an irreflexive (G is a simple graph) and symmetric (G is an undirected graph) binary
relation on V(G). If 2y € E(G) we say “z and y are neighbors” or “z sees y”. If
vy & E(G) we say “z and y are non-neighbors” or “z misses y”. For any z € V(G)
we define the neighborhood of z, denoted N, to be the set {z € V(G) : 2z € E(G)}.
Similarly, the non-neighborhood of , denoted M, is the set {z € V(G) — {z} : 22 ¢
E(G)}. The degree of a vertex v in &, denoted deg(v), is the number of neighbors of
v. A hypergraph is a graph G except that E(G) is a subset of the power set of V(G)
(i.e. the set of all subsets of V(G)).

H is a subgraph of G if V(H) C V(G) and E(H) C E(G) such that, if zy € E(H)
then z,y € V(H). The subgraph of G induced by W C V(G), denoted Gy, is the

graph with vertex set W and edge set {zy € E(G) : 2,y € W}.

We say graphs (7 and (73 are isomorphic if there exists a bijection f from V(G)
to V((Gy) such that zy € E(G1) if and only if f(z)f(y) € E(Gy).

The graph GG with vertex set V(G) = {v1, vq, ..., v}, k > 3 and edge set F(G) =
{v1v2, V903, . . ., Vg1V, vgv1 } s called a cycle on k vertices. A graph G is called acyclic
if it contains no induced cycles. The graph G where V(G) = {vy, va, ..., vr} and
E(G) = {v1v2, 0905, ... ,vp_1vg} is called a path on k vertices.

Two vertices, z and y, in G are connected if there exists a path in G from z to y.
Gw 1s called a connected component of G if all pairs of vertices in W are connected
and, for all + € V(G) — W, = is not connected to a vertex in W. The connected

component of z in (¢, denoted G/(x), is the connected component of G which contains
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x. A graph G is called connected if it has exactly one connected component.

A graph T is called a tree if it is connected and acyclic. P(z,y) denotes the unique
induced path in 7 from x to y. A leaf of T is any vertex of degree 1. If w is a real-
valued function on E(7T) then (T, w) is called a weighted tree and w is called a weight
function. In a weighted tree, d(z,y) denotes the sum of the weights of the edges in

P(z,y). In an unweighted tree, d(z,y) denotes the number of edges in P(z,y).

A real-valued function d on some space S is a metricif, forall x,y,z € S, d(z,z) =
0, d(z,y) =d(y,x), d(z,y) >0 and d(z,y) + d(y, z) > d(x, z).

If C" and S are graph classes such that every graph in S is also in C' then S is

called a subclass of C' and C' is called a superclass of S.

1.3.2 Defining NeST Graphs
Embedded Trees

Basic to the definition of NeST graphs is the concept of an embedded tree.

Let T be a tree. We call T' = (f,T) an embedding of T or simply an embedded

tree if

e [ is a one-to-one function, called the embedding function, with domain V(7) U

E(T),

e for all v € V(T), f(v) is a point in the plane,

e for all wv € F(T), f(uv) is the line segment from f(u) to f(v) and
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o fore; # ey € K(T),

f(v) ifer Ney ={v},
@ lf €1 N €y = @

f(el) N f(€2) =

The embedded tree T will also be associated with the following set of points in the
plane

(U {f@phuc U fle).

ueV(T) eEE(T)
This definition is consistent with that found in Tamir [19].

Having defined an embedded tree T' = (f, T), there are many subsidiary definitions
that will be useful. For v € V(T), f(v) is called a node of T If v is a leaf of 7 then
f(v) is called an endpoint of T. If v is not a leaf of T then f(v) is called an internal
node of T. For wv € E(T) we call f(uv) an edge of T. A halfline is any point set of

the form {b+tv : ¢ > 0} where b and v are fixed, two dimensional vectors.

An example of a tree 7 and an embedding T = (f,7) appears in Figure 1.2. T
is the tree ({1,2,3,4,5,6},{13,23,34,45,46}). The nodes of T are f(1), f(2), f(3),
£(4), f(5) and f(6). The edges of T are f(13), £(23), f(34), f(45) and f(46). The
endnodes of T are f(1), f(2), f(5) and f(6). The endedges of T are f(13), f(23),
£(45) and f(46). f(3) and f(4) are internal nodes and f(34) is an internal edge.

With respect to an embedded tree T', P(z,y) denotes the unique path in 7' con-
necting the points z and y; d(z,y) denotes the Euclidean length of the path P(z,y).
The connected components, or more simply, the components of T — {p}, where p is
some point in 7', is the collection T, Ty, ..., T,, of embedded trees resulting from the

removal of p from 7.
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1 2
13
23
3
34
4
45 46
5 6 (5)

Figure 1.2: A tree T and its embedding T'= (f,T).

Neighborhood Subtrees

If T is an embedded tree then a neighborhood subtree of T', with center ¢ € T and
radius r > 0, denoted T'(¢,r), is the set of points {x € T : d(z,¢) < r}.
We define our notion of neighborhood subtree size. Let S be any connected subset

of points of an embedded tree T'. Define the function |- | as follows:

maz{d(py,p2) : pr,p2 € S} il S #0,
0 if S =0.

5] =

For any neighborhood subtree T'(¢, r), we call |T'(¢, )| the diameterof T(c,r). Observe
that |T'(¢,r)| is the length of a longest path in T'(¢c,r).
Our definition of diameter differs from that found in Bibelnieks and Dearing [4],

where |T'(¢,r)| is defined to be 2r. Our reasons for this slight change are as follows.

TR g
® L L
p m

Figure 1.3: T'(p,1) and T'(m, 1).

First, consider the embedded tree T' consisting of a line segment two units long,

with endpoint p and midpoint m. Let T(p,1) and T'(m,1) be two neighborhood
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subtrees defined on T' (see Figure 1.3). Bibelnieks’ and Dearing’s [4] definition of
diameter gives us |T'(p,1)| = 2 = |T(m, 1)], however, T'(m, 1) is obviously twice as
large as T'(p,1). Defining the diameter of a neighborhood subtree to be the length of
its longest path gives the more satisfactory |T'(p,1)] =1 and 2 = |T'(m, 1)|.

In general, when a neighborhood subtree center is located near an endpoint of the
embedded tree it may happen that the length of a longest path in the neighborhood
subtree is less than twice the neighborhood subtree’s radius. In this case the diameter
of the neighborhood subtree is not accurately measured by twice its radius.

Second, defining diameter only for neighborhood subtrees, as do Bibelnieks and
Dearing [4], causes an awkward special case: the diameter of the empty set is not
defined. This results from the fact that a neighborhood subtree can never be empty.
Since diameter is used to measure neighborhood subtree intersections it is necessary
that it be defined for empty intersections. Our definition of diameter extends to cover
this special case.

In section 2.1 we will see that our definition of diameter is, in practice, the same
as that defined by Bibelnieks and Dearing when restricted to measuring the size of

standard neighborhood subtrees.

NeST Graphs

Definition 1.3.1 A graph G is a neighborhood subtree tolerance (NeST) graph if
there exists an embedded tree T, an indexed set, S = {T'(¢c,,r,) : v € V(G)}, of
neighborhood subtrees of T and an indexed set, T = {7, : v € V(G)}, of positive

numbers, called tolerances, such that the following edge condition holds:

ry € B(G) & |T(czyre) NT(ey,ry)| = min{7e, 7, }.
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Figure 1.4: A NeST representation and associated graph.

The triple (T, S,T) is called a neighborhood subtree tolerance (NeST') representation

of G and G is called the graph associated with the NeST representation (T,S,T).

We shall use T, as shortened notation for the neighborhood subtree T'(¢,,r;). We
shall also denote the intersection of T, and T}, by T},. Whenever a NeST represen-
tation (7,5,7T) is referred to, it may be assumed that 7,,c¢,,r, and 7, denote the
representation’s neighborhood subtree, center, radius and tolerance, respectively, for
some vertex x in the NeST graph associated with (7,5, 7). An example of a NeST

representation and its associated graph appears in Figure 1.4.
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1.4 Overview

We give a brief overview of the chapters and sections which follow.

Chapter 1: The intent of this chapter is to examine the background of, motivate,
illustrate and precisely define NeST representations and NeS'T graphs.

Section 1.1 gives a historical perspective for NeST representations. The ances-
tors of NeST representations, namely, interval representations and tolerance repre-
sentations are presented and illustrated by examples. Various properties of these
representations and their associated graphs are explored.

With the historical background of NeST representations in hand, section 1.2 mo-
tivates the study of NeST representations. In particular, it is shown that NeST
representations are a natural and practical generalization of interval representations
and tolerance representations while NeST graphs preserve key algorithmic properties
possessed by interval graphs and tolerance graphs. Furthermore, NeST representa-
tions fill a void in the current literature. Finally, NeST representations are illustrated
with an assortment of applications.

Section 1.3 defines the terminology we will be using throughout this work. A
precise definition of NeST representations is given. This definition corrects an error
found in the original paper on NeST representations [4].

Section 1.4 is this overview section.

Chapter 2: A NeST representation is a complicated mathematical structure
with many parameters. This chapter filters from the definition of NeS'T representa-
tions redundant information. This strategy is applied to the three components of a
NeST representation, namely, the set of neighborhood subtrees, the set of tolerances

and the embedded tree.
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Section 2.1 introduces the concept of maximal and truncated neighborhood sub-
trees. It is shown that maximal neighborhood subtrees have a distinct theoretical
and practical advantage over their truncated counterparts. We introduce standard
NeST representations which sidestep the problem of truncated neighborhood sub-
trees, without loss of generality. We discuss how truncated neighborhood subtrees
arise in the generalization of interval representations and tolerance representations by
NeST representations. Through this analysis we derive an alternative generalization
of interval representations and tolerance representations which is more natural than

NeST representations yet equivalent.

In section 2.2 we discover that tolerances in a NeS'T representation do not need
to be specified explicitly, but instead, can be defined implicitly in a “tolerance-free”
NeST representation. That is, tolerances in a NeS'T representation of a graph are

redundant.

Section 2.3 restricts the domain of embedded trees necessary for a NeST represen-
tation. The tree operation of grafting is introduced and utilized to derive a sufficient

condition on embedded trees.

Chapter 3: A better understanding of NeST representations and NeST graphs
can be achieved by investigating the subclasses of NeST graphs associated with NeST
representations which have been restricted in obvious ways. Two of the classes we
investigate are introduced here, namely, fixed diameter and fixed tolerance NeST
graphs, whereas proper and fixed tolerance NeST graphs were introduced by Bibel-

nieks and Dearing [4].

In section 3.2 we investigate fixed diameter NeST graphs. We show that these

graphs are exactly unit NeST graphs which are analogous to unit interval and unit
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tolerance graphs. More importantly, we show that fixed diameter NeST graphs are
proper NeST graphs. We also discuss the relationship between fixed diameter and

fixed radius NeST representations.

Proper NeST representations and proper NeST graphs are the topic of section 3.3.
Proper NeST graphs are analogous to proper interval and proper tolerance graphs.
The question of whether unit interval and proper interval graphs are the same, as well
as the question of whether unit tolerance and proper tolerance graphs are the same,
have been asked and answered (yes to the former, no to the latter) in the literature.
We ask and answer the question of whether unit NeST and proper NeST graphs are
the same (yes). We close the section with a tolerance and radius-free characterization

of proper NeST graphs.

Section 3.4 introduces fixed distance NeST graphs. We prove that a fixed distance
NeST graph has a NeST representation where the embedded tree is an embedded star.
We also demonstrate that fixed distance NeST graphs are a subclass of proper NeST
graphs. Our main result is in response to a question posed by Monma, Reed and
Trotter [16]: the class of fixed distance NeST graphs is exactly the class of threshold
tolerance graphs. This equivalence implies polynomial recognition of fixed distance

NeST graphs.

The final subclass of NeST graphs we explore is the class of fixed tolerance NeST
graphs. The main result of section 3.5 is a characterization of fixed tolerance NeST

graphs.

Chapter 4: In this chapter we address some unanswered questions regarding
class inclusions and NeST graphs. These questions are both posed by ourselves and

posed in the literature.
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In section 4.1 we answer the question posed by Bibelnieks and Dearing [4]: is the
class of NeST graphs a proper subclass of weakly triangulated graphs? To answer
this question we utilize results obtained in earlier chapters of the thesis.

In section 4.2 we examine class inclusion relationships among proper, fixed dis-
tance and fixed tolerance NeST graphs.

Chapter 5: This chapter presents a summary of our results and conclusions.
Open problems in the area of NeST representations and NeST graphs are discussed

as well as possible directions for future research.



Chapter 2

Refining NeST Representations

The first hurdle that one encounters when working with NeST representations is their
complex structure. In this chapter we will filter from the definition of a NeST repre-
sentation redundant information in an attempt to make this hurdle less obstructive.
We will do this by examining each of the main components of a NeST representation
(T,S,T), namely, the embedded tree T, the set of neighborhood subtrees S and the

set of tolerances T .

2.1 Standard Neighborhood Subtrees

In this section we motivate, define and explore what we call standard neighborhood
subtrees. It will be shown that standard neighborhood subtrees have practical and
theoretical advantages over arbitrary neighborhood subtrees.

A neighborhood subtree T'(¢c,r) is called mazimal if |T(¢c,r)| = 2r. The following

lemma illustrates why the adjective “maximal” is appropriate:

Lemma 2.1.1 For any neighborhood subtree T'(c,r), |T(c,r)| < 2r.

29
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T(c,3) T(a3) |
T(b,2) A
1 unit

Figure 2.1: Maximal and truncated neighborhood subtrees.

Proof: Since d is a metric on the embedded tree T', the triangle inequality holds, that
is, d(i,7) < d(i, k) + d(j, k) for all points i,7,k € T. If |T(c,r)| > 2r then there is a
path P(a,b) in T(e,r) such that d(a,b) > 2r. However, r > d(a,c) and r > d(b,c)
imply 2r > d(a,c) + d(b,c). By the triangle inequality we have 2r > d(a,b) > 2r; a

contradiction. O

A neighborhood subtree which is not maximal will be called truncated. T(c,3)
in Figure 2.1 is a truncated neighborhood subtree whereas T'(a,3) and 7'(b,2) are
not. The existence of truncated neighborhood subtrees in a NeST representation is

undesirable for the following reasons:

e The diameter of a maximal neighborhood subtree T'(¢,r) depends only upon
the value of r and can be computed in constant time. The diameter of a
truncated neighborhood subtree depends upon r, ¢ and the embedded tree T
Hence, determining the diameter of a truncated neighborhood subtree cannot,
in general, be computed in constant time and requires more information to do

SO.

e The analysis of NeST representations where all neighborhood subtrees are max-
imal is simpler than analyzing those with truncated neighborhood subtrees be-
cause the diameter of a maximal neighborhood subtree is independent of the

embedded tree.
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The complications incurred by the presence of truncated neighborhood subtrees
can be avoided by the use of standard neighborhood subtrees. We shall see that
every NeST graph has a NeST representation in which each neighborhood subtree is
a standard neighborhood subtree. Furthermore, standard neighborhood subtrees are

always maximal.

Definition 2.1.2 We call T(m(c,r),l(c,r)) the standard neighborhood subtree of
T(c,r) where

1. m(e,r) is the midpoint of a longest path in T'(c,r) and
2. (e, r) is half the length of a longest path in T'(c,r).

Lemma 2.1.3 The standard neighborhood subtree of a neighborhood subtree is uniquely
defined.

Proof: let T(c,r) be a neighborhood subtree. To show that T(m(e,r),l(c,r)) is
uniquely defined it is sufficient to show that m(c,r) and I(¢,r) are unique. Obviously,
I(¢,r) is unique since it is the length of a longest path in T'(¢,r).

To see that m(¢,r) is also unique, suppose that P(a,b) and P(z,y) are two longest
paths in T'(¢,r) with midpoints ¢; and ¢z where d(¢q,¢3) > 0. We have that d(a,b) =
2l(e,r) = d(z,y). Either P(a,e1) N P(cr,¢a) = {e1} or P(byer) N Pley,ea) = {er )
similarly, either P(x, c2) N P(c1,ca) = {ea} or Py, c2)NP(er, e2) = {ea}. Without loss
of generality, assume that P(a,c;) N P(er,e2) = {e1} and Pz, ¢2) N Pey,e2) = {ea}
It follows that P(a,z) = P(a,c1) U P(er, ¢2) U P(x,¢2) which implies that d(a,z) =
2l(e,r) 4 d(e1,¢2) > 2l(e,r). This contradicts the maximality of d(a,b) and d(z,y).
By contradiction, d(¢1,¢2) = 0. Hence, the midpoints of all longest paths in T'(¢,r)

are identical which implies that m(c,r) is unique. O
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The following lemma demonstrates that a neighborhood subtree and its standard

neighborhood subtree are identical point sets.

Lemma 2.1.4 T'(¢,r) = T(m(c,r),l(c,r)), for any neighborhood subtree T'(c,r).

Proof: Let P(a,b) be a longest path in T'(c, r). First we show that T'(m(c,r),l(c,r)) C
T(¢,r). We have that m(c,r)is on P(a,¢) or P(b,¢), hence, r > d(a, ¢) = d(c,m(c,r))+
d(a,m(c,r))orr > d(b,¢) = d(c,m(c,r))+d(b,m(c,r)). In either case, r > d(c, m(c, 7))+
l(c,r). Itz € T(m(c,r),l(¢c,r)) then I(c,r) > d(z,m(e,r)) and so r > d(c, m(c,r)) +
d(z,m(e,r)) > d(c,x). This proves = € T(c,r).

To see that T'(¢c,r) € T(m(c,r),I(c, r)) first assume that z is an element of T'(c, r)—
T(m(c,r),l(c,r)). This assumptions gives us d(z,m(c,r)) > l(c,r). Now, d(a,z) =
d(a,m(c,r)) + d(z,m(c,r)) or d(b,z) = d(b,m(c,r)) + d(x,m(c,r)). Thus, either
d(a,z) = l(e,r) + d(z,m(e,r)) > 2l(e,r) or d(b,z) = l(¢,r) + d(x,m(c,r)) > 2(c,r).
In either case, the maximality of d(a,b) in T(c,r) is contradicted. This proves that
T(c,r) C T(m(c,r),l(c,r)). O

Lemma 2.1.5 A neighborhood subtree is maximal if and only if it is a standard

neighborhood subtree.

Proof: (=) Let T'(¢,r) be a maximal neighborhood subtree in some NeST representa-
tion. Let P(a,b) be a maximal path in T'(¢,r). By Lemma 2.1.4, P(a,b) is maximal in
T(m(e,r),l(c,r)) as well. Hence, I(¢,r) = r. Since d(a,¢) = d(b,¢) =r = |P(a,b)|/2,
¢ is the midpoint of P(a,b), hence, ¢ = m(c,r).

(<) If T'(¢,r) is a standard neighborhood subtree then, by definition, |T'(¢,r)| =

2r, hence, T'(¢,r) is maximal. O
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Lemma 2.1.6 If G is a NeST graph then G has a NeST representation in which

c=m(e,r) and r = (e, 1), for each neighborhood subtree T (c,r).

Proof: Let GG have a NeST representation (7, 5,7). Replace all neighborhood sub-
trees in S with their standard neighborhood subtrees. (7,5,7) remains a NeST
representation of (¢ since, by Lemma 2.1.4, T'(¢,r) = T(m(c,r),l(c,r)), for all neigh-

borhood subtrees T'(¢,r). O

Corollary 2.1.7 If G is a NeST graph then G has a NeST representation where all

neighborhood subtrees are mazximal.

Proof: By Lemma 2.1.6, G has a NeS'T representation in which all neighborhood
subtrees are standard neighborhood subtrees. Hence, by Lemma 2.1.5, G has a NeST

representation where all neighborhood subtrees are maximal. O

A consequence of Corollary 2.1.7 is that we may restrict our analysis of NeST rep-
resentations, without loss of generality, to those NeST representations whose neigh-

borhood subtrees are maximal. This fact motivates the following definition:

Definition 2.1.8 A NeST representation is called a standard NeST representation

if all neighborhood subtrees are standard neighborhood subtrees.

Observe that when measuring neighborhood subtree size in a standard NeST rep-
resentation there is no practical difference between the definition of diameter found

in Bibelnieks and Dearing [4] and the definition of diameter found here.

Consider the relationship between tolerance representations, NeST representations

and neighborhood maximality. Intervals on the line can be perceived as neighborhoods
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Figure 2.2: A tree 7, an embedding of 7 and an extended embedding of T .

of the line. Since the line in a tolerance representation is unbounded, intervals in a
tolerance representation are always maximal neighborhoods. NeST representations
are a generalization of tolerance representations yet neighborhoods in an embedded
tree aren’t necessarily maximal. The reason for this is that the embedded tree has
endpoints, hence, neighborhood subtrees can be truncated.

Although standard NeST representations avoid the problem of truncated neigh-
borhood subtrees, they do not avoid the fact that tolerance representations have an
inherent property, namely, neighborhood maximality, that NeST representations do
not possess. In a generalization of tolerance representations we would like to maintain
such nice properties. This problem can be solved by an alternative generalization of
tolerance representations which is more elegant, yet equivalent to, NeS'T representa-
tions. We call this generalization an extended NeST representation.

An extended embedded tree T' is an embedding of a tree T except that leaves of
T are mapped to nonintersecting halflines. See Figure 2.2 for an example.

All neighborhoods of an extended embedding tree are maximal for the same rea-
son that neighborhoods of a line are maximal: there are no endpoints. We define an
extended NeST representation to be a NeST representation (7, 5,7) except that T
is an extended embedded tree. It is easily seen that every extended NeST represen-

tation (7,5, T) yields a NeST representation (7", 5", T') where T" is an (unextended)
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embedded tree: let S’ =S, T/ =T and 7' = T'(p,r) where T'(p,r) is a neighborhood
subtree of T'" with arbitrary center p and radius r sufficiently large so that, for all
T.€S, T, CT(p,r).

The following theorem proves the converse to be true, that is, any graph which
has a NeST representation also has an extended NeST representation. This result
is not obvious since, in general, T, # T., where T, € S and T, € S are defined as

above.

Theorem 2.1.9 If a graph has a NeST representation then it has an extended NeST

representation.

Proof: Let (G have a standard NeST representation R = (7,5, 7). Define an ex-
tended NeST representation R = (7", 5", T') where T" is the extended embedded tree
obtained by attaching a halfline L, to each endpoint z of T. Let S = S and T' = T,
hence, for all x € V(G), ¢, = ¢, rl. =1, and 7] = 7.

We will show that R is an extended NeST representation of G. It is sufficient to
show that |T] | = [T.,|, for all pairs z,y € V(G). We proceed with a case by case
analysis.

Case 1: T,, =0.

If T, and T, do not intersect then we have that d(c.,¢,) > r, + r,. Since d(c., c;) =
d(cz,¢y), 1y, = rp and r, = ry it follows that T and T do not intersect either. Hence,
Tl =0 = |11,

Case 2: T, ¢ T, T,¢ T, and T,, # 0.

In this case we have |Ty,| = r, + ry, — d(cz, ¢,) (veferencing forward to Lemma 3.3.3).

Since T, ¢ T,, T, ¢ T} and T}, # () it follows that |1, | =i, +r, —d(c,, c,) = |T,,].

s by
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Case 3: T, CT,
This case is symmetric with T, C T,. T, C T, implies that |T,,| = |T:| = 2r, =
2r;, = |T}|. Since |T,,| > [Twl, for all u,v € V(G), and |T;| > [T},| it must be that

1oyl = [Ty -

Having examined all cases we conclude that |7} | = |T5,], for all z,y € V. O
It is an interesting fact that the graphs associated with NeST representations and
those associated with extended NeST representations are identical. Nothing is gained

or lost by restricting embedded trees to be bounded.

2.2 The Role of Tolerances

Our aim in this section is to simplify NeST representations by eliminating tolerances.
Note that the removal of tolerances is done in an effort to better understand the class
of NeST graphs; we are not suggesting a redefinition of NeST representations without
tolerances as tolerances are an important modeling component of NeS'T representa-
tions. The “tolerance-free” characterization of NeST graphs we achieve suggests a
simpler, yet sufficient, description of NeST graphs and will be exploited in the study
of various subclasses of NeST graphs discussed later.

Given a graph G with NeST representation (7,5,7) we define the set B,, for

every vertex z € V((), by
By, ={z € M, : |Ty.| > |Tyy|, for all y € M,.}.

B, is the set of non-neighbors of x that maximize the size of their neighborhood
subtree intersections with the neighborhood subtree of z. Observe that B, may be

empty if M, = 0.
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Definition 2.2.1 The pair (T,S), where T' is an embedded tree and S is a set of
neighborhood subtrees in T', is a tolerance-free NeS'T representation of the graph G if

the following edge condition holds:
vy € B(G) & |Toy| > min{|Tozl, [Ty},
where, for a vertexr z,  is any vertex in B,, and |T,;| = 0 whenever B(z) is empty.

Before stating and proving the main result of this section, we define the perturba-
tion number of a tolerance-free NeST representation of a graph G. The perturbation
number measures the amount of “flexibility” a tolerance-free NeST representation

and graph possess.

Definition 2.2.2 The perturbation number, p(R,G), of a tolerance-free NeST rep-
resentation R = (T,S5) of a graph G is defined by

min(D) if D #£ 0,
0 if D=9,

p(R,G) =

where

D = {|Toy| = |Tas| : |Toy| > [Tes], xy € E(G)}-

Stating that G is a NeST graph is equivalent to stating that there is a NeST

representation (7,5, 7T) such that G and (7,5, T) satisfy the following relation:
ry € BE(G) & |Tyy| > min{r,,}.

There is redundancy in this characterization. In particular, the set of tolerances T
is redundant. The following theorem proves that this redundancy exists and can be

extracted systematically.
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Theorem 2.2.3 (7,5,7T) is a NeST representation of G if and only if (T,S) is a

tolerance-free NeST representation of GG.

Proof: (<) Let GG have a tolerance-free NeST representation (7, 5). Define a NeST

representation (7,5, T) where each tolerance 7, € T is defined by
Ty = |Tzz| + €

and € is given by

p((T,S),G)/2 if p((T,S),G) # 0,

1 otherwise.

To prove that (7,5, T) is a NeST representation of ¢ we must verify that
ry € B(GQ) & |Tyy| > min{r;, 7.},

for all z,y € V(G).

Suppose that zy € F((G). From the definition of a tolerance-free NeST repre-
sentation it follows that |7,,| > |Tw:| or |Twy| > |Ty;|; assume the former with-
out loss of generality. Since |Ty,| > |Tyz| it follows that p((7,S5),G) > 0 and
Toy| — |Toz| > p((T,S),G) > e. Hence, |Thy| > |Tos| + € = 70

Suppose that zy ¢ E(G). From the definition of a tolerance-free NeST repre-
sentation it follows that |7,,| < |Ty:| and |Ty,| < |T,;]. Since € > 0 it follows that
Toy| < [Tosl + € = 7 and [ Toy] < [Tyl + € = 7,

(=) Let GG have a NeST representation (7,5,7). We claim that (7,5) is a

tolerance-free NeST representation of GG. To prove this we must verify that

vy € B(G) & |Toy| > maind{|Tezl, Ty},
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for all z,y € V(G).

Suppose that zy € F(G). It follows that either |T,,| > 7, or |Tyy| > 7,; assume
the former without loss of generality. Observe that for all z € M,, 7, > |T,.|. In
particular, 7, > |Tyz|. It follows that |T,| > |Tsz].

Suppose that zy ¢ F(G). By definition of & and y, zy ¢ FE(G) implies that

| Toy| < [Tes] and |Toy| < |Tog). 0

In closing, we make three observations.

1. Theorem 2.2.3 and its proof characterize the role of tolerances in a NeST rep-
resentation as that of placeholders. It is not necessary that these placeholders
be specified explicitly as in a NeST representation: tolerances can be implicitly
defined by a tolerance-free NeS'T representation. This simplification of NeST

representations, though not surprising, will prove to be useful.

2. The above result proves that a tolerance-free NeST representation (7,5) of
a graph G is obtained from a NeST representation (7,S5,7T) of G simply by
dropping T from the triple (7,5, T). Conversely, the proof of Theorem 2.2.3
describes a method by which we can reconstruct a set of tolerances 7 from a
tolerance-free NeS'T representation (7', .5) of GG to obtain a NeST representation
(T,S,T) of G. 1t is important to realize that the embedded tree T and the set
of neighborhood subtrees S defined in the tolerance-free NeST representation

and the NeST representation are identical.

3. For every NeST representation there is a unique associated graph. That is, the

triple (7,5, T) and the edge condition

vy € B(GQ) & |Tyy| > min{r,, 7,}
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completely specify a unique graph . This is not true for tolerance-free NeST

representations. That is, the pair (7',9) and the edge condition
vy € B(G) & [Tay| > min{|Tes|, [Ty}

may be satisfied by several different graphs G.

2.3 Saufficient Embedded Trees

For every embedded tree T there is a unique weighted tree (7, w) such that 7' =
(f, T), |f(e)] = w(e), for all e € E(T) and T has no degree 2 vertices. Embedded
trees are a complex component of NeST representations and it is to our advantage to
establish sufficient structural properties upon these trees and their unique weighted
counterparts. In this section we introduce the tree operation of grafting which will be

used in proving a sufficiency condition for embedded trees in NeS'T representations.

2.3.1 Embedding Weighted Trees

It is common knowledge that any tree is embeddable in the plane. In fact, any
weighted tree (7,w) has an embedding (f,7) which preserves the weight function
w. Several algorithms which produce planar drawings of weighted trees appear in

Barthélemy and Guénoche [1].

Definition 2.3.1 An embedding (f,T) of the weighted tree (T ,w) is weight preserv-

ing if |f(e)] = w(e), for all e € E(T).

Corollary 2.3.2 Any weighted tree (T,w) has a weight preserving embedding.
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Proof: We omit proof though the reader is directed to Barthélemy and Guénoche [1].

O

Given an embedded tree T' we can also define a weighted tree for which T is a

weight preserving embedding.

Definition 2.3.3 If T is an embedded tree then the discrete tree associated with T,

(T ,w), is defined by:

o For each p € T such that p is an endpoint of T or the intersection of line

segments in T, add a vertex v, to V(T).
o Let vyu, € E(T) iff p and q share a line segment in T

Discrete trees will be utilized in the following section.

2.3.2 Grafting

In this section we define the tree operation of grafting. Grafting will be used to show
that if a graph G has a NeST representation with embedded tree (f,7) then it is
sufficient that 7 have only degree one and degree three vertices. This sufficiency
condition restricts the number of viable trees T for a NeST representation.
Informally, grafting is the operation of severing a subtree of a tree T and splicing

it back onto an edge of T.

Definition 2.3.4 If T is a lree with edges vw and ab then T' = T(v,w,ab,z) is

called a grafting of T where

o 2 V(T),

o abe TE(T)_{W}(U),
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Figure 2.3: T and the grafting 7 (v, w, ab, z).
o V(T =V(T)U{z} and

o E(T") = (E(T)U{az,bz,wz}) — {ab,vw}.

Hence, T (v, w,ab, z) is the tree obtained by severing the edge vw, inserting the
new vertex z onto the edge ab and then adding an edge between w and z. This
operation is depicted in Figure 2.3.

We can extend the notion of grafting trees to grafting embedded trees:

Definition 2.3.5 The embedded tree T' = (f',T') is a grafting of the embedded tree
T=(f,T) T is a grafting of T .

Grafting of trees and embedded trees will be employed in the proof of the following

structural lemma:

Lemma 2.3.6 If G is a NeST graph then G has a tolerance-free NeST representation

(T, S) where the discrete tree associated with T' has only degree 1 or degree 3 vertices.
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Figure 2.4: Reducing the degree of v by grafting.

Proof: Let (T, ) be a tolerance-free NeST representation of ¢ and (7, w) the discrete
tree associated with T'. Suppose v € V(T) and deg(v) = 2 where N, = {z,y}. Define
T' by
V(T')=V(T) —{v} and
E(T") = (BE(T) U{zy}) — {vz,vy}.

Now define w’ by:

w(e) if e # ay,

w(vz) +wlvy) if e = xy.
Let 7’ be a weight preserving embedding of (77,w’). Define a tolerance-free NeST

representation (77,5") for GG where neighborhood subtree centers are placed in 7"

such that d(cl,, c)) = d(cz,¢,), for all z,y € V(G). Allow the neighborhood subtree
radii to be the same as in (7',5). It follows that (77,5') is a tolerance-free NeST

representation of (G. We can repeat the above for all vertices in the discrete tree of

degree 2.
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We assume that 7 has no degree two vertices. Suppose that v € V(T) and deg(v) =
m > 3. Let vy, vy, ..., v, be the m neighbors of v in T. Let T; = TV(T)—{U}(Ui)v
1 <2 < m, be the m connected components of TV(T)—{U}'

Let 7' be the grafting 7 (v, vy, vv,_1,2). This grafting appears in Figure 2.4.
Observe that the degree of v in T is one less than the degree of v in 7. Define a

weight function w’ for 7" as follows:

w(vv,,) €= V,2,

w(e) otherwise,

where 0 < 6 < p((7,5),G)/2. In the case that p((7,5),G) = 0, G has no edges and
thus has a tolerance-free NeST representation where the embedded tree is a single
vertex. Assume p((T,5),G) # 0.

Let 7" be a weight preserving embedding of (7', w’). Define a tolerance-free NeST

representation (77, 5") for G where neighborhood subtree centers are placed in 7" such

that d(c},c;) = d(cs,cy), for all z,y € V(G). Allow the neighborhood subtree radii
be the same as in (7, 5).
We claim that (77,5") is a tolerance-free NeST representation of G. We must

show that the following edge condition holds:
vy € E(G) & |15, | > min{| T, |, [Ty}

First observe that [T, | — [T}, || < 4. Suppose zy € E(G). Since (T, 5) is a tolerance-
free NeST representation of ¢ it follows that |Ty,| > |T.:|, without loss of generality.
In the worst case, |T,,| = |T,y| — & and |T};| = |T,:| 4+ 6. Hence, [T}, | — |T,;| =
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Ty = 6 — [Tt = 6 = [Toy] — [Tua] — 26 > [Tu] = |Toa] — p((T,5),G). But by
definition, p((T,S),G) < |Tuy| — |Tui|, so |Tey| — |Tez| — p((T,S),G) > 0 and it
follows that [T, | > |T},|.

Suppose zy ¢ E(G). By definition, |7, | < [T,,]. Hence, we have shown that
the edge condition holds so (7",5’) is a tolerance-free NeST representation of G. We
can repeat the above process until the degree of v is three. Furthermore, the process
does not increase the degree of any other vertices. Hence, applying the process to all
vertices of degree greater than three results in a tolerance-free NeST representation

of G where the discrete tree has only degree one and degree three vertices. O
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Chapter 3

Subclasses of NeST Graphs

3.1 Purpose

The strategy behind this chapter is to achieve a better understanding of NeST rep-
resentations and NeST graphs by examining important subclasses of NeST graphs.
Each of the subclasses we study are obtained by restricting NeS'T' representations in
some obvious and natural way.

The subclasses we will be studying are fired diameter NeST graphs, proper NeST
graphs, fized distance NeST graphs and fized tolerance NeST graphs. Fixed diameter
NeST graphs are obtained by restricting all neighborhood subtrees in a NeST repre-
sentation to be the same size. Proper NeST graphs are obtained by requiring that
no neighborhood subtree in a NeST representation be properly contained within an-
other neighborhood subtree. Fixed distance NeST graphs are obtained by requiring
all neighborhood subtree centers to be equidistant in the embedded tree of a NeST
representation. Finally, fixed tolerance NeST graphs are obtained by requiring all

tolerances in a NeS'T representation to be equal.

47
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The subclasses we examine have a theoretical motivation which will be discussed
in their respective sections. Proper and fixed tolerance NeST graphs already appear
in the literature [4], whereas fixed diameter and fixed distance NeST graphs are

introduced here.

3.2 Fixed Diameter NeST Graphs

We begin our study of subclasses of NeST graphs with the class of fixed diameter NeST
graphs. Fixed diameter NeST graphs are those graphs which have a NeST represen-
tation in which all neighborhood subtrees have the same diameter. The theoretical
motivation for studying fixed diameter NeST graphs is that they are analogous to
fixed interval graphs and fixed tolerance graphs. We shall show that fixed diameter
NeST graphs are exactly unit NeST graphs (fixed diameter NeST graphs where all
neighborhood subtree diameters have unit size). More importantly, we shall show
that fixed diameter NeST graphs are proper NeST graphs. The analogues of these

problems have been studied with respect to interval graphs and tolerance graphs.

Definition 3.2.1 A graph G is a fixed diameter NeST graph if there exists a NeST
representation of G in which all neighborhood subtree diameters are equal. Such a
NeST representation s called a fixed diameter NeST representation. G is a unit
NeST graph if it has a NeST representation where all neighborhood subtree diameters

have unit size. Such a NeST representation is called a unit NeS'T' representation.

Before we continue our discussion on fixed diameter NeST graphs, we introduce
the concept of scaling a NeST representation. If (7, 5,7) is a NeST representation

then we scale (7,5, T) by a positive constant k, denoted k(T, S, T), if
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e the embedded tree T' is expanded (or contracted) uniformly by a factor & such
that the distance between any two points, a and b, in the expanded tree is equal

to kd(a,b) where d(a,b) is the distance from a to bin T,
e all neighborhood subtree radii are multiplied by a factor k& and
e all neighborhood subtree tolerances are multiplied by a factor k.

The following lemma confirms the intuition that the scaled NeST representation
E(T,S,T) is a NeST representation of & if and only if (7, 5,7) is a NeST represen-

tation of G.
Lemma 3.2.2 (7,5,7T) and k(T,S,T) are NeST representations of the same graph.

Proof: The equality of (7,5, T) and k(T, S, T) is easily exhibited by scaling the unit

of measure!. O

Corollary 3.2.3 G is a fired diameter NeST graph if and only if it is a unit NeST

graph.

Proof: Let (T,S,T) be a fixed diameter NeST representation of G where all neigh-
borhood subtree diameters are D. Since scaling preserves the ratio of neighborhood
subtree diameters, (1/D)(T,S,T) is a fixed diameter NeST representation of GG where
all diameters have unit size.
The converse is true by definition. O
Proper NeST graphs are those graphs which have a NeST representation where
no neighborhood subtree is properly contained within another. This class of graphs

is formally introduced in section 3.3. Proper interval and proper tolerance graphs

!Thanks to David Gregory for this observation.
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have analogous definitions. It is known that unit interval and unit tolerance graphs
are proper interval [18] and proper tolerance graphs [10], respectively. Below we show
that the same is true for NeST graphs. That is, fixed diameter NeST graphs (i.e.

unit NeST graphs) are proper NeST graphs.

Theorem 3.2.4 A fizred diameter NeST representation is a proper NeST represen-

tation.

Proof: Let (T,S,T) be a fixed diameter NeST representation. Suppose that T, C T,
for some z,y € V(G) and let D = |T,;| = |T,|. Consider the standard neighborhood

subtrees T'(m(cz, 12, (¢, 7)) and T (m(cy, 1y), (cy, 1)) of T and T,,. For brevity, let

/

cdo=m(ep,ry), 1

" = l(cg,72), ¢, = m(cy,ry) and r) = I(¢c,,1y). Recall from section

2.1 that T, = T(c,,r.) and T, = T(c,r! ), hence, T'(c.,rl) C T(c,r!).

)T Yy )T Yy

OwW, C_ 1S € mi omt o € pPa a whnere a an are maxima 1Stan
Now, ¢ is the midpoint of the path P(a,b) wh db imally distant
)T

points in T'(cl,, r},). However, since |T'(c},r,)| = D = |T(c,,r,)| it follows that a and b

are maximally distant in T'(c,,r;) as well. Since T'(¢;,r,) is a standard neighborhood

! !

subtree, it follows from Lemma 2.1.3 that ¢, = ¢ and r;, = r;. However, this

implies that T'(c.,r.) = T(c,r!). We conclude that (7,5,7T) is a proper NeST

vy
representation. O
A closing comment on fixed diameter NeST representations. Consider those NeST
representations obtained by the restriction that all neighborhood subtree radii be
equal. Call these NeST representations fized radius NeST representations. Intu-
itively, we may equate fixed radius NeST representations with fixed diameter NeS'T
representations. However, this intuition is incorrect: two neighborhood subtrees in a

NeST representation may have equal radii yet have different diameters. This occurs
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when neighborhood subtrees are truncated. However, if truncated neighborhood sub-
trees do not occur, fixed radius and fixed diameter NeST representations are identical.
In other words, fixed radius standard NeST representations can be equated with fixed
diameter NeST representations. The divergence between fixed radius and fixed di-
ameter NeST representations does not occur in the analogous interval and tolerance
representations. That is, when intervals on the line are perceived as neighborhoods,
fixed radius and fixed diameter interval representations, as well as fixed radius and
fixed diameter tolerance representations, are identical. As discussed in section 2.1,
this divergence is a side effect of generalizing the unbounded line by an embedded

tree with endpoints.

In the next section on proper NeST graphs, we will again encounter fixed diameter

NeST graphs as they play a central role in the understanding of proper NeST graphs.

3.3 Proper NeST Graphs

In this section we explore proper NeST graphs which were informally introduced
in section 3.2. Proper NeST graphs are analogous to proper interval and proper
tolerance graphs which are well-studied subclasses of interval and tolerance graphs,

respectively.

Definition 3.3.1 A graph G is called a proper NeST graph if it has a NeST repre-
sentation (T, S,T) where no neighborhood subtree is properly contained within another
neighborhood subtree. That is, for all x,y € V(G), T, ¢ T,. We call a NeST repre-

sentation with this property a proper NeS'T representation.
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Roberts [18] raised and resolved the question of whether unit interval graphs are
the same as proper interval graphs (yes); Bogart, Isaak, Langley and Fishburn [5]
resolved the analogous question, posed by Golumbic, Monma and Trotter, of whether
unit tolerance graphs are the same as proper tolerance graphs (no). As the major re-
sult of this section, we raise and resolve the obvious question of whether fixed diameter
NeST graphs (equivalently, unit NeST graphs) are the same as proper NeST graphs
(yes). We close the section with a tolerance-free and radius-free characterization of

proper NeST graphs.

Lemma 3.3.2 If G is a proper NeST graph then there exists a proper NeST repre-

sentation of G in which all neighborhood subtree intersections are nonempty.

Proof: We know that the result is true for NeST graphs in general [4]. However, we
must show that it holds for proper NeST graphs as well.

Suppose that GG has a proper NeST representation (7,.5,7). The following pro-
cedure is used by Bibelnieks and Dearing [4] to modify the NeST representation

(T,S,T) of a graph G so that all neighborhood subtree intersections are non-empty:
o Let M =max{dy, —r. —r,:z,y € V(G),z # y}.
o If M <0 then stop,

e clse add M/2 to all radii, add M to all tolerances and attach line segments of

length M /2 to all endpoints of 7.

The above procedure enlarges all of the neighborhood subtrees, and the embedded tree
T, such that a proper NeST representation remains proper after being transformed

by the procedure. O
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Lemma 3.33 IfT. ¢ T,, T, ¢ T, and Ty, # O then |Tyy| = vy + 1, — d(cs, ¢y).

Proof: Bibelnieks and Dearing have shown that, if 7, ¢ T,, T, ¢ T, and T, # ()
then T, is a neighborhood subtree with radius 1/2(r, + r, — d(cs, ¢,)) [4]. It follows
from their result that |Ty,| = r, + ry, — d(cz, ¢y). O

The main result of this section follows:

Theorem 3.3.4 [f G has a proper NeST representation then G has a fized diameter,

standard NeST representation.

Proof: Let R = (T,S,T) be a proper standard NeST representation of G. Let
r = max{r, : x € V(G)}. We define a new NeST representation R' = (77,5, T') as

follows:

L T" = (Usev(e) Lz) UT where, for each z € V((), L, is a line segment of length

2r attached to T at c,.
2. For all z € V(G), ¢, is located on L, such that d(c,c;) =r —r.
3. Forall z € V(G), vl =rand 7. = 7,.

Claim 1: R'is a fixed diameter NeST representation.
Since r, = r for all z € V((G), we need only show that all neighborhood subtrees in
R’ are maximal.

Consider = € V(G). Let p € L, such that d(c,,p) = r. Let P(a,b) be a maximal
path in 7,. Since T, is maximal, d(a,c;) = r,. Consider the path P(a,p) in T..
P(a,p) = P(a,c;) U P(eg, ) U P(c,,p), hence, d(a,p) = rp + (r —ry) +r = 2r. It

follows that 77 is maximal.
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Claim 2: R'is a standard NeST representation.
In Claim 1 we proved that all neighborhood subtrees were maximal. By Lemma 2.1.5,
all neighborhood subtrees are standard neighborhood subtrees.

Claim 3: R’ is a NeST representation of G.

It must be shown that, for all z,y € V(G), the following edge condition holds:
vy € BE(G) & |T),| > min{r,7,}.

By Lemma 3.3.2, we may assume that |7}, | # (. Since R’ is a fixed diameter NeST
representation, R’ is a proper NeST representation by Theorem 3.2.4. By Lemma
3.3.3, and the fact that R' is proper, it follows that [T} | = r, +r, — d(c,,c,) =
2r —d(c,,c,). Observe that d(c,,c,) = d(cy,c;,) + d(ce, ¢y) + d(cy, ) = (r —712) +
d(cz,cy) + (r —ry), thus, [T, | = 2r — (2r —r, —ry +d(cs,¢y)) = 1o + 1y — d(cs, ¢y).
By Lemmas 3.3.2 and 3.3.3, we may assume that |T,,| = r, + r, — d(¢;, ¢,) and so
1oyl = [Tayl.

Since 1) = 7, for all x € V(G), it follows from
ry € B(GQ) & |Tyy| = min{r,,7,}

that

ry € B(G) & |T),| > min{r,, 7} .

Corollary 3.3.5 G is a proper NeST graph if and only if G is a fived diameter NeST

graph (equivalently, unit NeST graph).

Proof: Theorem 3.3.4 and Theorem 3.2.4. O
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As mentioned earlier, interval graphs possess the property that unit interval graphs
are identical to proper interval graphs. The generalization of interval graphs to tol-
erance graphs, by the introduction of tolerances, results in the loss of this property
for tolerance graphs. That is, unit tolerance graphs are not equal to proper tolerance
graphs. It is an interesting fact that this property is regained in the generalization of
tolerance graphs to NeST graphs by generalizing the line to a tree.

The following definition will be utilized in our characterization of proper NeST

graphs:

Definition 3.3.6 (7, X,c) is called an X-tree if T is an embedded tree, X is a finite

set and ¢: X — T'; ¢ is called the locator of the X -tree.

Informally, an X-tree is an embedded tree in which the elements of X have been
located. We now state and prove our tolerance-free and radius-free characterization

of proper NeST graphs.

Theorem 3.3.7 (Proper NeST Graph Characterization) G is a proper NeST

graph if and only if there exists a V(G)-tree (T,V(G),¢) such that

d(es,cy) < d(eg,cp), for allp € M,
Ty € E(G) = or

d(cg,cy) < d(ey,cy), for all g € M,

Proof: (=) Suppose G is a proper NeST graph. By Theorem 3.3.4, let (T,5,7)
be a fixed diameter, standard NeST representation of G. We may assume that all
neighborhood subtree intersections are nonempty by Lemma 3.3.2. Let (7', 5) be the

corresponding tolerance-free NeS'T representation of (.
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(T, S) satisfies the edge condition
vy € B(G) & [Tyy| > min{|Tesl, [Ty}
which, by application of Lemma 3.3.3, can be expanded to
ry € B(G) & ry+ry —d(eg,cy) > min{ry + ri — d(cg,ci),ry + 15 — d(cy, cy)}

Since all neighborhood subtree diameters are equal and all neighborhood subtrees are

maximal, |T;| = 2r, for all z € V(). This gives us
vy € BE(G) © 2r —d(cz, cy) > min{2r — d(c,, ¢;),2r — d(ey, ¢y)}
which simplifies to
ry € B(G) & d(cy,¢y) < min{d(cz, c;),d(cy, i)} (3.1)

This is equivalent to

d(es,¢y) < d(eg,cp), for all p € M,
ry € B(G) & or
d(cs, ¢y) < d(ey,c,), for all g € M,
Hence, let (T, V(G), ') be the V(G) where ¢ is the locator defined by ¢ = ¢,.
(<) Let (T",V(G),c') be a V(G)-tree such that (3.1) holds. We construct a

tolerance-free NeST representation, (7',.5), by defining

o T'= (Usev(g) L=)UT" where, for each x € V(G), L, is a line segment of sufficient

length attached to T" at ¢,

e ¢, =, forall z € V() and
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e r, =, for all z € V((G), where r is sufficiently large so that T,, # 0, for all
a,be V(G).

We show that (7,.5) is a proper, tolerance-free NeST representation of G.
(T,S) is proper since, for all z € V((), there exists m € L, such that m € T, but

m & Ty, for all y # € V(G). (T,S5) being proper allows us to use Lemma 3.3.3 to

expand
vy € B(G) & 2r —d(cg, ¢y) > min{2r — d(cg, ¢;),2r — d(cy,¢y)}
to
vy € B(G) & [Toy] > mind{| T, [Ty}
Hence, (T, 5) is a proper, tolerance-free NeST representation of G. O

The above characterization of proper NeST graphs is both tolerance-free and
radius-free in the sense that it depends only upon the embedded tree and the location

of vertices in the embedded tree. This motivates the following definition:

Definition 3.3.8 If G is a graph and (T,V(G),c) is a V(G)-tree which satisfies

d(cs,¢y) < d(ezycp), for allp € M,
ry € E(G) & or
d(eg, ¢y) < d(ey,cq), for all g € M,

then (T,V(G),c¢) is called a proper V(G)-tree representation of (.

3.4 Fixed Distance NeST Graphs

In this section we introduce our second new subclass of NeST graphs obtained by

the restriction that all neighborhood subtree centers be equidistant in the NeST
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representation. Our main result is that this new subclass is the same as the class of

threshold tolerance graphs introduced by Monma, Reed and Trotter.

Definition 3.4.1 A graph (G is a fixed distance NeS'T graph if it has a standard NeST
representation, called a fixed distance NeST representation, in which the distance

between every pair of distinct neighborhood subtree centers is the same.

The definition of fixed distance NeST graphs differs from the other three sub-
classes studied here since it requires that fixed distance NeST representations be
standard. For fixed diameter, proper and fixed tolerance NeST representations this
is not required since the redefinition of the neighborhood subtrees in these NeST
representations as standard neighborhood subtrees does not change the fact that
the representation is fixed diameter, proper or fixed tolerance. However, redefining
a neighborhood subtree as a standard neighborhood subtree usually requires that
the neighborhood subtree center be repositioned, hence, the property of equidistant
neighborhood subtree centers may be lost.

A star is a an acyclic graph composed of a vertex, called the center, which is
adjacent to all other vertices in the graph, hence, stars are trees. An embedded star,
T, is an embedding of a star 7. We call the point in 7" which corresponds to the

center of T the center of T'.

Definition 3.4.2 A star NeST representation is a NeST representation (T,S,T)

where
o T is an embedded star,

o all neighborhood sublree centers are equidistant from each other.
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A graph is a star NeST graph if it has a star NeST representation.

Lemma 3.4.3 A graph G is a fived distance NeST graph if and only if it is a star

NeST graph.

Proof: 1f GG has a star NeST representation, then all neighborhood subtree centers
are equidistant, hence, (G is a fixed distance NeS'T graph.
Conversely, suppose (& has a fixed distance NeST representation (7,5, 7). Define

the embedded tree

"= |J Plescy)

z,yeV(G)

and add line segments of sufficient length to each endpoint of 7". Let (77,5, T) be
the NeST representation where each ¢, is located a distance d(c;, ¢) from the center
of T', where ¢ is the center of T Let r!, = r,, for all z € V(G).

Obviously T" is an embedded star and all neighborhood subtree centers are equidis-
tant. It follows from r; = r, and d(c},¢,) = d(cz,¢,), for all 2,y € V(G) and the
maximality of each T} (since each T}, is maximal) that |7}, | = |T,,|. Hence, (T,5',T)
is a star NeST representation of G. O

In light of the above lemma, we shall henceforth refer to both star NeST graphs

and fixed distance NeS'T graphs as fixed distance NeST graphs.

Definition 3.4.4 A radius-only representation of a graph G is a set of nonnegative

numbers R = {r, : v € V(G)} such that

ry > 1y, for all y* € M,
Ty € E(G) = or

ry > e, for all 2 € M,.
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The following theorem is a key result of this section.

Theorem 3.4.5 A graph is a fived distance NeST graph if and only if it has a radius-

only representation.

Proof: (=) Let (G have a tolerance-free, star NeST representation (7,5). We will
assume, without loss of generality, that all neighborhood subtree intersections are
nonempty. Let R ={r,: 2z € V(G)}.
We wish to show that
ry > rys, for all y* € M,
ry € B(G) & or
ry > 1y, for all 2* € My,
thereby proving that R is a radius-only representation of G.
Suppose that zy € E(G). We have |Ty,| > |Ty:| or [Ty > |Ty;]; assume the
former without loss of generality. Observe that since neighborhood subtree centers

are equidistant we have that
|T'-’lb| > |Tac| = Ty > Te.

As a consequence, we have r, > r;.

If M, = 0 then r, > ry, for all 2* € M,, is trivially true. Let z € M,. If
|Tyi| > |Ty.| then r; > r, and, by transitivity, r, > r,. Otherwise, |T,;| = |Ty.| and
so ry > r; implies ry, > r,.

Suppose that zy € E(G). We need to show r, < ry«, for some y* € M, or ry < rpx,

for some z* € M,. But since x € M, and y € M, this is trivially satisfied.

M M ! ! !
(<) Let G have a radius-only representation R'. We may assume that r/, # r} for

all  # y. For simplicity, suppose V(G) = {1,...,|V(G)|} and R is indexed such that
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ry, > 1y, < x> y. Pick some m > 0 and assign values to the radii {r, : = € V(G)} by

the formula ry, = m+k(|VTG)|), k=1,...,|V(G)]. It follows that, r}, > r, & ry > r,.

Let (7,w) be a weighted star with |V (G)| edges each of weight 3m. Let T be a
weight preserving embedding of 7. Place all neighborhood subtree centers a distance
m from the center of T' such that no two neighborhood subtrees are located at the
same point of T. Hence, (T,S5) is a tolerance-free star NeST representation. By
our assignment of values to radii, m < r, < 2m, for all x € V(G). It follows that,
for all z,y € V(G), T, € T,, T, £ T, and T,, # 0. By Lemma 3.3.3, |T,,| =
re + ry —d(cz,¢y) = 1o + 1y — 2m, for all z,y € V(G). It follows that, for all
z,y,z € V(G), |Tys| > |Tys| & 10 > 1y

We show that (7, 5) is a tolerance-free, star NeST representation of G.

Suppose that zy € F(G). We have r, > ry«, for all y* € M, or r, > ry«, for all

z* € M,; assume the former without loss of generality. It follows that |Ty,| > |Tyy~|,
for all y* € M,. In particular, we have |Ty,| > |Ty;|-
Suppose that zy € E(G). We have that r, < r«, for some y* € M,, and r, < rpx,

for some z* € M,. Since our radii are distinct, r, < rys, for some y* € M,, and

ry < rex, for some x* € M,. It follows that |T,| < [Ty,

, for some y* € M,, and
Tay| < [Tawr

, for some z* € M,. However, |T,;| > |Tysx|, for all z* € M,, and

|Tyz'/| > |Tyy*

, for all y* € M,. We conclude that |T,,| < |Ty;| and |T,,| < |Tz:|. O

Theorem 3.4.6 If G is a fired distance NeST graph then G is a proper NeST graph.

Proof: 1In the proof of Theorem 3.4.5, we constructed a tolerance-free, star NeST
representation of a fixed distance NeST graph where all neighborhood subtree cen-

ters were distance 2m apart. The neighborhood subtree radii had lower and upper
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bounds of m and 2m, respectively. Hence, no neighborhood subtree properly con-
tained another neighborhood subtree. Thus the constructed tolerance-free, star NeST
representation is proper. O

Monma, Reed and Trotter ask whether threshold tolerance graphs can be charac-
terized as intersection graphs of subtrees in a tree [16]. In response, we shall show

that threshold tolerance graphs are exactly fixed distance NeS'T graphs.

Definition 3.4.7 (@ is a threshold tolerance graph if there is a pair of sets of num-
bers, (A, B), where A = {a, : x € V(G)} and B = {b, : x € V(G)}, such that the
following edge condition holds:

az > by

ry € B(G) & or

a, > b,.

We call (A, B) a threshold tolerance representation of G.
We use a theorem due to Mike Saks (see Theorem 2.5 in Monma, Reed and Trotter

[16]), which can be restated as follows:

Theorem [Saks] A graph G is a threshold tolerance graph if and only if there exists
a total order of V(G), >, such that

x> M,
ry € E(G) <~ or
y > M,,

where x > M, means x > z, for all z € M, similarly for y > M,.

Theorem 3.4.8 G is a fizred distance NeST graph if and only if G' is a threshold

tolerance graph.
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Proof: By Saks’ theorem, it follows that (& is a threshold tolerance graph if and only
if G admits a radius-only representation. The result follows by Theorem 3.4.5. O

Monma, Reed and Trotter [16] describe a polynomial time recognition algorithm
for threshold tolerance graphs. This, together with Theorem 3.4.8, implies polynomial
recognition of fixed distance NeST graphs. Furthermore, the proof of Theorem 3.4.5
describes a (polynomial) algorithm by which a fixed distance NeST representation
can be constructed from the radius-only representation outputted by the recognition

algorithm.

3.5 Fixed Tolerance NeST Graphs

The final class of graphs we examine is the class of fixed tolerance NeST graphs,
introduced by Bibelnieks and Dearing?® [4]. The relationship between fixed tolerance
NeST graphs and NeST graphs is analogous to the relationship between interval
graphs and tolerance graphs (see Figure 1.1). The consideration of this relationship

leads to a characterization of fixed tolerance NeS'T graphs.

Definition 3.5.1 A graph G is a fixed tolerance NeST graph if there exists a NeST
representation of G where all tolerances are equal. Such a representation is called a

fixed tolerance NeST representation of 5.
Before reaching our characterization we present a definition and two theorems.

Definition 3.5.2 [19] (¢ is a neighborhood subtree graph if there exists an embedded

tree T and a set, S, of neighborhood subtrees of T indexed by V(G) such that the

?Bibelnieks and Dearing actually call these graphs constant NeST graphs. However, to maintain
consistency within our subclass nomenclature, we refer to them as fixed tolerance NeST graphs.
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following edge condition holds:
ry € B(G) & T,,#0.

(T,S) is called a neighborhood subtree representation for G and G the graph associ-
ated with (T,S).

Bibelnieks and Dearing prove the following theorem which characterizes fixed
tolerance NeST graphs as those graphs with neighborhood subtree representations.
Hence, this model is generalized to NeST representations by the incorporation of
tolerances, just as interval representations are generalized to tolerance representations

by the incorporation of tolerances.

Theorem 3.5.3 [4] The class of fized tolerance NeST graphs is exactly the class of

neighborhood subtree graphs.

Theorem 3.5.4 If G is a fized tolerance NeST graph then there is a neighborhood
subtree representation of G' in which all neighborhood subtree radii are equal and no

neighborhood subtree is properly contained within another.

Proof: Let (T,S) be a neighborhood subtree representation of G.
We may assume that all neighborhood subtrees in S are standard neighborhood
subtrees.

We define a new neighborhood subtree representation (77, 5"), where r = max{r, :

z € V(G)}, as follows:

o 17" = (Usev(g) Lz)UT where, for each z € V((), L, is aline segment of sufficient

length attached to T' at ¢,,
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e for all x € V(G), ¢, is located on L, such that d(c;,c.) =r —r, and

xr

e r, =1, forall z € V(G).

Observe that T, N'T = T,, for all x € V(G). It follows that (7",5") is also a
neighborhood subtree representation of G. Furthermore, all neighborhood subtree
radii are equal. Finally, for each € V(G), there is a point p € L, such that
d(c,,p) =r,and so, p € T, — T, for all y # = € V(G). It follows that (77,5') is

proper. O

Theorem 3.5.5 G is a fized tolerance NeST graph if and only if there is a V(G)-tree

(T,V(G),c), and a positive constant k, such that

ry € B(G) & d(eg,cy) < k.

Proof: (=) Let (G have a neighborhood subtree representation (7', S) where all neigh-
borhood subtree radii are equal and no neighborhood subtree is properly contained
within another. Lemma 3.3.3 informs us that, for any neighborhood subtree intersec-
tion Ty,

re + 1y —d(ce,cy) il Ty #0,

0 if Ty = 0.

|Tmy| =

Hence, the edge condition zy € E(G) < T,y # 0 can be refined to

ry € B(G) S ry+ry, —d(cg,ey) >0

and since r, = r, for all z € V(G),

ry € B(G) & d(cg,ey) < 2r.
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Thus, we define the V(G)-tree (T, V(G), ), where ¢, = ¢, for all z € V(G),

vy € B(G) & d(d,c) <k

s by

where k = 2r.

(<) Let (T, V(G),¢) be a V(G)-tree, such that
ry € B(G) & d(eg,cy) <k,

for some k > 0.
We form a neighborhood subtree representation (7,5) by defining, for all z €
V(G), T, = T(cy,r) where r = k/2. It follows that

ry € B(G) & d(cg,cy) < 2r

and so

vy € BE(G) & T,y # 0.

Hence, (T,5) is a neighborhood subtree representation of G, and so, GG is a fixed
tolerance NeST graph. O

Theorem 3.5.5 may be restated in the following way: G is a fixed tolerance NeST
graph if and only if there exists an embedded tree and a placement of the vertices of
GG in the embedded tree such that  and y are neighbors in G if and only if they are

“close” in the embedded tree.



Chapter 4

Class Inclusions

4.1 The Sunflower Graph

Bibelnieks and Dearing [4] proved that NeST graphs are weakly triangulated, and so
perfect, via a result of Hayward [13]. They further asked whether this inclusion is
proper. In this section we show that this is indeed the case, by proving that the graph
in Figure 4.1, the sunflower graph, is weakly triangulated but not a NeST graph.

To prove this result we will employ the characterization of proper NeST graphs
which we obtained in section 3.3. One of our motivations for studying subclasses of
NeST graphs is that the study of subclasses can often participate in the resolution
of important open questions concerning the superclass. In this particular case, our
investigation of proper NeST graphs will help resolve the open question of whether
NeST graphs are properly contained in weakly triangulated graphs or not. In this

sense, we are reaping the benefits of our previous work.

Definition 4.1.1 A graph isomorphic to ({1,2,3,4},{{1,2},{3,4}}) is called a 2K,.

67
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7

Figure 4.1: The sunflower graph.

The 2K, structure of a proper NeST graph, along with our characterization of

proper NeST graph’s, results in the following structural property:

Lemma 4.1.2 Suppose (T,V(G),¢c) is a proper V(G)-tree representation of G. If
W =1{1,2,3,4} C V(G) and Gw is a 2K, where 12,34 € FE(G), then P(c1,cy) N
P(csyea) =0 in T,

Proof: The following edge condition is satisfied, for all z,y € V(G):

d(es,¢y) < d(eg,cp), for all p € M,
ry € B(G) & or
d(cs, ¢y) < d(ey,c,), for all g € M,

Since 12 and 34 are edges we have

(d(e1,¢2) < d(er,e3) and d(eq, ) < d(eq,eq)) or

(d(e1,¢2) < d(ea,e3) and d(ey, ) < d(ez,cq)) (4.1)
and

(d(es,ca) < d(e1,e3) and d(es,cq) < d(cg,c3)) or

(d(es,ca) < d(er,cq) and d(cs,cq) < d(ca,cq)). (4.2)
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C1. C3

Figure 4.2: P(c1,¢2) N P(cs,eq) =0
Without loss of generality, assume that
d(er, ) < d(eryes) and d(er,cq) < d(cq,ca). (4.3)

The two clauses of (4.2) are symmetric about vertices 3 and 4. Hence, without loss
of generality, assume d(cs3,cs) < d(c1,¢3) and d(cs, cq) < d(cq, c3).

Let my4 denote the midpoint of P(cz,¢4) in T and p be the unique intersec-
tion P(c1,c¢q), P(e1,ca) and P(ez,¢q). Similarly, let ¢ be the unique intersection of
P(ca,c3), P(es,cq) and P(ez,cq). Since d(c1,c3) < d(er,ca), p € P(cz2,maq). Since
d(es,cq) < d(ea,c3), ¢ € P(caymaq). Furthermore, d(p,q) > 0. This situation is
depicted in Figure 4.2. It follows that P(c1,c2) N P(es,cq) =0 in T O

For brevity, we will denote P(c1,cy) N P(cs,cq) = B, in an embedded tree, by
12 o 34.

Lemma 4.1.3 The sunflower graph ts not a proper NeST graph.

Proof: Let GG be the sunflower graph and assume that G has a proper V(G) repre-
sentation (7', V (), ¢) such that the discrete tree associated with 7" has only degree 1
or 3 vertices (Lemma 2.3.6). Before performing a case-by-case analysis, we make two
observations. Firstly, for any four vertices 1,2,3 and 4 exactly one of 12 34, 13 ¢ 24

and 14 ¢ 23 is in T'. This is a consequence of T"’s discrete tree having only degree 1
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Figure 4.3: Structures of H,
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or 3 vertices. With respect to 1,2,3,4 € G, the first and last of these three cases are
symmetric, hence, we address the first two cases only in our analysis.

Secondly, there are eight 2K3’s in (G. These are the subgraphs induced by the ver-
tex sets {1,3,5,7},{1,3,5,6},{1,3,7,8},{1,3,6,8}, {2,4,5,8}, {2,4,5,7}, {2,4,6,8}
and {2,4,6,7}. By Lemma 4.1.2, we can conclude that the following are true of 7"
15037, 15036, 18 @ 37, 18 @ 36, 25 @ 48, 25 ¢ 47, 26 @ 48 and 26 e 47.

We now begin a case-by-case analysis:

Case 1: Suppose that 12 e 34. Let H; be the subtree of T' formed by the union of

all pairwise paths between the neighborhood centers associated with vertices 1,2, 3,4

and 6:

H, = U P(cz,cy).

eye{1,2,3,4,6)
H; has five nonisomorphic structures which appear in Figure 4.3.
Structures 1.1 and 1.5, as well as 1.2 and 1.4, are symmetric with respect to G.
Hence, we address structures 1.1, 1.2 and 1.3 only. Suppose that H; is structured
as 1.1. 18 @ 36 implies that 24 e 68. However, this contradicts 26 e 48. Suppose that

Hj is structured as 1.2. 15 e 36 and 18 e 36 imply 24 e 58. This contradicts 25 e 48.
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C3 24 C6 C3 25 Cs

Figure 4.4: Structures of Ho

Finally, suppose that Hj is structured as 1.3. 18 @ 36 implies 28 o 46. This contradicts
26 ¢ 48. By elimination, 12 @ 34 is not possible.

Case 2: Suppose that 13 e 24. Let H, be the subtree of T' formed by the union of
all pairwise paths between the neighborhood centers associated with vertices 1,2, 3,4
and 6. H; has five nonisomorphic structures which appear in Figure 4.4.

Structures 2.1 and 2.5, as well as 2.2 and 2.4, are symmetric with respect to G.
Hence we will address structures 2.1, 2.2 and 2.3 only. Suppose that H; is structured
as 2.1. 18 @ 36 implies that 24 e 68. However, this contradicts 26 e 48. Suppose that
H, is structured as 2.2. 26 e 48 and 26 ¢ 47 imply 13 e 78. This contradicts 18 e 37.
Finally, suppose that Hy is structured as 2.3. 18 @ 36 implies 24 ¢ 68. This contradicts
26 @ 48. Thus, 13 e 24 is not possible.

Since both cases result in contradictions, G is not a proper NeST graph. O

Lemma 4.1.4 If G is a NeST graph, but not a proper NeST graph, then there exists
z,y € V(G) such that xy ¢ F(G) and N, € N,,.

Proof: Let GG be a NeST graph but not a proper NeST graph. Let G have a tolerance-

free NeST representation (7,5). Define, for each z € V(G), P, = {z € V(G) :



72 CHAPTER 4. CLASS INCLUSIONS

T, C T.}. Since (T,S5) is not a proper NeST representation it follows that, for some
r e V(G), P, #0.
Suppose that, for all z where P, # (), we have P, C N,. Let P, # () and derive a

new tolerance-free NeS'T representation (77, 5") for GG as follows:
o 7" =T U L where L is sufficiently long line segment attached to 7" at ¢, and

e 5" = S, except that ¢, is located on L such that d(c,,¢,) = § where § >

max{r, —d(cy,c.):z € P,} and v/, =1, + 4.

Observe that for y & P, |T,,,| = |Tw,|. For y € Py, |T,,| > |Tu,| but wy € E(G) by

assumption. Hence, the edge condition
vy € B(G) & |15, > min{|Tos|, |T,;1}

is satisfied. Furthermore, in (77, 5’) we have P! = (). We can repeat this process,
for all w such that P, # (), to achieve a proper NeST representation for G. This
contradicts the hypothesis that GG is not a proper NeST graph. We conclude that
there exists z,y € V() such that y € P, and zy &€ E(G).

Let z,y € V(G) such that y € P, and zy ¢ E(G). Let zz € E(G). We have
that |Tys| = |Tyy| = |T%] > |T%.| which implies |Ty,| > |T.;]. Since T, C T, we have

|Ty.| > |Tsz| > |T.:]. Hence, yz € E(G). We conclude that N, C N,. O
Lemma 4.1.5 The sunflower graph is not a NeST graph.

Proof: Let GG be the sunflower graph and suppose that GG is a NeST graph. Lemma
4.1.3 informs us that G is not a proper NeST graph. By Lemma 4.1.4, there exists
z,y € V(G) such that zy € E(G) and N, C N,. A simple inspection of (@ reveals

that this is not true. By contradiction, G is not a NeST graph. O
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Lemma 4.1.6 The sunflower graph is weakly triangulated.

Proof: The sunflower graph does not contain an induced cycle on five or more
vertices; neither does its complement. By definition, the sunflower graph is weakly

triangulated. O

Lemma 4.1.7 The class of NeST graphs is a proper subclass of weakly triangulated

graphs.

Proof: Bibelnieks and Dearing prove that NeST graphs are weakly triangulated [4].

Lemmas 4.1.5 and 4.1.6 show this inclusion is proper. a

4.2 Subclass, Superclass

In this section we discuss class inclusions properties of NeST graphs, both known and
unknown. Figure 4.5 summarizes our current knowledge and we will refer to it often.

As shown in section 4.1, NeS'T graphs are a proper subclass of weakly triangulated
graphs. The sunflower graph is an example of a weakly triangulated graph which is
not a NeST graph. It has been conjectured that the class of proper NeST graphs
are identical to the class of NeST graphs [4]. However, this conjecture has not been
resolved.

Let GGy be the graph in Figure 4.5 which is a fixed tolerance NeST graph but not a
fixed distance NeS'T graph. A fixed tolerance NeST representation is easily obtained
for G;. In fact, it is often the case that a NeST representation (or a restricted
NeST representation such as a proper NeST representation) of a particular graph is

simple to obtain, if one exists. The harder task is to prove that no representation
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Figure 4.5: Classes of NeST graphs.

exists. Hence, here we will demonstrate nonmembership, as opposed to membership,
of graphs in various NeST subclasses. To do this we will employ characterizations of

NeST subclasses obtained in Chapter 3.
Lemma 4.2.1 Gy is not a fized distance NeST graph.

Proof: Suppose G is a fixed distance NeST graph. It follows from Theorem 3.4.5
that G has a radius-only representation R = {r, : v € V(G)}. R satisfies the following

condition:

ry > 1y, for all y* € My,
zy € BE(G) & or
ry > 1o« forall 2 € M, .
Let the vertices of G; which have degree 1 be labeled 1,2 and 3. Let the neighbors of

these vertices be labeled 4,5 and 6, respectively. Since 14,25,36 € E(() we have the
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following:

> T, T3 OF T4 >7T2,73,T5,T6,
re > 11,3 OF TIs > Tq,T3,T4,7eand

rg>ry,rg Or rg>1ri,re,ra,rs.

Ifry > ry,rg then rs > rq,r3, ry,rg and rg > 1,79, 74, 5. But this gives a contradiction
(rs > re and rg > r5). It must be that ry > rq,rs,rs,re. It follows that ro > rq, 73
and rs > ry,ry. However, this too is a contradiction (ry > r3 and rs > rq).

By contradiction, (¢ is not a fixed distance NeST graph. O

Let Gy be the graph in Figure 4.5 which is a fixed distance NeST graph but not
a fixed tolerance NeST graph. We will show that 3 is not a fixed distance NeST

graph. To do this we require a preliminary definitions.

Definition 4.2.2 A graph G is a trampoline of size n > 3 if V(G) = CUW
where C' = {1, ¢a, ..., ¢} s a cligue, W = {wq, wy, ..., w,} is a stable set and

ciw;, cimw; € B(G), for 1 <i<n and ¢,41 = ¢1.

The following lemma is due to Bibelnieks and Dearing [4].

Lemma 4.2.3 If G is a fized tolerance NeST graph then GG does not have an induced

subgraph isomorphic to a trampoline.

It follows from Lemma 4.2.3 that G is not a fixed tolerance NeST graph since it
is the trampoline of size 3. We note that Lemma 4.2.3 can be obtained directly from

our characterization of fixed tolerance NeST graphs.
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The set of graphs obtained by intersecting fixed tolerance and fixed distance NeST
graphs has not been characterized. Recall that threshold tolerance graphs are exactly
the fixed distance NeST graphs (Theorem 3.4.8). It is easily seen that by fixing the
tolerances results in the class of threshold graphs [16]. Hence, threshold graphs are a
subclass of the intersection of fixed tolerance and fixed distance NeST graphs.

Let G35 be the graph in Figure 4.5 which is a proper NeST graph but neither
a fixed tolerance NeST graph nor a fixed distance NeST graph. To see that G5 is
neither a fixed tolerance NeST graph nor a fixed distance NeST graph, observe that
both GG; and G5 are induced subgraphs of (G3. It follows that (G5 can be neither a

fixed tolerance NeST graph nor a fixed distance NeST graph.



Chapter 5

Conclusions and Open Problems

We will summarize our main contributions and suggest open problems.

Defining NeST graphs

We give a rigorous definition of NeST graphs. In particular, we give a definition
of neighborhood subtree diameter which avoids the problems that the definition of
diameter in Bibelnieks and Dearing [4] is subject to.

Refining NeST representations

The generalization of the unbounded line by an embedded tree which has endpoints
results in truncated neighborhood subtrees. We suggest two resolutions to this prob-
lem: standard NeST representations and extended NeST representations. We prove
that the class of graphs associated with standard NeST representations is identical to
the class associated with NeST representations. Hence, standard NeST representa-
tions are as general as NeS'T representations but possess nicer properties. Similarly,
extended NeST representations and NeST representations are identical. However,
extended NeST representations are a more natural generalization of interval repre-

sentations and tolerance representations than are NeST representations.

77
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We produce a tolerance-free NeST representation which forms the foundation for
the characterizations of NeST graph subclasses presented in Chapter 3. A tolerance-
free NeST representation can be associated with many graphs. An open problem is to
investigate the equivalence relation on NeST graphs induced by tolerance-free NeS'T

representations.

Subclasses of NeST graphs

We have three main results. Our first result is that unit and proper NeST graphs
are identical classes. This result is consistent with interval graphs. That is, unit and
proper interval graphs are also identical classes. However, the same is not true of

tolerance graphs: unit and proper tolerance graphs are not identical classes.

Our second result is in response to an open problem from the literature: fixed

distance NeST graphs and threshold tolerance graphs are identical classes.

Our third result is the development of tolerance-free characterizations for proper
(and hence, fixed diameter) and fixed tolerance NeST graphs. We believe that these
characterizations will be useful in determining if polynomial recognition algorithms
exist for proper and fixed tolerance NeST graphs or proving these problems to be
intractable. It is known that the realization of an arbitrary partial order on interleaf
distances by a tree is NP-complete [14]. Our characterizations of the NeST subclasses

examined require the realization of restricted partial orders on interleaf distances.

Class Inclusions
Our strategy of refining and then examining subclasses of NeS'T graphs proved ben-
eficial in resolving the open question of whether or not NeST graphs were a proper

subclass of weakly triangulated graphs. It remains to be shown if a family of graphs
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which is weakly triangulated but not neighborhood subtree tolerance can be con-
structed.

A major open question in this area is whether proper NeST graphs are a proper
subclass of NeS'T graphs or not. If proper NeST graphs are the same as NeS'T' graphs
then our characterization of proper NeST graphs is a strong characterization of NeS'T

graphs.
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