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Preface

Traditionally, chess has been called the “fruitfly of Artificial Intelligence”. In recent years, however,
the focus of game playing research has gradually shifted away from chess towards games that offer
new challenges. One of these challenges is a large branching factor, as is the case in games such as
Go and Hex. The game of Hex offers some interesting properties that make it an attractive research
subject.

This thesis presents the key ideas behind Queenbee, the first Hex playing program to play at the
level of strong human players and the first Hex playing entity of any kind to achieve perfect play on
board sizes up to 6× 6. At the heart of the program lies the evaluation concept of “two-distance”,
a new way to measure connectivity in a graph which appears to be naturally suited to two-player
adversary games. The program’s strength also derives from the application of state-of-the-art search
and machine learning methods.
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Chapter 1

Introduction

Queenbee, born in 1995, is a program that plays the board game Hex. Based on a novel idea for an
evaluation function, it is the first Hex program to surpass “novice” level in human terms. Indeed, it
now plays at the level of very strong human players, if not quite yet at the level of the top players.
Queenbee has also carried out the first complete analysis of all opening lines on a 6× 6 board. The
program has its own web page, http://www.cs.ualberta.ca/~queenbee, which includes the 6× 6
opening analysis.

1.1 Game playing

Chess is the touchstone of intellect. – Johann Wolfgang von Goethe

Game playing has often been described as an ideal test bed for Artificial Intelligence research. Game
playing is a nontrivial task, which when performed by humans is associated with a certain degree of
intelligence. It would thus by definition require Artificial Intelligence to enable a machine to play a
game well.

Chess is the Drosophila of Artificial Intelligence. – Alexander Kronrod, 1965

In comparison with other intelligent tasks, games offer the advantage of being confined to a limited
abstract domain with clearly defined rules for behaviour and clearly defined criteria for success or
failure. For these reasons, games — chess in particular — were recognized as an excellent research
subject for Artificial Intelligence as early as the 1950s by scientists such as Alan Turing and Claude
Shannon.

1



1.1. Game playing Chapter 1. Introduction

From a Computer Science point of view, the game playing domain is of considerable complexity.
Informally, “game” type problems tend to be harder than “puzzle” type problems; in a puzzle, one
merely needs to find a single road to the goal, while in a game, there is an opponent who actively
tries to thwart this objective. A puzzle solution can easily be verified, while a game solution needs
to be shown to work against every possible counter-strategy.

Computer chess has developed much as genetics might have if the geneticists had concen-
trated their efforts starting in 1910 on breeding racing Drosophila. We would have some
science, but mainly we would have very fast fruit flies. – John McCarthy, 1997 [McC97]

After about half a century of game playing research, the contributions of games research to Artificial
Intelligence are not often fully acknowledged. Yet game playing has been a driving force behind many
Artificial Intelligence developments. Several important ideas, techniques, and algorithms that are
now common tools originated in game playing research.

• Iterative deepening is a search technique that performs successive searches that are con-
strained by certain parameters. The parameters, usually involving the search depth1, are
adjusted at the start of each iteration to increase the scope of the search.

The common reference to iterative deepening in Artificial Intelligence is to Korf’s 1985 paper [Kor85].
Yet iterative deepening was already described by Scott in 1969 [Sco69], referring to his chess playing
program.

• Memory-assisted search, where results are cached for re-use later during the search, is a
generalization of the transposition tables2 used in virtually all game playing programs.

Transposition tables were introduced by Greenblatt in 1967 [GEC67], also in a paper involving a
chess program. The technique works especially well in tandem with iterative deepening, as described
in Slate and Atkin’s famous 1977 paper about their program Chess 4.5 [SA77].

• Reinforcement learning is a learning environment where there is no teacher who knows
what the correct action is; rather, training is based on a future reward depending on the
success of the student’s actions.

Temporal Difference learning, a well-known and effective reinforcement learning algorithm, is mainly
known for its success in the game of Backgammon [Tes95]. The algorithm was first introduced and

1See Section 2.2.
2See Section 2.4.
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Chapter 1. Introduction 1.2. Problem description

analyzed by Sutton [Sut88] in a paper that was not specifically games related, although he did use
game playing as an example. Yet reinforcement learning was already pioneered more than twenty
years prior, in Samuel’s seminal work on checkers [Sam59, Sam67].

• Brute force search is the foundation for almost all state-of-the-art game playing programs
today, but is also widely used in other areas of Artificial Intelligence.

While brute force methods have always been used in other areas as well, it is perhaps game playing
that has been responsible for the acceptance of brute force as an Artificial Intelligence technique.
Indeed, it is misleading to think there is no intelligence in brute force. Large search trees implicitly
contain a high degree of knowledge. A common observation used to be that “dumb chess programs”
had to do a lot of search to compensate for their lack of knowledge, but it is more accurate to put it
the other way around: heuristic knowledge is a compensation for lack of search. Explicit heuristic
knowledge, by its very nature, is an imprecise approximation of the truth. By contrast, implicit
knowledge from massive searches is exact knowledge, and is thus of higher value.

1.2 Problem description

Traditionally, game playing research has focussed mainly on chess. Several decades of research
have produced some powerful techniques, mostly geared at the efficient traversal of large game
trees. It has also produced some notable triumphs; humans have been surpassed by programs in
games such as checkers [Sch97], Scrabble [Sch00], and Othello [Bur97], while other games such as
Connect-4 [UHA89], Nine Men’s Morris [Gas90], and Go-Moku [All94] have even been solved.

With the advent of the checkers world champion program Chinook and the chess program Deep
Blue, researchers started to realize that the techniques that drive these programs had been all but
stretched to their limits. Yet there are other classes of games for which these methods would be of
little use in constructing a program that can play on par with the strongest humans. These classes
include the imperfect information games such as bridge and poker, where not all of the information
is available to each player, as well as the stochastic games such as backgammon, where the player’s
options are partially determined by chance.

Another class is the one containing games whose branching factor, defined as the typical number
of available options for a player when it is time to make a move, is too large to make brute force
tree search algorithms feasible. A direct relationship between playing strength and search depth
exists for many games, such as chess [Tho82]. Due to the exponential nature of the search tree, a
large branching factor significantly reduces the possible search depth, which in turn diminishes a
program’s performance. The most well-known of these games is the Oriental board game Go, for
which no strong programs exist despite considerable effort and expertise that has been devoted to
it.

3



1.3. Objective Chapter 1. Introduction

Another member of the class of high branching factor games is Hex. It is similar to Go, but offers
additional advantages as a subject for research due to the simplicity of the goal and the rules. The
game has several interesting properties. It can be played on a board of any size, thus becoming
arbitrarily complex in terms of the branching factor. The rules are simple, yet they give rise to
elaborate strategic ideas. Thus, Hex offers an interesting game that bridges the complexity of chess
and Go.

1.3 Objective

The objective of this thesis is to demonstrate the application of search and evaluation techniques
to a game which offers particular challenges to both of these factors. The difficulty with search
in Hex lies in the large branching factor, while the difficulty with evaluation function is of a more
game-specific nature. It is not immediately evident how to identify computable concepts that are
strategically relevant to Hex, and many concepts that are often used in game playing programs,
such as material count and mobility, are of no use. The key idea behind the evaluation function
used by Queenbee is the concept of the “best second-best alternative”, which is naturally suited to
two-player adversary games.

When dealing with a high branching factor, game playing programs are faced with the dilemma of
choosing between exhaustive search or selective search. Both variants carry the risk of producing
unreliable results; exhaustive search may do so because the search will be shallow, while selective
search may do so because key moves are overlooked. The search techniques used in Queenbee
form a generalization of more conventional methods, in which selectivity is effectively emulated by
adjustable parameters.

1.4 Motivation

Hex is a fun game. Its rules are so simple that they can be described in one short sentence, yet
behind these simple rules hide an unexpectedly deep and rich strategy and dynamic local tactics.
The game is a prime example of “a minute to learn, a lifetime to master”. Thus, the game is
particularly interesting to game players.

Hex is a beautiful game. Its simple structure gives rise to intricate and intriguing mathematical
properties. Several strategic properties can be proved by “reductio ad absurdum”, without giving
any information on the actual strategies that achieve these properties. At least one property ties
into advanced topological theorems.3 Thus, the game is particularly interesting to mathematicians.

Hex is a difficult game. Due to the issues mentioned in the previous section, it is surprisingly difficult
3The “Brouwer Fixed Point Theorem”; see Section 3.3.
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Chapter 1. Introduction 1.5. Related work

to write a program that can do well against human players. Many algorithms that have been very
successful in other board games are either inadequate or need to be generalized or modified to work
well for Hex. The algorithmic complexity of Hex is likely to be very high.4 Thus, the game is
particularly interesting to computer scientists.

1.5 Related work

The first Hex playing machine was devised by Shannon in 1953 [Sha53]. It was an analog machine
that used an electrical circuit to represent the board. Moves were selected by measuring the potential
across the playing field, and locating certain specified saddle points. Apparently the machine played
reasonably well strategically, but its main weakness was endgame tactical play. Shannon reports
the machine won about seventy percent of its games against human opponents when taking the first
move, but it is unclear how strong the opponents were and what board size the machine played on.

Until recently, Hex had received only marginal attention from game programmers. Few Hex playing
programs existed before Queenbee. To date, the strongest Hex playing program, and the only one
other than Queenbee to rise above the level of human novices, is Anshelevich’s program Hexy [Ans00].
Hexy was introduced in 1999 and tested extensively on the online games server Playsite,5 where it
achieved a rating close to that of the top human players. More detailed information about its playing
strength is available in Section 7.1.

Rather than doing a large scale game tree search, Hexy employs a deep and non-uniform search to
identify certain aspects of the position known as virtual connections. These virtual connections are
used to guide a selective and relatively shallow game tree search, as well as in the evaluation function.
Since Hexy is currently the strongest Hex playing program, it serves as an excellent benchmark to
test Queenbee’s strength. A comparison between the two approaches is presented in Section 8.2.

1.6 Summary

The contributions of this thesis can be summarized as follows:

• First high-level Hex playing program. Queenbee, originally written in 1995, became the
first program to successfully play against experienced human players.

• Application of non-uniform search methods in a high branching factor game. Full-
width search, the basis of many world class game playing programs, is not feasible in games

4Hex is an instance of a pspace-complete game; see Section 3.6.
5See http://www.playsite.com/games/board/hex.

5



1.6. Summary Chapter 1. Introduction

with a high branching factor, such as Go. Indeed, humans typically are still stronger than
computers at these games. The game of Hex is starting to become an exception to this rule.

• New evaluation function idea. The key behind Queenbee’s selective search as well as its
evaluation function is the concept of “two-distance”, an new way to measure connectivity in a
graph which appears to be naturally suited to two-player adversary games.

In addition, Queenbee has significantly enhanced theoretical knowledge of Hex play on small boards,
by achieving perfect play on any board size up to 6× 6.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of the state of
the art in search algorithms. The history, rules, and mathematical background of game of Hex
are introduced in Chapter 3. To gain an understanding of the difficulty of the game, Chapter 4
explains the basics of Hex strategy. Chapter 5 details the two-distance evaluation that forms the
heart of Queenbee, and Chapter 6 describes the search methods used by the program. An analysis
of Queenbee’s playing strength follows in Chapter 7. Conclusions and future work are presented in
Chapter 8.

6



Chapter 2

Search algorithms

The subject of this thesis is the Hex playing program Queenbee. This chapter introduces the nec-
essary background theory and information on search and learning algorithms. All these techniques
have been useful to build high performance programs in other games. This chapter does not con-
tain an exhaustive overview of all state-of-the-art game playing algorithms, but it presents all the
algorithms that are incorporated into Queenbee.

2.1 Game tree

A two player game is formally defined as a five-tuple {C, c0,M,L, S}, in which

C = a set of board states, also referred to as positions;
c0 ∈ C = an initial position;
M : C → P(C) = a successor function;
L ⊂ C = a set of leaf positions: L = {c ∈ C|M(c) = ∅};
S : L → < = a score function.

A game is a sequence of board states {c0, c1, c2, . . . , cm} where ci ∈ M(ci−1) for 1 ≤ i ≤ m and
cm ∈ L. The outcome of the game is S(cm).

The two players, White and Black, take turns in moving from board state to board state. The set
C contains all possible positions than can occur. The game starts in position c0; without loss of
generality, it can be assumed that White is to move in this position. The function M indicates
which positions a player can move to from a given position. The game ends when a leaf position, or
terminal position, is reached. At this point, the score function represents the payoff to one of the

7



2.2. Evaluation function Chapter 2. Search algorithms

players. The payoff can be positive, zero, or negative. Again without loss of generality it is assumed
that White receives the payoff. Thus it is White’s task to maximize this score, while Black tries to
minimize it.

The game theoretic value of a position is defined as the outcome of the game if both players follow
optimal play starting from that position.1 With optimal play, White always moves such that a score
at least equal to the game theoretic value is reached, regardless of Black’s choice of moves. Similarly,
Black always moves such that a score of at most equal to the game theoretic value is reached. The
game theoretic value v(c) of a position c can therefore be defined recursively. For a white position,
which is a position in which White is to move, we have:

v(c) =
{

S(c) if c ∈ L;
maxc′∈M(c) v(c′) otherwise. (2.1)

This reflects the fact that White always chooses the continuation that guarantees the maximum
possible outcome. Similarly, for black positions:

v(c) =
{

S(c) if c ∈ L;
minc′∈M(c) v(c′) otherwise. (2.2)

The game theoretic value can thus be computed by means of a recursive algorithm called minimax.
Game playing programs actually use an equivalent variant of this algorithm, which computes the
function v∗(c) defined as v∗(c) = v(c) for white positions and v∗(c) = −v(c) for black positions. In
other words, where v(c) is the payoff for White at the end of the game, v∗(c) is the payoff for the
player to move. If S∗(c) is analogously defined relative to whose turn it is, the calculation of v∗(c)
is identical for white and black positions:

v∗(c) =
{

S∗(c) if c ∈ L;
maxc′∈M(c)−v∗(c′) otherwise. (2.3)

The algorithm that computes v∗(c) this way is called the negamax algorithm.The set of positions it
generates to compute the value v∗(c) is called the game tree, with c being the root node of the tree.
Any move in position c that leads to a position c′ for which v∗(c′) = −v∗(c) is an optimal move;
accordingly, the position c′ is called an optimal successor. The branching factor of a game is defined
as the average number of available moves in a position. In other words, it is the average cardinality
|M(c)| over all positions c in the game. If the branching factor is b, then the number of nodes that
a search tree of depth d contains is of the order of bd.

2.2 Evaluation function

For most games, the search tree is too large to enable the game theoretic value of the root node to
be determined in a reasonable amount of time. To produce a reliable estimate for v∗(c), a game

1The definition of the game theoretic value is more involved when there is the possibility of cyclic play, in which
a sequence of moves can lead back to the same position, or infinite play, in which there exists an infinite sequence of
moves that never leads to a leaf position. However, Hex is clearly non-cyclic and non-infinite.

8



Chapter 2. Search algorithms 2.3. Alpha-beta search
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Figure 2.1: An α-β cutoff in a search tree

playing program uses an evaluation function. This function computes a heuristic estimate h(c) of
v∗(c). The game playing program will expand a subtree of the game tree. This tree is called the
search tree. For each leaf node cleaf of the search tree, the heuristic value h(cleaf) is computed by the
evaluation function. Interior nodes are non-leaf nodes; for each interior node cint, the heuristic value
h(cint) is backed up by the heuristic algorithm: h(cint) = maxc′∈M(cint)−h(c′). Or, equivalently:

h(cint) = − min
c′∈M(cint)

h(c′). (2.4)

The search tree is typically expanded to a fixed distance from the root. This distance is called the
search depth; it is commonly measured in ply, where one ply represents one single move by either
player. As the search depth increases, the accuracy of the root node value increases. The limit
case is reached if the search depth equals the maximum length of the game, in which case the value
that is backed up to the root node equals the true game theoretic value provided h(c) = S∗(c) for
terminal nodes c ∈ L.

2.3 Alpha-beta search

To find the root node value, it is not necessary to expand the full search tree. Consider Figure 2.1,
which depicts a subtree of the search tree. The root position c has three successor positions c1, c2,
and c3. Once it is established that v∗(c1) = −3, it is known that v∗(c) ≥ 3. These values are shown
in boxes. As the minimax algorithm is backtracking through this tree, the next step is to compute
v∗(c2). Suppose the value of the first successor position is determined to be −1. At that point, it
is known that v∗(c2) ≥ 1, and therefore c2 cannot be an optimal successor position as the value of
node c is determined by the minimum value of its successor positions. Thus it is no longer necessary
to calculate the values for c2b

and c2c .
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2.3. Alpha-beta search Chapter 2. Search algorithms

int alphabeta(position pos, int α, int β, int depth) {
int i, value, best;
move type moves[];

if (depth ≡ 0) /* horizon reached */
return(evaluate(pos));

moves = generate moves(pos);
if is empty(moves) /* terminal position */

return(evaluate(pos));

best = -∞;
for i = 1 to size(moves) do {

pos = make move(pos, moves[i]);
value = -alphabeta(pos, -β, -max(α,best), depth-1);
pos = undo move(pos, moves[i]);
if (value > best) /* new best move found */

best = value;
if (best ≥ β) /* α-β cutoff */

break;
}

return(best);
}

game-specific auxiliary functions:

evaluate(p): returns the heuristic evaluation of position p;
generate moves(p): returns the legal moves available in position p;
make move(pos, m): executes move m in position pos

and returns resulting position;
undo move(pos, m): retracts move m in position pos

and returns resulting position;

Table 2.1: The α-β search algorithm

10



Chapter 2. Search algorithms 2.3. Alpha-beta search

The canonical algorithm that takes advantage of this observation is called the alpha-beta algorithm.
It discards nodes from the search tree once it is known that they cannot influence the value of any of
their parent nodes anymore. These deletions are called α-β cutoffs. The name “alpha-beta” refers
to the parameters α and β used by the algorithm. The pseudo-code for the algorithm is given in
Figure 2.1; the root node value is found by calling the algorithm with [α, β] equal to [−∞, +∞].
The parameters α and β contain the lower and upper bound of the range into which a value must
fall if it is to influence the value of its parent. A fail high occurs when a node’s value is known to be
greater than or equal to its β. In the standard α-β algorithm, a fail high implies that the node can
be cut off from the tree.

If the first node that the α-β algorithm expands is always an optimal successor, the number n of
nodes that the resulting tree contains is of the order of

n = bb
d
2 c + bd

d
2 e − 1, (2.5)

as analyzed by Knuth and Moore [KM75]. The size of the tree exactly equals this number if every
node in the game tree has exactly b successors.

In the best case, the α-β algorithm effectively reduces the branching factor to its square root by
eliminating provably irrelevant nodes. This makes it possible to generate a search tree that is twice
as deep yet no larger than the tree that is generated by the minimax algorithm. However, the
algorithm cannot be guaranteed to always expand an optimal successor node first in practice.2 In
the worst possible case the algorithm will always expand successor nodes in the order of worst-to-
best, building the same search tree as the minimax algorithm. The order in which the successor
nodes are expanded is therefore of critical importance. A game playing program needs to contain a
move ordering algorithm that attempts to select the successor positions in the order of best-to-worst.

Game tree search algorithms are likely to encounter several problems, notably the horizon effect and
the odd/even effect. The horizon effect occurs because the program will only expand the search tree
to some depth d. If the program spots the threat of a strong move sequence for the opponent, it
can often erroneously deal with this threat by introducing irrelevant moves that delay the threat. If
these moves delay the threat long enough that it takes more than d moves to happen, the threat will
have disappeared from the search tree and thus it will appear to have been circumvented. The term
refers to the fact that the program cannot see beyond a certain horizon, the depth d, and fails to
realize that a problem that has been pushed beyond this horizon has not actually disappeared. The
delaying moves that the program plays to achieve this may often weaken the program’s position.

The odd/even effect occurs because in most games it rarely happens that none of the available moves
improve the player’s position. This type of situation is called zugzwang, from the German word for
“forced to move”, as the player would prefer to skip the move but the rules of the game do not
allow it. It can be proved, however, that zugzwang never occurs in the game of Hex: any move is
better than no move at all, and nearly all moves are strictly better.3 Since this means that each
player always improves their position by making a move, heuristic evaluations of white positions are

2If it could, it would no longer be necessary to generate a search tree at all.
3See Section 3.4.
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essentially incomparable to those of black positions. If the tree is not of uniform depth, meaning
that the leaf nodes where the heuristic function is applied are not all at the same depth, then the
search algorithm will back up incomparable values.

To cope with this, the restriction can be imposed that leaf nodes must always have the same side
to move. Suppose that the program generates a search tree of depth d with a white position at the
root. If d is even, then all the leaf positions in the tree will be white positions, and so white will have
made the last move in every branch of the tree. If on the other hand d is odd, black will have made
the last move. The result is that the leaf node evaluations will generally be more in favour of white
when d is even, and more in favour of black when d is odd. This can not only cause the program to
assess the root node differently, but it can even cause it to choose a different continuation depending
on the parity of d. Generally, the program will tend to play more aggressively if d is odd.

2.4 Enhancements

Modern game playing programs use several powerful techniques to improve search efficiency. One of
these techniques, transposition tables [GEC67, SA77], exploits the phenomenon that the game tree
is actually not a tree but a graph in which a node can have more than one parent. A transposition
occurs when the same position can be reached in two different ways. The transposition table stores
the results of the searches for as many nodes encountered in the search as possible. Whenever
a previously searched node is reached via a different path, the result of the earlier search can be
retrieved from the transposition table. The savings introduced by a transposition table can be
very large, depending on the size of the table and the frequency with which transpositions occur.
Transposition tables not only store information about the result of the search in a particular position,
but also information about the best move found in that position.

Another common technique is called iterative deepening [SA77]. The program will start with a 1 ply
search, then repeatedly start new searches to successively larger depths until it runs out of time.
This method has several important advantages. It is generally not easy to predict ahead of time
how long a search to a particular depth is going to take. By using iterative deepening, the program
will automatically reach the maximum possible search depth dmax in the allotted time. Moreover,
the program will always have a move available to play, even when the search is interrupted for some
reason. The overhead of first performing all the shallower searches before reaching the search of depth
dmax is small; due to the exponential nature of the tree, the overall search effort is only increased by
a constant factor. With the improved move ordering based on the information gathered during the
shallower searches, which is available through the transposition table, an iterative deepening search
often even expands fewer nodes than one isolated fixed-depth search to the same depth.

Aspiration search attempts to reduce the tree size by guessing a range [vmin, vmax] into which the
root node value is likely to fall. This range is called the search window. At the start of the search,
the parameters [α, β] for the root node are initialized to [vmin, vmax] rather than [−∞, +∞]. If the
search eventually returns a value that does fall within the window, then the value is known to be

12
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correct. If a fail high occurs, it is known that the value must be larger than vmax. In an aspiration
search, a fail high at the root node does not lead to a cutoff. Rather, the position must be searched
again with a different window. Similarly, the search might fail low by returning a value smaller than
vmin. Choosing a small window size can greatly reduce the size of the tree, but it also increases the
risk of having to re-search the position.

The Principal Variation / Minimal Window Search algorithm, PVS/MWS [MC82], is a sophisticated
refinement of the basic α-β algorithm. It recognizes that whenever a move with the highest value is
searched, the values for the other successor positions need only be proved to be inferior. To prove
that the value of a node c is less than some value k, the PVS/MWS algorithm performs a search
with a window of minimal size [k − ε, k], where ε is the granularity of the evaluation function. If
the value of the first searched node was indeed the highest, the PVS/MWS algorithm will generally
be able to prove the other successor nodes to be inferior very quickly due to the small window size.
The pseudo-code for the algorithm is given in Figure 2.2, where the minimal window size is assumed
to be 1. The name of the algorithm is derived from the principal variation, which is the sequence
of moves that leads from the root node to the node whose value was eventually backed up to the
root node. In other words, it is the sequence of moves that were judged to be the best move in their
respective positions. The principal variation is the expected line of play.

Rather than expanding a search tree of a fixed depth, it is often advantageous to explore some
variations deeper than others. If a particular line has little chance of becoming the principal, the
search can be aborted at a shallower level in order to save the search effort. This is known as
a search reduction. Similarly, a search extension can be created in a line that looks promising or
critical. The search tree that is generated in this way is no longer fixed-depth. An algorithm that uses
search extensions or reductions must contain heuristics to judge when an extension or reduction is
appropriate. Typically, reductions are generated in lines where one player’s position has deteriorated
significantly, indicating that the line is likely to contain inferior moves and is therefore irrelevant.
Extensions tend to be used in lines that are unsettled but whose exact resolution is critical.

When a game playing program is to play games under tournament conditions, time management
becomes an important issue. Many modern game playing programs contain code that enable the
program to think while the opponent is to move. Thinking on the opponent’s time is known as
pondering. Many programs do this by guessing the most probably move for the opponent, and
starting to calculate a reply while the opponent is still thinking. If the opponent plays the expected
move, the reply can be played relatively quickly because part of the work has already been done.
Alternatively, the program can still spend the same amount of time on its move to complete a
deeper search. Another method of pondering is to do a search on behalf of the opponent. This fills
the transposition table with valuable information that subsequently speeds up the search for the
program’s reply move.

13
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int PVMWS(position pos, int α, int β, int depth) {
int i, value, best;
move type moves[];

if (depth ≡ 0) /* horizon reached */
return(evaluate(pos));

moves = generate moves(pos);
if is empty(moves) /* terminal position */

return(evaluate(pos));

/* search first position */
pos = make move(pos, moves[1]);
best = -PVMWS(pos, -β, -α, depth-1);
pos = undo move(pos, moves[1]);

α = best;
/* search remaining positions with null window */

for i = 2 to size(moves) do {
pos = make move(pos, moves[i]);
value = -PVMWS(pos, -α-1, -α, depth-1);
if (value > best) /* fail high, re-search? */

if (value > α) and (value < β)
best = -PVMWS(pos, -β, -value, depth-1;)

pos = undo move(pos, moves[i]);
α = max(α, best)
if (best ≥ β) /* α-β cutoff */

break;
}

return(best);
}

game-specific auxiliary functions:

evaluate(p): returns the heuristic evaluation of position p;
generate moves(p): returns the legal moves available in position p;
make move(pos, m): executes move m in position pos

and returns resulting position;
undo move(pos, m): retracts move m in position pos

and returns resulting position;

Table 2.2: The MWS/PVS algorithm
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game program author b log b d d log b
checkers Chinook Schaeffer 3 0.5 23 11
awari Bambam Univ. of Alberta 4 0.6 20 12
Othello Logistello Buro 12 1.1 12 13
chess Crafty Hyatt 35 1.5 9 14
Chinese chess Abyss Marsland 50 1.7 8 14
10 × 10 Hex 80 1.9 7
14 × 14 Hex 160 2.2 6
19 × 19 Go 300 2.5 < 5

b = typical branching factor;
d = typical full width search depth for computers.

Table 2.3: Search depth compared to branching factor on a current single processor PC

2.5 Selective search

The exponential nature of game trees limits the depth to which full width search algorithms can
explore them under feasible time constraints. This depth limit depends mostly on the branching
factor of the game. Table 2.3 lists estimates for the typical branching factors of some common
games, and the depths to which state-of-the-art search algorithms can explore them. Due to the use
of search extensions and reductions, the search depths are not quite fixed; the table refers to the
typical depth to which relevant lines are explored. A time constraint of three minutes is assumed,
which corresponds to normal tournament conditions.

The table also contains the estimated full width search depths for Hex and Go, based on the fact
that b log d is roughly the same in every case. The latter fact is a consequence of equation 2.5. The
search depths give a good indication of how well computer programs perform in comparison to top
human players if ones assumes that top human players search about eight to ten ply deep. The
games of Awari and Othello are different; due to the highly nonlocal nature of the moves4 humans
have difficulty searching more than a few ahead. The reachable search depth also depends on the
effort involved in computing the evaluation function; Go programs tend to have a complex and slow
evaluation function, whereas for example the Awari program Bambam uses an evaluation function
that is easy and quick to compute.

Comparing the estimated search depths for humans and computers reveals a good correspondence
with the actual balance of power for various games. Computers are significantly better than humans
at checkers, almost as good at chess, and not quite as good at Chinese chess. Computers are far
better at Awari and Othello, and humans are far better at Go. The numbers also indicate that Hex
can be anywhere in the spectrum between chess, Chinese chess, and Go, depending on the size of
the board.

4A move is nonlocal if it changes the state of most of the board, which happens frequently in Awari and Othello.
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The reason why humans can look as far ahead as they do is that they employ a selective search.
Based on experience, insight, and intuition, they quickly dismiss many branches as “uninteresting”,
and focus only on the interesting ones. In Hex, the ability of humans to search deeply is enhanced
by their knowledge of concepts like edge patterns, ladders, and outposts, which will be explained
in Chapter 4. For example, the outpost example in Figure 4.9 would require a 12 ply search, but
experienced human players can spot the outcome immediately without any lookahead.

The game of Go is possibly the most difficult game for computers. Where programs of near or
beyond world championship strength exist or will exist in the near future for most other games, the
development of a world calibre Go program is likely to be decades away. Hex can be played on any
board size, and the search depth for human players decreases very slowly, if at all, with increasing
board size. Thus, Hex becomes relatively more difficult for computers compared to humans on
progressively larger board sizes. Because of this, Hex may be viewed as an interesting intermediate
goal between the landmark events of creating a world calibre chess program and creating a world
calibre Go program. Hex provides an excellent test bed for studying selective search, which will be
indispensable for championship Go programs.

2.6 Machine learning

Machine learning applications in game playing can currently be divided into three areas: evaluation
function learning, opening book construction, and learning search control. The first of these three
areas has always received the most attention, while the other two are comparatively new.

An evaluation function typically takes as input a number of board features that have been computed
from the game position, and feeds these into a function that returns a single number. This function is
often a linear combination of the inputs, but it does not need to be. The function usually contains a
number of parameters that express the relative importance of the input features. Automatic tuning
of these parameters was explored as early as the 1960s by Samuel in his checkers program [Sam59,
Sam67]. The formulation of the Temporal Difference algorithm by Sutton [Sut88] led to impressive
results for the game of Backgammon by Tesauro [Tes95].

Any learning entity faces the “exploration versus exploitation” dilemma; the learner must explore
in order to learn new things, but it must also use what it has learned so far in order to increase its
performance. The roll of the dice in Backgammon naturally forces the learner to explore. Following
Tesauro’s work, it was therefore often conjectured that the stochastic nature of Backgammon was
particularly suited for Temporal Difference learning. Yet more recent results indicate that reinforce-
ment learning can also be applied successfully to deterministic games. Baxter, Tridgell, and Weaver
developed a variant on Sutton’s algorithm, called TDleaf(λ), that achieved remarkable results in
chess [BTW98].

A more difficult problem in evaluation function learning is the discovery of the input features them-
selves. Buro applied massive regression methods to the game of Othello, eventually identifying a set
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of very useful board patterns [Bur98]. Utgoff experimented with a function approximating algorithm
that constructs features while learning, applied to checkers [UP98]. The author of this thesis applied
data mining techniques to large end game databases to discover evaluation features for the game of
Awari [Rij00].

Automatic construction of opening books has become an important issue in computer chess, where
many programs have a commercial interest in being the strongest. In the early 1990s programmers
were engaged in a constant battle to produce “killer books” that were able to exploit weaknesses
in other programs’ opening books in order to win games right out of the opening. This eventually
forced the programmers to develop opening book learning methods, so the programs would not lose
a game twice in the same way. Automatic opening book construction methods are discussed in
papers by Hyatt [Hya99] and Buro [Bur99].

The newest area in learning relates to the parameters that control the search itself. Many programs
use search extensions and reductions of a fractional number of plies.5 Björnsson developed an
algorithm to learn these numbers automatically [Bjö00].

The significance of these three applications of machine learning is that they all focus on aspects of
game playing programs that used to have to be tuned by hand, which constituted the most labour-
intensive part of building a high performance program. Automatic learning provides a way to perform
this tuning much more quickly and, ideally, more effectively. This is an important development in
computer game programming, freeing up the programmer’s time and energy to dedicate to other
parts of the program.

5See Section 6.2.
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Chapter 3

Hex

Hex is a board game with simple rules, but a complex strategy. Indeed, winning strategies are only
known for board sizes up to 7×7,1 where the game is commonly played on sizes of 10×10 or larger.
The game is a special case of a more general graph colouring game known as the Shannon switching
game, which was proved to be pspace-complete. This chapter presents the history and the rules of
Hex, as well as some special properties of the game.

One of the properties of Hex is that the game can never end in a draw. A formal proof of this
property is given in Section 3.3. Another interesting property is that Hex can be proved to be a
theoretical win for the first player. It was John Nash who first realized this. The simple proof of this
fact, given in Section 3.4, is however only a proof of existence. No actual winning strategy is known.
This makes Hex what is known as “ultra-weakly solved”. A general winning strategy is likely to be
very hard to find, as will be shown in Section 3.6.

3.1 History

Hex was invented by Danish engineer, poet, and mathematician Piet Hein (1905–1996) at the
Niels Bohr Institute for Theoretical Physics at the University of Copenhagen in 1942. It is said
he invented the game while contemplating the then unproved four-colour theorem of topology. Piet
Hein called the game “Polygon” and published a series of articles on the game in a leading Danish
newspaper.

The game was independently rediscovered by mathematics graduate student John Nash (1928–) in
1948 at Princeton, where it became known as “Nash”. It should be noted that the often retold story

1See Section 4.6.
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Figure 3.1: A 5× 5 Hex board

of the game being referred to as “John” since it was often played on the bathroom tiles at Princeton
is merely an amusing myth [Nas99]. John Nash invented Hex as an example of a game where no
explicit winning strategy was known but that was still a provable win for the first player. The name
“Hex” was introduced by Parker Brothers, who marketed the game under that name in 1952.

Hex was again introduced by Martin Gardner in 1959 [Gar59]. Piet Hein marketed the game under
the name “Con-Tac-Tix” in 1968. Since then, it has been produced by several different game
companies. In the 1990s a Hex playing community emerged on the Internet, first through a play-by-
email server, and later a games server that allows live play using a Java interface.2 Hex continued
to gain popularity, witnessing the publication of the first book devoted entirely to the game [Bro00]
and being included in the Olympic list of games to feature at the 2000 Computer Olympiad.3

3.2 Rules

Hex is played on a rhombic hexagonal pattern, as in Figure 3.1. This particular Hex board has 5×5
cells, but the game can be played on boards of any size. The board has two white borders and two
black borders, indicated in the figure by rows of discs placed next to the borders. These edge pieces
are not part of the game; they merely serve as a reminder for the players. Note that the four corner
cells each belong to two borders.

Play proceeds as follows. The two players, henceforth to be called White and Black, take turns
placing a piece of their colour on an empty cell. In Hex there is no standard convention on which
colour gets the first move. White wins the game by connecting the two white borders with a chain
of white pieces, while Black wins by connecting the two black borders with a chain of black pieces..
In Figure 3.2, Black has completed a winning chain.

2See http://www.gamerz.net/pbmserv/hex.html and http://www.playsite.com/games/board/hex.
3See http://www.msoworld.com/Olympiad/computer.html.
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Figure 3.2: A winning chain for Black

Despite the simplicity of the rules, Hex strategy is surprisingly deep and subtle. Chapter 4 contains
an overview of the most important strategic concepts. Note that the condition for winning the game
is equivalent to having connected the leftmost edge piece and the rightmost edge piece.

3.3 No draws

The fact that Hex cannot end in a draw is usually accompanied by a “handwaving argument”, but
there is a fairly simple formal proof. This proof was first given by Gale [Gal86], who also showed
that this intuitively obvious fact is mathematically “deep” in that it is equivalent to, and leads to a
very short proof of, the Brouwer Fixed Point theorem.4

Consider a Hex board in which all the cells are occupied, and add four appendages n, s, e, and w to
it, as in Figure 3.3-I. Start at the vertex labeled w, and trace a path P by turning either left or right
at every intersection in such a way that the path keeps running between cells of different colours.
The resulting path is shown in Figure 3.3-II.

Lemma: This procedure determines a unique path.

Proof: Every vertex has exactly three cells bordering on it, and each of those cells will be coloured.
Whenever P arrives at a vertex v, it is running between cells c1 and c2 of different colours. Suppose,
without loss of generality, that c1 is black and c2 is white. If c3, the third cell that meets at v,
is black, then the path must necessarily continue between c2 and c3, as c2 and c3 are of different
colours and c1 and c3 are not. Similarly, if c3 is white, P must continue between c1 and c3. 2

Thus P continues at every vertex where three edges meet. It never visits the same vertex twice, as

4The two-dimensional version of this theorem says that if f is a continuous mapping from the unit square I2 to
itself, then there exists x ∈ I2 such that f(x) = x. There exist natural generalizations into higher dimensions of both
the Hex no-draw theorem and the Brouwer theorem, which are equivalent as well.
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I: A completely filled board II: The path
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Figure 3.3: The path that identifies a winning chain

can be seen from the fact that after P visits vertex v, two of the three edges that meet at v have
been used up and the third one will never be used as it has equally coloured cells on both sides. As
the number of vertices is finite, P must terminate, and the only vertices at which it can do so are
n, s, and e.

Lemma: P identifies a winning chain for White or Black.

Proof: If the path ends at n, as it does in Figure 3.3, then the path identifies a winning chain for
Black. The reason is that all the cells along one side of the path are of the same colour, the origin
of the path at w borders on a black cell on one black border, and the destination of the path at n
borders on a black cell on the other black border. The black cells along one side of the path therefore
form a chain connecting the two black edges. Similarly, if the path ends up at s then it identifies a
winning chain for White. If the path were to end up at e, then there would be winning chains for
both players. 2

If a game of Hex is played out until the entire board is filled, the lemmas show that there must be
a winning chain for one of the players. Thus the game cannot end in a draw. Note that P must
terminate in n or s. The path cannot actually end up in e, as it always has black cells on the left
and white cells on the right when oriented in the direction in which it is traced, which is not he case
for the edge running into vertex e. This fact is not important for the proof, however.

3.4 First player wins

John Nash quickly realized that Hex is a win for the player who goes first. The proof is fairly simple,
but it is only a proof of existence. No actual general winning strategy is known. The proof is based
on the “strategy stealing argument”, which informally says that if there were a winning strategy for
the second player, then the first player could “steal” it and use it to win.

Theorem: Hex is a first player win.
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Proof: Suppose there were a winning strategy S for the second player. Without loss of generality,
say that White goes first, so Black can win by applying S. But then White can also win by playing
an arbitrary opening move, and then applying strategy S. After making the opening move, White
in effect becomes the second player in a new game, in which White goes second and has an extra
“bonus” piece already on the board. Whenever S requires White to play a move in an already
occupied cell, White makes another arbitrary move. Following this strategy, White wins. As it is
impossible that both players win, a contradiction is reached. Hence there can be no winning strategy
for the second player. 2

Note that this proof relies on the crucial fact that the extra move can never be a disadvantage for
Black. This is not the case in other games, such as chess and Go.

In practice, there turns out to be a moderately large advantage for the first player in games between
human players. One therefore often uses one move equalization, also known as the swap rule: One
player plays an opening move with a white piece, the other player then gets to choose the black or
the white pieces. In other words, the other player gets the opportunity to “swap”, or switch sides.
It is analogous to the “I cut, you choose” principle for dividing a cake fairly. The variant of Hex
that employs the swap option shall be referred to as competitive Hex, as opposed to unrestricted Hex
where the second player is not allowed to swap. Unless otherwise stated, competitive Hex shall be
the default.

After the first move and a possible swap, play continues normally without any more swaps. This
way, the first player cannot play a strong opening move, because then the second player will swap
and gain the advantage, but the first player cannot play a weak opening move either, because then
the second player will not swap and retain the advantage. The best the first player can do is to
play an opening move that draws, but as draws are impossible in Hex, the swap rule actually turns
Hex into a theoretical win for the second player. In practice, the swap rule evens the game out
sufficiently for human play.

3.5 Shannon switching game

Hex can be viewed as a graph colouring game. The 5 × 5 Hex board is drawn as in Figure 3.4.
Players now take turns colouring vertices black and white. Four of the vertices are already coloured
at the beginning of the game, as in the diagram. It is Black’s task to connect the vertices b1 and
b2 with a connected path of black vertices, while White tries to achieve a connected path of white
vertices linking w1 and w2.

In this form, Hex is actually a special case of a more general graph colouring game called SSG: the
Shannon switching game. In this game, a graph Γ is chosen with two distinguished vertices s and
t. Players take turns colouring a previously uncoloured vertex. White wins by connecting s and t
by a path of white vertices, while Black wins by establishing a black cut set that disconnects s from
t. This game can be played on any graph. The graph in Figure 3.4 can be turned into a ssg graph
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Figure 3.4: 5× 5 Hex as a graph colouring game

with equivalent game properties by deleting the nodes b1 and b2, and let w1 and w2 play the role of
s and t. When given in the guise of a ssg, the players White and Black are usually referred to as
Short and Cut, respectively.

ssg can also be played by colouring the edges of the graph, rather than on the vertices. There actually
exist efficient polynomial-time algorithms for finding a winning strategy for ssge, the Shannon
switching game on edges [BCG82]. A winning strategy for the Shannon switching game on vertices,
ssgv, is much more difficult to find. The situation is analogous to the difference in complexity of
finding an Euler cycle and a Hamilton cycle in a graph, where the latter problem is np-complete
while the former problem is trivial. If Γ happens to be the line graph of some graph ∆, then
both the Hamiltonian cycle problem and the generalized Hex problem can be solved by finding the
corresponding solutions on the edges of ∆.

3.6 Computational complexity

Theoretical evidence to support the fact that ssgv is a difficult game was supplied by Even and
Tarjan [ET76], who proved that the game is pspace-complete. The proof uses a reduction from
QBF, the Quantified Boolean formula problem:

QBF = {Q1x1Q2x2...QmxmF},

where the Qi are quantifiers, the xi are Boolean variables, and F is a formula in conjunctive normal
form with variables x1, ..., xm. This problem is known to be pspace-complete. Any qbf can be
represented by a graph Γ such that (Qixi)F is true if and only if Short wins the ssgv on Γ. The
graph Γ can be constructed in log-space.

A problem is in pspace if there exists an algorithm for solving the problem that requires an amount
of memory space that is polynomial in the problem size. In the case of ssgv, the problem is
determining whether Short or Cut wins the game. This can be determined by a straightforward
depth-first search, corresponding to the minimax algorithm. The amount of memory needed for an
exhaustive search is O(n2 log n), where n is the number of vertices of the game graph. Hence ssgv
is in pspace.

24



Chapter 3. Hex 3.6. Computational complexity

The reduction to QBF shows that ssgv is pspace-complete. The boolean satisfiability problem
SAT, the canonical np-complete problem, can be solved in polynomial space and is in fact a special
instance of QBF. Thus ssvg is “at least as difficult” as np-complete problems. Even and Tarjan
observe that there is no obvious way to determine the winner in polynomial time, even when allowed
a nondeterministic algorithm. They therefore suspect that ssgv is actually strictly harder than np-
complete problems. Indeed it is difficult to imagine a way to verify a solution to ssgv in polynomial
time.

As Hex is a special case of ssgv, it might therefore have some structure that makes it easier than
generalized ssgv. An example of a type of graph where ssgv is “easy” is the class of line graphs; if a
graph Λ is known to be the line graph of a graph Γ, then the Shannon switching game on the vertices
of Λ can easily be won by playing the switching game on the edges of Γ, where as mentioned before
an optimal strategy can be found in polynomial time. In the case of Hex, no efficient algorithms
have been proposed yet.

As an aside, Even and Tarjan note that the Shannon switching game on the edges of a directed graph
is also pspace-complete, by giving a construction to transform a ssgv-graph Γ into a directed graph
on which the ssge is equivalent to ssgv on Γ.
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Chapter 4

Hex strategy

The game of Hex presents specific challenges to game playing programs. To understand these
challenges, and to introduce the Hex jargon that will become relevant, this chapter presents an
overview of Hex strategy. An understanding of the strategy will also accentuate the difficulty and
subtlety of play for both humans and computers. An excellent treatise on this subject is contained
in Cameron Browne’s book Hex Strategy: Making the Right Connections [Bro00].

The Hex game notation used throughout this thesis is analogous to the familiar algebraic chess
notation. The board cells are divided into rows and columns. The rows are denoted by numbers,
the columns by letters. Figure 4.1 shows the cell coordinates for a 5× 5 board. Hex board are often
printed in different orientations, all of which are topologically equivalent. The coordinate system is
equivalent to the one in Figure 4.1 if and only if the a1 cell is in an acute corner.
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Figure 4.1: Cell coordinates on a 5× 5 board
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Figure 4.2: Double threats

4.1 Double threats

The geometry of the Hex board allows the important concept of a double threat, as illustrated in
Figure 4.2. The black stone on the left can be connected to the edge through either of the two cells
marked ‘×’. If both those cells are still empty, White cannot prevent Black from connecting the
stone to the edge, for if White plays in one of the two ×-cells, Black occupies the other one and
connects. Thus, the black stone is already quite securely connected to the edge, even though the
connection is not actually established yet.

This concept is called a virtual connection. A virtual connection is nearly equivalent to an actual
connection.1 The two white stones in Figure 4.2-II form a particular virtual connection known as a
two-bridge. Two-bridges form the basis of Hex strategy.

4.2 Edge patterns

The virtual connection in Figure 4.2-I is the most elementary example of an edge pattern. Where
the white stone in Figure 4.2-I was only one row away from the edge, Figure 4.3-I depicts a white
stone on the third row, which is two rows away from the edge. White’s first threat is to play as in
4.3-II, establishing a virtual connection to the edge. To prevent this, Black must play in one of the
three cells involved in this play; either the one where White threatens to play, or one of the two cells
marked ‘×’. At the same time, White threatens to play as in 4.3-III, forcing Black to play in one of
the three cells involved in that play as well. As there is only one cell that is involved in both these
threats, Black’s reply to block this connection must necessarily be the one shown in Figure 4.3-IV.
This pattern is called the 3-triangle. It illustrates an important theme: if there are several threats,
the defending player must play in the intersection of all the threats.

Figure 4.4 shows the common pattern for a virtual connection from the third row. As the white
stone is involved in a 3-triangle pattern it is clear that Black must play as in 4.4-II to block the
connection. But then White replies as in 4.4-II to connect anyway. Thus, the connection cannot
be blocked. Another way of seeing this is shown in Figure 4.5. The threat in 4.5-I is the same as

1Not entirely equivalent, as will be shown in Section 4.5.
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Figure 4.3: The 3-triangle pattern: forced reply to block a stone on the third row
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Figure 4.4: A virtual connection from the third row

the one in 4.3-III. The threat in 4.5-II connects the white stone to the edge via two two-bridges
indicated with ‘×’ and ‘+’, respectively. Since these threats are disjoint, Black cannot block both
of them. The concept of disjoint threats is very important in Hex.

There are many more edge patterns. Figure 4.6 shows the simplest pattern for a virtual connection
from the fourth row. Human players quickly learn to recognize these patterns, and can quickly assess
or discard lines of play based on them. Yet to discover a virtual connection through search can be
very taxing; the connection in Figure 4.6, for example, would require an additional 10 ply if the
algorithm cannot detect the pattern statically.
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Figure 4.5: Two disjoint threats establish the virtual connection
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Figure 4.6: A virtual connection from the fourth row
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Figure 4.7: The start of a ladder

4.3 Ladders

After learning about two-bridges and edge patterns, the next important concept that human players
discover is that of a ladder. Consider the position in Figure 4.7, with White to move. White wants
to stop the black stone at g2 from being connected to the lower black edge. The only way of doing
so is by playing at g1. If Black then threatens again to connect by playing f2, White again has only
one move, this time at f1, to block the connection. This exchange of threats and blocks along an
edge is called a ladder.

If both players keep “laddering”, eventually the position of Figure 4.8 will be reached. Black has run
out of threats to connect the ladder to the lower black edge. Attempting to keep the ladder going
by playing at b2 is a mistake, because White can then connect to the left white edge by playing at
b1. In fact, Black is now forced to play at a2, as the white stone at c1 is involved in a 3-triangle.
This, in turn, forces a reply by White at b2, which subsequently starts a new ladder that runs along
the upper white edge; the ladder has “turned around the corner”. Ladders can turn around both
the acute and the obtuse corners of the board.

An important realization is that Black has the initiative while the ladder is running along the lower
black edge. Black can opt not to continue the ladder at any point, whereas White is forced to
continue the ladder as long as Black does. When the ladder turns around the corner, the initiative
switches from Black to White. In practice, ladders are never continued very far. The player with
the initiative generally attempts to choose a good moment to interrupt the move sequence.
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Figure 4.8: The ladder runs into the corner
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Figure 4.9: The outpost decides the outcome of the ladder

Ladders can occur any number of rows2 away from the edge, but in practice they mostly happen
on the second and third row from the edge, where the defending side is forced to keep laddering
as long as the attacking side does. If the ladder is farther away from the edge, it can also be
interrupted by the defending side. Ladders pose the same problem for Hex playing programs as
they do for Go programs. They have to be resolved either by knowledge-based methods, or by
very deep additional searches. Knowledge-based methods are hindered by the influence of seemingly
unconnected stones on the outcome of the ladder, as will be seen in the following section. For the
same reasons, knowledge-based approaches to resolve ladders have proven to be too dangerous in
Go; state-of-the-art programs use narrow searches instead for this purpose.

4.4 Outposts

The position in Figure 4.9-I is similar to the one in Figure 4.7, the only difference being an extra
black stone on a2. This stone drastically alters the fate of the ladder. If play continues as it did
in Figure 4.7, eventually the position in Figure 4.9-II is reached. This time, Black can play at b2,
because the stone at a2 secures a virtual connection to the lower black edge.

2In the context of edge patterns and ladders, “rows” strictly speaking refers to “rows or columns, depending on
whether Black or White is the attacking side in the pattern.”
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Figure 4.10: Another outpost example

The stone at a2 is called an outpost. Another example of an outpost is shown in Figure 4.10, where
the outpost is at c3. Black proceeds to play c2 and connects the ladder to the lower black edge.
Ladders can be influenced by outposts of either player.

Outposts indicate the depth of Hex strategy. The stone at a2 in Figure 4.9 may have been played
there much earlier in the game. Such seemingly innocuous moves can have long term implications.

4.5 Forcing moves

In the position in Figure 4.11, White is to move. Applying the knowledge about two-bridges, White
recognizes that the stone at c8 has a virtual connection to the lower white edge. If the stone at c8
could be connected to the upper White edge, White would win.

As for Black’s position, White notes that the stones at d4 and d5 are connected to the stone at c7
via a two-bridge. The stone at d4 already has a virtual connection to the lower black edge through
an edge pattern of the fourth row, as seen in Figure 4.6. The black stone at a9 already has a virtual
connection to the upper black edge, because a white play at a10 would start a ladder that would
eventually be decided in Black’s favour by the outpost at g9. Thus Black threatens to win the game
immediately by connecting the stones at a9 and c7. It therefore appears that White has no option
but to play at b8, to stop this connection.

White’s move at b8 starts a ladder along the upper white edge. With Black’s stones at d4 and d5
being a dangerous influence, the ladder is likely to turn around the corner and continue on the second
row along the lower black edge, where Black has an outpost on i2. All in all, White’s prospects after
playing at b8 are dire at best.

However, White has another option. The surprising move c6 threatens Black’s two-bridge connection
d5-c7. Black can of course restore the connection by replying at d6, and White’s move initially looks
futile. But White proceeds to play at b8, starting the same ladder as mentioned above. Soon the
position in Figure 4.12 is reached. White can now win immediately by playing at b5.
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Figure 4.12: White’s move at c6 established a winning outpost
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In hindsight, White’s seemingly useless move at c6 established an outpost which later decided the
game in White’s favour. A move that threatens a virtual connection is called a forcing move, because
the opponent is forced to reply to it in order to restore the virtual connection. The power of a forcing
move is that it can establish an outpost “for free”; in chess terms, the move does not lose a tempo,
because the opponent is forced to reply to it.

Forcing moves can be crucial, and understanding them is important. They show that a virtual
connection is not as strong as an actual connection. In reality, a virtual connection is only ever
equivalent to an actual connection if its region is disconnected from the rest of the board.

The strategy goes deeper still. After White’s move at c6, Black could argue that the reply at d6 is
not really forced at all. Black might play some entirely different reply.3 This would of course allow
White to cut Black’s connection at d5-c7, but meanwhile Black will have had the chance to play two
moves elsewhere. These two moves might be more threatening than the d5-c7 connection. Of course,
in turn, White might elect not to cut Black’s connection at d5 after all, but play somewhere else.
What complicates matters further is that Black, in this example, also has many “forcing moves”
to choose from. Hex strategy can get highly complicated this way. It is reminiscent of Go, where
forcing move fights occur also.

4.6 Opening moves

The opening move presents a particular challenge if the swap rule is in effect. As noted in Section 3.4,
the first player cannot play either a very strong opening move or a very weak opening move. The
choice would seem to be to play an opening move which leads to an equal position, but in Hex there
are no equal positions since draws are impossible. In practice, the choice will be to play a move that
makes it as difficult as possible to judge which side is stronger.

The winning opening moves for unrestricted Hex on board sizes up to 6 × 6 were first tabulated
by Herbert Enderton [End]. Queenbee confirmed these results, and also computed the length of
the perfect game following each particular opening move. A perfect game is a game in which the
winning side achieves a winning position as soon as possible while the losing side delays it as long
as possible; a winning position is defined as any position in which one player has a connection that
may only be interrupted by simple two-bridges.

Figure 4.13 contains the results for the game where Black has the first move; circled numbers refer
to winning moves in unrestricted Hex. For example, if Black plays the opening move c3 on a 6× 6
board, it leads to a win in 16 moves. In contrast, when Black opens in cell a2, it leads to a loss in
19 moves. The latter result is surprising, since strong human Hex players believed this move to be
a win. The length of the perfect game following an opening move can be taken as an indication of
the difficulty of the opening. If the swap rule applies, then Black may want to choose an opening

3According to Queenbee this is indeed what happens. Black wins by playing the counter-threat d7, which is also
a forcing move. Position 4.11 appears to be a loss for White after all.

34



Chapter 4. Hex strategy 4.6. Opening moves

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
kg

kg
kg

kg
kg

kg

{
{

{
{

{
{

kg
kg

kg
kg

kg
kg

{
{

{
{

{
{

17
19

17

28k

24k

17

22k

16k

22k

15

20k

20k

24k

20k

15

18k

18k

14k

14k

18k

18k
20k
20k
24k
20k
15

22k
16k
22k
15

28k
24k
17

19

17
17

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
T
·T

·
kg

kg
kg

kg
kg

{
{

{
{

{

kg
kg

kg
kg

kg

{
{

{
{

{

9
17

9

13

12k

9

14k

12k

14k

9

12k

10k

8k

10k

12k
14k
12k
14k
9

13

12k
9

17

9
9

T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
T
·T

·
kg

kg
kg

kg

{
{

{
{

kg
kg

kg
kg

{
{

{
{

5
5

5

3

5

5

6k

4k

4k

6k
3

5

5

5

5
5

T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·

T
·T

·
T
·T

·
T
·T

·
kg

kg
kg

{
{

{
kg

kg
kg

{
{

{

1
4k

1

4k

0k

4k
4k
1

1

Figure 4.13: Difficulty of opening moves for Black in unrestricted Hex

with a high number. The trend seems to be that moves near the acute corner, but not on the black
border, are good candidates. Strong human players often play the opening move a2.

The largest board size for which winning strategies for unrestricted Hex from the opening position
are known is 7 × 7. This strategy was described by Jing Yang [End99]. Anatole Beck [BBC69]
proved that playing the first move in an acute corner is a theoretical loss on any board size larger
than 1× 1, so it is known that not all opening moves win.
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Chapter 5

Queenbee’s evaluation function

A game playing program needs a good evaluation function to help guide the search. It is not imme-
diately obvious how to construct a meaningful evaluation function for Hex. For example, unlike in
many other board games, in Hex the concepts of material balance and mobility are entirely unhelp-
ful. This chapter contains new ideas for a Hex evaluation function. These ideas were implemented
in the Hex playing program Queenbee. The function calculates the distance to each edge of all the
unoccupied cells on the board, according to an unconventional distance metric called “two-distance”.
The resulting distances are referred to as “potentials”.

5.1 Two-distance

Given a graph Γ with an adjacency function n(p) that maps a vertex p onto the set of the vertices
that are adjacent to it, there is a distance metric dz that generalizes the conventional distance metric:

dz(p, q) =





0 if q = p,
1 if q ∈ n(p),
mink ck(p) ≥ z otherwise,

(5.1)

where
ck(p) = |{r ∈ n(p)|dz(r, q) < k}|.

The conventional distance metric corresponds to z = 1, in which case the distance of a cell to an edge
on the Hex board represents the number of “free moves” that it would take for a player to connect
the cell to the given edge. Unfortunately this distance function is not very useful for building an
evaluation function for Hex, as will be shown later. Rather, the concept of two-distance is used,
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Figure 5.1: Comparison between conventional distance and two-distance to the lower black edge

where z = 2. The two-distance is one more than the second lowest distance of p’s neighbours to q,
with the proviso that the two-distance equals 1 if p and q are directly adjacent.

Figure 5.1 shows the distance of each cell to the lower black edge on a 5×5 board according to
these two metrics. The intuition behind the two-distance idea is that, when playing a game, one
can always choose to force the opponent to take the second best alternative by blocking the best
one. Consider e4, the cell containing the boxed number in Figure 5.1. The conventional distance
indicates that direct route to the lower black edge only takes four steps. However, there is only one
path originating from e4 that achieves this distance. By contrast, the two-distance equals 7, as the
best two adjacent connections are at distance 5 and 6. The two-distance thus captures the essence
of “the best second-best alternative”.

Notice that the rightmost cell on the board, e5, is at two-distance 7 even though its immediately
adjacent neighbours are both also at two-distance 7. The number is nevertheless correct, since the
calculation of two-distances needs to take into account the entire neighbourhood of a cell. There is
an important distinction between adjacency and neighbourhood. Adjacency implies neighbourhood,
but not vice versa. Two cells are adjacent if they share a common edge on the board. The notion of
neighbourhood takes into account any black and white pieces that are already on the board. Two
unoccupied cells1 are neighbours from White’s point of view if either they are adjacent or there is a
string of white stones connecting them.

Note that a cell’s neighbourhood can therefore be different from White’s point of view than it is from
Black’s point of view. These two neighbourhoods will be referred to as the W-neighbourhood and the
B-neighbourhood. Correspondingly, there will be a distinction between W-distance and B-distance.
This explains why the cell e5 is at two-distance 7 from the lower black edge; due to the edge pieces,
its B-neighbourhood contains the cells a5 and b5 which are at distance 5 and 6, respectively.

In Figure 5.2, two black stones are added to the board. Figure 5.2-I shows the B-distances of the

1Neighbourhood is only ever used for empty cells.
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Figure 5.2: Two-distances on a non-empty board

unoccupied cells to the lower black edge, and Figure 5.2-II shows the W-distances to the upper white
edge. The addition of the two black pieces results in, for example, cells c2 and b5 being B-neighbours
but not W-neighbours.

5.2 Potentials

The goal in Hex is to connect two sides of the board. To help achieve this, one might look for an
unoccupied cell that is as close as possible to being connected to both sides, as this would be a
promising candidate for being part of a winning chain. The evaluation function calculates potentials
that capture this concept. Each unoccupied cell is assigned two potentials, based on the two-
distance metric. A cell’s W-potential is defined as the sum of its W-distance to both white edges;
its B-potential is the sum of its B-distance to both black edges. Figure 5.3 shows the potentials for
a position with two white and two black stones on the board.

Cells with low W-potentials are the ones that are closest to being connected to both white borders
by White. If White can connect a cell to both white borders, this would establish a winning chain.
White will therefore focus on those cells that have the lowest W-potentials. The white board potential
is defined as the lowest W-potential that occurs on the board. In the example of Figure 5.3 the
white board potential is 5, and the black board potential is 4. As lower potentials are better, it
appears that Black is ahead.

In the same figure, it can be seen that both Black and White have only one cell that actually realizes
their board potential. For both players it is the cell c2. It would be better to have more than one
cell that realizes the board potential, so as to have more attack options and be less easy to block.
The attack mobility is defined for each player as the number of cells that realize that player’s board
potential.
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Figure 5.3: Cell potentials

Queenbee’s evaluation function uses only the two concepts of board potential and attack mobility.
The evaluation function returns the following number:

e = M(pB − pW )− (aB − aW ), (5.2)

where

pW = white board potential;
pB = black board potential;
aW = white attack mobility;
aB = black attack mobility;
M = a large number.

If M is set to be sufficiently large, the evaluation function will prefer one position over another if
its board potential difference is better, and only use the attack mobility difference as a tie-breaker
for positions with equal board potential difference. The potential of a cell, if it is finite, cannot be
larger than 2n2 on an n× n board. Therefore, using a value for M of the order of magnitude of n2

will achieve this. Queenbee uses M = 100.

5.3 Strategic relevance

The idea behind the two-distance metric is directly related to the importance of double threats.2

Indeed the two-distance implicitly takes into account the two-bridges that occur in a Hex position.
Consider the position in Figure 5.4. The white distance to each edge cannot percolate through the
black two-bridges. As Black already has a winning connection made up of two-bridges, the result is

2See Section 4.1.
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Figure 5.4: The two-distance cannot percolate through two-bridges

that the white board potential is infinite. Thus, the two-distance metric also implicitly recognizes
a winning chain that consist of virtual connections through two-bridges, even if the chain is not
actually solidified yet.

By contrast, using the regular distance metric in the position of Figure 5.4 would yield board
potentials of 4 for both White and Black, suggesting that both players are equally close to establishing
a winning connection. This indicates that the two-distance metric is far more suited to Hex than
the conventional distance metric is.

5.4 Move badness

As mentioned before, White will want to play in cells that have a low W-potential, as those are the
cells that are closest to being connected to both white edges. Simultaneously, White will also want to
focus on cells that have low B-potentials. Those are the cells where Black is closest to establishing a
winning connection, and therefore White will want to play in those cells to block Black’s connection.
Combining this, White will prefer to play in cells that have a low total potential, where the total
potential of a cell is the sum of its W-potential and its B-potential. By symmetry, Black will prefer
to play in the same cells. This is analogous to the heuristic for the game of Go that says: “Your
opponent’s most important play is your most important play.”

Consider again the position of Figure 5.3. The total potentials of the unoccupied cells are shown in
Figure 5.5. Analogous to the black and white board potentials, the total board potential is defined
as the lowest total potential on the board. In this case, the total board potential is 9. It is realized
only by cell c2. In this case, the cell with the lowest total potential also has the lowest black and
white potentials. In general, however, the two sets of cells with lowest black and white potentials
need not be equal. In some cases they can even be disjoint.
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Figure 5.6: A high tension position and a low tension position

For each cell, the badness is defined as the difference between its total potential and the total board
potential. For example, in Figure 5.5 it can be seen that the move e2 is the worst-looking move on
the board, with a badness of 21−9 = 12. This concept of badness plays a crucial role in Queenbee’s
search algorithm, as will be described in Chapter 6.

5.5 Move tension

An alternative way to judge the apparent strength of a move is move tension. The tension of a move
is defined as the swing in board potential difference caused by the move. Selecting the move with
the highest tension is therefore equivalent to performing a one ply search. The importance of move
tension is that it allows a comparison of the apparent strength of moves in different board positions.
This information may be very useful in deciding whether or not to extend the search on a given
move. Conceptually, extra search effort is likely to be needed after high tension moves, since the
evaluation is apparently unsettled.

Figure 5.6, with Black to move, illustrates the difference between quiet and tense positions. Posi-
tion 5.6-I is very dynamic; there is a ladder fight going on at the upper white edge. The move with

42



Chapter 5. Queenbee’s evaluation function 5.5. Move tension

the highest tension is a6, whose tension is 4. By contrast, position 5.6-II is very quiet. The highest
tension move here is c5, whose tension of 2 is only about half that of the ladder blocking move a6
in 5.6-I.

Move tension is a general, game-independent way to assess the apparent local strength of a move.
It is not efficient to use this measure to generate the move ordering, since this would amount to a
full-width one ply search with one call to the evaluation function for each available move. It would
be too expensive to do this merely to sort the moves. If a game playing program calculates the static
evaluation at every node, as Queenbee does, the move tension information becomes available “for
free” after the move is made. However, at that point the tension information can be very valuable,
since it can still be used to generate a local search extension or reduction.

43



5.5. Move tension Chapter 5. Queenbee’s evaluation function

44



Chapter 6

Queenbee’s search algorithm

Queenbee uses an iterative deepening α-β search enhanced with MWS/PVS and transposition ta-
bles.1 The move ordering is based on the “move badness” metric described in Section 5.4. Queenbee’s
search incorporates the fractional ply searching ideas of the “sex search algorithm” [LBT89]. The
large branching factor of Hex makes regular full-width searching methods inadequate, even when
enhanced with conventional search extensions and reductions. On the other hand, a highly selective
search is too unreliable due to its inability to cope with moves such as forcing moves and outpost
establishing moves. The Sex search algorithm is essentially a generalization of search extensions and
reductions, whose behaviour can range smoothly over the spectrum between full-width and fully
selective. Moreover, it is amenable to automatic learning.

6.1 Beam search and tapered search

Beam search is a standard search technique applied to search domains where the branching factor
of the search tree is too large to reach a search depth required for acceptable performance within
realistic time limits. The search algorithm chooses the best k children of each node, as determined
by a move ordering function, and expands only those. The parameter k is referred to as the beam
width. With beam search, the quality of the move ordering is of critical importance. Whenever a
particular move is not among the best k according to the move ordering, a beam searcher will not
find this move regardless of how much search time is allotted.

A more robust search method is tapered search. This algorithm behaves like a beam search, but the
beam width varies with the search depth. The natural choice would be to use a wide beam near the
root node, and narrower beams at larger depths. At the start of each new iteration, the beams are

1See Chapter 2.
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widened. The tapering function, which controls the beam width, takes as input just two parameters:
the total search depth D at the current iteration, and the distance d to the root of the current node.
If the function is strictly increasing with D for every value of d, the search will eventually find any
move when allowed enough time to search.

Tapering functions are typically chosen to decrease with d. A simple case would be the function
D − d. Note that a full-width search in Hex would in fact be a tapered search; since there is one
fewer empty cell on the board after every move, the number of children to be expanded decreases as
the distance to the root node increases.

Rather than tapering the beam width, it is also possible to taper some function associated with the
moves. Suppose each move is assigned a local score, reflecting the apparent strength of the move.
At each node, the search algorithm only expands the children whose local score are better than a
particular threshold. This threshold is determined by the tapering function. Queenbee can use the
move categories, described below in Section 6.3, for its tapering.

6.2 Sex search

As described in Section 2.5, selective search is inescapable for developing a high performance Hex
program. State-of-the-art search algorithms do behave selectively to a limited degree, using search
extensions and reductions. The Sex search algorithm, as described by Levy, Broughton, and Taylor
[LBT89], generalizes this idea. The name “Sex Search” stands for “search extensions”.

Sex search proposes to assign a weight, or cost, to every move in the search tree. Rather than
exploring lines until a certain fixed depth is reached, the Sex algorithm explores lines until their
moves add up to a fixed cost. This cost limit may be called the budget. The idea is that “interesting”
moves have low cost, while “uninteresting” moves have high cost. This way, branches with many
uninteresting moves are not explored very deeply, which corresponds to search reductions. At the
same time, branches that contain many interesting moves will be explored more deeply, corresponding
to search extensions.

If all moves are assigned a cost of 1, then a Sex search with a budget of n is equivalent to a full-width
fixed-depth search to n ply. If the moves have varying cost, but the average cost is 1, then the Sex
search is comparable to an n ply search with extensions and reductions. A move cost of k effectively
extends the search by 1− k ply if k < 1, and reduces the search by k − 1 ply if k > 1.

If the range of costs of the available moves is large, then the Sex search algorithm behaves much like
a selective search. Consider, for example, a move m with cost 4. This cost ensures that the subtree
below m will be explored to an average of 3 ply less than subtrees below m’s siblings, assuming they
both contain moves with an average cost of 1. Due to the exponential nature of the search tree, the
search effort required to explore m becomes insignificant in comparison with the effort required to
explore m’s siblings. Thus the behaviour is much like that of a selective search that would discard
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move m altogether. A selective search suffers from the unavoidable risk of discarding moves that
turn out to be critical. Sex search does not run this risk, as it does not actually discard any moves.

Sex search is used in some high performance game playing programs, most notably in the chess
program Deep Blue [CHH99]. However, in most cases the fractional move costs are only assigned to
certain special cases of moves, while the majority of the moves receives weight 1. Queenbee’s search
is fully fractional, in that each move category has a fractional weight.

Beam search and tapered search are forward pruning methods, which means that they discard moves
before they are searched. Sex search is a more flexible way to achieve a selective search. It is not
a forward pruning method, since the algorithm does expand either all moves or no moves at every
node. The search tree can be very non-uniform, where some lines go much deeper than other lines.
But this non-uniformity is only relative to the metric of the search tree. When one measures distance
by arc length in the search tree, where the arc lengths correspond to the move weights, the tree is
of uniform depth up to rounding-off effects.

6.3 Move categories

The crux of the Sex search algorithm is finding a good cost function for moves. Moves are partitioned
into equivalence classes, or move categories. Each move category has a weight associated with it.
The cost of a particular move is obtained by retrieving the weight of its move category. In Queenbee,
the partitioning can be based on move badness, as described in Section 5.4, or on move tension, as
described in Section 5.5.

When move badness is used, the category c(m) of a move m with badness b(m) is

c(m) =
{ −b∗ if b(m) = 0

b(m) otherwise (6.1)

where b∗ is the move badness of the second best move overall. The parameter b∗ is included to assign
different costs to a move of badness zero depending on whether it is the unique best looking move,
and on how much better it is than the next best looking move. If c(m) = 0, then m is the best move
but not the unique best move. If c(m) < 0, then the static evaluation of m is −c(m) better than
that of the next best looking move.

When move tension is used, Queenbee’s standard evaluation function according to Formula 5.2 is
used, but the attack mobility is disregarded in order to keep the number of equivalence classes
limited. In practice, the move tension has been observed to be as high as 12 in some positions.
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Figure 6.1: Adding a ghost piece to detect a virtual connection to the edge

6.4 Pattern database

Sections 4.2 and 4.3 described the concepts of edge patterns and ladders. Human players use these
patterns extensively. It seems likely that a Hex-playing program needs to be able to recognize these
patterns as well. Indeed, even the simple pattern of Figure 6.1 would require an additional six plies
of search to discover the virtual connection. Bigger edge patterns and ladders can require many
more plies. Lack of knowledge about these patterns creates a large risk of incurring a horizon effect.
The search algorithm can use the pattern moves to push other tactical events beyond the horizon.

Suppose knowledge about the third row edge pattern of Figure 6.1-I is to be added to the program.
Two different ways of doing this have been tried in Queenbee. The first approach was to add “ghost
pieces”; imaginary extra pieces that secure the edge connection. The second method was to consider
the pieces with a virtual connection to actually be part of the edge of the board. The latter method
is called “edge extension”. Both methods are only used at the leaf node level; they can be thought
of as a pre-evaluator, which is a function that transforms a position before it is to be evaluated.

Ghost pieces

In Figure 6.1-I, the black piece has a virtual edge connection thanks to the edge pattern. To take this
virtual connection into account in the evaluation, an extra ghost piece can be added. This has been
done in Figure 6.1-II. As Queenbee’s evaluation function recognizes two-bridges correctly, it will
conclude that the black piece on the third row is connected to the edge, and that White connections
are blocked by this pattern.

This approach suffers from several major drawbacks. It is usually not clear where to add ghost
pieces. In the pattern in Figure 6.1-I, a ghost piece can be added in any of four locations to
establish the two-bridge connection. Moreover, the addition of ghost pieces severely overestimates
the strength of Black’s position, as Black will have more pieces on the board. Any compensation that
White would receive for making Black actually establish the connection by playing forcing moves is
under-represented.

The most important drawback is that the ghost pieces may interfere with other local battles. A
ghost piece can inadvertently take on a double role, not just establishing the edge connection but
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Figure 6.2: The dangers of ghost pieces

also blocking a nearby opponent’s connection. In tests with ghost pieces, Queenbee consistently
misplayed positions by explicitly aiming for positions in which the ghost pieces played such double
roles.

Edge extension

An alternative approach to taking edge patterns into account is dubbed “edge extension”. This
approach leaves the position undisturbed, but explicitly makes the cell containing the Black piece
part of the black border. This effectively puts the cell at distance zero from the border, reducing its
neighbours’ B-distances to the border by as much as two, in the case of the third row edge pattern.
This avoids the disadvantages of ghost pieces.

Edge extension has a tendency to under-represent Black’s advantage, as White connections through
this pattern are no longer blocked. This is offset by a tendency to overestimate Black’s advantage
when more than one pattern is found. In such a case it could happen that the various edge patterns
interfere with each other.

Pathological cases

There does not appear to be a flawless way to incorporate edge pattern knowledge into an evaluation
function. Pathological cases where a position is incorrectly assessed can be constructed for both ghost
pieces and edge extension. In practice, the danger turns out to be much less with edge extension.

Figure 6.2 illustrates the dangers of ghost pieces. The position is part of the analysis of the Hex
puzzle originally devised by Piet Hein, and given in Martin Gardner’s article [Gar59]. The position
is claimed to be a losing line for White, for after White’s move at c2 Black wins by playing at a4
and eventually laddering over to e4. However, the position is in reality a win for White. White’s
unique winning move is c4.

The confusion arises because the black piece at b2 has a virtual connection to the lower black edge,
and the black piece at d3 has a virtual connection to the upper black edge. Therefore White’s move
at c2 is seemingly forced. But White in turn has a forcing move at c4 that turns the tables. If ghost
pieces were used to evaluate this position, the black piece on d3 will be connected to the upper black
edge by adding a ghost piece at c4, c5, or d4. In each of those cases, the resulting position is a loss
for White. The only correct solution in this case is to add a black ghost piece at d4 and a white
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Figure 6.3: The dangers of edge extension

ghost piece at c4, but this would actually require additional search.

A simple case where edge extension evaluates a position incorrectly is shown in Figure 6.3. The two
black pieces at b4 and d3 in Figure 6.3 both have a virtual connection to the upper black edge. Since
the black piece at c2 has a virtual connection to the lower black edge and can always be connected
to either b4 or d3, it appears that Black has a secure virtual connection all the way across. However,
White next plays at c4 and wins. The flaw in Black’s line of reasoning was that b4 and d3 each
have a virtual connection locally, but the connections overlap. White can attack both connections
at once; Black can save either one, but White can then cut the other connection.

This leads to the important conclusion that when a collection of pieces each have virtual connections
to the edge, it merely implies that the player in question can choose to connect any one of them to
the edge – but not necessarily all of them. This could lead to a serious error in the assessment of a
position, as this example shows. In practice, however, the edge templates used are rather too sparse
to cause this kind of destructive interference.

6.5 Unsuccessful enhancements

In addition to the methods described in this Chapter, several other ideas were tried. Some of the
methods had no significant beneficial effect on the search efficiency, or proved to be too risky and
unstable in tests. Such unsuccessful attempts include null move searches, forward pruning, and
balanced evaluation.

Null moves

An apparently very promising search enhancement for a Hex playing program would be null move
search [GC88]. A null move is effectively a pass, where the turn is handed back to the opponent
without making a move at all. The remaining position is searched with a reduced search depth,
usually two ply less. If this null move search returns a value that exceeds the β bound, a cutoff is
generated. This cutoff is relatively safe, since it is to be expected that there are moves available
that are better than a pass move; if even a pass move exceeds the β bound, there are likely to be
valid moves that do so as well. Informally, if the opponent cannot improve their position even when
making two moves in a row, then the first of these two was a mistake which can be pruned away.
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Null moves are “cheap”; since the remaining search is shallower they take relatively little time. Their
power is that they can thus establish a cutoff very quickly. The danger that threatens null move
algorithms is that they implicitly assume that there are always moves that are better than a pass
move. This is however not the case in zugzwang positions.2 Fortunately, zugzwang does not occur
in Hex. There are always moves that are better than a pass move.

Experiments with null move searches in Queenbee were unsuccessful. The extra search effort did
not slow down the program much, but hardly any cutoffs were generated. The reason may be a pass
move in Hex is so bad that indeed any move is guaranteed to be better. Since no move can weaken
a player’s position, a pass move by the opponent always makes it possible to reach a better position
than that before the previous move, even when the previous move was not the best possible.

Forward pruning

Due to the large odd/even effect in Hex and the fact that a move can never weaken a player’s
position, the evaluation of a position tends to oscillate during a game. The evaluation is usually in
favour of the last player to move, except near the end of the game where one player is significantly
behind. This suggest a forward pruning mechanism where a position is ignored if the evaluation is
already in favour of the player to move even before a move is played, since this would indicate that
the player could actually afford to skip the move which is a significant advantage in Hex.

The pruning method can be generalized by introducing a pruning threshold, where a position is
ignored if its evaluation prior to making a move already exceeds the threshold. During experiments,
searches would often actually terminate by completion, meaning that it had been found that one
player was guaranteed to achieve this threshold evaluation. Moreover, this forward pruning mech-
anism led to significant reductions in node counts. Eventually this method was abandoned, since
there turned out to be too many “pathological” positions where critical lines were cut off. This
tended mostly to happen in ladder positions.

Singular extensions

Singular extensions were introduced by the Deep Thought / Deep Blue team [ACH90]. The method
proposes to extend the search in positions where one move is found to be clearly better than all the
other moves. In Queenbee, this would be a move whose potential is lower than that of any other
move; in other words, a move with negative move badness. Singular extensions are thus a special
case of Sex search. It can be conjectured that this method may be able to deal with ladders by
extending its way through them, but in experiments it turned out to be too unstable. The reason
for this may be that it is dangerous to apply Queenbee’s evaluation function at different ply depths
in the search; see Section 8.1 for a discussion on this subject.

Balanced evaluation

Queenbee’s evaluation function experiences a large odd/even effect. Its search can be set to “ag-

2See Section 2.3.
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gressive” or “defensive”, corresponding to odd ply searches and even ply searches, respectively. The
odd/even effect is particularly large in ladder positions. The danger of aggressive search is that these
ladder positions are too often considered to be favourable, since the player to move always gets the
last move in each line of the search. Similarly, a defensive search is too pessimistic about ladders.
In playing tests it appears that aggressive search is clearly the better choice of the two.

The problems caused by the odd/even effect could perhaps be fixed by taking the average value of
a node’s evaluation and the evaluation of its parent node, and passing these averaged values back
up the search tree. This might for example favour a line where the evaluation oscillates between +3
and +1 over a line where, due to a ladder, the evaluation fluctuates between +5 and -5. However,
in tests the balanced evaluation search behaved nearly identical to the aggressive search.
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Chapter 7

Results

The main goal when developing a game playing program such as Queenbee is simply to maximize
the program’s playing strength. The most important experiments are therefore those that test
Queenbee’s strength. This was mainly done by self-play matches, as well as test matches against its
main computer rival Hexy. In the near future, feedback will also be obtained from online play. To
this end, an applet was developed through which human players can play against Queenbee on the
Internet.

Other experiments were performed to assess the effectiveness of the various search and evaluation
ideas incorporated in Queenbee. These include tapered search and sex search, the move ordering by
move badness, the move weighting based on move tension and move badness. All experiments were
performed on a 7 × 7 board; the same set of experiments should be repeated on size 11 × 11 and
perhaps other sizes in order to assess how well the findings scale up to larger boards.

7.1 Selective search

The strength of human players in a game is commonly measured by their rating. The ELO-ratings
for chess players are a well-known example. For Hex, similar ratings are calculated by the online
games server Playsite.1 Typical ratings for human players are listed in Table 7.1.

Queenbee first started rivalling strong humans around 1997. Two years later, the very strong
program Hexy [Ans00], written by Vadim Anshelevich, appeared. Hexy is available for download
online,2 and thus proved to be an excellent opponent to benchmark Queenbee’s performance. Its

1See http://www.playsite.com/games/board/hex.
2See http://home.earthlink.net/~vanshel.
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range playing level
1200–1400 novice
1600–1800 advanced
2000–2200 expert
2200–2300 champion

Table 7.1: Ratings for human players on Playsite

Queenbee version wins draws losses percentage
full width 3 14 8 40% 27%

beam search, width 10 3 19 3 50% 50%
beam search, width 5 10 12 3 64% 77%

move class tapering 5 19 1 58% 83%

Table 7.2: Queenbee at 100,000 nodes versus Hexy at level 1, on a 7× 7 board

rating on Playsite is reported to be in the range of 2100 to 2200, but no detailed information
is available. To date, there is no other known Hex playing program that can approach Hexy’s
strength.

Queenbee played games against Hexy on a 7×7 board, using each possible opening move once. Due
to the symmetry of the board, there are 25 distinct opening moves. Each program played two games
for each opening move, taking White’s side in one game and Black’s side in the other. The opening
was scored as a draw if both programs won one of the games. The swap option was not used. Since
many openings may be lopsided, and the programs are forced to play each opening once from the
side they consider to be the weakest, drawn encounters may be disregarded.

Results are shown in Table 7.2. The table shows two winning percentages for each match; the first
one considers all games played, whereas the second one disregards drawn encounters. This match
was played with Queenbee using 100,000 nodes per move and Hexy set to “beginner level”, taking
on average about 10 seconds and about 2 seconds to move. To assess the relative strength of the
programs, experiments would need to be to establish how much search Queenbee would need to
break even with Hexy at advanced levels. However, the purpose of the experiments in Table 7.2 is
to compare the strength of beam search and tapered search versus regular full-width search, not to
compare the strength of Queenbee and Hexy.

The beam search only considered the best five or ten moves, according to Queenbee’s potential-based
move ordering, in each position. The move class tapering considered all the moves with a badness
of at most f(d, h), where f is a function of the depth of the node and the height of the subtree
remaining below it. In this case, a hyperbolic function is used: f(d, h) = d/h. This function was
chosen over the more straightforward f(d, h) ' h/(d + h) in order to have less selectivity near the
root and more selectivity near the fringe of the tree. The results clearly show that beam search
outperforms regular full width search, and that the ad-hoc tapering function in turn outperforms
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Figure 7.1: Node counts for searches with indicated beam width, 7× 7 board

beam search.

7.2 Branching factor

Since the move selection in tapered searches or Sex searches uses the move badness metric, it is
relevant to know how much the branching factor of the search tree is affected by pruning away
moves based on this criterion. Figures 7.1 and 7.2 show the node counts as measured on 7× 7 and
11 × 11 boards, when only moves of a given maximum badness are considered. The lines in the
graphs are labelled with the maximum badness of the moves considered in the search. The labels
‘∞’ correspond to a search that considers move of arbitrary badness; in other words, a full width
search.

The results show a clear trend when the logarithms of the node counts are taken relative to those of
a full width search. Figures 7.3 and 7.4 show the resulting lines. It can for example be established
that a tolerance beam width of zero has a branching factor approximately equal to the fifth root
of the branching factor of a full width search on an 11 × 11 board. This would enable a search to
go five times as deep. A tolerance beam width of zero corresponds to a search that only considers
moves that have optimum potential; note that there may be more than one such move in a given
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Figure 7.2: Node counts for searches with indicated beam width, 11× 11 board

move category ≤ −4 -3 -2 -1 0 1 2 3 4 5 6 7 ≥ 8
simple extensions 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1
simple reductions 1 1 1 1 1 2 3 4 5 6 7 8 9

Table 7.3: Move category weights used in the simple search extensions and reductions settings

position.

7.3 Sex search

The Sex search algorithm forms a natural generalization of search extensions and reductions. A
move that is assigned a weight w > 1 is effectively a search reduction by w − 1 ply, while a weight
w < 1 corresponds to an extension by 1 − w ply. Experiments were performed where Queenbee
used a hand-crafted set of weights that emulated search extensions or search reductions. The actual
weights used are listed in Table 7.3.

Special care must be taken in implementing the Sex search. Queenbee’s evaluation function suffers
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Figure 7.3: Branching factor relative to full width search for searches with indicated beam width,
7× 7 board

Sex search variant wins draws losses percentage
simple extensions, two budgets 4 15 6 46% 40%

simple extensions 3 22 0 56% 100%
simple reductions 7 16 2 60% 78%

Table 7.4: Queenbee at 100,000 nodes, sex search versus full width search, on a 7× 7 board
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from a considerable odd/even effect.3 It must therefore be guaranteed that the evaluation function
is always called in positions with the same player p to move. To achieve this and at the same time
keep all lines at roughly the same cost, Queenbee uses the following solution. In positions where p
is to move, only the moves whose cost will not reduce the budget to below zero are explored. In
positions where p’s opponent is to move, all moves are explored.

Another danger that threatens the Sex search, especially when pattern databases4 are used, is what
is called the “Sex horizon effect”. When exploring a line that contains a winning combination, the
algorithm will often create a horizon for itself by including very bad moves for the defending side.
This causes the variation to be searched less deeply, pushing the win beyond the budget limit.

Two ways to circumvent the Sex horizon effect are implemented in Queenbee. The first method is
to make sure than whenever a move is or becomes a principal variation move, it is considered to be
of the lowest available move category. This way, no high move weights can occur on the principal
variation. The second method, as described in [LBT89], is to maintain two separate budgets, one
for each side.5 This ensures that a strong move sequence will be found regardless of the opponent
making uninteresting moves.

Table 7.4 lists the results of self-play matches. Note that both extensions and reductions win roughly
the same percentage of games, but extensions appear to be more robust since they did not lose any
matches. It can also be seen that the two-budget approach did not work well. Possible reasons for
this are discussed in Chapter 8.

7.4 Evaluation function

Since Queenbee has completely solved all the positions after one move on a 6× 6 board, as well as
many opening positions two or more moves into the game, it is possible to compare the evaluation
function’s assessment of these positions with perfect knowledge. In a winning position we distinguish
between good moves and bad moves. A bad move loses against perfect play, while a good move
preserves the win. There are two types of good moves: optimal moves and suboptimal moves. A
move is optimal if it maintains the shortest possible win. In a losing position there are no good
or bad moves, as every move will lead to a loss against a perfect opponent. Yet there still is a
distinction between optimal and suboptimal moves. Optimal moves are those that delay the loss as
long as possible, while suboptimal moves do not.

Figure 7.5 displays the frequency in percentages of optimal and good moves for various move cat-
egories.6 The data was obtained from 27 winning positions and 34 losing positions that Queenbee
has analyzed. The figure indicates that the lower move categories contain a significantly higher

3See Section 2.3.
4See Section 6.4.
5This is also used in Deep Blue.
6See Section 6.3.
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position move move category
type type -5 -2 -1 0 1 2 3 5

winning optimal - 1 1 9 6 2 7 1
good - 1 1 12 7 2 3 1

losing optimal 3 3 5 21 1 - - 1

Table 7.5: Category containing the lowest potential move

percentage of good moves than average. Note that negative move categories, intuitively correspond-
ing to apparently “forced” moves, appear to be better in losing positions than they are in winning
positions. This may be because the winning side typically has several options to choose from, while
the losing side is more often forced to reply to a threat.

The effectiveness of the Sex Search relies on the move categories’ capacity to distinguish good moves
from bad moves. Any category that has a significantly different distribution of good and bad moves
compared to the overall distribution is therefore valuable. Categories can be assigned low or high
weights according to whether good moves are relatively common or uncommon, respectively. The
bottom graph in Figure 7.5 indicates that almost all categories do show a large deviation from the
average frequency. Moreover, the frequency of optimal moves decreases almost monotonically as
the move category increases, indicating that the cell potential is indeed a good estimator of move
strength.

In order for the search to produce reliable results, it is not necessary that all good moves in a position
be found. What is important is that at least one good move is found. Table 7.5 lists the lowest move
categories in which optimal and suboptimal moves were encountered in the same set of positions. It
is clear that in most cases there is an optimal or suboptimal move to be found in categories at most
0 or 1. Positions in which good moves only occur in higher move categories are rare.

From these tables it becomes apparent that the evaluation function enables a good partitioning of
moves into classes of different move quality. It is also clear that the cell potentials provide a good
estimate of the quality of the moves, since good moves are more common in low move categories.

7.5 Tension and badness

The same experiments as in Section 7.3 were performed using move tension, rather than move
badness, to partition the moves into categories. The rationale behind this is that the reason to
generate a search extension is not because the preceding move is good, but because it is volatile.
The extension hopefully causes the position after the volatile move to be resolved. Move tension is
a natural measure of volatility, and hence it appears to be a suitable choice as an extension control
mechanism.
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move tension 0 1 2 3 4 5 6 7 ≥ 8
simple extensions 1 1 0.7 0.5 0.4 0.3 0.2 0.1 0.1
simple reductions 3 2.5 2 1.5 1 1 1 1 1

Table 7.6: Move category weights based on move tension used in the simple search extensions and
reductions settings

Sex search variant wins draws losses percentage
simple extensions 1 20 4 44% 20%
simple reductions 2 20 3 48% 40%

Table 7.7: Queenbee at 100,000 nodes, sex search using move tension versus full width search, on a
7× 7 board

Table 7.6 lists the weights that were chosen to emulate reductions and extensions. The match results
are displayed in Table 7.7. It is clear that move tension does not perform as well as move badness;
in fact, the move tension with the given weights actually decreased Queenbee’s playing strength
relative to a normal full-width search.
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Chapter 8

Conclusions and future work

The general conclusion to be drawn at this stage in Queenbee’s development is that the program is
strong, but that two key areas of weakness can be identified. The first is the program’s play in the
opening phase, when the game is still very quiet and strategic in nature. The second weakness is
the way the search is focussed. This chapter discusses the results and presents ideas for future work
towards strengthening these weak links.

8.1 Discussion

The importance of selectivity and search depth are clearly illustrated by the beam search results in
Table 7.2. The best results are obtained when only five moves are explored in each positions in the
search tree. Table 7.5 partially explains this; the best moves for the losing side are almost always
in the low move categories. Yet the best moves for the winning side are frequently not at the top of
the move list. A beam search algorithm would in that case never find a winning move, no matter
how much time is allocated for the search.

The results show that increased search depth with narrow beam search outweighs the risk of fre-
quently not finding a good move for the winning side. The apparent importance of search depth
indicates that it is imperative that unsettled positions be resolved through additional search. Re-
solving unsettled positions may be more important in Hex than in many other games since draws
are impossible in Hex. In games like chess, a position whose static evaluation is roughly even may
well be a drawn position. But since there are no draws in Hex, every position will eventually tip
in favour of one of the players. Finding out which way the position is likely to tip may be more
important in Hex than exploring other alternatives near the root level.
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Tapered search combines the advantage of selectivity and depth with the capacity of in principle
being able to find any move, no matter how bad its static move evaluation is. The search is very
selective near the fringe of the tree, allowing it to reach greater depth than a full-width search,
and less selective near the foot, allowing it to find non-obvious moves. However, this method still
misses potentially critical lines in the search tree that contain important non-obvious moves near the
fringe rather than near the root. Sex search generalizes the tapered search method, since it allows
the non-obvious moves to appear at any distance from the root, while maintaining the same search
effort.

When Sex search is used, high move weights generally do not matter. A high move weight leads
to a search reduction, but this does not tend to make much difference in the search effort since the
Minimal Window Search is so efficient that it proportionally does not spend much time on the bad
looking moves anyway. For the same reason, Sex search with two budgets did not work very well.
The two-budget approach correctly plays out a line after one player inserts a bad move, but this is
what the alpha-beta algorithm would do anyway. The two-budget method works correctly, but does
not lead to any significant search savings over full-width search.

The Sex horizon effect is particularly destructive when edge patterns are used in the evaluation
function. The problem is likely mainly caused by the non-uniform depth of the search tree. Beam
search and tapered search are also selective, yet all the lines that are explored do reach down to the
same depth. In Sex search they do not. Perhaps it is very dangerous to apply Queenbee’s evaluation
function at different ply depth in the tree. The game of Hex contains a natural measure of “time”;
late game positions are essentially incomparable to early game positions since they contain a different
number of stones.

The following conclusions can now be drawn about game tree search in the game of Hex.

• The search must be non-uniform, concentrating the search effort on moves that appear good
based on static evaluation or initial search.

• The search must in principle consider all moves eventually; no moves can be discarded without
further ado.

• The search should be flexible enough to consider non-obvious moves at any depth, not just
near the root.

• The search is recommended to go down to the same ply depth in every line, meaning that the
static evaluation function must be applied at the same or at a comparable depth everywhere
in the tree.

A search-based solution to this might be a tapered search in which the tapering function itself is
dynamic. Each position P in the search tree could be assigned a branching factor b(P ), indicating
the number of moves or the number of move categories that are to be explored. A move m leading
to child node Pm would then be assigned a new branching factor b(Pm) based on the move class of
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m. The worse m appears to be, the more b(Pm) is decreased relative to b(P ). This way, a bad move
does not lead to a shallow tree, as it does in regular Sex searches, but it leads to a sparse tree.

8.2 Comparison with Hexy

Anshelevich’s approach used in his program Hexy seems excellently suited to Hex. The program’s
search component is mainly geared towards discovering virtual connections, although it also does
some additional game tree search. The virtual connections are partitioned into a hierarchy of “gen-
erations”, where a connection of the n-th generation consists of a conjunction or disjunction of
connections of generations at most n− 1. The evaluation function is based on an electrical network
model, where apparently each cell is a node in the network which is connected to all adjacent cells
on the board. When Hexy can find a virtual connection between the two edges of the board for
one of the players, the position is solved. When no winning virtual connection can be found, the
virtual connections are used in the evaluation function. There are two reasons why a winning virtual
connection might not be found. The connection may be too deep and thus require too much search,
or it might indeed be impossible to find it since the connection rules that Hexy uses have been
proved to be incomplete [Ans00].

Since a winning virtual connection of the n-th generation is equivalent to a win in n ply, it could
also be found by an n ply game tree search. Part of the power of Hexy’s search derives from its
non-uniformity; some connections are pursued to a much higher generation than others. Anshelevich
uses some metric to decide whether or not to expand a new connection, apparently based on the
estimated amount of search effort involved. Connections are no longer expanded when they cross a
certain “effort threshold”. This is directly equivalent to a Sex search, where the estimated search
effort per connection corresponds to the move weights, and the effort threshold corresponds to the
search budget. Hexy’s capabilities to detect very deep connections, such as ladders, hint that its
playing strength would be decreased if it were to expand all virtual connections to a fixed depth.
Thus the move weighting is of singular importance, but it is unclear how this is done in Hexy.

An important difference between the discovery of a deep winning virtual connection and a deep
winning line in a game tree is that the virtual connection immediately proves the win, while the
game tree line only does so once all alternative lines for the losing side have been disproved. As such,
the virtual connections behave more like threat patterns, to be described below in Section 8.5. These
patterns also prove wins and losses without needing to disprove all other lines for the opponent.

When a winning connection cannot be found, a heuristic value is returned based on the resistance of
the electrical network corresponding to the position. Opponent’s pieces are represented by insulators,
which corresponds to raising the resistance of the wires to infinity. Friendly pieces correspond to
zero-resistance conductors. Hexy’s playing strength in positions where a win is not yet proved is
considerable, despite its relatively shallow game tree search. This indicates that the inclusion in the
evaluation function of knowledge gathered during the virtual connection search is of vital importance.
Here, too, it is unclear how it is done in Hexy. Note that it cannot be a matter of introducing a
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zero-resistance wire between virtually connected cells; Figure 6.3 on page 50 gives an example where
local virtual connections appear to prove a win in a position that is in reality a loss.

The details concerning the search control and the evaluation function are thus part of the key to
Hexy’s strength. It may or may not be possible that a game tree searcher using a suitable Sex
move weighting can emulate Hexy’s capabilities to prove a win or a loss, and that a Queenbee-type
evaluation function can emulate Hexy’s use of virtual connection knowledge at least where it comes
to standard edge patterns. It will be possible to speculate on these matters once the information
about the two said aspects of Hexy becomes available.

8.3 Future work: Learning search control

Queenbee’s evaluation function does not contain any parameters whatsoever. Thus, in contrast
to other game playing programs, Queenbee’s evaluation function remained unchanged from the
beginning, and is not a target for learning. A clear target for machine learning, however, are the
move category weights described in Section 6.3. Recent work by Björnsson at the University of
Alberta enables the automatic tuning of the fractional ply extensions [Bjö00]. Learning can proceed
either online, by playing games, or offline, by compiling a suite of test positions along with their
solutions.

Björnsson’s methods were implemented in Queenbee. Tests with online learning have thus far been
unsuccessful. The main problem appears to be that the method requires Queenbee to keep track
of the full principal variation1 with every search. This is difficult to achieve in combination with a
transposition table, since transposition table cutoffs can cause principal variation information to get
lost. Attempts to force full principal variations to be returned have not yet been successful.

The alternative method, offline learning, requires building a set of test positions. The method of
choice to achieve this is to have the program play a large number of games against external opponents.
With the implementation of the applet that allows users to play against Queenbee via the Internet,
this has become feasible. Whenever the evaluation value on some move k is significantly lower than
the value at move k − 1, it is clear that the program found a particular continuation during the
search at move k that was missed during the search at move k − 1. The position at move k − 1 is
then added to the test suite, along with the principal variation found at move k. The learner’s task
is to minimize the search effort required to find the given variation in the given position.

1See Section 2.4.
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8.4 Future work: Opening book learning

As noted in Section 2.6, the area of automatic opening book construction has recently become
prominent in computer chess. Not only does an opening book need to be built, but it also needs
to be updated constantly during game play, to avoid losing a game twice in the same way. One
property that an opening book learning algorithm should ideally have is that, since it never plays
an identical losing line twice, it would eventually construct a perfect opening book. In practice, the
number of games required to reach this goal would doubtlessly be too large; however, the property
of being able to do this in principle can still serve as a good guide line.

This section presents a high level description of such an algorithm, based on Buro’s algorithm for
Othello [Bur99]. An opening book is maintained in which each node contains two values: a local
value and a negamax value. The local value is obtained by performing a regular game tree search
in the position in question, excluding the available book moves. The local value thus represents the
value of the best alternative move, which is the best move that does not appear in the book. The
negamax value of a node in the book is found by comparing the value of the alternative move to the
values of the book moves, and choosing the best one according to the negamax paradigm.

The opening book does not necessarily contain information about all child nodes for each of its
internal nodes. Indeed, in a game with a high branching factor such as Hex, hardly any nodes will
have all their children expanded. Learning can theoretically start with an empty opening book, and
is performed by playing games, either against an external opponent or by self-play. Whenever the
alternative move in an opening book position is found to be better than the available book moves,
the new move is added to the book and the negamax values of all its parent nodes are updated
accordingly. This is a horizontal addition to the opening book.

Horizontal additions occur when the alternative move becomes more advantageous than the available
book moves. Since the book moves were originally chosen because they appeared to be better, the
alternative move can only be chosen when the book move’s values drop. When a position drops
its negamax value, it necessarily implies that one of its children changed its value as well. Such a
change in value is ultimately caused by a vertical addition to the book.

A vertical addition occurs when a leaf node in the opening book acquires a child node, and the child
node backs up a different value than its parent’s local value. Vertical additions occur according to
some specified criterion; one could imagine adding a new node every time the program leaves the
opening book, in which case one new node would be added during every game.

8.5 Future work: Pattern search

Partition search, described by Ginsberg in his work on Bridge [Gin96], refers to a search paradigm
where moves are partitioned into classes. During the search, only one move from each of the partition
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Figure 8.1: Only the cells marked ‘×’ are relevant

classes is searched. This reduces the branching factor of the search tree, resulting in a considerable
speedup if the classes are large. For this method to work, the search results necessarily have to be
identical or nearly identical for all moves in each given class.

One example of such a class occurs frequently in almost every game, when a human player considers
that a particular threat must be dealt with. The player identifies a broad collection of moves that do
not meet the threat, and that are all refuted identically. This is the inspiration behind threat space
search, developed by Allis and used to solve Go-Moku [All94]. In a threat search, the defending side
is allowed to play all forced replies to a given threat. If it can be proved that the attacking side still
wins, then it follows that the position was a win under the normal game rules as well.

In Hex, human players often reduce a position to a small set of relevant board cells. Consider the
position in Figure 8.1-I. It is clear that Black has won the game. The important observation is that
only the cells marked ‘×’ actually matter. The status of the other cells is irrelevant. Indeed, even
if White were to occupy all of the other cells, the position would still be a loss for White. The
collection of ×-cells is the threat pattern that proves the win for Black. Since it is White’s move, the
pattern is a losing threat pattern.

When White plays c6 in the position of Figure 8.1-I, the position in Figure 8.1-II arises. This
position is still a win for Black. Again Black would still win even if White were to occupy all the
cells that are not marked ‘×’. The threat pattern in Figure 8.1-II is a winning threat pattern. This
threat pattern is very powerful, since it not only proves that White’s c6 is a losing move, but it
immediately disproves all moves that are not marked ‘×’ at the same time. In this case, the move
c6 disproves 35 other moves in one single effort.

This leads to the following definition of a threat pattern.

• Definition: A collection Ψ of empty cells in a Hex position P is a threat pattern if the game-
theoretical value of P is unaltered when the losing side occupies all the empty cells not in
Ψ.
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Note that a threat pattern is not unique to a position, since adding an empty cell to a threat pattern
always creates another valid threat pattern. A minimal threat pattern is one from which no cell can
be omitted without rendering the pattern invalid. Even minimal threat patterns are not unique to
a position; for example, when there are several moves that establish a winning connection, each of
those moves represents a winning threat pattern consisting of one cell. There exists a threat pattern
in every position, since the pattern that consist of all empty cells is always trivially valid.

Threat patterns can be calculated recursively. If a position is a win, the winning player merely has
to find one single winning move m+ along with a losing threat pattern Ψ− of the resulting position.
The winning threat pattern Ψ+ then consists of the union of m+ and Ψ−:

Ψ+ = m+ ∪Ψ−. (8.1)

If the position is a loss, this can be established by finding a collection of k winning threat patterns
{Ψ+

1 , Ψ+
2 , . . . , Ψ+

k } for the opponent that have an empty intersection. The patterns do not need to
be pairwise disjoint. The losing threat pattern Ψ− then is the union of all these winning threat
patterns:

Ψ− =
k⋃

i=1

Ψ+
i . (8.2)

The bottom of the recursion is reached in any position where one of the players has a chain that
connects both sides; the threat pattern in that case is the empty pattern, since the winning player
still wins even if the opponent occupies the entire rest of the board.

The potential power of this method is clear. In a winning position, ideally one move has to be
searched in order to verify the win, just like in regular alpha-beta searches. But in a losing position,
only a small subset of the moves have to be searched, whereas in alpha-beta all moves have to be
disproved. In the position of Figure 8.1-I, a pattern search requires 2602 nodes to prove the 10 ply
win, corresponding to a branching factor of 2.2. Queenbee requires less than 10 ply to see the win,
due to the evaluation function. As it turns out, a full width search by Queenbee requires 6 ply and
63,874 nodes to prove the win, corresponding to a branching factor of 6.3.

In practice, the pattern search algorithm is quite sensitive to move ordering. The position in Fig-
ure 8.2 is a trivial win for Black. If the move b5 is searched first, the algorithm will correctly
conclude that the pattern in Figure 8.2-I proves the win for Black. If on the other hand the move c4
is searched first, the win is still proved – by searching only two replies for White, rather than all 16
of them – but the resulting pattern contains three cells. It still is a valid and correct pattern, but it
is bigger than it needs to be.

When backing up the patterns, they quickly grow too large if special care is not taken to keep them
as small as possible. A pattern that covers the entire board is trivially valid, but it is also useless
since the search then becomes a standard alpha-beta search. Some overhead would be required to
keep the patterns small, which is problematic. The great potential speed of the partition search
algorithm is also its own greatest impediment, since the slightest overhead in the algorithm will
spoil most of the speed benefits.
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It should be noted that the algorithm as formulated can only prove wins and losses. It cannot
back up heuristic values. Some preliminary experiments have also been performed where heuristic
values were artificially turned into wins and losses by considering a leaf position a win if and only
if its evaluation exceeds a certain threshold. Repeated searches can identify the threshold position
where the assessment changes from a win to a loss. The findings are still inconclusive. The power
of Queenbee’s evaluation function could be combined with pattern searches, since the evaluation
function can detect a win before the connection is establishes; the remaining two-bridge connections
then form the threat pattern. For example, the win in Figure 8.1-I would require just 91 nodes to
prove using a pattern search combined with two-bridge detection, as compared to the 63,874 nodes
that Queenbee’s game tree search takes.

8.6 Future work: Combinatorial game theory

In combinatorial game theory, a move m is said to be reversible if there is a reply that leaves
the opponent in a strictly better position than before m was played. In Hex, reversible moves are
provably irrelevant, and can be deleted from the search.

An example of reversible moves is shown in Figure 8.3. The cells marked ‘×’ are reversible moves
for White. The move f3 for White is a forcing move, since it threatens the Black virtual connection
between f2 and e4. But human players immediately discard this particular move, since it does not
achieve anything. Black could reply by playing e3, after which there are no new W-neighbours.
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White’s move temporarily created new W-neighbourhood connections between e3 and the four cells
g3, g4, f5, and e5, but Black’s reply severed these connections. Since White’s move did not connect
anything that was not already connected, the move is evidently futile; any White move that does
introduce new W-neighbourhood connections is necessarily better.

Another reversible move for White is b1. This move actually fails to create any new W-neighbours
at all, and is thus reversed by any Black move. Reversible moves can be detected easily. A move is
reversible it its neighbourhood, from the point of the player to move, either forms a clique or can
be partitioned into a single cell c and a clique. In the latter case, an opponent’s reply in c reverses
the move; in the former case, any reply reverses the move. A game tree search can be enhanced by
pruning these moves immediately.

Note that the move f1 in Figure 8.3 is not reversible, since even after the Black reply at e2 there is a
new W-neighbourhood connection between e1 and the lower White edge. Reversible moves are rare,
but the search savings might nevertheless be significant, since reversible moves tend to be forcing
moves. The Sex search algorithm in Queenbee spends relatively much effort on forcing moves, since
they usually have very low badness and very high tension. Pruning reversible moves would also be
a safeguard against a common mistake that Queenbee is prone to make, which is playing a forcing
move on the wrong side of the connection.

When combined with pattern search, reversible moves might introduce larger savings, again since
reversible moves are usually forcing moves that therefore need to be searched by the pattern search.
In the position of Figure 8.1-I, moves d1 and e1 are reversible for White. A pattern search with
two-bridge detection and reversible move detection would then require 49 nodes to prove the win in
this position.

A powerful method in combinatorial game theory is the decomposition of games into independent
sub-games. This is usually the case with winning connections in Hex. The winning pattern in
position 8.1-I really consists of three independent sub-patterns. Partial decomposition of a pattern
is easy to achieve, since non-contiguous regions in a pattern must be independent. For example, when
the algorithm tries move c6 first, position 8.1-II arises. The standard pattern search as described
in Section 8.5 then concludes that only the moves within this pattern need to be considered and all
other ones can be discarded. If the decomposition of pattern 8.1-II is detected, all three parts could
be searched independently; if none of the sub-patterns grow to overlap the others, the win is still
proved. Using this method, the 10 ply win in position 8.1-I can be proved by searching 6 nodes.
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Appendix A

Sample games

This Appendix contains games that successive incarnations of Queenbee played since 1998, when
the program made its debut on the online games server Playsite. 1 Note that ‘1’ and ‘2’ refer not to
the outcome of the game but rather to which player went first and which player went second. The
first move of the game is for Vertical. After the first move, the first player plays Horizontal if the
swap option is used, and continues playing Vertical otherwise.

The opponent in the first game was an expert player who had just beaten Queenbee’s author by
eight games to zero; Queenbee subsequently played and almost avenged the losses.

1: Queenbee 19 October 1998
2: Emanuele (2061) Playsite, 10× 10

QB E QB E QB E
1. H8 F5 11. B4 D1 21. F8 E9
2. H4 H5 12. D2 E1 22. E7 D8
3. G5 F7 13. E2 F1 23. resign
4. C8 E6 14. F2 G1
5. D6 E4 15. H2 G2
6. E5 F4 16. G3 F3
7. C5 D3 17. G6 G7
8. D4 E3 18. I6 G9
9. C3 C4 19. H6? H9
10 A5 B2 20. G8 F9

The final position was resigned because 23 E8 D9, 24 D7 B9 and Horizontal ladders over to C4.

1See http://www.playsite.com/games/board/hex. The game notation used here differs from the Playsite con-
vention in that the swap does not cause the first piece to change colour and location; rather, the players change
colour.
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However, Queenbee enjoyed a clearly won position on move 19. Simply playing 19 H9 or 19 I8 would
have won the game easily; if Horizontal responds with 19 ... H6 then 20 J4 wins. More recent
versions of Queenbee do not miss this win anymore.

The first official win over a strong player occurred in the following game. However, the human player
committed a serious elementary error.

1: 1oak1 (1840) 21 October 1998
2: Queenbee Playsite, 10× 10

1o1 QB 1o1 QB
1. E10 E6 11. I8 I7
2. D6 C8 12. G8 G9
3. B8 B7 13. A10 A9
4. C7 B9 14. E8 D9
5. F6 F5 15. J6 J7#
6. H4 D8
7. I2 H6
8. G6 E9
9. H7 F9

10. I5 H8

The move 10 I5 loses instantaneously by allowing a very simple edge pattern. Vertical could have
won the game at that point by playing 10 G8.

Queenbee later recorded online wins against expert players. The following two games both featured
players rated in the highest segment at Playsite, where the maximum player ratings are around
2100–2200.

1: JasonKidd (–) 5 June 1999
2: Queenbee Playsite, 10× 10

JK QB JK QB
1. A2 E6 11. E8 B7
2. D6 D7 12. C7 E9
3. F5 F6 13. F8 F9
4. G5 G6 14. H8 C5
5. H7 I5 15. D5 E3
6. B8 E5 16. E4 G10
7. H5 H6 17. I9 G7
8. C6 B9 18. G8 F3
9. C8 C9 19. F4 G3

10. D8 D9 20. H3 resign

This game looks quite hopeless for Queenbee, but actually it missed a win as late as two moves
before the end of the game. The move 18 ... G2 would have won the game.
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1: Queenbee 5 June 1999
2: Twixter (2119) Playsite, 10× 10

QB T QB T
1. C2 swap 11. G5 H5
2. E6 B7 12. H4 J3
3. C7 B8 13. I3 J2
4. B10 C8 14. I4 J4
5. D9 A10 15. I5 J5
6. C5 D6 16. I7 I6
7. A9 B9 17. H7 H6
8. D7 C6 18. F8 E8
9. E4 H3 19. F7 resign

10. E5 G6

This game is Queenbee’s first official win against one of the top players; Queenbee actually went on
to beat the same player in the next game as well.

Queenbee participated in the Fifth Computer Olympiad, as part of the Mind Sports Olympiad in
London. In addition to Hexy, there was only one other entry in the Hex tournament. This entry
illustrated the point that Hexy and Queenbee are the only two programs to transcend beginner level;
the difference in playing strength between them and the third program is quite considerable.

Queenbee 24 August 2000
Killer Bee Computer Olympiad, London, 11× 11

game 1 game 2 game 3
KB QB QB KB KB QB

1. H2 F6 1. B2 F6 1. A4 B11
2. G5 G6 2. E7 G5 2. F6 E8
3. E7 E6 3. D6 E6 3. G5 G8
4. F5 H5 4. D7 E5 4. E7 C9
5. D7 D6 5. D5 F5 5. G6 F8
6. resign 6. D9 resign 6. D8 D9

7. H7 H8
8. resign

Killer Bee’s programmer resigned the fourth game without playing. The performance of Killer Bee
illustrates how challenging it is to write a strong Hex playing program, given that its author is the
very strong Hex player Emanuele Brasa, Queenbee’s opponent in the first game in this Appendix.

The final of the Hex competition was played between Queenbee and Hexy, who had both won all
their games against Killer Bee.
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1: Queenbee 24 August 2000
2: Hexy Computer Olympiad, London, 11× 11

QB H QB H QB H QB H
1. B2 swap 11. E5 D5 21. B8 A8 31. D2 D3
2. F6 G6 12. D8 C8 22. B7 A7 32. H9 J8
3. F7 G7 13. D7 C7 23. B6 A6 33. I8 J7
4. I3 H4 14. C9 A10 24. F11 H10 34. I9 J9
5. G5 I5 15. A11 B10 25. G10 H8 35. I7 J6
6. H3 G4 16. B11 C10 26. G9 F8 36. resign
7. G3 E4 17. B9 A9 27. B5 A5
8. E3 F3 18. C11 D10 28. B3 B4
9. F2 G2 19. D11 E10 29. C4 C3

10. F4 D6 20. E11 F10 30. C2 E2

1: Hexy 25 August 2000
2: Queenbee Computer Olympiad, London, 11× 11

H QB H QB H QB
1. A2 swap 11. K1 J2 21. D8 D7
2. F6 G6 12. I6 J6 22. F8 D9
3. I3 H3 13. I7 J7 23. K10 G9
4. H4 G5 14. I8 J8 24. F10 E6
5. G4 F5 15. I10 I9 25. G7 resign
6. F4 D5 16. H10 H9
7. E5 D6 17. G10 K9
8. E3 K2 18. J11 G8
9. C4 J4 19. F9 K8

10. I5 J5 20. E8 B9
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