
University of Alberta

Library Release Form

Name of Author: Shubhashis Ghosh

Title of Thesis: Heuristics for Integer Programs

Degree: Doctor of Philosophy

Year this Degree Granted: 2007

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Shubhashis Ghosh

Date:

University of Alberta

HEURISTICS FOR INTEGER PROGRAMS

by

Shubhashis Ghosh

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2007

Abstract

Many real world optimization problems can be formulated as mixed integer programs. In general,

finding optimal, or even feasible, solutions to such problems is computationally intractable. For this

reason, there is interest in developing heuristic algorithms for these problems.

In this thesis we present three new mixed integer program heuristic algorithms.

The first, PIVOT AND GOMORY CUT (PGC), is a feasibility heuristic, namely one that tries only

to find a feasible solution. PGC integrates Gomory cuts into the bounded variable revised simplex

pivoting framework similar to that used in the classic PIVOT AND COMPLEMENT heuristic of Balas

and Martin.

The second, DISTANCE INDUCED NEIGHBOURHOOD SEARCH (DINS), is an improvement

heuristic, namely one that starts with a feasible solution and tries to improve it as much as possible.

DINS performs neighbourhood search at different nodes of the mixed integer program search tree

where the mixed integer program search tree is the tree generated by either a branch-and-bound or

a branch-and-cut solver. DINS defines the neighbourhoods by modeling a distance metric between

the current mixed integer feasible solution and the relaxation solution at the node of the mixed

integer program search tree.

The third, NEIGHBOURHOOD PIVOT AND GOMORY CUT (NPGC), is a ‘find-and-improve’

heuristic. Such a heuristic tries to find the best possible feasible solution. NPGC, an extention

of PGC, uses Gomory cuts to define neighbourhoods, searches the neighbourhoods for feasible

solutions, and improves any found feasible solutions by applying the LOCAL BRANCHING heuristic

of Fischetti and Lodi.

We also present a new class of hard 0-1 integer programs for which instances are easy to gen-

erate pseudo-randomly. These pseudo-randomly generated instances are useful in comparing the

performance of different heuristics.

Acknowledgements

Getting admission to the graduate school of University of Alberta is one of the greatest rewards and

honours of my life. About five years ago I start this difficult but rewarding journey, and today I hope

that I will be able to remember everyone who have helped me smoothen this difficult journey.

First and foremost, I thank my supervisor, Ryan B. Hayward, for taking me as his student, show-

ing optimism in my research, and introducing me to some exciting problems in graph theory and

combinatorial optimization. He has been an ideal supervisor in every respect, in terms of provid-

ing valuable technical inputs in my research and in terms of granting enough financial support that

helped me to maintain my family. It is he who has taught me how a scientist should think of a prob-

lem and its possible solutions. His tireless editorial effort has undoubtedly improved the quality of

this thesis. Working with him has become an enlightening experience and, in a nutshell, this thesis

would be impossible without his help and co-operation.

I thank Professor Joe Culberson, Professor Lorna Stewart, Professor Renè Poliquin, and Pro-

fessor Michael Buro for helping me to select interesting research directions to explore. I also want

to thank many well known researchers who have provided useful information and advice at various

stages of my research, including, but not limited to: Bill Cook, Gerard Cornuéjols, Andrea Lodi,

Emilie Danna, Mikhail Nediak, Ed Rothberg, and Fadi Aloul. I also thank Neil Burch for helping

me use ILOG Cplex, and all other support staff of the Computing Science Department at University

of Alberta for their various contributions throughout my doctoral journey.

I like to express my endless gratitude to my parents for encouraging me over the years of my

studies since childhood. I would also like to thank all of my relatives and friends who have worked

as a support network over the time.

Finally, I thank my wife, Lovely, for her companionship and endless mental support toward my

research, and for taking care of our daughter Sreoshi during this difficult time that I will cherish over

the years.

Contents

1 Introduction 1

2 Background 4

2.1 Integer Programs . 4

2.1.1 The Linear Programming Relaxation . 5

2.1.2 The Simplex Method . 5

2.1.3 Integer Programming Complexity . 7

2.1.4 Approximation Algorithms . 8

2.1.5 Exact Solvers for Integer Programs . 9

2.1.6 Gomory Cuts . 12

2.1.7 Pseudo-Boolean Solvers . 14

2.2 Heuristics for Integer Programs . 15

2.2.1 Feasibility Heuristics . 15

2.2.2 Pivot and Complement and Its Successors 15

2.2.3 Octahedral Neighbourhood Enumeration 17

2.2.4 Pivot, Cut, and Dive . 18

2.2.5 Convexity Cut . 20

2.2.6 Vertex Cut . 20

2.2.7 Tabu Search in Solving Integer Programs 20

2.2.8 Heuristics Based on Interior Path . 21

2.2.9 Feasibility Pump . 22

2.2.10 Improvement Heuristics . 22

2.2.11 Local Branching . 23

2.2.12 Relaxation Induced Neighbourhood Search 24

2.3 Benchmark Integer Program Instances . 25

2.3.1 Existing Library of Integer Program Instances 25

2.3.2 Generation of Hard Integer Program Instances 26

3 Pivot and Gomory Cut 29

3.1 Pivot and Complement . 29

3.2 Pivot and Gomory Cut . 34

3.3 Heuristic Performance Evaluation . 45

3.4 PGC Performance Evaluation . 46

3.4.1 PGC0 versus PGC1 versus PC . 46

3.4.2 PGC1 versus Feasibility Pump . 48

3.4.3 PGC1 versus ILOG Cplex 9.13 . 49

3.4.4 PGC versus a Pseudo-Boolean Solver . 51

3.4.5 Performance on Randomly Generated Instances 51

3.4.6 Weakness of PGC . 54

3.5 Complexity of PGC . 54

4 Distance Induced Neighbourhood Search 56

4.1 Distance Induced Neighbourhood Search . 57

4.2 DINS Performance Evaluation . 62

4.2.1 DINS Performance Evaluation from the Presumably Poor Solutions 63

4.2.2 DINS Performance Evaluation from the Presumably Good Solutions . . . 66

4.2.3 DINS Neighbourhoods versus RINS Neighbourhoods 73

4.2.4 Verification of Intuitions used in DINS 74

4.2.5 Performance on Randomly Generated Instances 75

5 Neighbourhood Pivot and Gomory Cut 79

5.1 Neighbourhood Pivot and Gomory Cut . 80

5.2 NPGC Performance Evaluation . 82

6 Generating Hard Integer Program Instances 88

6.1 Cornuéjols-Dawande Feasibility-Hard Instances 88

6.2 Constrained Williams’s Market-Sharing Problems 91

6.2.1 The Expected Number of Solutions . 93

6.2.2 Probability of Generating Infeasible Instances 95

6.3 Solver Performance on Constrained Market-Sharing Instances 97

7 Conclusions 101

Bibliography 105

Index 109

A Appendix: Pseudo-Code of PGC 110

B Appendix: Experimental Results 118

B.1 Benchmark Instances . 118

B.2 PGC Experimental Results . 123

B.3 DINS Experimental Results . 140

B.4 NPGC Experimental Results . 152

List of Tables

3.1 PC versus PGC0 on benchmark instances . 47

3.2 PC versus PGC1 on benchmark instances . 47

3.3 PGC0 versus PGC1 on benchmark instances . 48

3.4 FP versus PGC1 on benchmark instances . 49

3.5 Cplex-D versus PGC1 on benchmark instances 50

3.6 Cplex-F versus PGC1 on benchmark instances 50

3.7 PBS4 versus PGC1 on benchmark instances . 51

3.8 Probability measures for the Cornuéjols-Dawande feasibility-hard instances 52

4.1 Cplex-D versus DINS on benchmark instances from poor solutions 64

4.2 LB versus DINS on benchmark instances from poor solutions 65

4.3 RINS versus DINS on benchmark instances from poor solutions 65

4.4 The average and the standard deviation of percentage of gaps obtained by Cplex-D,

LB, RINS, and DINS on benchmark instances from poor solutions 65

4.5 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on benchmark instances from poor solutions . . . 66

4.6 Cplex-D versus DINS on benchmark instances from good solutions 69

4.7 LB versus DINS on benchmark instances from good solutions 69

4.8 RINS versus DINS on benchmark instances from good solutions 69

4.9 The average and the standard deviation of percentage of gaps obtained by Cplex-D,

LB, RINS, and DINS on benchmark instances from good solutions 70

4.10 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on benchmark instances from good solutions . . . 70

4.11 Cplex-D versus DINS on Cornuéjols-Dawande optimality-hard instances 75

4.12 LB versus DINS on Cornuéjols-Dawande optimality-hard instances 76

4.13 RINS versus DINS on Cornuéjols-Dawande optimality-hard instances 76

4.14 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on Cornuéjols-Dawande optimality-hard instances 76

4.15 Cplex-D versus DINS on constrained market-sharing instances 77

4.16 LB versus DINS on constrained market-sharing instances 78

4.17 RINS versus DINS on constrained market-sharing instances 78

4.18 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on constrained market-sharing instances 78

5.1 Cplex-D versus NPGC on benchmark instances 85

5.2 LB versus NPGC on benchmark instances . 86

5.3 RINS versus NPGC on benchmark instances . 86

5.4 The average and the standard deviation of percentage of gaps obtained by Cplex-D,

LB, RINS, and NPGC on benchmark instances 86

6.1 Probability measures for the Cornuéjols-Dawande feasibility-hard instances 89

6.2 Probability measures for the constrained market-sharing instances 95

6.3 Different solvers on constrained market-sharing instances in finding a feasible solution 98

B.1 All mixed integer program instances from MIPLIB 2003 118

B.2 All mixed integer program instances from DEIS operations research library 121

B.3 15 new 0-1 mixed integer program instances used in [29] 122

B.4 PC, PGC0, and PGC1 on benchmark instances 123

B.5 FP and PGC1 on benchmark instances . 126

B.6 GLPK 4.0 versus Cplex 9.13 linear programming solvers 129

B.7 Cplex-D, Cplex-F, and PGC1 on benchmark instances 131

B.8 PBS4 and PGC1 on benchmark instances . 134

B.9 Different solvers on Cornuéjols-Dawande feasibility model instances 134

B.10 Different solvers on constrained market-sharing instances generated with k = 2.0 . 135

B.11 Different solvers on constrained market-sharing instances generated with k = 1.5 . 137

B.12 Different solvers on constrained market-sharing instances generated with k = 1.3 . 139

B.13 Percentage of gaps obtained by Cplex-D, LB, RINS and DINS in one CPU-hour

on benchmark instances from poor solutions . 140

B.14 Cplex-D, LB, RINS, and DINS on Cornuéjols-Dawande optimality-hard instances 143

B.15 Cplex-D, LB, RINS, and DINS on pseudo-randomly generated constrained market-

sharing instances with k = 2.0 . 146

B.16 Cplex-D, LB, RINS, and DINS on pseudo-randomly generated constrained market-

sharing instances with k = 1.5 . 147

B.17 Cplex-D, LB, RINS, and DINS on pseudo-randomly generated constrained market-

sharing instances with k = 1.3 . 149

B.18 RINS neighbourhoods versus DINS neighbourhoods 150

B.19 Percentage of gaps obtained by Cplex-D, LB, RINS, and NPGC in one CPU-hour

on benchmark instances . 152

List of Figures

2.1 A linear program instance . 6

2.2 A simplex tableau . 6

2.3 A dictionary representation . 7

2.4 Algorithm branch-and-bound . 10

2.5 Algorithm branch-and-cut . 11

2.6 Illustration of K and K∗ in two-dimension . 17

2.7 Algortihm LB . 24

2.8 Algorithm RINS . 25

3.1 Algorithms PGC0 and PGC1 . 37

3.2 Illustration of PGC1 on a small example . 43

4.1 Algorithm DINS . 61

4.2 Average percentage of gap on the small spread instances from poor solutions . . . 67

4.3 Average percentage of gap on the medium spread instances from poor solutions . . 67

4.4 Average percentage of gap on the large spread instances from poor solutions 68

4.5 Average percentage of gap on the small spread instances from good solutions . . . 71

4.6 Average percentage of gap on the medium spread instances from good solutions . . 72

4.7 Average percentage of gap on the large spread instances from good solutions 72

5.1 Algorithm NPGC . 83

Chapter 1

Introduction

Many real world optimization problems can be formulated as integer programs. Some such problems

include airline crew scheduling, vehicle routing, and production planning. Consider for example the

airline crew scheduling problem described by Hoffman and Padberg [44].

In airline crew scheduling, the problem is to determine the schedules for the crews from the

given schedules of flights. In finding a feasible schedule, one has to confirm all the regulations and

requirements set by the aviation administration, the union, and the company. Satisfying these re-

quirements a feasible rotation for a flight is identified as the sequence of flight segments starting and

stopping at particular base locations. For each of the feasible rotations, there is an associated cost.

Hoffman and Padberg [44] showed that given a set of feasible rotations, the problem of minimizing

the cost while finding a collection of rotations that cover each flight segment by exactly one rotation

can be formulated as the following integer programming problem:

min
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj = 1 i = 1, ...,m,

xj ∈ {0, 1} j = 1, ..., n,

where n is the number of considered feasible rotations, m is the number of flight segments, aij is

one if flight segment i is covered by rotation j and zero otherwise, cj is the cost associated with

rotation j, and xj is a binary variable which is one if rotation j is selected and zero otherwise.

Observing the practical importance of integer programs, scientists have developed many solution

methods for these problems. Exact methods are devised to find an optimal solution, possibly with

a certificate of optimality. Heuristic methods are devised to find the best possible solution that can

1

be found with some reasonable amount of time. Heuristic methods give no guarantee of finding a

feasible solution, and there is no guarantee that any found feasible solution will be optimal.

Practitioners may not be interested in exact methods mainly for two reasons. First, the known

exact methods may be computationally inadequate within the available computation time for the

given size of problems. Second, finding an optimal solution may not deserve the effort required to

find it. In such cases, practitioners look for heuristic methods.

Roughly the existing heuristics for integer programs can be categorized into two classes. Fea-

sibility heuristics try only to find a feasible solution. Improvement heuristics try to find improved

feasible solutions from a known feasible solution.

This thesis focuses on designing heuristic methods for integer programs and on generating hard

integer program instances that can be used as benchmarks for evaluating the performance of integer

program heuristics. This thesis has four major contributions.

The first contribution is a new feasibility heuristic PIVOT AND GOMORY CUT (PGC). This

heuristic integrates Gomory cuts [41] into a bounded variable revised simplex pivoting framework

similar to that used in PIVOT AND COMPLEMENT (PC) heuristic of Balas and Martin [13].

The second contribution is a new improvement heuristic DISTANCE INDUCED NEIGHBOUR-

HOOD SEARCH (DINS). This heuristic performs neighbourhood search at different nodes of the

mixed integer program search tree where the mixed integer program search tree is the tree generated

by either a branch-and-bound or a branch-and-cut solver. DINS defines neighbourhoods by model-

ing a distance metric between the current mixed integer feasible solution and the relaxation solution

at the node of the mixed integer program search tree.

The third contribution is a new ‘find-and-improve’ type heuristic NEIGHBOURHOOD PIVOT

AND GOMORY CUT (NPGC). This heuristic, which is an extension of PGC, repeatedly seeks a fea-

sible solution and tries to improve it by incorporating neighbourhood search. NPGC uses Gomory

cuts to define the neighbourhoods, searches the neighbourhoods for feasible solutions employing an

exact solver, and improves any found feasible solution by applying the LOCAL BRANCHING (LB)

heuristic of Fischetti and Lodi [35].

The fourth contribution is a new class of 0-1 integer program instances for which finding even a

feasible solution is hard. This class of instances originates from a modified form of Williams’s [73]

market-sharing problem.

As a final remark, Gomory cuts, although regarded since their introduction as theoretically sig-

2

nificant, were not recognized for their practical importance until the 1990s, when Balas, Ceria,

Cornuéjols and Natraj used Gomory cuts to strengthen branch-and-bound solvers [11, 26]. By in-

troducing new successful mixed integer programming heuristics PGC and NPGC, this thesis show

that Gomory cuts can also be used to design effective integer programming heuristics.

3

Chapter 2

Background

2.1 Integer Programs

An integer program is a problem of the form

min{cx | x ∈ X} such that X = {x | Ax ≥ b, x ∈ � n
+},

where
� n

+ is the set of n-dimensional vectors of nonnegative integers. In this definition, c is a row

vector of dimension n, x is a column vector of n variables, A is an m× n matrix, and b is a column

vector of dimension m. Usually cx is called the objective function or cost function and Ax ≥ b is

called the set of constraints.

A 0-1 integer program is an integer program where all the variables are constrained to be either

zero or one. A mixed integer program is an integer program where for some variables, the constraint

that the variable is integer is relaxed to allow the variable to be real. A 0-1 mixed integer program is

a mixed integer program where all the integer variables are constrained to be either zero or one.

In this chapter, we review the relevant background material on integer programming. For more

on integer programming, see the book ‘Integer and Combinatorial Optimization’ by Nemhauser

and Wolsey [62], ‘Theory of Linear and Integer Programming’ by Schrijver [67], ‘Combinatorial

Optimization’ by Cook, Cunningham, Pulleyblank, and Schrijver [25], ‘Integer Programming’ by

Wolsey [74].

4

2.1.1 The Linear Programming Relaxation

The linear programming relaxation of a given integer program is a program where for the variables,

the constraint that the variable can only take integer values in a given interval is relaxed to allow the

variable to take real values in that interval.

The linear programming relaxation of the integer program

min{cx | x ∈ X} such that X = {x | Ax ≥ b, x ∈ � n
+}

is the problem

min{cx | x ∈ X} such that X = {x | Ax ≥ b, x ∈ � n
+},

where
� n

+ and � n
+ are the sets of n-dimensional vectors of nonnegative integers and nonnegative

real numbers respectively.

Similarly, the linear programming relaxation of the 0-1 integer program

min{cx | x ∈ X} such that X = {x | Ax ≥ b, x ∈ {0, 1}n}

is the problem

min{cx | x ∈ X} such that X = {x | Ax ≥ b, 0 ≤ x ≤ 1}.

Mixed integer programs also have corresponding linear programming relaxations.

The solution space of an integer program is a subset of the solution space of its linear program-

ming relaxation. Therefore, the usual starting point to solve an integer program is to solve its linear

programming relaxation. In the best case, the optimal solution of the linear programming relaxation

is integer and so an optimal solution to the integer program.

2.1.2 The Simplex Method

The simplex method, due to Dantzig [30], is a popular method for solving linear programming

problems.

In its first step, the simplex method introduces the so-called surplus variables to convert the

given constraints in the inequality form to the form of equations. For example, the simplex method

introduces a surplus variable yi for each constraint Aix ≥ bi in the problem

min{cx | x ∈ X} such that X = {x | Aix ≥ bi ∀i ∈ {1 · · ·m}, x ∈ � n
+}.

The modified problem has the form

min{cx | x ∈ X} such that X = {x | Aix− yi = bi ∀i ∈ {1 · · ·m}, x ∈ � n
+, yi ≥ 0}.

If the given problem in inequality form has n variables and m constraints, the modified problem

has n + m variables. The basic variables are the m variables corresponding to any chosen m

linearly independent columns. The nonbasic variables are the remaining n variables. A basis is

5

the submatrix in the constraint matrix of the modified problem considering the coefficient of basic

variables. The solution comprising the value of basic variables, evaluated by setting the nonbasic

variables to zero1, is a basic solution. If a basic solution is feasible for the given linear program, it

is called a basic feasible solution.

After introducing the surplus variables, the simplex method finds a basic feasible solution to start

with. It then generates successive basic feasible solutions by the so-called pivoting operation until

it finds a basic feasible solution with the optimal objective value. Pivoting is an operation where a

nonbasic variable becomes a basic variable and vice versa. At each step, the simplex method chooses

the pivoting nonbasic and basic variables with the aim of improving the objective value. For each

basic feasible solution, a simplex tableau is used to represent the information necessary to carry out

the next pivoting operation. For example, for the linear program instance shown in Figure 2.1,

min x1 + x2

such that
x1 + 2x2 + x3 = 4
3x1 − 2x2 − x4 = 9
x1, x2, x3, x4 ≥ 0

Figure 2.1: A linear program instance

a corresponding simplex tableau is shown in Figure 2.2.

x1 x2 x3 x4

1 1 0 0 0
1 2 1 0 4
-3 2 0 1 −9

Figure 2.2: A simplex tableau considering x3 and x4 as the basic variables. The variables x1, x2, x3,
x4 index the columns. The top row corresponds to the objective function; the remaining rows show
the coefficients of the variables in the constraint matrix where the coefficients of basic variables
form an identity matrix. The rightmost column represents the value of the basic variables and the
corresponding objective value.

People also use the so-called dictionary to represent the information of a simplex tableau. Figure 2.3

shows a dictionary representation of the simplex tableau shown in Figure 2.2.

The simplex method, when implemented so that the entire tableau is updated after each pivoting

operation, is known as the standard simplex method. Generating successive basic feasible solutions

1Nonbasic variables are set to either at its lower bound or at its upper bound. In both cases we can substitute the variables
with new variables in such way that the new variables have value zero. If a nonbasic variable xi is set to its nonzero lower
bound li, then we can replace xi by li + x′

i
and thus x′

i
is set to zero. Similarly, if a nonbasic variable xi is set to its finite

upper bound ui, then we can replace xi by ui − x′

i
and thus x′

i
is set to zero.

6

actually requires only a small part of the simplex tableau. The simplex method, when implemented

so that this small part of the tableau required for pivoting is generated from the original data, is

known as the revised simplex method. The revised simplex method, when implemented to handle

variables with explicit bounds instead of only nonnegative variables, is known as the bounded vari-

able revised simplex method. For a detailed description of these three methods, see the book ‘Linear

Programming’ by Chvátal [23].

x1 + x2 = C
4− x1 − 2x2 = x3

−9 + 3x1 − 2x2 = x4

Figure 2.3: A dictionary considering x3 and x4 as the basic variables. C denotes the objective
function.

The simplex method, for the existing pivot rules, takes an exponential number of pivot steps, in

terms of number of variables, in some instances. Klee and Minty [51] showed this for Dantzig’s

pivot rule; Avis and Chvátal [6] showed for Bland’s pivot rule; Jeroslow [46] showed for the best

improvement pivot rule; Goldfarb and Sit [39] showed for the steepest edge rule. In spite of this

negative behaviour, it is the simplicity and practical success of the simplex method that have estab-

lished it as a popular method for linear programming. Khachiyan’s ellipsoid method [49, 50] is the

first method introduced to solve linear programs in polynomial time. But it is Karmarkar’s interior

point method [47] that provides the practical success with the polynomial complexity. This practical

success has come far later from the time it was introduced by Karmarkar and mostly due to Mehrotra

[59]. At present commercial optimization software such as Cplex and Xpress come with both the

simplex method and the interior point method for solving linear programs.

2.1.3 Integer Programming Complexity

Following Karp’s [48] reduction from a satisfiability problem to an integer program, in this section,

we see that integer programs are NP-hard in general. It is immediate if we see that the decision

problem corresponding to an integer program lies in the class of NP-complete problems.

The decision problem corresponding to an integer program is as follows:

Instance : A set of n integer variables x = {x1, x2, · · · , xn}, a set of m linear inequalitiesAx ≥ b,

an objective function cx and an integer v.

Query : Is there a feasible solution for which the objective value is at most v?

7

The satisfiability problem is NP-complete [36], and it has the following form.

Instance : A set of n boolean variables {x1, x2, · · · , xn} and a set of m clauses

{C1, C2, . . . , Cm} composed of boolean variables.

Query : Is there a truth assignment, a set of values for the variables, that satisfies all the clauses?

The decision version of integer program is in the class of NP. Karp [48], in 1972, shows that

there is a polynomial time reduction from any satisfiability instance to a decision version of integer

program instance. The reduction goes as follows. For each variable xi in the satisfiability instance,

there is a corresponding variable xi in the decision version of integer program instance. The decision

version of integer program instance has the following set of linear constraints.

(i) xi ∈ {0, 1} for i = 1 . . . n.

(ii) For each clause Cj of the satisfiability instance, suppose Oj and Xj are the set of original

and complemented variables respectively. Then the corresponding constraint in the decision version

of integer program is
∑

xi∈Oj
xi +

∑

xi∈Xj
(1− xi) ≥ 1.

The objective function can be an arbitrary function of the variables, for example,
∑n

i=1 xi.

And v has to be set considering the objective function so that any truth assignment satisfying the

satisfiability problem provides a corresponding solution for the reduced decision version of integer

program and vice versa. For example, v can be set to n for the objective function
∑n

i=1 xi.

Therefore, following the existence in the class of NP and the reduction shown by Karp, the

decision problem corresponding to an integer program is NP-complete.

The integer program instances obtained from satisfiability instances are 0-1 integer programs,

which constitute a small subset of all possible integer programming instances. But, as we have seen

that some of the integer programs are NP-complete, we can say that integer programs are NP-hard

to solve in general.

2.1.4 Approximation Algorithms

An approximation algorithm finds a near-optimal solution of an optimization problem within a guar-

anteed factor of optimal solution in polynomial time where the polynomial is bounded by the size

of input instance and a fixed error.

Whenever an optimization problem occurs for which finding an optimal solution is NP-hard,

one may consider looking for an approximation algorithm. However, not every NP-hard problem

8

has an approximation algorithm. Some of these problems such as the knapsack problem, the vertex

cover problem have approximation algorithms, while some such as the general traveling salesman

problem, not restricted to maintain triangular inequality property, cannot have an approximation

algorithm [68]. Interestingly, we can model problems of both categories as integer programs.

Therefore, in general, integer programs cannot have an approximation algorithm unless P=NP

since otherwise the general traveling salesman problem would have an approximation algorithm.

And if the general traveling salesman problem has an approximation algorithm, then there will be

a polynomial time algorithm for finding a Hamiltonian cycle of a graph [68], which is known to be

NP-complete [36].

2.1.5 Exact Solvers for Integer Programs

A complete enumeration of the solution space is a straightforward way to find the optimal solu-

tion of an integer program, but it is computationally impractical even for a moderate size problem.

For example, an integer program with 100 variables, where each variable has two possible integer

values, has an enumeration space of size 2100. For such problems some bound information on the

objective function can be useful in the process of enumeration. For an integer program where an

objective function has to be minimized, a feasible solution provides an upper bound for the ob-

jective function, and the optimal solution of a relaxation of the integer program provides a lower

bound for the objective function. Branch-and-bound algorithms use this bound information to prune

some branches of the enumeration tree without exploration. In 1960 Land and Doig [52] presented

a branch-and-bound algorithm for integer programming. Figure 2.4 gives a description of a stan-

dard branch-and-bound algorithm based on the linear programming relaxation of integer program.

This pseudo-code replicates the flowchart given by Wolsey [74] describing a branch-and-bound al-

gorithm.

In the pseudo-code, S i denotes the i-th node of the branch-and-bound tree, and P i denotes

the formulation of the integer program at S i. Therefore, S0 denotes the root node of the branch-

and-bound tree, and P0 denotes the initial formulation of the given integer program P . The only

difference between P0 and P i is that the lower and upper bounds for some of the variables in P i

are different from that in P0. A node list L stores the nodes S. Zu and Zl denote the current upper

bound and current lower bound of the objective function respectively. The variable xip represents

the best feasible solution obtained so far.

Preprocessing the given problem, applying effective heuristics at different nodes of the tree,

9

choosing different nodes to explore at Step 3, and choosing different variables to branch at Step 12

affect the efficiency of this standard branch-and-bound algorithm.

Algorithm branch-and-bound
INPUT: an integer program P with formulation P0

OUTPUT: an optimal solution xip of P if exists, else null.

1. create node S0 with formulation P0 and put it in L; Zu ←∞; xip ← null.
2. while (L 6= φ)
3. choose a node Si from the list L and delete the node from L.
4. formulate the linear programming relaxation L(P i) of P i.
5. solve L(P i).
6. if (L(P i) has a solution)
7. x∗ ← the solution of L(P i); Zl ← objective value corresponding to x∗.
8. if (Zu > Zl)
9. if (x∗ is a feasible solution for P)
10. Zu ← Zl; xip ← x∗.
11. else
12. choose a variable i which has fractional value in x∗.
13. create two new nodes by formulating two subproblems

corresponding to xi ≤ bx∗i c and xi ≥ dx∗i e.
14. add the two new nodes to the list L.
15. return xip.

Figure 2.4: Algorithm branch-and-bound, a pseudo-code version of the algorithm presented by
Wolsey [74].

Branch-and-bound works better if the description of the underlying feasible region correspond-

ing to the linear programming relaxation of integer program is made tighter. The concept of generat-

ing cutting planes comes from this viewpoint. A cutting plane is an inequality that is satisfied by all

the feasible solutions of the integer program but cuts off some region of the underlying feasible re-

gion corresponding to the linear programming relaxation of integer program. If a branch-and-bound

algorithm generates cutting planes at the nodes of a branch-and-bound tree, then it is known as a

branch-and-cut algorithm. In 1983 Crowder, Johnson, and Padberg [28] presented a branch-and-cut

algorithm for solving 0-1 integer programs.

Adding a different number of cuts at a node and selecting different nodes to generate cuts give

different implementations of a branch-and-cut algorithm. Using the notations used in the branch-

and-bound pseudo-code, Figure 2.5 shows a possible way of implementing the branch-and-cut algo-

rithm. This pseudo-code replicates the flowchart given by Wolsey [74] describing a branch-and-cut

algorithm.

There are many ways to generate cutting planes for integer programs. In this thesis, we use the

mixed integer cuts of Gomory [41] since we can generate these cuts easily from the simplex tableau.

10

We see a brief description of Gomory mixed integer cuts in the next section. There are many other

cuts that have been studied in the context of solving integer programs, such as the fractional cuts

of Gomory [41], the Chvátal-Gomory cuts of Chvátal [21], the convexity cuts of Balas [7], the

disjunctive cuts of Balas [8], and the lift-and-project cuts of Balas, Ceria, and Cornuéjols [9, 10].

Algorithm branch-and-cut
INPUT: an integer program P with formulation P0

OUTPUT: an optimal solution xip of P if exists, else null.

1. create node S0 with formulation P0 and put it in L; Zu ←∞; xip ← null.
2. while (L 6= φ)
3. choose a node Si from the list L and delete the node from L.
4. formulate the linear programming relaxation L(P i) of P i.
5. isFeasibleLP← true; generateCut← true.
6. repeat
7. solve L(P i).
8. if (L(P i) has a feasible solution)
9. x∗ ← the solution of L(P i).
10. try to generate a cut that cut off x∗.
11. if(a cut is found)
12. add this cut to L(P i) and consider the modified L(P i) as L(P i).
13. else generateCut← false.
14. else isFeasibleLP← false.
15. until (not generateCut or not isFeasibleLP)
16. if (isFeasibleLP)
17. Zl ← the objective value corresponding to x∗.
18. if (Zu > Zl)
19. if (x∗ is a feasible solution for P)
20. Zu ← Zl; xip ← x∗.
21. else
22. choose a variable i which has fractional value in x∗.
23. create two new nodes by formulating two subproblems

corresponding to xi ≤ bx∗i c and xi ≥ dx∗i e.
24. add the two new nodes to the list L.
25. return xip.

Figure 2.5: Algorithm branch-and-cut, a pseudo-code version of the algorithm presented by Wolsey
[74]

Other than branch-and-bound and branch-and-cut algorithms, there are other common tech-

niques such as Lagrangian relaxation, column generation [74] that make solving integer programs

with some particular structure easier. Generalized basis reduction, proposed by Lovász and Scarf

[53], is another method for solving integer programs. Cook, Rutherford, Scarf, and Shallcross [24],

Wang [70], and Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1] have successfully applied this

method on the problems with less than 100 variables. The integral basis method is an exact algorithm

introduced by Haus, Köppe, and Weismantel [42] that requires an integer program feasible solution

11

to start with. It has not received much attention in practice because of its limited experimental

analysis.

2.1.6 Gomory Cuts

In 1960 Gomory introduced mixed integer cuts [41], now commonly referred to as Gomory cuts.

To write the formula for generating Gomory cuts, we define some notation. Let x∗ be a basic

feasible solution of the linear programming relaxation L(P) of a given mixed integer program P .

Also assume that x∗ is not a feasible solution for P . Let B and NB be the respective indices of

basic and non-basic variables of x∗ and let j be the index of a basic integer-constrained variable

which has a non-integer value in x∗. Let the row corresponding to xj in the simplex tableau have

the form x∗j = xj +
∑

k∈NB ajkxk. Let fk = ajk − bajkc, fj = x∗j − bx∗jc, and let NI , NC be

the indices of the respective integer-constrained non-basic and continuous non-basic variables of x∗.

Then the Gomory cut for xj with respect to P and the given tableau is the inequality

∑

fk ≤ fj

k ∈ NI∧

fkxk +
∑

fk > fj

k ∈ NI∧

fj(1− fk)

1− fj
xk +

∑

ajk < 0

k ∈ NC∧

−fjajk

1− fj
xk +

∑

ajk ≥ 0

k ∈ NC∧

ajkxk ≥ fj .

We now give Gomory’s proof that this cutting plane is a valid inequality for P and cuts off the

basic feasible solution x∗.

The selected row x∗j = xj +
∑

k∈NB ajkxk corresponding to the integer-constrained variable

xj is equivalent to xj = x∗j +
∑

k∈NB ajk(−xk). Since xj is integer-constrained,

0 ≡ x∗j +
∑

k∈NB ajk(−xk) (mod 1).

Since x∗j is not an integer, we can reduce it to its smallest possible positive fractional value fj

by adding the congruence relation 0 ≡ −bx∗jc (mod 1) to the previous congruence relation. Thus,

0 ≡ fj +
∑

k∈NB ajk(−xk) (mod 1).

Alternatively,
∑

k∈NB ajkxk ≡ fj (mod 1).

The rest of the proof refers to this congruence relation. If the left-hand side of the congruence

relation is positive then the left-hand side differs from fj by an integer amount and so is equal to

fj + t for some nonnegative integer t. Thus,
∑

k∈NB ajkxk ≥ fj .

Since all the variables xk are constrained to be nonnegative,

12

∑

k∈NB+ ajkxk ≥ fj ,

where NB+ = {k|ajk ≥ 0, ∀k}. On the other hand, if the left-hand side of the congruence relation

is negative, then the left-hand side is equal to −t+ fj for some positive integer t. Thus,
∑

k∈NB ajkxk ≤ −1 + fj .

Since all the variables xk are constrained to be nonnegative,
∑

k∈NB− ajkxk ≤ −1 + fj ,

where NB− = {k|ajk < 0, ∀k}. Multiplying the above inequality by the negative number

fj/(−1 + fj) we get
∑

k∈NB−(
fj

−1+fj
)ajkxk ≥ fj .

Since fj 6= 0, the left-hand side of the congruence relation is either positive or negative. There-

fore, between the two inequalities obtained by considering the left-hand side of the congruence

relation as positive and negative, one has to be valid. Since, in any feasible solution the left-hand

side of both the inequalities is nonnegative, we have
∑

k∈NB+ ajkxk +
∑

k∈NB−(
fj

−1+fj
)ajkxk ≥ fj .

Thus this inequality is satisfied by every P -feasible solution. And at the same time, it cuts off the

current basic feasible solution x∗ of L(P), since, at x∗, the left-hand side evaluates to zero which is

smaller than fj .

Though this is a valid cut, we can strengthen it by reducing the coefficients of variables in the

inequality. Gomory does this for the coefficients of integer-constrained variables. Adding or sub-

tracting an integer multiple of an integer-constrained variable to the left-hand side of the congruence

relation yields another valid relation. Therefore, there is the option of choosing which integer-

constrained variable indices should be put in the set NB+ and which in the set NB−. If we put k

in the set NB+, the smallest possible coefficient in the cut for xk is fk. On the contrary, if we put it

in the set NB−, the smallest possible coefficient for xk is (
fj

−1+fj
)(−1 + fk). Therefore, k is put

in NB+ if

fk ≤ (
fj

−1+fj
)(−1 + fk)

equivalent to,

fk(1− fj) ≤ fj(1− fk)

equivalent to,

fk ≤ fj .

This choice of putting integer-constrained variables in the set NB+ and NB− yields the Go-

mory mixed integer cut mentioned at the beginning of this section.

A cutting plane algorithm tries to find the optimal solution of a given mixed integer program.

13

It does so by repeatedly solving the linear programming relaxation after the addition of each new

cutting plane. Gomory [41] presented an appealing theoretical result by showing that the cutting

plane algorithm, using his mixed integer cuts, can find an optimal solution in a finite number of

steps if the objective function is integer valued. It still remains open whether this also holds for a

real valued objective function [74].

Gomory cuts, although regarded since their introduction as theoretically significant, were not

successful in practice until the 1990s [73, 63, 65, 64]. In 1996, Balas, Ceria, Cornuéjols, and Natraj

showed the effectiveness of Gomory cuts as a computational tool by using them in a branch-and-cut

framework. Many researchers have also tried to strengthen Gomory cuts so that comparing to the

Gomory cut, the obtained new cut is further away from the basic feasible solution x∗ of L(P), and

thus cuts off more region fromL(P) along with x∗. Anderson, Cornuéjols, and Li [5] and Balas and

Perregaard [15] recently show two different ways of strengthening Gomory cuts.

2.1.7 Pseudo-Boolean Solvers

Integer programs, especially 0-1 integer programs, have received significant attention of the SAT

community in last decade. This is mostly because of the introduction of some powerful SAT solvers

[75, 57, 72, 60] and the existence of a reduction from a satisfiability instance to an equivalent 0-1

integer program. A 0-1 inequality is often referred as a pseudo-boolean constraint, and so a 0-

1 integer program as a pseudo-boolean problem. Researchers have tried to use the powerful SAT

solvers to solve the pseudo-boolean problems. Though a CNF clause is equivalent to a single pseudo-

boolean constraint, a pseudo-boolean constraint may in some cases correspond to an exponential

number of CNF clauses [71, 4]. Therefore, researchers have tried to implement the SAT solvers to

handle pseudo-boolean constraints directly. This gives rise to a number of pseudo-boolean solvers

[69, 3, 17, 4, 20, 66] for 0-1 integer programs. As a representative of state-of-the-art pseudo boolean

solvers, we choose PBS Version 4.0 implemented by Aloul and Al-Rawi [2] to compare against

other 0-1 integer program solvers. PBS 4.0 has become one of the best pseudo-boolean solver in

the SAT solver competition held in SAT-2005, the eighth international conference on theory and

applications of satisfiability testing. PBS4 is based on Zchaff2004 [56], an implementation of Chaff

algorithm [60] for satisfiability instances, and the original PBS solver [3].

14

2.2 Heuristics for Integer Programs

Recall from Chapter 1 that we can categorize heuristics into two classes, namely feasibility heuris-

tics and improvement heuristics. We review the main concepts and features of previously known

heuristics in the next several sections.

2.2.1 Feasibility Heuristics

We consider the previously known heuristics, designed to find a feasible solution in their first phase,

as the feasibility heuristics. Some of these heuristics have a second phase, namely improvement

phase, which tries to improve the solution found in the first phase. We review existing feasibility

heuristics in the next several sections.

2.2.2 Pivot and Complement and Its Successors

In 1980, Balas and Martin proposed the PIVOT AND COMPLEMENT (PC) [13] heuristic for 0-1

integer programs.

PC consists of two subroutines. The feasibility subroutine tries to find a feasible solution for the

problem instance. The improvement subroutine applies a local search to improve the objective value

of the solution found in the feasibility subroutine.

The feasibility subroutine is based on the fact that a feasible simplex tableau with all the 0-1

variables out of the basis gives a feasible solution for the integer program, since a 0-1 nonbasic

variable has value 0 or value 1. With the aim of obtaining such a feasible simplex tableau, the

heuristic starts with the optimal simplex tableau for the linear programming relaxation of the given

0-1 integer program and then performs a sequence of pivoting operations to make the 0-1 variables

nonbasic. The feasibility subroutine consists of two phases. The search phase tries to minimize the

measure of integer infeasibility by using two type of pivots. If this phase fails to find a feasible 0-1

solution, we say that the heuristic has reached a local minima. The restart phase tries to escape the

local minima by using a third type of pivot and complementing one or more nonbasic 0-1 variables,

where complementing a 0-1 variable means switching the value of the variable from v to 1 − v. If

the restart phase escapes the local minima, execution returns to the search phase.

The improvement subroutine tries to find a solution that yields a better objective value by com-

plementing one or more 0-1 variables.

In 1986, Balas and Martin generalized PC to allow it to solve mixed integer programs. They

15

named this heuristic PIVOT AND SHIFT (PS) [14]. In PS, the major difference from PC is a re-

placement of the operation of complementing a 0-1 variable by the operation of shifting an integer-

constrained variable by plus or minus one from the current value. In the corresponding new pivoting

rule, integer-constrained variables replace 0-1 variables. The major drawback of both PC and PS is

that they fail to produce a feasible solution for a large number of instances.

In 1994, Løkketangen, Jörnsten, and Storøy [55] applied a tabu search mechanism in the PC

framework. They do not use the third type of pivot of PC when the search reaches a local min-

ima; rather they use some tabu conditions to escape the local minima. This strategy can also search

beyond the first feasible solution found with the motive of finding improved feasible solution. In

the improvement phase, they consider complementing only one variable at a time by incorporating

some tabu conditions to escape the local minima. Løkketangen et al. [55] showed that this tabu

search based method performed better than PC. However, they tested their algorithm only on small

multidimensional knapsack problems; as such it is not clear whether they will achieve similar per-

formance on other classes of 0-1 integer programs.

In 2004, Balas, Schmieta, and Wallace [16] developed a new implementation of PIVOT AND

SHIFT (PS[2004]) using the commercial linear programming and mixed integer programming

solver Xpress Version-14.2. This heuristic starts with a sequence of pivoting with the same aims

of the pivot operations of PC. When reaching a local minima or exceeding the time limit for the

pivots, the heuristic defines a neighbourhood around the local minima and applies the Xpress mixed

integer programming solver on the problem defining the neighbourhood. To define the aforemen-

tioned neighbourhood, they add the following constraints to the current problem.
∑

xj∈S x̂
∗
j − 1 ≤ ∑

xj∈S xj ≤
∑

xj∈S x̂
∗
j + 1,

where S = {xi ∈ x � | min{x∗i − bx∗i c, dx∗i e − x∗i } ≤ α}, x∗ is the current basic solution of

simplex tableau, and α is a small value, namely α = 0.2. x̂∗j denotes the nearest integer value of x∗j

and x � denotes the set of variables constrained to be integer in the given integer program.

If either the sequence of pivoting or the exploration of the aforementioned neighbourhood pro-

duces a solution x∗, execution switches to the improvement phase; otherwise, the heuristic calls

the Xpress mixed integer programming solver to find a feasible solution and swithces to the im-

provement phase if Xpress finds a solution. If Xpress fails to find a solution, the heuristic aborts

its execution. The improvement phase first tries to improve the found solution by a sequence of

shifting on the nonbasic variables. When the alloted time for shifting elapses, the heuristic defines

an improvement neighborhood and applies the Xpress mixed integer programming solver on the

improvement neighbourhood. To define the improvement neighbourhood, they add the following

16

constraints to the current problem.
∑

xj∈x � x∗j − k ≤
∑

xj∈x � xj ≤
∑

xj∈x � x∗j + k,

where k > 1.

Balas et al. compared this heuristic against the Xpress mixed integer programming solver and

showed that the heuristic performed better comparing to Xpress on the benchmark instances. They

did not show any comparison of the heuristic against the other existing heuristics.

2.2.3 Octahedral Neighbourhood Enumeration

In 2001, Balas et al. [12] presented the heuristic Octahedral Neighborhood Enumeration (OCTANE)

for solving 0-1 integer programs. This heuristic defines an integer neighborhood of the fractional

solution to the linear programming relaxation of the integer program and searches that neighborhood

in a particular direction. A unit hypercubeK centered at the origin defines this integer neighborhood,

where K is expressed by {x ∈ � n | −e/2 ≤ xi ≤ e/2, e = (1, 1, . . . , 1)}. Balas et al. define an

octahedronK∗ circumscribingK by {x ∈ � n | δx ≤ n/2, ∀δ ∈ {±1}n}. Figure 2.6 shows K and

K∗ in two-dimensional space. For each facet δ of (K∗ + e/2), there is a corresponding vertex x of

(K + e/2) defined by x = δ/2 + e/2.

x
3
(−1/2,−1/2) x

2
(1/2,−1/2)

x
4
(−1/2,1/2) x

1
(1/2,1/2)

 (0,0)

A

B

C

D

K K
*

Figure 2.6: Illustration ofK andK∗ in two-dimension. The thin and thick edges represent the edges
of K and K∗ respectively.

The basic steps of the heuristic are the following.

Step 1: Construct a directional ray, specified by a direction vector, originating from an linear

programming relaxation optimal solution.

Step 2: Determine the first k intersections of the directional ray with the facets of octahedron

(K∗ + e/2). Determine the 0-1 points on the hypercube (K + e/2) corresponding to the first

k intersected facets of (K∗ + e/2).

17

Step 3: Consider each 0-1 solution as the candidate solution and determine the feasible ones for

the 0-1 integer program.

The heuristic presents a systematic technique to enumerate the first k facets of (K∗ + e/2)

intersected by the directional ray. Checking all k candidate solutions for feasibility in Step 3 is

computationally inefficient when the size of the given problem is large. To eliminate this drawback,

the heuristic shows a modified technique that tries to avoid enumerating facets that correspond to

infeasible 0-1 points. For this purpose, it uses canonical inequalities which have the form z0 ≤ sx ≤

s0 where s is in {0,±1}n and s0 and z0 are integers. The modified technique then enumerates those

facets which intersect the directional ray and whose corresponding 0-1 points are satisfied by the

canonical inequality.

Balas et al. applied this heuristic at different nodes of the branch-and-cut framework so that the

directional ray of search could originate from different points. They also tried a variety of direc-

tions for enumeration. The average ray (the average of the extreme rays of the cone at the current

linear programming optimal solution) and the objective ray (the normal vector of the objective ray

directed inward) were two such chosen directions. The empirical results reported in [12] suggest

that OCTANE is a competitive alternative of PS.

2.2.4 Pivot, Cut, and Dive

In 2001, Nediak and Eckstein [61] presented PIVOT, CUT, AND DIVE (PCD), a 0-1 mixed integer

program heuristic. As in PC, the main idea of this heuristic is to perform a sequence of simplex

tableau pivots to find a feasible solution for the 0-1 mixed integer program. But unlike in PC, a

concave merit function determines the pivoting nonbasic variable. The merit function is designed

in such a way that it evaluates to zero at all integer feasible points and to some positive value for

integer infeasible points. It thus gives a measure of integer infeasibility of the current solution. The

merit function used is

ψ(x) =
∑

xi∈x01

φ(xi)

where x01 is the set of variables constrained to be 0 or 1, and

φ(xi) = 1−















(xi−α
α)2, xi ≤ α

(xi−α
1−α)2, xi ≥ α

18

where α ∈ (0, 1).

The heuristic first defines the following two pivot selection rules based on an approximation of

the merit function defined by the local gradient of the merit function.

Type 1: A pivot that improves the approximation of the merit function maximum and does not

make the objective value worse.

Type 2: A pivot that improves the approximation of the merit function with the minimum wors-

ening of the objective value.

If no pivot of Type 1 or 2 is found, the heuristic checks all possible pivoting options and looks

for one that improves the original merit function with an allowable limit of worsening the objective

value. This is the Type 3 pivot, called a probing pivot.

If at any step of pivoting the heuristic does not find a pivot of Type 1, 2 or 3, it considers to

include a convexity cut or to branch using a vertex cut.

If αx ≥ β is a cutting plane, its distance from the current solution x∗ is β−αx∗

‖α‖ .

The convexity cut only cuts off the current fractional solution; it does not cut off any integer

feasible solution. If the convexity cut has a distance greater than the vertex cut from the current

fractional solution, then the convexity cut is added to the problem. The resulting problem is re-

optimized, namely its linear programming relaxation is solved, and execution returns to the pivoting

phase.

The vertex cut cuts off the current fractional solution as well as a set of possible 0-1 feasible

solutions with xi = 0, ∀xi ∈ Q0 and xi = 1, ∀xi ∈ Q1; we will see the definition of Q0 and Q1 in

§ 2.2.6. Therefore, if the vertex cut has a distance greater than the convexity cut from the current

fractional solution, then the heuristic generates two subproblems. First subproblem is the one that

includes xi = 0, ∀xi ∈ Q0 and xi = 1, ∀xi ∈ Q1, and the second subproblem is the one that

includes the vertex cut. Then the heuristic branches to the first subproblem. If the first branch has

no feasible solution, then the heuristic branches to the second subproblem.

After branching to the new subproblem, the heuristic re-optimizes the subproblem and again

transfers execution to the pivoting phase with that subproblem.

Nediak and Eckstein experimented with this heuristic on the 49 0-1 mixed integer program

instances of MIPLIB 3.0. Out of the 49 instances, they excluded 7 instances because the linear

program solver they used could not handle those instances. Out of the 42 instances, PCD failed

in 10 instances. They did not compare their heuristic with any other heuristics or the commercial

solvers.

Following the descriptions of the convexity cut and the vertex cut by Nediak and Eckstein in

19

PCD [61], we present brief descriptions of convexity cut and vertex cut in § 2.2.5 and § 2.2.6.

2.2.5 Convexity Cut

In [7] Balas introduced the convexity cut in integer programming. Let x∗ be the current fractional

solution to the linear programming relaxation of a given integer program. The edges x(i) = x∗ −

Civi for vi ≥ 0, ∀xi ∈ xN define the polyhedral cone formed at this vertex, where Ci is the current

column in the simplex tableau for the nonbasic variable xi, and vi is a parameter illustrating how

much change has been made to the value of xi from its current lower or upper bound value at x∗. The

simplex tableau only provides the values Cij of the vector Ci corresponding to the basic variables

xj . All other values of Cij are 0 except for the value of Cii. The value of Cii is plus or minus one

depending on the value of xi at its upper bound or lower bound.

Assume that v∗i is the value of vi for each xi in xN that makes ψ(x(i)) = 0. Then the hyperplane

passing through the point identified by v∗i is
∑

xi∈xN
(1

v∗

i

)vi = 1. Therefore, the equation of the

cutting plane is

∑

xi∈xN

(

1

v∗i

)

vi ≥ 1,

where vi is xi (or ui− xi) if xi is at its lower (upper) bound in x∗. ui represents the upper bound of

the variable xi.

2.2.6 Vertex Cut

These cuts have the form
∑

xi∈Q0
xi +

∑

xi∈Q1
(1− xi) ≥ 1, where Q0 is a subset of V0, and Q1

is a subset of V1, with V0 and V1 being the sets of the binary variables whose current value’s nearest

integers are 0 and 1 respectively. Choosing different set forQ0 andQ1, one can find different vertex

cuts having different distances from the current solution. In PCD, Nediak and Eckstein generated

vertex cuts so that that each cut’s distance from the current fractional solution was bounded.

2.2.7 Tabu Search in Solving Integer Programs

Recall that in 1994, Løkketangen, Jörnsten, and Storøy [55] incorporated a tabu search mechanism

into the PC framework. In 1998, Løkketangen and Glover [54] gave a more general application of

tabu search for solving 0-1 mixed integer programs.

20

Since an extreme point of the underlying feasible region corresponding to a linear programming

relaxation may be the feasible solution of a 0-1 mixed integer program, Løkketangen and Glover

apply tabu search with the aim of visiting such extreme points.

Løkketangen and Glover select moves, namely pivots, for the search from a possible set of moves

based on the measure of integer infeasibility and objective value. A main feature of tabu search is

to set up some condition to make a set of moves prohibited or tabu. In this particular heuristic, a

variable becomes tabu whenever it becomes nonbasic from basic and remains tabu for a specified

time. Another feature of tabu search is to set up an aspiration condition, a condition that makes

a tabu move acceptable if it is satisfied. The aspiration condition to accept a tabu move in [54] is

to have a new basic feasible solution of the linear programming relaxation that has the measure of

integer infeasibility within a certain limit.

Løkketangen and Glover also experimented with a probabilistic approach to select a move in-

stead of relying on tabu conditions. They tested their algorithms only on small multidimensional

knapsack problems; as such it is not clear whether they will achieve similar performance on other

classes of integer programs.

2.2.8 Heuristics Based on Interior Path

In 1969, Hillier [43] proposed a heuristic for solving general integer programs using the so-called

interior paths. The idea is to select two points. One is the linear programming relaxation optimal

solution x1, an extreme point of the linear programming relaxation feasible region. The other is a

point x2 such that the path from x1 to x2 goes through the interior of the feasible region. Hillier

showed two ways to select a point x2. The method then moves from x1 to x2 using a parameter and

checks whether the rounding of the points in this path gives an integer feasible solution. If they do

not, it searches the neighborhood of those points by shifting the values of integer variables by plus

or minus one. The interior path is defined by x = x1 + α(x2 − x1), where α is the parameter to

move along the path.

In 1974, Ibaraki, Ohashi, and Mine [45] and in 1979, Faaland and Hillier [33] proposed similar

heuristics for solving general mixed integer programs. One difference in their method from that

of Hillier [43] is to construct the interior path as a set of piecewise linear segments. This method

determines a set of points {x1, x2, . . . , xk} where x1 is the optimal solution to the linear program-

ming relaxation of the integer program, and {x2, . . . , xk} lie in the interior of polyhedron. Then

{x1x2, x2xk , . . . , xk−1xk} is the set of line segments. The method starts searching feasible so-

21

lutions for the mixed integer program from x1. During the traversal the method checks whether

rounding at a non-integer point gives a solution; if not, it searches the neighborhood of that point by

shifting the values of integer variables by plus or minus one.

All these methods go through an improvement phase to improve the found feasible solution by

shifting the values of integer variables by plus or minus one.

2.2.9 Feasibility Pump

In 2005, Fischetti, Glover, and Lodi [34] introduce FEASIBILITY PUMP (FP), a mixed integer pro-

gramming heuristic. This is the most recent among all the existing feasibility heuristics.

FP starts with the linear programming relaxation solution and, as long as it does not find a solu-

tion, continues to solve a sequence of linear programs guided by the rounding of the previous step’s

linear programming relaxation solution; random perturbations are introduced in case of cycling.

More explicitly, suppose the integer program P given by min {cTx | Ax ≥ b, xj ∈ {0, 1} ∀j ∈

I} is the input to the FP. Further assume that x∗ is an optimal solution to the linear programming

relaxation L(P) of P , and x̃ is the rounding of x∗. FP defines a distance function

∆(x, x̃) :=
∑

j∈I∧x̃j=0

xj +
∑

j∈I∧x̃j=1

(1− xj).

If ∆(x∗, x̃) = 0, x∗ is a feasible solution of P . If not, FP solves the linear program,

min {∆(x, x̃) | Ax ≥ b, 0 ≤ xj ≤ 1 ∀j ∈ I}, which gives the closest point x∗new of x̃ on

the polyhedra associated with L(P). FP considers x∗new as the x∗ of the next iteration and continues

as mentioned earlier. FP perturbs x̃ in some random way if a cycle is detected in last three iterations

and after certain number of iterations.

Fischetti et al. implemented FP using the commercial linear programming solver Cplex. They

compared FP against the commercial mixed integer programming solver Cplex Version 8.1 and

showed that FP performed better comparing to the Cplex on the benchmark instances. They did not

show any comparison of FP against the other existing heuristics.

2.2.10 Improvement Heuristics

We consider the previously known heuristics, designed only to find improved solutions from a known

solution, as the improvement heuristics. The existing such heuristics apply themselves at different

22

nodes of the mixed integer program search tree generated by either a branch-and-bound or a branch-

and-cut solver. We review them in § 2.2.11 and § 2.2.12.

2.2.11 Local Branching

LB, designed by Fischetti and Lodi [35], is the first strategy that introduces the idea of explor-

ing a promising neighbourhood around a known mixed integer program solution by defining the

neighbourhood as another mixed integer program instance and exploring it using a black-box mixed

integer program solver, namely either a branch-and-bound or a branch-and-cut solver.

LB defines the neighbourhood of a feasible solution x∗ by limiting at some integer p the number

of 0-1 variables currently at 0 or 1 that can switch their bounds. This is often called soft fixing.

LB achieves this by adding to the instance the inequality D(x, x∗) ≤ p, where

D(x, x∗) :=
∑

j∈V0

xj +
∑

j∈V1

(1− xj),

with V0 and V1 being the index sets of the 0-1 variables that are at 0 and 1 respectively in x∗.

We find two different implementations of LB. Originally, Fischetti and Lodi [35] implemented

LB as an heuristic as well as an external branching framework, which creates branches in the search

tree by D(x, x∗) ≤ p and D(x, x∗) ≥ p+ 1 as opposed to the standard branching on the variables

in the branch-and-bound framework. They obtained the diversification, which switches the search

in a different region of the MIP feasible space, by defining the neighbourhoods with a change in

the value of the parameter p. Later, Danna, Rothberg, and Pape [29] implemented LB solely as

a heuristic, and obtained the diversification by defining the neighbourhoods on the new solutions

found during the mixed integer program search tree exploration. Danna et.al. also showed that their

implementation of LB outperformed the original.

Figure 2.7 describes the operation sequence of LB at a particular node of the mixed integer

program search tree. At the termination of the procedure, the algorithm resumes the exploration

of the mixed integer program search tree, and if the procedure finds a new mixed integer program

solution, the algorithm updates the mixed integer program solution at the mixed integer program

search tree. The algorithm first calls the LB procedure at the node where the mixed integer program

search tree finds its first mixed integer program solution, and then, as a process of diversification,

every time the mixed integer program search tree finds a new mixed integer program solution.

Fischetti and Lodi [35] showed that it is possible to define D(x, x∗) to handle general integer

23

variables, but doing so requires the introduction of a new set of variables. D(x, x∗) used in both

[35] and [29] is defined only on 0-1 variables.

Procedure LB at tree node
INPUT: a 0-1 mixed integer problem P , a current MIP solution x∗o,

parameter p, and a node limit nl.
OUTPUT: A new MIP solution x∗ (x∗o in case of failure in finding a new solution).

1. x∗ ← x∗o, pcurrent←p, exploredAndNoSolution←false
2. repeat
3. compute the LB inequality D(x, x∗) ≤ pcurrent

4. construct P+ from P by adding the LB inequality
5. Apply black-box MIP solver to P+ with node limit nl and

an objective cutoff equal to the objective value provided by x∗
6. if (a new solution xnew is obtained) then
7. x∗ ←xnew , pcurrent ←p
8. else if (node limit reached without having a new solution) then
9. pcurrent ←pcurrent/2
10. else exploredAndNoSolution←true
11. until (pcurrent < 5 or exploredAndNoSolution)
12. return x∗

Figure 2.7: A pseudo-code version of the algortihm LB due to Danna et al. [29].

2.2.12 Relaxation Induced Neighbourhood Search

During the exploration of the mixed integer program search tree, the relaxation solutions at those

successive nodes that are not pruned always provide a better objective value than that of the current

mixed integer program solution. Using this idea, Danna, Rothberg, and Pape [29] introduce RINS

using the intuition that, in improved mixed integer program solutions, it is more likely for those vari-

ables, that agree in the current mixed integer program solution and current node relaxation solution,

to stay at the same values. Thus RINS defines the promising neighbourhood by fixing all variables

whose values at the current mixed integer program solution are equal to their respective values at

the current node relaxation solution. This is often called hard fixing.

Figure 2.8 describes the operation sequence of RINS at a particular node of the mixed integer

program search tree. At the termination of the procedure, the algorithm resumes the exploration of

the mixed integer program search tree. If the procedure finds a new mixed integer program solution,

the algorithm updates the mixed integer program solution at the mixed integer program search tree.

As noted in [29], consecutive nodes of the mixed integer program search tree provide almost

identical relaxation solutions. Therefore, the algorithm calls RINS procedure at every f nodes for

24

some reasonably large f .

Danna et al. compared RINS against the commercial mixed integer programming solver Cplex

and the heuristic LB. They showed that RINS performed better than both the Cplex and the LB.

Procedure RINS at tree node
INPUT: a 0-1 mixed integer problem P , the current MIP solution x∗o,

the current node relaxation solution xnode, and a node limit nl.
OUTPUT: A new MIP solution x∗ (x∗o in case of failure in finding a new solution).

1. x∗ ← x∗o
2. construct P+ from P by fixing the variables that agree in x∗o and xnode

3. Apply black-box MIP solver to P+ with node limit nl and
an objective cutoff equal to the objective value provided by x∗

4. if (a new solution xnew is obtained) then
5. x∗ ← xnew

6. return x∗

Figure 2.8: A pseudo-code version of the algorithm RINS presented by Danna et al. [29])

2.3 Benchmark Integer Program Instances

2.3.1 Existing Library of Integer Program Instances

To measure the performance of mixed integer program solvers, it is useful to have a set of test in-

stances from different areas of optimization. Prior to 1998, mixed integer program solvers were

usually experimented on using randomly generated multidimensional knapsack instances. In 1992,

Bixby, Boyd and Indovina [18] created MIPLIB, the first electronic library of real world mixed in-

teger programs, to meet the requirements of researcher. In 1998, Bixby, Ceria, McZeal and Savels-

bergh [19] updated the MIPLIB. Since then, MIPLIB has become a standard test suite used to com-

pare the performance of mixed integer program solvers. In 2003, the latest update is made to the

MIPLIB by Martin, Achterberg and Koch [58]. Table B.1 of Appendix B describes all the mixed

integer program instances of MIPLIB 2003.

In addition to the instances available from MIPLIB, recent research [29, 34, 35] on heuristics for

mixed integer program uses the mixed integer program instances available from DEIS operations

research group electronic library [31]. Table B.2 of Appendix B describes all the mixed integer

program instances from DEIS electronic library.

Recent heuristics [34, 29] on mixed integer programs also use five job-shop scheduling instances

25

with earliness and tardiness costs. The heuristic in [29] uses eleven network design and multi-

commodity routing instances. Table B.3 of Appendix B describes these sixteen instances.

In our experiments, we used all the mixed integer program instances noted above. This set of

instances represents the current hard mixed integer program instances available from the community

and acts as the benchmarks in recent heuristic research for mixed integer programs.

2.3.2 Generation of Hard Integer Program Instances

Most of the integer program instances in the benchmark test suite come either from the instances

generated randomly for various optimization problems using their most common integer program

model or from the real-world instances of different optimization problems; they are hard to solve by

the existing solvers.

The market-sharing problem introduced by Williams [73] is one such optimization problem. The

problem as described in [73] is as follows:

A large company has two divisions D1 and D2. The company supplies retailers with

several products. The goal is to allocate each retailer to either division D1 or division

D2 so that D1 controls 40% of the company’s market for each product and D2 the

remaining 60% or, if such a perfect 40/60 split is not possible for all the products, to

minimize the sum of percentage deviations from the 40/60 split.

A natural integer program formulation for this problem is given by Cornuéjols and Dawande [27].

min
∑m

i=1 |si|

s.t.
∑n

j=1 aijxj + si = bi i = 1, ...,m

xj ∈ {0, 1} j = 1, ..., n

si free i = 1, ...,m,

where n, m, aij are the number of retailers, the number of products, and the demand of retailer j for

product i respectively. One can determine bi from the desired market split between the two divisions

D1 and D2.

Cornuéjols and Dawande [27] showed that choosing each integer aij uniformly between 0 and

99, setting n = 10(m − 1), and asking for a 50/50 split yields a class of optimality-hard 0-1

program instances for the existing integer program solvers, where by ’optimality-hard’ we mean

finding the optimal solution with the certificate of optimality is hard. For the 50/50 split, bi is

26

equal to b0.5×∑n
j=1 aijc for 1 ≤ i ≤ m. We refer to this formulation of the Williams’s market-

sharing problem defined by these choices as the Cornuéjols-Dawande optimality model, and the

instances generated following this model as the Cornuéjols-Dawande optimality-hard instances. In

[27] Cornuéjols and Dawande pointed that their optimality-hard instances are related to the knap-

sack instances considered by Chvátal [22], since their optimality-hard instances are similar to the in-

stances of multi-dimensional knapsack problems. Chvátal considered the following knapsack prob-

lem,

max
∑n

j=1 ajxj

s.t.
∑n

j=1 ajxj ≤ b
∑n

j=1 aj/2c

xj ∈ {0, 1} j = 1, ..., n,

and showed that choosing each integer aj uniformly between 1 and 10
n
2 yields a class of hard

knapsack instances for branch-and-bound solvers.

Notice that the Cornuéjols-Dawande optimality model is not suitable for generating feasibility-

hard instances, since any choice of x satisfying xj ∈ {0, 1} for all j yields a feasible solution

for instances of this model. However, Cornuéjols and Dawande showed the following feasibility

formulation corresponding to their optimality model.

x

s.t.
∑n

j=1 aijxj = bi i = 1, ...,m

xj ∈ {0, 1} j = 1, ..., n

Notice that the constraints of the optimality model drop their slack/surplus variables to become

the constraints of this feasibility formulation. This feasibility problem is NP-complete [27], and

a feasible solution to an instance of this formulation exists only if the optimal objective value of

the corresponding optimality-hard instance is zero. We refer to this feasibility formulation of the

Williams’s market-sharing problem as the Cornuéjols-Dawande feasibility model, and the instances

generated following this model as the Cornuéjols-Dawande feasibility-hard instances.

The pseudo-randomly generated Cornuéjols-Dawande optimality-hard instances have the opti-

mal objective value larger than zero for most of the instances. Therefore, the Cornuéjols-Dawande

feasibility-hard instances corresponding to these generated optimality-hard instances have no feasi-

ble solution. Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1] analyzed the expected number of

solutions for the Cornuéjols-Dawande feasibility-hard instances with different n and m. Following

27

their analysis, it is possible to choose n andm for which the pseudo-randomly generated Cornuéjols-

Dawande feasibility-hard instances are with high probability feasible. We pseudo-randomly gener-

ated some Cornuéjols-Dawande feasibility-hard instances to experiment with different feasibility

heuristics, and some Cornuéjols-Dawande optimality-hard instances to experiment with different

improvement heuristics.

In this thesis, we also present a new class of hard 0-1 program instances based on a modified

form of Williams’s market-sharing problem. We refer the instances generated according to the mod-

ified form of Williams’s market-sharing problem as the constrained market-sharing instances. We

pseudo-randomly generated some constrained market-sharing instances to experiment with different

heuristics.

28

Chapter 3

Pivot and Gomory Cut

In this chapter we present PIVOT AND GOMORY CUT (PGC), a new mixed integer programming

feasibility heuristic. Since PGC uses pivoting rules from PC, and since we implemented a version

of PC to test against PGC, we begin our description of PGC by first discussing PC.

3.1 Pivot and Complement

In 1980, Balas and Martin introduced PC. Although introduced originally as a 0-1 integer program-

ming heuristic, the pivoting rules of PC generalize naturally to the mixed integer programming

setting, as mentioned in [14]. Since recent feasibility heuristics have been presented for 0-1 mixed

integer programs, rather than just 0-1 integer programs, we implemented a 0-1 mixed integer version

of PC. We now describe our implementation of this version of PC.

In § 2.1 we gave the formulation of an integer program. We now give the analogous formulation

of a 0-1 mixed integer program. We assume that the input program P has the form shown below,

where c, x, b, A have dimensions n, n,m,m× n respectively,N = {1, . . . , n} is the set of variable

indices of P , I is the subset ofN indexing the binary variables of P , and, for each index j for which

xj is a non-binary variable, lj and uj denote the respective lower and upper bounds for xj .

PC transforms P into the equivalent program P+ by adding the m-dimensional vector y. The

scalar elements of x and y are the decision variables and surplus variables respectively. The non-

binary decision variables and the surplus variables are the continuous variables. L(P +) is the linear

program obtained from P+ by relaxing the integrality constraints on the binary decision variables.

29

Thus we have

P : min { cx | Ax ≥ b, xi ∈ {0, 1} ∀i ∈ I, lj ≤ xj ≤ uj ∀j ∈ N − I}

P+ : min { cx | Ax− y = b, xi ∈ {0, 1} ∀i ∈ I, lj ≤ xj ≤ uj ∀j ∈ N − I, y ≥ 0 }

L(P+) : min { cx | Ax− y = b, 0 ≤ xi ≤ 1 ∀i ∈ I, lj ≤ xj ≤ uj ∀j ∈ N − I, y ≥ 0 } .

PC is based on a sequence of pivot operations that exchange a nonbasic variable with a basic

variable in a simplex tableau associated with L(P+). The first step is to use the bounded variable

revised simplex algorithm to look for an optimal solution to L(P+). If L(P+) has no such solution,

then PC reports that P has no feasible solution; otherwise, execution transfers to the feasibility

subroutine with an L(P+)-optimal basic feasible solution x∗.

The PC feasibility subroutine has two phases, search and restart. In the search phase, PC tries

to decrease the extent to which x∗ is P -infeasible by repeated tableau pivoting, as follows. Each

binary decision variable of x∗ which is not in the basis will have its value equal to either its upper

or lower bound and therefore be integral. Thus, the primary P -infeasibility measure is the number

of basic binary decision variables of x∗, and the search phase applies the following pivot whenever

possible.

PC Type 1 Pivot: The pivot that exchanges a basic binary decision variable with a non-

basic continuous variable, maintains L(P+)-feasibility, and, among all such pivots,

minimizes the objective functions.

Once no more such pivots are available, PC considers a secondary P -infeasibility measure defined

by IP (x∗) =
∑

j∈I min{x∗j , 1− x∗j}.

PC Type 2 Pivot: The first pivot found that exchanges a basic continuous variable with a

nonbasic continuous variable, or a basic binary decision variable with a nonbasic binary

decision variable, maintains L(P+)-feasibility, and reduces IP (x∗).

Pivoting continues until either PC finds a P -feasible solution or reaches a dead end, namely there

are no available Type 1 or Type 2 pivots. When PC encounters such a dead end, it checks whether

rounding or truncating the binary decision variables of x∗ yields a P -feasible solution. If so, then

PC terminates successfully. Otherwise, the restart phase begins.

30

In the restart phase, PC perturbs the dead end by a third kind of pivot into an L(P+)-

infeasible solution. The measure of infeasibility used is IL(x∗) =
∑

j∈I max{0,−x∗j , x∗j − 1} +

∑

j∈N−I max{0, lj − x∗j , x∗j − uj} +
∑

yj∈y max{0,−y∗j}.

PC Type 3 Pivot: The pivot that exchanges a basic binary decision variable with a

non-basic continuous variable and leaves the entering continuous variable positive, and,

among all such pivots, minimizes IL(x∗).

After such a pivot, x∗ is a basic infeasible solution of L(P+). The restart phase next attempts to

bring IL(x∗) to zero by repeatedly complementing one or two nonbasic binary decision variables,

namely by changing their values from one bound to the other. If PC finds anL(P+)-feasible solution

by this complementation process, it first rounds and then truncates the binary decision variables

of x∗. If either process yields a P -feasible solution, then PC terminates successfully; otherwise,

execution transfers back to the search phase. If PC does not find an L(P+)-feasible solution by the

repeated complementation of any single or pair of nonbasic binary decision variables, it aborts.

This completes the description of our implementation of PC. The original versions of PC [13,

14] also have a complementation-based improvement subroutine to improve a P -feasible solution

found by the feasibility subroutine. We omit any further discussion of this subroutine here, as we do

not include it in PGC, where our goal is only to find a feasible solution.

We now give a step-by-step example that illustrates the execution of PC. Consider the following

as the given integer program P .

min 5x1 + 6x2 + 9x3 − 5x4 − 3x5

s.t. 7x1 + 9x2 + 9x3 + x4 + 5x5 ≥ 15

3x1 + 6x2 + 7x3 + 3x5 ≥ 9

5x1 + x2 + x3 + 6x4 + 5x5 ≤ 9

8x2 + 6x3 + 6x5 ≤ 10

x1, x2, x3, x4, x5 ∈ {0, 1}.

31

First, PC transforms P to P+ by adding the slack/surplus variables as follows.

min 5x1 + 6x2 + 9x3 − 5x4 − 3x5

s.t. 7x1 + 9x2 + 9x3 + x4 + 5x5 − x6 = 15

3x1 + 6x2 + 7x3 + 3x5 − x7 = 9

5x1 + x2 + x3 + 6x4 + 5x5 + x8 = 9

8x2 + 6x3 + 6x5 + x9 = 10

x1, x2, x3, x4, x5 ∈ {0, 1}, x6, x7, x8, x9 ≥ 0.

Next, PC solves the linear programming relaxationL(P+) ofP+ using the bounded variable revised

simplex algorithm. This gives the following optimal simplex tableau. In the tableau, C denotes

the objective row, x1, x3, x4, and x5 are the basic variables and the remaining are the non-basic

variables.

5 + x6 + x7 + x8 + x9 = C

1.1978− 1.0989x2 + 0.2812x6 − 0.5781x7 + 0.0468x8 − 0.2604x9 = x5

−0.1666 + 1.0833x2 − 0.5x6 + 0.75x7 − 0.25x8 + 0.1666x9 = x4

0.7083− 0.3541x2 + 0.375x6 − 0.4375x7 + 0.0625x8 + 0.0416x9 = x1

0.4687− 0.2343x2 − 0.2812x6 + 0.5781x7 − 0.0468x8 + 0.0937x9 = x3

Since the solution (x1, x2, x3, x4, x5) = (0.3541, 1.0, 0.2344, 0.9167, 0.0989) is not P -feasible, PC

enters the search phase of feasibility subroutine with this optimal simplex tableau. There, it finds

a desired Type 1 pivot, namely exchanging x7 and x4. Performing this pivot yields the following

tableau with x1, x3, x5, and x7 as the basic variables.

5.2222− 1.4444x2 + 1.6666x6 + 1.3333x4 + 1.3333x8 + 0.7777x9 = C

1.0693− 0.2638x2 − 0.1041x6 − 0.7708x4 − 0.1458x8 − 0.1319x9 = x5

0.2222− 1.4444x2 + 0.6666x6 + 1.3333x4 + 0.3333x8 − 0.2222x9 = x7

0.6112 + 0.2777x2 + 0.0833x6 − 0.5833x4 − 0.0833x8 + 0.1388x9 = x1

0.5972− 1.0694x2 + 0.1041x6 + 0.7708x4 + 0.1458x8 − 0.0347x9 = x3

Since the solution (x1, · · · , x5) = (0.3055, 1.0, 0.2986, 1.0, 0.0347) is not yet P -feasible, it again

looks for a Type 1 pivot, and finds one between x9 and x5. Performing this pivot yields the following

tableau with x1, x3, x7, and x9 as the basic variables.

32

11.5262− 3x2 + 1.0526x6 − 3.2105x4 + 0.4736x8 − 5.8947x5 = C

8.1053− 2x2 − 0.7894x6 − 5.8421x4 − 1.1052x8 − 7.5789x5 = x9

−1.5789− x2 + 0.8421x6 + 2.6315x4 + 0.5789x8 + 1.6842x5 = x7

1.7368− 0.0263x6 − 1.3947x4 − 0.2368x8 − 1.0526x5 = x1

0.3158− x2 + 0.1315x6 + 0.9736x4 + 0.1842x8 + 0.2631x5 = x3

Since the solution (x1, · · · , x5) = (0.3421, 1.0, 0.2894, 1.0, 0.0) is not yet P -feasible, it again looks

for a Type 1 pivot. This time there is no such pivot, so it next looks for a Type 2 pivot. It finds one

between x8 and x9. Performing this pivot yields the following tableau with x1, x3, x7, and x8 as the

basic variables.

14.9998− 3.8571x2 + 0.7142x6 − 5.7142x4 − 0.4285x9 − 9.1428x5 = C

7.3337− 1.8095x2 − 0.7142x6 − 5.2857x4 − 0.9047x9 − 6.8571x5 = x8

2.6666− 2.0476x2 + 0.4285x6 − 0.4285x4 − 0.5238x9 − 2.2857x5 = x7

0.4285x2 + 0.1428x6 − 0.1428x4 + 0.2142x9 + 0.5714x5 = x1

1.6666− 1.3333x2 − 0.1666x9 − x5 = x3

The solution (x1, · · · , x5) = (0.2857, 1.0, 0.3333, 1.0, 0.0) reduces Ip(x
∗) from 0.3421 + 0 + 0.2894

+ 0 + 0 = 0.6315 to 0.2857+0+0.3333+0+0 = 0.6190, but is not yet P -feasible. PC again looks for a

Type 1 pivot. No such pivot is found, so it next looks for a Type 2 pivot. It finds one between x2 and

x3. Performing this pivot yields the following tableau with x1, x2, x7, and x8 as the basic variables.

10.1785 + 2.8928x3 + 0.7142x6 − 5.7142x4 + 0.0535x9 − 6.25x5 = C

5.0718 + 1.3571x3 − 0.7142x6 − 5.2857x4 − 0.6785x9 − 5.5x5 = x8

0.107 + 1.5357x3 + 0.4285x6 − 0.4285x4 − 0.2678x9 − 0.75x5 = x7

0.5356− 0.3214x3 + 0.1428x6 − 0.1428x4 + 0.1607x9 + 0.25x5 = x1

1.25− 0.75x3 − 0.125x9 − 0.75x5 = x2

The solution (x1, · · · , x5) = (0.0714, 0.5, 1.0, 1.0, 0.0) reduces the Ip(x
∗) to 0.0714+0.5+0+0+0 =

0.5714, but is not yet P -feasible. PC again looks for a Type 1 pivot. No such pivot is found, so it

next looks for a Type 2 pivot. Since there is no Type 2 pivot, it checks whether either rounding or

truncating of solution gives P -feasible solution. Since it does not, PC is at a dead end and so next

enters the restart phase. There it performs a Type 3 pivot between x9 and x2. The resulting tableau

is as follows.

33

10.7142 + 2.5714x3 + 0.7142x6 − 5.7142x4 − 0.4285x2 − 6.5714x5 = C

−1.7142 + 5.4285x3 − 0.7142x6 − 5.2857x4 + 5.4285x2 − 1.4285x5 = x8

−2.5715 + 3.1428x3 + 0.4285x6 − 0.4285x4 + 2.1428x2 + 0.8571x5 = x7

2.1427− 1.2857x3 + 0.1428x6 − 0.1428x4 − 1.2857x2 − 0.7142x5 = x1

12− 6x3 − 8x2 − 6x5 = x9

The L(P+) solution (x1, · · · , x5) = (0.7142, 0.0, 1.0, 1.0, 0.0) is primal infeasible, which means

some basic variables violate their bound constraints. Here x8 =−1.5714, thus violates the constraint

that it is nonnegative. This provides IL(x∗) = 1.5714. PC now checks whether complementing any

single non-basic binary decision variables reduces IL(x∗). It finds that complementing x4 reduces

IL(x∗) to zero. The tableau does not change, but the solution (x1, · · · , x5) = (0.8571, 0.0, 1.0,

0.0, 0.0) is primal feasible. The solution is not P -feasible yet. At this point, PC again checks

whether rounding or truncating of current solution gives a P -feasible solution. Rounding of the

solution provides a P -feasible solution (x1, · · · , x5) = (1.0, 0.0, 1.0, 0.0, 0.0), and PC terminates

successfully.

3.2 Pivot and Gomory Cut

As in PC, the initial goal of PGC is to find a P -feasible solution by bringing all the binary variables

out of the simplex tableau basis. To do this, PGC uses pivoting rules similar to those of PC. The

major difference between PGC and PC is that PGC uses Gomory cuts in this pivoting framework

in the hope of finding a P -feasible solution as early as possible. PGC uses Gomory cuts for several

purposes, namely to select pivots, to avoid cycling, and to replace the complementation based PC

restart phase

We spent a long time searching for a good feasibility heuristic before arriving at PGC. Our

search started with the implementation of PC. While experimenting with PC, we found that the

restart phase often fails to bring execution back to the search phase. This led us to find a better

way of moving to the L(P+) feasible space from the dead end, namely by using a cutting plane.

We selected Gomory cuts as our cutting plane because the PC pivoting framework uses a simplex

tableau, and so generating Gomory cuts requires almost no extra cost. Later, we came up with the

idea of also using Gomory cuts to guide the pivoting.

Here is how PGC works. It begins in the same manner as PC, namely by solving L(P+) using

34

the bounded variable revised simplex method. If the optimal solution x∗ of L(P+) is not P -feasible

and neither rounding nor truncating the fractional binary variables provides a P -feasible solution,

PGC calls its feasibility subroutine, which, as in PC, consists of a search phase and restart phase.

Once execution reaches the search phase, PGC finds a Gomory cut separating x∗ from the P -

polytope. PGC then tries to decrease the extent to which x∗ is P -infeasible by repeated tableau

pivoting. During pivoting, whenever the current basic feasible solution x∗ of L(P+) satisfies the

Gomory cut, PGC adds the cut to the formulation of L(P+) to avoid cycling, and generates a new

Gomory cut separating x∗ from the P -polytope.

This generation and occasional addition of Gomory cuts to L(P+) continues until the search

phase either finds a P -feasible solution or reaches a dead end. In the latter case, PGC checks

whether rounding or truncating the fractional binary variables yields a P -feasible solution. If not,

execution transfers to the restart phase together with the most recently unsatisfied Gomory cut.

The goal of the restart phase is to find a basic feasible solution of L(P+) that satisfies the

Gomory cut and stays close to it. The intuition here is that, at the end of the search phase, the

current basic feasible solution might be close to a P -feasible solution which in turn might be close

to the Gomory cut. To find such a basic feasible solution, PGC replaces the objective function with

the temporary objective function max αx, where αx ≥ β describes the cut. The bounded variable

revised simplex algorithm continues until either the value of the temporary objective function is

at least β or the nonbasic xn chosen as the entering pivot variable has max αx unbounded or the

algorithm fails to choose a nonbasic variable. In the last case, execution halts and declares that

P is infeasible. In the other two cases, αx ≥ β is added as a constraint to L(P+), and so the

surplus variable corresponding to this constraint becomes a basic variable xb. In the case where

the nonbasic xn chosen as the entering pivot variable has maxαx unbounded, the simplex tableau

becomes primal infeasible, so a pivot between xn and xb is performed to correct this. PGC then

restores the original objective function and transfers execution to the search phase.

When P has a feasible solution, unlike the PC restart phase, which may not bring the execution

back to the search phase, the PGC restart phase is guaranteed to bring the execution back to the

search phase, although possibly at a cost of increasing primary P -infeasibility measure.

To generate Gomory cuts, considering x∗ is the current basic feasible solution of L(P+), PGC

chooses the row of the simplex tableau corresponding to the most integer-infeasible binary vari-

able xj , where xj is the basic binary variable for which the integer-infeasibility, measured by

min{x∗j , 1 − x∗j}, is maximum. PGC then generates Gomory cuts from the chosen row follow-

ing the construction shown in § 2.1.6.

35

Since we introduced a new criteria for choosing pivots, namely based on Gomory cuts, we

implemented two variations of the PGC search phase in our experiments. One variation, PGC0,

uses the two pivot rules of the PC search phase. The other variation, PGC1, uses two new pivot

rules based on the distance between x∗ and the Gomory cut.

In the rules given below, αx ≥ β refers to the current cut, x∗cur refers to the current basic feasible

solution, and x∗next refers to the basic feasible solution resulting from a pivot under consideration.

A P -feasible solution is always somewhere across the current Gomory cut. PGC1 uses this fact

to define its pivoting rules. The goal of the Type 1 pivot is to decrease the primary P -infeasibility

measure, the number of basic binary variables, and cross the cut.

PGC1 Type 1 Pivot: The first pivot found that exchanges a basic binary decision vari-

able with a non-basic continuous variable, maintains L(P+)-feasibility, and goes some

distance towards the cut, namely β − αx∗next < β − αx∗cur .

Once there are no more such pivots, the goal becomes to keep the primary P -infeasibility measure

unchanged and cross the cut.

PGC1 Type 2 Pivot: The pivot that exchanges a basic continuous variable with a non-

basic continuous variable, or a basic binary decision variable with a nonbasic binary

decision variable, maintains L(P+)-feasibility, and, among the first (at most) blognc

such pivots, the one which either crosses the cut by the smallest amount or, if no pivot

crosses the cut, the one which is closest to the cut. Thus, if β − αx∗next > 0.0 for

all the blognc pivots, then select the pivot for which β − αx∗next is minimum; other-

wise, select the pivot for which β − αx∗next is maximum over the choices for which

β − αx∗next ≤ 0.0.

In the selection of PGC1 Type 2 pivot, we sample a relatively small number of pivots because

experimental results showed the first eligible pivot, that keeps the primary P -infeasibility measure

unchanged and goes some distance towards the cut, might not lead far towards the cut, whereas

considering all (possibly n) eligible pivots might take too long.

Figure 3.1 shows a description of PGC algorithm. A more detailed version of the algorithm

appears in Appendix A.

36

Algorithm PGC0/PGC1

INPUT: a 0-1 mixed integer problem P and a time limit T .
OUTPUT: a P -feasible solution x∗ (null in case of failure).

1. x∗ ← null; elapsedTime← 0.
2. construct L(P+) from P .
3. find optimal solution x∗ of L(P+) using bounded variable revised simplex algorithm.
4. if(there is no solution to L(P+)) then
5. return null with the the message that P is infeasible.
6. if (x∗ or rounding of x∗ or truncation of x∗ is P -feasible) then
7. return the P -feasible solution.
8. repeat

BEGIN SEARCH PHASE
9. construct the Gomory Cut αx ≥ β

from the row corresponding to the most integer-infeasible binary variable.
10. atDeadEnd← false.
11. repeat
12. while (a Type 1 Pivot of PGC0/PGC1 exists)
13. perform the Type 1 Pivot; x∗ ← resulting L(P+)-feasible solution.
14. if (x∗ satisfies αx ≥ β) then
15. if (x∗ is P -feasible) then return x∗.
16. else
17. add αx ≥ β in L(P+).
18. construct the new Gomory Cut αx ≥ β from the row

corresponding to the most integer-infeasible binary variable.
19. if (a Type 2 Pivot of PGC0/PGC1 exists) then
20. perform the Type 2 Pivot; x∗ ← resulting L(P+)-feasible solution.
21. if (x∗ satisfies αx ≥ β) then
22. if (x∗ is P -feasible) then return x∗.
23. else
24. add αx ≥ β in L(P+).
25. construct the new Gomory Cut αx ≥ β from the row

corresponding to the most integer-infeasible binary variable.
26. else atDeadEnd← true.
27. until atDeadEnd

END SEARCH PHASE
28. if (rounding or truncating binary variables gives P -feasible x∗) then return x∗.

BEGIN RESTART PHASE
29. replace the objective function “min cx” of L(P+) with “max αx”.
30. apply bounded variable revised simplex algorithm until

the objective value is at least β.
31. if (bounded variable revised simplex algorithm fails

to find a solution whose objective value is at least β) then
32. return null with the message that P is infeasible.
33. re-establish the objective function to “min cx” and include αx ≥ β in L(P+).

END RESTART PHASE
34. until (elapsedTime≥ T)
35. return x∗.

Figure 3.1: A pseudo-code description of the algorithms PGC0 and PGC1.

37

Now we illustrate the execution of PGC0 on the same example on which we illustrated the

execution of PC. As in PC, PGC0 first finds the following optimal simplex tableau.

5 + x6 + x7 + x8 + x9 = C

1.1978− 1.0989x2 + 0.2812x6 − 0.5781x7 + 0.0468x8 − 0.2604x9 = x5

−0.1666 + 1.0833x2 − 0.5x6 + 0.75x7 − 0.25x8 + 0.1666x9 = x4

0.7083− 0.3541x2 + 0.375x6 − 0.4375x7 + 0.0625x8 + 0.0416x9 = x1

0.4687− 0.2343x2 − 0.2812x6 + 0.5781x7 − 0.0468x8 + 0.0937x9 = x3

The current solution (x1, x2, x3, x4, x5) = (0.3541, 1.0, 0.2343, 0.9166, 0.0989) is not P -feasible,

and neither rounding nor truncating this solution yields a P -feasible solution. Therefore, PGC0

enters the search phase of feasibility subroutine. There, since the measure of integer infeasibility for

the variables x1, x2, x3, x4, and x5 are 0.3541, 0, 0.2343, 0.0833, and 0.0989 respectively, PGC0

generates a Gomory cut from the row corresponding to the most integer-infeasible binary variable,

x1. The generated Gomory cut has the following form.

0.1942x2 + 0.2056x6 + 0.4375x7 + 0.0342x8 + 0.0228x9 ≥ 0.3541.

PGC0 performs the same pivots that PC did until this Gomory cut is crossed. As illustrated in the

previous section, performing a Type 1 pivot between x7 and x4, a Type 1 pivot between x9 and x5, a

Type 2 pivot between x8 and x9, and a Type 2 pivot between x2 and x3 bring PGC0 to the following

simplex tableau.

10.1785 + 2.8928x3 + 0.7142x6 − 5.7142x4 + 0.0535x9 − 6.25x5 = C

5.0718 + 1.3571x3 − 0.7142x6 − 5.2857x4 − 0.6785x9 − 5.5x5 = x8

0.107 + 1.5357x3 + 0.4285x6 − 0.4285x4 − 0.2678x9 − 0.75x5 = x7

0.5356− 0.3214x3 + 0.1428x6 − 0.1428x4 + 0.1607x9 + 0.25x5 = x1

1.25− 0.75x3 − 0.125x9 − 0.75x5 = x2

At this point, although the current solution (x1, · · · , x5) = (0.0714, 0.5, 1.0, 1.0, 0.0) is not yet

P -feasible, it has crossed the Gomory cut. Therefore, PGC0 adds the Gomory cut to the simplex

tableau. This yields the following tableau, where x10 is the new surplus variable corresponding to

the Gomory cut.

38

10.1785 + 2.8928x3 + 0.7142x6 − 5.7142x4 + 0.0535x9 − 6.25x5 = C

5.0718 + 1.3571x3 − 0.7142x6 − 5.2857x4 − 0.6785x9 − 5.5x5 = x8

0.107 + 1.5357x3 + 0.4285x6 − 0.4285x4 − 0.2678x9 − 0.75x5 = x7

0.5356− 0.3214x3 + 0.1428x6 − 0.1428x4 + 0.1607x9 + 0.25x5 = x1

1.25− 0.75x3 − 0.125x9 − 0.75x5 = x2

−0.182 + 0.864x3 + 0.3686x6 − 0.3686x4 − 0.0933x9 − 0.3709x5 = x10

Next, since the measure of integer infeasibility for the variables x1, x2, x3, x4, and x5 are 0.0714,

0.5, 0, 0, and 0 respectively, PGC0 constructs the following new Gomory cut from the row corre-

sponding to the most integer-infeasible binary variable, x2.

0.25x3 + 0.125x9 + 0.25x5 ≥ 0.5.

As there is no Type 1 or Type 2 pivot from this tableau, PGC0 checks whether rounding or truncating

the current solution yields a P -feasible solution. Since neither process yields a P -feasible solution,

PGC0 enters the restart phase. There, it replaces the current objective function with max 0.25x3 +

0.125x9 +0.25x5. It applies the bounded variable revised simplex algorithm until the cut is crossed,

namely until the objective value is at least 0.5. PGC0, then restores the previous objective function

and adds the crossed Gomory cut to the tableau. This yields the following simplex tableau, where

x11 is the new surplus variable corresponding to the added Gomory cut.

1.2143 + 6.7857x1 − 1.5x2 + 4x4 + 1.5x8 + 2.2142x10 = C

−0.4881 + 0.9881x1 + 1.25x2 − 0.5x4 − 0.25x8 + 1.8452x10 = x6

0.8095− 0.8095x1 + 1.4761x10 = x7

−4.1071 + 6.6071x1 − 2.75x2 + 4.5x4 + 0.75x8 − 1.1071x10 = x9

−0.52 + 0.6138x1 − 0.1406x2 + 0.0937x4 + 0.0156x8 − 0.2075x10 = x11

0.6889− 0.1264x1 − 0.8437x2 + 0.5625x4 + 0.0937x8 + 0.2306x10 = x3

1.6622− 0.9747x1 − 0.0312x2 − 1.3125x4 − 0.2187x8 − 0.0461x10 = x5

The search phase then resumes. The solution (x1, · · · , x5) = (1.0, 0.0, 0.5625, 0.0, 0.6875) is not yet

P -feasible, and since the measure of integer infeasibility for the variables x1, x2, x3, x4, and x5 are

0, 0, 0.4375, 0, and 0.3125 respectively, PGC0 generates the following Gomory cut from the row

corresponding to the most integer-infeasible binary variable, x3.

0.1626x1 + 0.2008x2 + 0.4375x4 + 0.1205x8 + 0.2965x10 ≥ 0.5625

39

There is no available Type 1 pivot, so PGC0 performs a Type 2 pivot between x8 and x6. This yields

the following simplex tableau.

−1.7142 + 12.7142x1 + 6x2 + x4 − 6x6 + 13.2857x10 = C

−1.9524 + 3.9523x1 + 5x2 − 2x4 − 4x6 + 7.3809x10 = x8

0.8095− 0.8095x1 + 1.4761x10 = x7

−5.5714 + 9.5714x1 + x2 + 3x4 − 3x6 + 4.4285x10 = x9

−0.5505 + 0.6755x1 − 0.0625x2 + 0.0625x4 − 0.0625x6 − 0.0922x10 = x11

0.506 + 0.2440x1 − 0.375x2 + 0.375x4 − 0.375x6 + 0.9226x10 = x3

2.0892− 1.8392x1 − 1.125x2 − 0.875x4 + 0.875x6 − 1.6607x10 = x5

The solution (x1, · · · , x5) = (1.0, 0.0, 0.75, 0.0, 0.25) is not yet P -feasible, and has not yet crossed

the cut. PGC0 finds a Type 1 pivot between x10 and x5. Performing the pivot yields the following

simplex tableau.

15− 2x1 − 3x2 − 6x4 + x6 − 8x5 = C

7.3333− 4.2222x1 − 5.8888x4 − 0.1111x6 − 4.4444x5 = x8

2.6666− 2.4444x1 − x2 − 0.7777x4 + 0.7777x6 − 0.8888x5 = x7

4.6666x1 − 2x2 + 0.6666x4 − 0.6666x6 − 2.6666x5 = x9

−0.6666 + 0.7777x1 + 0.1111x4 − 0.1111x6 + 0.0555x5 = x11

1.6666− 0.7777x1 − x2 − 0.1111x4 + 0.1111x6 − 0.5555x5 = x3

1.2581− 1.1075x1 − 0.6774x2 − 0.5268x4 + 0.5268x6 − 0.6021x5 = x10

The solution (x1, · · · , x5) = (1.0, 0.0, 0.8888, 0.0, 0.0) is not yet P -feasible, and has not yet crossed

the cut. PGC0 again finds a Type 1 pivot between x6 and x3. Performing the pivot yields the

following simplex tableau.

40

5x1 + 6x2 − 5x4 + 9x3 − 3x5 = C

9− 5x1 − x2 − 6x4 − x3 − 5x5 = x8

−9 + 3x1 + 6x2 + 7x3 + 3x5 = x7

10− 8x2 − 6x3 − 6x5 = x9

1− x2 − x3 − 0.5x5 = x11

−15 + 7x1 + 9x2 + x4 + 9x3 + 5x5 = x6

−6.6451 + 2.5806x1 + 4.0645x2 + 4.7419x3 + 2.0322x5 = x10

Finally, the solution (x1, · · · , x5) = (1.0, 0.0, 1.0, 0.0, 0.0) is P -feasible. Therefore, PGC0 terminates

successfully.

Now we illustrate the execution of PGC1, where the pivoting rules are different from PGC0, on

the same example. PGC1 starts in the same way as PGC0 by finding the optimal simplex tableau

and entering the search phase where it finds a Gomory cut from the row corresponding to the most

integer-infeasible binary variable, x1. Then it looks for a PGC1 Type 1 pivot, and it finds one

between x6 and x3. Performing this pivot yields the following tableau.

6.6666− 0.8333x2 − 3.5555x3 + 3.0555x7 + 0.8333x8 + 1.3333x9 = C

1.6666− 1.3333x2 − x3 − 0.1666x9 = x5

−1 + 1.5x2 + 1.7777x3 − 0.2777x7 − 0.1666x8 = x4

1.3333− 0.6666x2 − 1.3333x3 + 0.3333x7 + 0.1666x9 = x1

1.6666− 0.8333x2 − 3.5555x3 + 2.0555x7 − 0.1666x8 + 0.3333x9 = x6

The solution (x1, · · · , x5) = (0.6666, 1.0, 0.0, 0.5, 0.3333) is not yet P -feasible, and has not crossed

the cut. PGC1 finds a Type 1 pivot between x9 and x5. Performing the pivot yields the following

simplex tableau.

20− 11.5x2 − 11.5555x3 + 3.0555x7 + 0.8333x8 − 8x5 = C

10− 8x2 − 6x3 − 6x5 = x9

−1 + 1.5x2 + 1.7777x3 − 0.2777x7 − 0.1666x8 = x4

3− 2x2 − 2.3333x3 + 0.3333x7 − x5 = x1

5− 3.5x2 − 5.5555x3 + 2.0555x7 − 0.1666x8 − 2x5 = x6

41

The solution (x1, · · · , x5) = (1.0, 1.0, 0.0, 0.5, 0.0) is not yet P -feasible but has crossed the cut.

Therefore, PGC1 adds the crossed cut to the simplex tableau. This yields the following tableau,

where x10 is the new surplus variable corresponding to the Gomory cut.

20− 11.5x2 − 11.5555x3 + 3.0555x7 + 0.8333x8 − 8x5 = C

10− 8x2 − 6x3 − 6x5 = x9

−1 + 1.5x2 + 1.7777x3 − 0.2777x7 − 0.1666x8 = x4

3− 2x2 − 2.3333x3 + 0.3333x7 − x5 = x1

5− 3.5x2 − 5.5555x3 + 2.0555x7 − 0.1666x8 − 2x5 = x6

1.0967− 1.0967x2 − 1.2795x3 + 0.8602x7 − 0.5483x5 = x10

Since the measure of integer infeasibility for the variables x1, x2, x3, x4, and x5 are 0, 0, 0, 0.5, and

0 respectively, PGC1 constructs the following Gomory cut from the row corresponding to the most

integer-infeasible binary variable, x4.

0.5x2 + 0.2222x3 + 0.2777x7 + 0.1666x8 ≥ 0.5.

PGC1 again looks for a Type 1 pivot, and it finds one between x8 and x4. Performing this pivot

yields the following tableau.

15− 4x2 − 2.6666x3 + 1.6666x7 − 5x4 − 8x5 = C

10− 8x2 − 6x3 − 6x5 = x9

−6 + 9x2 + 10.6666x3 − 1.6666x7 − 6x4 = x8

3− 2x2 − 2.3333x3 + 0.3333x7 − x5 = x1

6− 5x2 − 7.3333x3 + 2.3333x7 + x4 − 2x5 = x6

1.0967− 1.0967x2 − 1.2795x3 + 0.8602x7 − 0.5483x5 = x10

Finally, the solution (x1, · · · , x5) = (1.0, 1.0, 0.0, 0.0, 0.0) is P -feasible. Therefore, PGC1 terminates

successfully.

Although we have described PGC as a 0-1 mixed integer programming heuristic, it is easily

modified to be a heuristic for general mixed integer programs. It suffices to replace in our description

of PGC the term ‘binary’ with the term ‘integer’. To illustrate, we show the execution of PGC1 on

the following simple general mixed integer program P .

min { x1 + x2 | 6x1 + 4x2 ≥ 9, 3x1 − 4x2 ≤ 3, 3x1 + 4x2 ≤ 18, x1, x2 ∈
� 2

+}.

First, PGC1 adds slack/surplus variables to create the following P+.

42

min { C = x1 + x2 | 6x1 + 4x2 − x3 = 9, 3x1 − 4x2 + x4 = 3,

3x1 + 4x2 + x5 = 18, x1, x2 ∈
� 2

+, x3, x4, x5 ∈ � 3
+}.

x2

x 1

e 1

e 2

e 3

e 4

 G 1

G2

 1 2 3x − 4x <= 3

 1 2 3x + 4x <= 18

2 6x + 4x >= 9 1

G3

 1 x + x 2
1 , 2

 min
s.t. x x > 0 and integer

Figure 3.2: Illustration of PGC1 on a small example. Thin lines show the original constraints. Bold
lines show the integer polytope. Dashed lines show the Gomory cuts PGC uses.

Next, PGC1 finds the optimal solution e1 = (4
3 ,

1
4) of the L(P+) shown in Figure 3.2. The

simplex tableau corresponding to e1 has the following form, where x3, x4 are the nonbasic variables,

and x1, x2, and x5 are the basic variables.

19
12 + 7

36x3 + 1
18x4 = C

4
3 + 1

9x3 − 1
9x4 = x1

1
4 + 1

12x3 + 1
6x4 = x2

13− 2
3x3 − 1

3x4 = x5

Since neither e1 nor a rounding or truncating of e1 is P -feasible, PGC1 selects the tableau row,

corresponding to the most integer-infeasible integer-constrained variable at e1, to generate a Gomory

cut. Since the measure of integer infeasibility for the variables x1 and x2 are 1
3 and 1

4 respectively,

43

PGC1 generates the Gomory cut 1
18x3 + 1

9x4 ≥ 1
3 from the tableau row corresponding to x1. This

Gomory cut is equivalent to x2 ≥ 3
4 in the space of variables x1 and x2. Figure 3.2 shows this cut

as G1. PGC1 then looks for a Type 1 pivot and finds one between x1 and x4. Performing this pivot

brings PGC1 to e2 = (0, 9
4). Since PGC1 has crossed the Gomory cut G1 and e2 is not P -feasible,

PGC1 adds the crossed cut G1 as a new row, introducing a new surplus variable x6, in the simplex

tableau. The simplex tableau now has the following form, where x1, x3 are the nonbasic variables,

and x2, x4, x5, and x6 are the basic variables.

9
4 − 1

2x1 + 1
4x3 = C

9
4 − 3

2x1 + 1
4x3 = x2

12− 9x1 + x3 = x4

9 + 3x1 − x3 = x5

1− x1 + 1
6x3 = x6

Since e2 is not P -feasible and PGC1 has no Gomory cut in hand that is violated by e2, PGC1

generates a new Gomory cut from the tableau row corresponding to the most integer-infeasible

integer-constrained variable. Since the measure of integer infeasibility for the variables x1 and x2

are 0 and 1
4 respectively, PGC1 generates the Gomory cut 1

6x1 + 1
12x3 ≥ 1

4 from the tableau row

corresponding to x2. This Gomory cut is equivalent to 2x1 + x2 ≥ 3 in the space of variables x1

and x2. Figure 3.2 shows this cut as G2. PGC1 then looks for a Type 1 pivot, and as there is no

such pivot available, it looks for a Type 2 pivot. There exists only one Type 2 pivot between x5 and

x3. Performing this pivot brings PGC1 to e3 = (0, 9
2). Since PGC1 has crossed the Gomory cut G2

and e3 is not P -feasible, PGC1 adds the cut G2 as a new row, introducing a new surplus variable

x7, in the simplex tableau. The simplex tableau now has the following form, where x1, x5 are the

nonbasic variables, and x2, x3, x4, x6, and x7 are the basic variables.

9
2 + 1

4x1 − 1
4x5 = C

9
2 − 3

4x1 − 1
4x5 = x2

9 + 3x1 − x5 = x3

21− 6x1 − x5 = x4

5
2 − 1

2x1 − 1
6x5 = x6

1
2 + 5

12x1 − 1
12x5 = x7

44

Since e3 is not P -feasible and PGC1 has no Gomory cut in hand that is violated by e3, PGC1

generates new Gomory cut from the tableau row corresponding to the most integer-infeasible integer-

constrained variable. Since the measure of integer infeasibility for the variables x1 and x2 are 0 and
1
2 respectively, PGC1 generates the Gomory cut 1

4x1+ 1
4x5 ≥ 1

2 from the tableau row corresponding

to x2. This Gomory cut is equivalent to x1 +2x2 ≥ 8 in the space of variables x1 and x2. Figure 3.2

shows this cut as G3. PGC1 then looks for a Type 1 pivot, and as there is no such pivot available,

it looks for a Type 2 pivot. There exists only one Type 2 pivot between x7 and x5. Performing this

pivot brings PGC1 to e4 = (0, 3). Since PGC1 has crossed the Gomory cutG3 and e4 is P -feasible,

PGC1 terminates successfully returning e4 as a P -feasible solution.

In the previous example, PGC1 does not reach a dead end. But in instances with a higher

number of integer-constrained variables, PGC1 is more likely to reach a dead end. When it does, it

overcomes that situation by crossing the cut as described in the restart phase.

In this section, we have seen the details of PGC. In the next sections, we see how PGC performs.

3.3 Heuristic Performance Evaluation

Recent heuristics evaluate their performance on a set of benchmark instances, namely instances from

the libraries MIPLIB and DEISLIB. These libraries contain one or two instances of many different

kinds of optimization problems. For testing purposes, it is of interest to be able to generate more

instances of these kinds of problems. In this thesis, we compared our heuristics on the available

benchmark instances as well as on two classes of pseudo-randomly generated hard 0-1 integer pro-

gram instances. One class of instances is from our introduced constrained market-sharing problem

described in Chapter 6. The other is from Cornuéjols-Dawande feasibility and optimality model of

the market-sharing problem described in § 2.3.2.

Recent feasibility heuristics such as FP, the new implementation of PS, evaluated their per-

formance only against commercial solvers such as Cplex and Xpress, rather than against each

other. Similarly, recent improvement heuristics (with the exception of RINS, which compared itself

against both the commercial solver Cplex as well as the heuristic LB) evaluated their performance

only against the commercial solvers.

In this thesis, we have evaluated the performance of our new heuristics both against some com-

mercial solver and some comparable recent non-commercial heuristics as well as any previous

heuristic on which our new heuristic is based.

45

3.4 PGC Performance Evaluation

To evaluate the performance of PGC, we compared it against three solvers: FP, the recent feasibility

heuristic, PC, the heuristic on which PGC is based, and Cplex Version 9.13, a commercial mixed

integer programming solver. We also compared PGC against PBS Version 4.0, a state of the art

pseudo-boolean solver, on the 0-1 integer program instances.

From the benchmark suite shown in Table B.1- B.3 of Appendix B, we chose all 77 0-1 mixed

integer program instances with the exception of instance ‘stp3d’. We omitted this instance because

the GLPK linear programming solver cannot handle this instance, and a feasible solution for this

instance is yet unknown. We also chose some pseudo-randomly generated instances of two different

kinds of problems. One class is from the constrained market-sharing problem defined in Chapter 6.

The other is from the Cornuéjols-Dawande feasibility model of market-sharing problem described

in § 2.3.2.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte of memory

under Redhat Linux 9.0. We implemented PC, both versions of PGC, and FP in the C programming

language on top of version 4.0 of the open source GLPK. We alloted one CPU-hour to each solver

for finding a feasible solution of a particular instance.

In the following sections, we see the comparison of PGC against the considered solvers.

3.4.1 PGC0 versus PGC1 versus PC

Since we consider PC as the predecessor of PGC, we first compare both versions of PGC against

our implementation of PC.

Table 3.1 and 3.2 summarize the performance of PGC0 and PGC1 against PC. For detailed

experimental results of PC, PGC0, and PGC1, see Table B.4 in Appendix B.

From Table 3.1 and 3.2, we see that both PGC0 and PGC1 are much more successful than PC

in finding some feasible solution. Among the instances in which PC succeeds, PGC1 is faster to

find a solution more often than PC, whereas PC finds a better solution more often. Since our prime

objective is to find a feasible solution as soon as possible, PGC1 outperforms PC on the chosen

benchmark instances with respect to both success rate and time.

46

Table 3.1: PC versus PGC0 on 77 benchmark instances. Entries indicate

number of instances.

PC PGC0

successful 29 62

among the 29 instances in which PC succeeds

takes lesser amount of time in 9 9

takes equal amount of time in 11

finds better solution in 15 6

finds same solution in 8

Table 3.2: PC versus PGC1 on 77 benchmark instances. Entries indicate

number of instances.

PC PGC1

successful 29 62

among the 29 instances in which PC succeeds

takes lesser amount of time in 5 17

takes equal amount of time in 7

finds better solution in 24 4

finds same solution in 1

This experiment also shows the advantage of PGC restart phase in the way that PGC restart

phase always brings execution back to the search phase, whereas PC restart phase failed to bring

execution back to the search phase in 35 of the 77 instances. PGC restart phase is guaranteed to

bring the execution back to the search phase since the simplex method applied at the search phase

47

is guaranteed to cross the cut, whereas the complementation of one or two nonbasic variables in PC

may fail to bring the execution back to the search phase.

PGC0 and PGC1 succeed on the same 62 instances. Table 3.3 summarizes the performance

of only PGC0 and PGC1. This table supports our belief that the Gomory cut guided pivot rules

of PGC1 are more effective in finding feasible solutions quickly than the PC-pivot rules of PGC0,

which are focused on good objective value.

Table 3.3: PGC0 versus PGC1 on the 62 instances in which both suc-

ceed. Entries indicate number of instances.

PGC0 PGC1

takes lesser amount of time in 11 33

takes equal amount of time in 18

finds better solution in 27 16

finds same solution in 19

Since PGC1 outperforms PGC0 with respect to finding a feasible solution quickly, we pick

PGC1 as the version of PGC to compare against other solvers.

3.4.2 PGC1 versus Feasibility Pump

Table 3.4 summarizes the performance of FP and PGC1. For detailed results on FP and PGC1, see

Table B.5 in Appendix B. Results shown in Table 3.4 suggest that PGC1 is a competitive alternative

of FP in finding a feasible solution as quickly as possible.

48

Table 3.4: FP versus PGC1 on 77 benchmark instances. Entries indicate

number of instances.

FP PGC1

successful 63 62

among the 66 instances in which at least one succeeds

takes lesser amount of time in 26 29

takes equal amount of time in 11

among the 59 instances in which both succeed

finds better solution in 28 17

finds same solution in 14

3.4.3 PGC1 versus ILOG Cplex 9.13

In order to show how PGC1 compares against state-of-the-art mixed integer program solvers, we

used ILOG Cplex 9.13 mixed integer program solver in its default setup, called Cplex-D, as well as

the setup with the emphasis for finding feasible solutions as early as possible, called Cplex-F.

Before showing the comparison against Cplex 9.13 mixed integer program solver, it is to be

noted that the Cplex mixed integer program solver uses the Cplex linear programming solver, which

is considerably faster than the GLPK linear programming solver on which we implemented PGC and

FP. Table B.6 in Appendix B shows the comparison of the Cplex linear programming solver against

the GLPK linear programming solver. We used GLPK linear programming solver since we had the

access to the entire code of GLPK; this allowed us to implement PGC using the data structures

of GLPK. For example, we had access to the GLPK allocated data structures to access the simplex

tableau; we had direct access to the parameters of basic solutions. In contrast, we did not have access

to the Cplex code, and we would need to re-allocate memory for the data structures and would need

to make function calls for the necessary parameters of basic solutions. Since implementing PGC

requires accessing the simplex tableau and other parameters of the given integer program frequently,

we did not choose Cplex to implement PGC using the functions available to the Cplex users. The

49

overhead associated with the function calls and the re-allocation of the data structures would not

reflect the true performance of PGC.

Table 3.5: Cplex-D versus PGC1 on 77 benchmark instances. Entries

indicate number of instances.

Cplex-D PGC1

successful 71 62

among the 71 instances in which either one succeeds

takes lesser amount of time in 45 15

takes equal amount of time in 11

among the 62 instances in which both succeed

finds better solution in 49 8

finds same solution in 5

Table 3.6: Cplex-F versus PGC1 on 77 benchmark instances. Entries

indicate number of instances.

Cplex-F PGC1

successful 73 62

among the 73 instances in which either one succeeds

takes lesser amount of time in 47 17

takes equal amount of time in 9

among the 62 instances in which both succeed

finds better solution in 46 12

finds same solution in 4

50

Table 3.5 and Table 3.6 summarizes the performance of PGC1 against Cplex-D and Cplex-F

respectively. For detailed results, see Table B.7 in Appendix B.

In spite of using GLPK linear programming solver, PGC1 takes equal or less amount of time to

find a feasible solution comparing to the Cplex in about one third instances of the benchmark suite.

3.4.4 PGC versus a Pseudo-Boolean Solver

In our chosen 77 0-1 mixed integer program benchmark instances, there are 10 instances that are 0-1

integer programs. We compare PGC1 against pseudo-boolean solver PBS4 on these 10 instances.

Table 3.7 summarizes the performance of PGC1 against PBS4. For detailed result, see Table B.8 in

Appendix B.

Table 3.7: PBS4 versus PGC1 on 10 0-1 integer programming bench-

mark instances. Entries indicate number of instances.

PBS4 PGC1

successful 8 8

among the 10 instances in which either one succeeds

takes lesser amount of time in 5 5

among the 6 instances in which both succeed

finds better solution in 0 6

The results shown in Table 3.7 suggest that, in finding feasible solutions quickly, PGC1 is com-

petitive to PBS4 on this set of instances.

3.4.5 Performance on Randomly Generated Instances

We now show the performance of different solvers on a set of pseudo-randomly generated

Cornuéjols-Dawande feasibility-hard instances described in § 2.3.2.

51

For instances with n variables and m constraints, Cornuéjols and Dawande showed that picking

the relation n = 10(m − 1) yielded the hardest instances for their optimality model of market-

sharing problem. Later, Aardal et al. showed that the Cornuéjols-Dawande feasibility-hard instances

generated with n = 10(m− 1) are with high probability infeasible. However, it follows easily from

their analysis that choosing different values for n andm yields Cornuéjols-Dawande feasibility-hard

instances that are with high probability feasible.

Table 3.8 shows the probability measures, namely the probability of a generated instance being

infeasible and the expected number of solutions of a generated instance, of Cornuéjols-Dawande

feasibility-hard instances for some n and m.

Table 3.8: Probability measures for the Cornuéjols-Dawande feasibility-

hard instances generated with different n andm. The values are obtained

using the analysis of Aardal et al. [1].

Problem size Probability of Expected number

n m being infeasible of solutions

10 2 0.971 0.029

15 2 0.535 0.624

20 2 2.89e-07 15.056

20 3 0.925 0.077

25 3 0.169 1.778

30 3 1.39e-19 43.414

30 4 0.826 0.191

35 4 0.011 4.509

40 4 8.407e-49 110.69

52

Since our objective is to evaluate the performance of feasibility heuristics, the generated in-

stances should have at least one feasible solution and finding any such solution should be hard.

Therefore, based on the values shown in Table 3.8, we chose n = 10m to generate Cornuéjols-

Dawande feasibility-hard instances. Notice that for this choice of n and m the probability of a

generated instance being infeasible is close to zero. Also, to indicate that these instances are fea-

sibility hard, the expected number of solutions for the generated instance is found to be very low

compared to 2n, the total size of the enumeration space.

Using n = 10m, we pseudo-randomly generated five Cornuéjols-Dawande feasibility-hard in-

stances with 10 to 50 variables each. The experimental results presented in Table B.9 of Appendix B

show that both Cplex-D and Cplex-F perform better than other considered solvers on this set of in-

stances. PBS4 performs well for smaller instances but becomes worse as the instance size grows.

Between FP and PGC1, there is no clear winner on this set of instances.

While PGC1 is much worse than Cplex in the Cornuéjols-Dawande feasibility-hard instances,

we now show a set of instances where PGC1 is much stronger than Cplex. We do not know the

reason for this difference in PGC’s performances. In Chapter 6, we suggest some possible explana-

tions.

We show that PGC1 is much stronger than Cplex in a set of pseudo-randomly generated con-

strained market-sharing instances presented in Chapter 6. We generated instances from three groups.

A parameter k differentiates these groups, where k is introduced to relate the number of variables n

and the number of constraintsm of instances. The relation between n andm is defined bym = b n
k c.

In the first group we set k = 2.0 and generated five pseudo-random instances of the problem

with 50 to 400 variables each. Table B.10 of Appendix B shows the performance of different solvers

on this set of pseudo-randomly generated instances.

In the second group we set k = 1.5 and generated five pseudo-random instances of the problem

with 50 to 200 variables each. Table B.11 of Appendix B shows the performance of different solvers

on this set of pseudo-randomly generated instances.

In the third group we set k = 1.3 and generated five pseudo-random instances of the problem

53

with 50 to 150 variables each. Table B.12 of Appendix B shows the performance of different solvers

on this set of pseudo-randomly generated instances.

Results shown in Table B.10- B.12 of Appendix B suggest that PGC1 outperforms all the con-

sidered solvers on this set of instances within the time limit of one CPU-hour. In Chapter 6, where

we introduce this set of instances as a new class of hard 0-1 integer program instances, we present

results of a large-scale experiment. In the large-scale experiment, we generated 100 instances of

each size instead of generating only 5 instances. However, the performance of different solvers

remained similar in the instances of the large-scale experiment.

3.4.6 Weakness of PGC

Our experiments revealed some weaknesses in the PGC search phase. It often reaches a dead end

without having improved feasibility, namely without finding many pivots of Type 1 or Type 2. This

happened in instances such as 10teams, ds, net12, protfold, t17171, swath. Also, execution some-

times terminated without reaching a dead end, namely finding too many pivots of Type 1 and Type 2.

This happened in instances such as dano3mip, momentum1, nsr8k, rail4284c, rail4872c, and siena1.

Possible remedies of these flaws include the termination of the search phase after a certain num-

ber of pivots and the application of a neighbourhood search around the extreme point at that stage.

We incorporated these ideas in another new ‘find and improve’ type heuristic NPGC, which we

describe in Chapter 5.

3.5 Complexity of PGC

To show that PGC successfully terminates in a finite number of steps, we need to show that PGC

performs a finite number of different pivots and uses a finite number of Gomory cuts. The number

of Type 1 pivots in a search phase is bounded by the number of binary decision variables. However,

the number of Type 2 pivots is not bounded by a finite number as long as the number of Gomory

cuts added in PGC is not shown to be finite. Though Gomory, in his cutting plane algorithm [40],

showed that there is a way of adding Gomory cuts that lead to an optimal solution in a finite number

54

of steps if the objective function is integer valued, we are unable to show that the way Gomory cuts

are added in PGC ensures finding a feasible solution in a finite number of steps.

55

Chapter 4

Distance Induced Neighbourhood

Search

In this chapter we present DISTANCE INDUCED NEIGHBOURHOOD SEARCH (DINS), a new mixed

integer programming improvement heuristic. DINS is based on neighbourhood search. It defines

a promising search neighbourhood around a known feasible solution at different nodes of a mixed

integer program search tree generated by either a branch-and-bound or a branch-and-cut solver, and

searches that neighbourhood with either a branch-and-bound or a branch-and-cut solver.

Recall that the LOCAL BRANCHING [35] and RELAXATION INDUCED NEIGHBOURHOOD

SEARCH [29] heuristics described in § 2.2.11 and § 2.2.12 define such search neighbourhoods in

two different ways, namely by respectively soft fixing and hard fixing integer-constrained variables.

DINS defines its search neighbourhood by using a metric that measures at a node of a mixed integer

program search tree the distance between the current mixed integer program solution and the node’s

associated relaxation solution.

As in the implementation of LB and RINS by Danna et al. we use the commercial solver Cplex

both to generate the mixed integer program search tree and to search the neighbourhoods.

In the next sections, we see the details of DINS.

56

4.1 Distance Induced Neighbourhood Search

In § 2.1 and § 3.1 we gave the formulation of an integer program and a 0-1 mixed integer program

respectively. We now give the analogous formulation of a general mixed integer program. We as-

sume that the input program P is a mixed integer program of the form shown below, where c, x, b, A

have dimensions n, n,m,m × n respectively, N = {1, . . . , n} is the set of variable indices of P

which is partitioned into (B,G, C) with B, G, and C denoting the indices of binary, general integer,

and continuous variables respectively, and, for each index j for which xj is a non-binary variable, lj

and uj denote the respective lower and upper bounds for xj . An integer-constrained variable is any

variable in B ∪ G.

P : min { cx | Ax ≥ b, xi ∈ {0, 1} ∀i ∈ B,

xj ∈
�

and lj ≤ xj ≤ uj ∀j ∈ G, lj ≤ xj ≤ uj ∀j ∈ C}.

In contrast to RINS, which performs only hard fixing of arbitrary variables, and LB, which

performs only soft fixing of integer-constrained variables, DINS incorporates some hard fixing,

some soft fixing, and some rebounding of integer-constrained variables. Furthermore, in DINS all

fixings are based on a distance metric between the known mixed integer program solution and a

relaxation solution. Rebounding of a variable means imposing new lower and upper bounds on the

variable by changing its current bounds.

In [29], Danna et al. tried two hybrid strategies of RINS and LB and concluded that the resulting

performances were not better than that of RINS alone. In this thesis, we show that DINS outper-

forms both RINS and LB on a benchmark test suite that includes all the instances from Danna et al.

[29] as well as many other instances.

Like RINS, DINS also relies on the fact that, during the mixed integer program search tree ex-

ploration, the relaxation solutions at those nodes that are not pruned always provide a better objective

value than that of the current mixed integer program solution.

But unlike in RINS, the intuition in DINS is that the improved mixed integer program solutions

are more likely to be close to the current relaxation solution. An exact modeling of this intuition

would require the inclusion of the following quadratic inequality,

57

∑

j∈N (xj − xj(node))
2 ≤∑

j∈N (xj(mip) − xj(node))
2,

where xmip and xnode denote the current mixed integer program solution and the current relaxation

solution, and for a variable xj , xj(mip) and xj(node) denote the values of xj in xmip and xnode

respectively.

Unfortunately, this quadratic inequality cannot be expressed as a linear programming constraint.

DINS relaxes the intuition by considering that the improved solutions are close to xnode only with

respect to the integer-constrained variables, as measured by the following inequality based on the

absolute differences.

∑

j∈B∪G |xj − xj(node)| ≤
∑

j∈B∪G |xj(mip) − xj(node)|.

DINS then partially captures this inequality, the chosen distance metric, by defining a neighbour-

hood with some rebounding, some hard fixing, and some soft fixing of the integer-constrained vari-

ables.

The details of its neighbourhood definition are as follows.

Notice that if an integer-constrained variable, for which the absolute difference between xj(mip)

and xj(node) is less than half, takes a different value than xj(mip) in an improved solution, the

absolute difference increases. For example, assume that the lower and upper bound of an integer-

constrained variable xj are 0 and 3 respectively. Also assume that xj(mip) = 2 and xj(node) = 1.7.

Then the absolute difference is 0.3 which is less than half. Now if xj takes any integer values

from [0, 3] other than 2, the absolute difference will be greater than 0.3. On the other hand, if

an integer-constrained variable, for which the absolute difference between xj(mip) and xj(node) is

greater or equal to half, takes a different value than xj(mip) in an improved solution, the absolute

difference may not increase. For example, assume that for the same variable xj , xj(mip) = 2 and

xj(node) = 1.3. Then the absolute difference is 0.7 which is greater than half. Now if xj takes the

value 1, the absolute difference decreases; if it takes value 0 or 3, the absolute difference increases.

DINS changes the lower and upper bounds of an integer-constrained variable xj , for which

the absolute difference between its value in xmip and xnode is greater or equal to half, so that at

an improved solution this absolute difference does not increase. Considering lold
j and uold

j as the

58

existing lower and upper bounds of xj , DINS computes the new lower and upper bound lnew
j and

unew
j respectively in the following way.

if (xj(mip) ≥ xj(node)) then

lnew
j ←max(lold

j , dxj(node) − (xj(mip) − xj(node))e), unew
j ←xj(mip)

elsif (xj(mip) < xj(node)) then

lnew
j ←xj(mip), unew

j ←min(uold
j , bxj(node) + (xj(node) − xj(mip))c).

We call this process rebounding. Rebounding does not change existing bounds for all the integer-

constrained variables xj for which |xj(mip) − xj(node)| ≥ 0.5. For example, no binary variable, for

which |xj(mip) − xj(node)| ≥ 0.5, changes its bounds.

Now, if all the integer-constrained variables, for which |xj(mip) − xj(node)| < 0.5, are fixed

to xj(mip), then any solution found from the neighbourhood obtained by rebounding is obviously a

closer one to xnode in terms of the chosen distance metric.

But, the sum of absolute differences can also decrease, if the total decrease d in the sum of

absolute differences caused by the integer-constrained variables for which |xj(mip) − xj(node)| ≥

0.5 is greater than the total increase d′ in the sum of absolute differences caused by the integer-

constrained variables for which |xj(mip) − xj(node)| < 0.5. The expression of d and d′ are as

follows.

d =
∑

|xj(mip) − xj(node)| ≥ 0.5
j ∈ B ∪ G∧

|xj(mip) − xj(node)| −
∑

|xj(mip) − xj(node)| ≥ 0.5
j ∈ B ∪ G∧

|xj − xj(node)|,

and

d′ =
∑

|xj(mip) − xj(node)| < 0.5
j ∈ B ∪ G∧

|xj − xj(node)| −
∑

|xj(mip) − xj(node)| < 0.5
j ∈ B ∪ G∧

|xj(mip) − xj(node)|.

DINS partially captures this observation by allowing the integer-constrained variables xj , for which

|xj(mip)−xj(node)| < 0.5, to change their values in xmip so that d′ is not larger than a chosen small

59

number p. It does this by performing some soft fixing and some hard fixing of these variables. It

performs soft fixing through the LB inequality, and as noted in § 2.2.11, the LB inequality requires

inclusion of new variables when general integer variables are considered. As in [35] and [29],

DINS constructs the LB inequality using only 0-1 variables. Therefore, it fixes all the general

integer variables xj with |xj(mip) − xj(node)| < 0.5 at xj(mip). Such fixing is known as hard fixing

of variables.

Among the binary variables, for which |xj(mip) − xj(node)| < 0.5, DINS performs some hard

fixing like RINS, but incorporates some more intuitions in this process. Like RINS, DINS chooses

the same set of variables, that agree in both xmip and xnode, as the primary candidates for hard

fixing. However, we think that all the variables in this primary candidate set are not equally likely

to stay in their current values at xmip. Notice that the objective value corresponding to the root

relaxation solution, xroot, of the search tree provides a lower bound on the objective value of mixed

integer program optimal solution at the beginning of search tree, and the previously encountered

mixed integer program solutions at a point of execution are the known feasible solutions. Since the

objective of DINS is to find improved feasible solutions, from the improvement point of view it uses

xroot, and from the feasibility point of view it uses the encountered mixed integer program solutions

in guiding the hard fixing of binary variables. For this purpose, DINS applies a filtering step to the

primary candidate set using two pieces of information. The first of these comes from the intuition

that a variable in the primary candidate set, that takes the same value in xroot and xnode, is more

likely to take the same value in improved solutions. The second comes from the intuition that a

variable in the primary candidate set, that takes the same value in the previously encountered mixed

integer program solutions, is more likely to take the same value in improved solutions. DINS uses

an array of flags to keep track of the variables that take different values in the previously encountered

mixed integer program solutions. Thus, more explicitly, DINS performs the hard fixing of binary

variables in the following way. Let ∆ be an array where ∆[j] is set if xj takes different values in

previously encountered mixed integer program solutions. Then, DINS fixes a binary variable xj at

value xj(mip) if xj(mip) = xj(node) = xj(root) and ∆[j] is clear.

60

Let F and H denote the set of variables for which rebounding and hard fixing have been per-

formed respectively. Now assumeR is the set of variables whereR = (B∪G)−F−H. According

to our constructionR contains only binary variables. DINS performs soft fixing on the variables in

R by adding the following LB inequality.
∑

j∈R ∧ xj(mip)=0 xj +
∑

j∈R ∧ xj(mip)=1(1− xj) ≤ p.

DINS generates its search neighbourhood taking small values for p. Therefore, a solution found by

searching this neighbourhood can have a sum of absolute differences increased by at most p.

The definition of DINS search neighbourhood ends here.

Procedure DINS at tree node
INPUT: a 0-1 mixed integer problem P , the current mixed integer program solution xmip,

the current node relaxation solution xnode, the root relaxation solution xroot, parameter p,
node limit nl, and the flag array ∆.

OUTPUT: if successful, return a new mixed integer program solution x∗, otherwise return xmip.

1. if (xmip is a new mixed integer program solution compared to the solution
at the termination of last call of this procedure)

update the array ∆ accordingly.
2. x∗ ← xmip; pcurrent←p; exploredAndNoSolution←false.
3. repeat
4. construct P+ from P as follows:

(i) perform rebounding of the variables xj for which |x∗j − xj(node)| ≥ 0.5,
(ii) perform hard fixing of the general integer variables xj

for which |x∗j − xj(node)| < 0.5,
(iii) perform hard fixing of the binary variables xj for which

x∗j = xj(node) = xj(root) and ∆[j] is clear,
(iv) letR be the set of remaining binary variables.

if (|R| > pcurrent) perform soft fixing by adding the inequality
∑

j∈R ∧ x∗

j
=0 xj +

∑

j∈R ∧ x∗

j
=1(1− xj) ≤ pcurrent.

5. Apply a branch-and-bound or branch-and-cut like exact solver to P+ with node limit
nl and an objective cutoff equal to the objective value provided by x∗.

6. if (a new solution xnew is obtained) then
7. x∗ ←xnew ; pcurrent←p; update the array ∆.
8. else if (node limit reached without having a new solution) then
9. if (|R| = φ) pcurrent←− 1.
10. else pcurrent←pcurrent − 5.
11. else exploredAndNoSolution←true.
12. until (pcurrent < 0 or exploredAndNoSolution)
13. return x∗.

Figure 4.1: A pseudo-code description of DINS.

Now, whenever we apply DINS procedure at a particular node of the mixed integer program

search tree, it creates the described neighbourhood with the initial chosen value of p and explores

61

it using either a branch-and-bound or a branch-and-cut solver with a specified node limit nl. If the

exploration reaches the node limit without finding a new solution, as a step to intensify the search,

DINS reduces p by 5 to reduce the size of neighbourhood and explores the new neighbourhood.

This continues until p < 0, or the neighbourhood exploration finds a new solution, or DINS ex-

plores the neighbourhood completely without finding a new solution. Whenever the neighbourhood

exploration finds a new solution, DINS resets p to its initial chosen value and continues in the same

fashion. Figure 4.1 shows the operation sequence of DINS at a particular node of the mixed integer

program search tree. At the termination of the procedure, execution returns to the exploration of the

mixed integer program search tree. If the procedure finds a new mixed integer program solution, the

algorithm updates the mixed integer program solution at the mixed integer program search tree.

Like RINS, we call the DINS procedure first at the node at which the mixed integer program

search tree finds the first feasible solution. Thereafter, we call the DINS procedure at every f nodes

of mixed integer program search tree for some reasonably large f .

4.2 DINS Performance Evaluation

To evaluate the performance of DINS, we compared it against three solvers: RINS, the recent

improvement heuristic, LB, the heuristic from which PGC uses some ideas, and Cplex Version

9.13, a commercial mixed integer programming solver, in its default setup called Cplex-D.

From the benchmark suite shown in Table B.1- B.3 of Appendix B, we chose all 64 mixed integer

program instances with the exception of those instances for which Cplex-D either gives the proof

of optimality or fails to find a solution in one CPU-hour. We also chose some pseudo-randomly

generated instances of two different class of problems. One class is from the constrained market-

sharing problem defined in Chapter 6. The other is from the Cornuéjols-Dawande optimality model

of market-sharing problem described in § 2.3.2.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte of memory

under Redhat Linux 9.0. We implemented LB, RINS, and DINS in the C programming language

with the mixed integer program search tree generated by Cplex-D. We alloted one CPU-hour to each

62

solver, and it seemed to be sufficient to distinguish the effectiveness of all the solvers.

The three solvers namely LB, RINS, and DINS have a set of parameters which needed to be

set. As in [29], for LB we set p = 10 and nl = 1000, and for RINS we used Cplex 9.13 with the

parameter IloCplex::MIPEmphasis set to 4, where according to [29] f = 100 and nl = 1000. For

DINS we set p = 5, different from LB to allow the neighbourhood to voilate the chosen distance

metric little and to keep the neighbourhood small, f = 100, and nl = 1000 as in RINS.

There is no exact way to distinguish a good and a poor mixed integer program solution without

knowing the optimal solution. However, following Danna et al. [29] we presume that first mixed

integer program solution found by Cplex-D represents a poor solution, and the mixed integer pro-

gram solution found by Cplex-D in one CPU-hour represents a good solution. In our experiment,

we attempted to see how DINS compare against RINS, LB, and Cplex-D starting from both the

presumed poor and good initial solution on the chosen benchmark instances.

4.2.1 DINS Performance Evaluation from the Presumably Poor Solutions

We first invoked the Cplex-D to find the first solution and then invoked different solvers with the

found solution as a known solution at the root node of the mixed integer program search tree. This

provided all four solvers the same starting solution.

In order to capture the quality of obtained solution by each solver, we use the measure percentage

of gap defined by 100*|(objective value of obtained solution − objective value of the best known

solution)/objective value of the best known solution|.

Table B.13 of Appendix B shows the percentage of gap obtained at the end of one CPU-hour

by all the four solvers, where the bold face identifies the best solver for the corresponding instance;

multiple bold faces appear for an instance if there are multiple solvers obtaining the same solution.

Following Danna et al. [29], we group the instances into three different sets so that the effec-

tiveness of different solvers in different groups becomes visible. According to [29], an instance is

in group ‘small spread’, ‘medium spread’, and ‘large spread’, if the gap between its worst solution,

among the found solutions by four solvers, and its best known solution is less than 10%, between

63

10% and 100%, and larger than 100% respectively. The percentage of gaps shown in Table B.13 are

used to group the instances.

We use three measures to evaluate the performance of different solvers.

Our first measure is the number of instances for which a solver finds a better solution than the

solution obtained by other solvers.

Our second measure is the percentage of gap. We calculate the average and the standard devia-

tion of percentage of gaps obtained on a group of instances.

Our third measure is the percentage of improvement defined by 100*|(objective value of the

initial solution − objective value of the obtained solution) /objective value of the initial solution|.

We calculate the average and the standard deviation of percentage of improvements obtained on a

group of instances.

Table 4.1- 4.3 summarize the performance of DINS, with respect to the first measure, against

Cplex-D, LB, and RINS respectively. Table 4.4 and 4.5 show the average and the standard deviation

of other two measures respectively for different solvers.

Table 4.1: Cplex-D versus DINS starting from a presumably poor so-

lution on 64 benchmark instances. Cplex-D better: the number of in-

stances at which Cplex-D finds better solution than DINS. DINS better:

the number of instances at which DINS finds better solution than Cplex-

D. Tied: the number of instances at which both Cplex-D and DINS find

the same improved solution. Entries indicate number of instances.

Cplex-D better DINS better Tied

10 44 10

64

Table 4.2: LB versus DINS starting from a presumably poor solution on

64 benchmark instances. Entries indicate number of instances.

LB better DINS better Tied

8 49 7

Table 4.3: RINS versus DINS starting from a presumably poor solution

on 64 benchmark instances. Entries indicate number of instances.

RINS better DINS better Tied

20 32 12

Table 4.4: The average (x) and the standard deviation (δ) of percentage

of gaps obtained by Cplex-D, LB, RINS, and DINS starting from a

presumably poor solution on 64 benchmark instances.

Cplex-D LB RINS DINS

x δ x δ x δ x δ

On all 64 instances 44.22 191.29 51.19 188.84 41.33 253.77 39.73 232.19

On 45 small spread instances 1.86 2.35 1.81 2.44 1.05 1.99 0.97 1.72

On 13 medium spread instances 15.41 12.74 17.72 17.25 10.35 13.94 9.74 12.64

On 6 large spread instances 424.28 518.63 494.07 433.95 410.51 793.91 395.38 715.03

65

Table 4.5: The average (x) and the standard deviation (δ) of percentage

of improvements obtained by Cplex-D, LB, RINS, and DINS starting

from a presumably poor solution on 64 benchmark instances.

Cplex-D LB RINS DINS

x δ x δ x δ x δ

On all 64 instances 36.19 35.08 35.49 34.01 38.01 35.49 38.05 35.43

On 45 small spread instances 23.41 29.17 23.61 29.02 23.90 29.22 23.92 29.14

On 13 medium spread instances 60.43 27.93 60.25 27.34 62.05 25.61 62.29 25.44

On 6 large spread instances 80.78 28.96 70.90 31.60 91.64 6.31 91.66 6.22

The results shown in Table 4.1- 4.5 suggest that starting from the presumably poor solutions, DINS

is better than the other three solvers with respect to all three measures.

Now, for different group of instances, Figure 4.2- 4.4 show how solution quality, the average

percentage of gap, changes over time for different solvers. Analyzing these figures, we find the

following differences among the solvers in these three group of instances. For all three group of

instances, DINS is worse than RINS at the initial level of computation, but it becomes better as the

computation progresses, and once it becomes better, it maintains its lead over RINS for the remain-

ing part of the computation. For small and large spread instances, DINS obtains the lead over RINS

earlier than in medium spread instances. Similarly in medium and large spread instances, DINS is

worse than Cplex-D at the initial level of computation, but it becomes better as the computation

progresses. LB is always worse than RINS and DINS where, at the end of time limit, LB has an

edge over Cplex-D only in small spread instances.

4.2.2 DINS Performance Evaluation from the Presumably Good Solutions

We first invoked the Cplex-D for one CPU-hour and then invoked different solvers with the found

solution from the Cplex-D as a known solution at the root node of the mixed integer program search

tree. This provided all four solvers the same presumably good starting solution.

66

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.2: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the small spread instances starting from presumably poor solution. Vertical lines show
the standard deviation from the average.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.3: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the medium spread instances starting from presumably poor solution. Vertical lines show
the standard deviation from the average.

67

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.4: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the large spread instances starting from presumably poor solution. Vertical lines show the
standard deviation from the average.

Table 4.6- 4.8 summarize the performance of DINS, with respect to the first measure, against

Cplex-D, LB, and RINS respectively. Table 4.9 and 4.10 show the average and the standard devia-

tion of other two measures respectively for different solvers.

68

Table 4.6: Cplex-D versus DINS starting from a presumably good so-

lution on 64 benchmark instances. Cplex-D better: the number of in-

stances at which Cplex-D finds better solution than DINS. DINS better:

the number of instances at which DINS finds better solution than Cplex-

D. Tied: the number of instances at which both Cplex-D and DINS find

the same improved solution. No new solution: the number of instances

at which both Cplex-D and DINS fail to find a new solution. Entries

indicate number of instances.

Cplex-D better DINS better Tied No new solution

7 43 2 12

Table 4.7: LB versus DINS starting from a presumably good solution

on 64 benchmark instances. Entries indicate number of instances.

LB better DINS better Tied No new solution

9 35 9 11

Table 4.8: RINS versus DINS starting from a presumably good solution

on 64 benchmark instances. Entries indicate number of instances.

RINS better DINS better Tied No new solution

11 30 12 11

69

Table 4.9: The average (x) and the standard deviation (δ) of percentage

of gaps obtained by Cplex-D, LB, RINS, and DINS starting from a

presumably good solution on 64 benchmark instances.

Cplex-D LB RINS DINS

x δ x δ x δ x δ

On all 64 instances 32.43 172.67 31.67 172.77 31.21 172.82 29.14 161.29

On 45 small spread instances 1.41 1.92 1.07 1.79 0.56 0.92 0.54 1.17

On 13 medium spread instances 13.57 14.67 10.63 13.45 10.46 13.00 8.59 11.48

On 6 large spread instances 305.92 525.17 306.77 524.64 306.06 525.07 288.17 488.36

Table 4.10: The average (x) and the standard deviation (δ) of percentage

of improvements obtained by Cplex-D, LB, RINS, and DINS starting

from a presumably good solution on 64 benchmark instances.

Cplex-D LB RINS DINS

x δ x δ x δ x δ

On all 64 instances 2.35 11.28 3.04 11.31 3.45 11.23 3.96 11.38

On 45 small spread instances 0.45 0.98 0.78 1.26 1.26 1.97 1.29 1.88

On 13 medium spread instances 2.50 4.43 4.91 5.23 5.10 3.50 6.57 4.73

On 6 large spread instances 16.31 35.78 15.96 35.76 16.27 35.76 18.47 34.82

The results shown in Table 4.6- 4.10 suggest that DINS is better than the other three solvers with

respect to all three measures starting from the presumably good solutions. Only with respect to

standard deviation, DINS seems to be little bit worse than RINS in small spread instances.

Now, for different group of instances, Figure 4.5- 4.7 show how solution quality, the average

percentage of gap, changes over time for different solvers starting from the presumably good solu-

tions. Analyzing these figures, we find the following differences among the solvers in these three

70

group of instances. For small spread instances, DINS is worse than RINS at the initial level of

computation and it gets better as computation progresses. For medium spread instances, DINS is

better than the other three solvers throughout the computation. For large spread instances, DINS

becomes better than RINS as computation progresses. Both Cplex-D and LB are worse comparing

to DINS throughout the computation in all three group of instances.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.5: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the small spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

71

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.6: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the medium spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

Av
er

ag
e

pe
rc

en
ta

ge
 o

f g
ap

 w
ith

 s
ta

nd
ar

d
de

via
tio

n

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Figure 4.7: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the large spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

72

4.2.3 DINS Neighbourhoods versus RINS Neighbourhoods

The experiments suggest that on the benchmark instances, it is more effective to explore the neigh-

bourhoods defined by DINS than that of RINS. Although size of a mixed integer program instance

does not reflect the true hardness to solve it, in an attempt to compare the neighbourhoods defined

by DINS and RINS, we tried to estimate the enumeration size of both neighbourhoods.

For simplicity, we restricted this analysis only to 0-1 mixed integer program instances.

In RINS, let k denotes the number of neighbourhoods explored in one CPU-hour for a particular

instance with nB binary variables, and fi, 1 ≤ i ≤ k, denotes the number of free binary variables,

which may take either value 0 or value 1, at the i-th neighbourhood. Then we define average

enumeration ratio for RINS as follows:

ER :=

(

∑k
i=1 log 2fi

)

/k

log 2nB
=

(

∑k
i=1 fi

)

/k

nB
,

where 2nB is the size of the enumeration space when all the binary variables are allowed to take

either value 0 or value 1, and 2fi is the size of the enumeration space when fi binary variables are

allowed to take either value 0 or value 1 keeping the remaining binary variables fixed at some values.

We apply logarithm on the size of the enumeration space to express the enumeration ratio as the ratio

of number of free binary variables.

Similarly in DINS, let k5 and k0 denote the number of neighbourhoods, with soft fixing param-

eter p set to 5 and 0 respectively, explored in one CPU-hour for a particular instance with nB binary

variables. Also let fi and si, 1 ≤ i ≤ k5, respectively denote the number of free binary variables

and the number of binary variables pertained to soft fixing inequality at the i-th neighbourhood with

p = 5, and let li, 1 ≤ i ≤ k0, denotes the number of free binary variables at the i-th neighbourhood

with p = 0. Then we define average enumeration ratio for DINS as follows:

ER :=

(

∑k5

i=1 log 2(fi+ri) +
∑k0

i=1 log 2li
)

/(k5 + k0)

log 2nB
=

(

∑k5

i=1(fi + ri) +
∑k0

i=1 li

)

/(k5 + k0)

nB
,

73

where we approximate the enumeration size
∑p

t=0(
si
t

) of soft fixing inequality by the parameter

ri such that 2ri−1 <
∑p

t=0(
si
t

) ≤ 2ri .

Table B.18 of Appendix B shows the number of explored neighbourhoods and the average enu-

meration ratio for both RINS and DINS starting from presumably poor solutions. In most of the

instances, DINS had a lesser average enumeration ratio than RINS. And in most of the instances

for which DINS had a lesser average enumeration ratio than RINS, DINS explored more neigh-

bourhoods than RINS. This observation leads us to conjecture that, in the case where heuristics

are applied for a long time, exploring useful small neighbourhoods is better than exploring useful

large neighbourhoods, where neighbourhoods are considered useful if a node-limited search on the

neighbourhoods can yield improved solutions.

4.2.4 Verification of Intuitions used in DINS

In an attempt to see how good were the intuitions on which we designed DINS, we provide some

statistical measures from our experimental results. We found that, the number of times neighbour-

hood exploration found a new solution in all the instances, the chosen distance metric was satisfied

in 80.89% occurrences and the quadratic distance metric was satisfied in 80.5% occurrences. These

experimental results support our intuition that improved solutions are more likely to be close to the

node relaxation solutions, and also support our choice of distance metric. Moreover, relaxing the

chosen distance metric a little bit using the parameter p perhaps gives DINS the extra power of

finding those improved solutions which do not satisfy the chosen distance metric at the found node,

but probably would satisfy the chosen distance metric at some deeper nodes of the MIP search tree.

Unlike RINS, DINS uses the root relaxation solution and the encountered mixed integer pro-

gram solutions in guiding the hard fixing of binary variables. Experiments showed that this had

an effect in finding the good mixed integer program solutions. We implemented a modified DINS

where we performed the hard fixing of binary variables according to the hard fixing suggested in

RINS. In an experiment on the 64 benchmark instances starting from the presumably poor solu-

74

tions, between DINS and modified DINS, DINS found equal or better solution in 45 instances,

whereas the modified one found equal or better solution in 34 instances.

4.2.5 Performance on Randomly Generated Instances

We first show the performance of different solvers on a set of pseudo-randomly generated

Cornuéjols-Dawande optimality-hard instances described in § 2.3.2.

For instances with n variables and m constraints, Cornuéjols and Dawande showed that picking

the relation n = 10(m − 1) yielded the hardest instances for their optimality model of market-

sharing problem. Using n = 10(m − 1), we pseudo-randomly generated 10 Cornuéjols-Dawande

optimality-hard instances with 40 to 100 variables each. We used the first solution found by Cplex-D

as the starting solution for all four solvers, namely Cplex-D, LB, RINS, and DINS. We alloted one

CPU-hour to each solver.

In the experiments with pseudo-randomly generated instances, we do not use the average per-

centage of gap as a measure, since we have no better information about the best known solutions for

this set of instances than the information obtained from our experiments. Table 4.11- 4.14 summa-

rize the performance of DINS against Cplex-D, LB, and RINS respectively on this set of instances.

For detailed result, see Table B.14 of Appendix B.

Table 4.11: Cplex-D versus DINS on 70 pseudo-randomly generated

Cornuéjols-Dawande optimality-hard instances of different sizes. Entries

indicate number of instances.

Cplex-D better DINS better Tied

34 24 12

75

Table 4.12: LB versus DINS on 70 pseudo-randomly generated

Cornuéjols-Dawande optimality-hard instances of different sizes. En-

tries indicate number of instances.

LB better DINS better Tied

40 21 9

Table 4.13: RINS versus DINS on 70 pseudo-randomly generated

Cornuéjols-Dawande optimality-hard instances of different sizes. En-

tries indicate number of instances.

RINS better DINS better Tied

33 21 16

Table 4.14: The average and the standard deviation of percentage of im-

provements obtained by Cplex-D, LB, RINS, and DINS on 70 pseudo-

randomly generated Cornuéjols-Dawande optimality-hard instances.

Cplex-D LB RINS DINS

average of percentage of improvements 99.17 99.18 99.15 99.12

standard deviation of percentage of improvements 0.40 0.41 0.41 0.39

The results shown on Table 4.11- 4.14 suggest that DINS is not better than other solvers on these

set of instances. However, the performance of DINS is very close to that of other solvers.

76

Next, we show the performance of different solvers on a set of pseudo-randomly generated

constrained market-sharing instances described in Chapter 6.

As in § 3.4.5, we generated instances from three groups. A parameter k differentiates these

groups, where k is introduced to relate the number of variables n and the number of constraints m

of instances. The relation between n andm is defined bym = b n
k c. For the first group with k = 2.0,

the instances generated are of 50, 100, and 150 variables, and for the groups with k = 1.5 and 1.3,

the instances are of 50, 75, and 100 variables.

Improvement heuristics require a feasible solution to start with. Since PGC1 performed better

on these set of instances, we picked first 10 generated instances of each problem size for which

PGC1 found a feasible solution. We gave the feasible solutions obtained by PGC1 as the starting

feasible solutions to all solvers.

In this experiment, the first measure to evaluate the performance of a solver is the number of

instances for which a solver finds a new solution. We do not use this measure in the earlier experi-

ments since the solvers do not show much difference with respect to this measure. Table 4.15- 4.18

summarize the performance of DINS against Cplex-D, LB, and RINS respectively on this set of

instances. For detailed result, see Table B.15- B.17 of Appendix B.

Table 4.15: Cplex-D versus DINS on 90 pseudo-randomly generated

constrained market-sharing instances of different sizes. Entries indicate

number of instances.

Cplex-D better DINS better No new solution

0 44 46

77

Table 4.16: LB versus DINS on 90 pseudo-randomly generated con-

strained market-sharing instances of different sizes. Entries indicate

number of instances.

LB better DINS better Tied No new solution

0 43 1 46

Table 4.17: RINS versus DINS on 90 pseudo-randomly generated con-

strained market-sharing instances of different sizes. Entries indicate

number of instances.

RINS better DINS better Tied No new solution

5 38 1 46

Table 4.18: The average and the standard deviation of percentage of im-

provements obtained by Cplex-D, LB, RINS, and DINS on 90 pseudo-

randomly generated constrained market-sharing instances.

Cplex-D LB RINS DINS

average of percentage of improvements 0.00 0.99 8.01 13.43

standard deviation of percentage of improvements 0.00 4.92 17.11 17.93

The results shown on Table 4.15- 4.18 suggest that DINS performs better than other solvers on

these pseudo-randomly generated constrained market-sharing instances.

78

Chapter 5

Neighbourhood Pivot and Gomory

Cut

In this chapter we present NEIGHBOURHOOD PIVOT AND GOMORY CUT (NPGC), a new ‘find-

and-improve’ type mixed integer programming heuristic.

NPGC is similar in approach to the Dana et al.’s implementation of LB heuristic. Recall from

§ 2.2.11 that in Danna et al.’s implementation of LB, the main procedure calls the LB procedure

when the search tree, generated by either a branch-and-bound or a branch-and-cut solver, finds the

first feasible solution. Thereafter, as a process of diversification, the main procedure calls the LB

procedure whenever the search tree obtains a new feasible solution.

NPGC, essentially an extension of PGC, defines a Gomory Cut based search neighbourhood

and explores it using either a branch-and-bound or a branch-and-cut solver with a node limit. If the

exploration of a search neighbourhood provides a feasible solution, NPGC calls the LB procedure

with the feasible solution. Otherwise, NPGC defines a new search neighbourhood and continues

accordingly. NPGC calls the LB procedure each time NPGC finds a new feasible solution. No-

tice that NPGC actually replaces the search tree used by Danna et al. by its Gomory cut based

neighbourhood search.

NPGC is also similar to the PS[2004] of Balas et al. [16]. As noted in § 2.2.2, as is the case

79

with NPGC, PS[2004] also performs a neighbourhood search around the dead-end reached after a

sequence of pivoting. There are two major differences between NPGC and PS[2004]. First, NPGC

defines the neighbourhood using Gomory cuts, whereas PS[2004] defines its neighbourhood using

inequalities based on values of integer variables at the dead-end. Second, in NPGC execution be-

gins on a new search neighbourhood whenever exploration of the current search neighbourhood fails

to find a solution or whenever the improvement procedure terminates; by contrast, PS[2004] calls

the Xpress mixed integer program solver whenever exploration of the current search neighbourhood

fails. As reported in [16], an initial implementation of PS[2004] was weaker in performance than

the final implementation, which ran on the commercial mixed integer program solver Xpress Ver-

sion 14.2. Furthermore, the final implementation used some platform-dependent time settings. In

particular, within the initial search phase, a total of 5 seconds was alloted for pivoting; within each

improvement, a total of 30 seconds was alloted for shifting. In light of the fact that NPGC turned

out to be less effective than the recent heuristic RINS, the significance of determining the relative

strength of NPGC versus PS[2004] is somewhat moot.

In the next section we see the details of NPGC.

5.1 Neighbourhood Pivot and Gomory Cut

Recall from § 3.4.6 that for some benchmark instances, the initial search phase of PGC runs out of

time before finding a feasible solution or even reaching a dead end. This motivates the addition of

a neighbourhood search to the PGC framework. We use the same notation that we have defined in

PGC.

NPGC applies the search phase of PGC constituting only Type 1 pivots, since it ensures the

termination of the search phase after a finite number of steps. At the end of the PGC search phase,

if the current basic feasible solution, x∗, of L(P+) is P -feasible, NPGC puts an upper bound on

the objective value by adding cx ≤ cx∗ to P and calls the LB procedure LB at tree node shown

in Figure 2.7 to improve the obtained P -feasible solution. Otherwise, using the intuition that a

P -feasible solution will be somewhere around x∗, NPGC defines a search neighbourhood around

80

x∗ using Gomory cuts and explores that by either a branch-and-bound or a branch-and-cut mixed

integer program solver.

To define the aforementioned search neighbourhood, NPGC generates a Gomory cut from the

tableau row corresponding to the most integer-infeasible binary variable and expresses it as αx ≥ β

in terms of the decision variables. NPGC defines the neighbourhood by adding to P the Gomory

cut αx ≥ β and another inequality αx ≤ β + d representing a parallel hyperplane to the Gomory

cut. The parameter d is chosen so that the orthogonal distance between αx = β and αx = β + d

is
√

nc

k , where k is an execution parameter, and nc is the number of variables in the cut αx ≥ β.

Notice that, for 0-1 programs, since the largest diagonal length of 0-1 polytope in the space of nc

variables is√nc, choosing k ≤ 1 causes the search neighbourhood polytope to include the complete

feasible region of the P -polytope.

NPGC applies either a branch-and-bound or a branch-and-cut mixed integer program solver

on the search neighbourhood with a specified node limit nls. When the solver terminates from a

neighrbourhood search, it removes the inequalities β ≤ αx ≤ β + d from P and then modifies

P based on the termination statuses in the following way. If the solver completely explores the

neighbourhood, namely if the solver finds an optimal solution or it proves the neighbourhood to

be integer infeasible, then NPGC adds the inequality αx ≥ β + d to P . If the solver reaches

the node limit nls during the search, NPGC adds only the cut αx ≥ β to P . And, whenever the

mixed integer program solver returns a P -feasible solution x∗new , NPGC puts an upper bound on

the objective value by adding cx ≤ cx∗new to P .

If the solver terminates from the search neighbourhood with a P -feasible solution, NPGC calls

the LB procedure LB at tree node shown in Figure 2.7. Whenever LB obtains a new P -feasible

solution x∗new , NPGC puts an upper bound on the objective value by adding cx ≤ cx∗
new to P .

Either the mixed integer program solver terminates from the search neighbourhood without a

P -feasible solution or LB terminates from its call, assuming P denotes the modified P , NPGC

transforms P to P+, re-optimizes the resulting L(P+), and restarts execution at the initial PGC

search phase.

81

Figure 5.1 shows the algorithm NPGC.

We designed NPGC as a heuristic. However, it can be implemented as an exact solver. If we

set the node limit nls of the solver applied on search neighbourhood to∞, the solver explores every

search neighbourhood completely. Since nc ≥ 1, every search neighbourhood contains a certain por-

tion of the P -polytope for a certain value of k. Considering P as a bounded and finite dimensional

polytope, we can show that the P -polytope constitutes of a finite number of search neighbourhood,

and thus the complete exploration of all the search neighbourhoods makes the complete exploration

of the P -polytope. We limit our analysis for the 0-1 integer programs. The analysis takes the same

course for arbitrary integer programs. For a 0-1 program with n variables, we establish a upper-

bound kn on the number of search neighbourhoods. For any αx, αx ≤
√

nc

k includes a small

n-dimensional hypercube with an edge of length at least 1
k in each direction from the current basic

feasible solution x∗. Since the big n-dimensional 0-1 hypercube, namely the hypercube with an edge

of unit distance in each direction from the origin, holds any given 0-1 polytope and constitutes of kn

small n-dimensional hypercube mentioned earlier, the maximum number of search neighbourhood

for 0-1 program is kn.

5.2 NPGC Performance Evaluation

To evaluate the performance of NPGC, we compared it against three solvers: RINS, the recent

improvement heuristic, LB, the heuristic which NPGC uses, and Cplex Version 9.13, a commerical

mixed integer programming solver, in its default setup referenced as Cplex-D.

From the benchmark suite shown in Table B.1- B.3, we chose all 53 0-1 mixed integer program

instances with the exception of those instances for which Cplex-D gives the proof of optimality in

one CPU-hour.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte of memory

under Redhat Linux 9.0. We implemented NPGC in the C programming language where the PGC

search phase was designed on top of the version 4.7 of the open source GLPK, and the search

neighbourhoods were explored by the Cplex-D. Similarly we implemented LB and RINS in the C

82

Algorithm NPGC
INPUT: a 0-1 mixed integer problem P , a search node limit nls, the parameter p and nl for

procedure LB at tree node, a global time limit T and the parameter k.
OUTPUT: A P -feasible solution SMIP (null in case of failure).

1. SMIP ←null; elapsedTime← 0.
2. repeat
3. construct L(P+) from P .
4. solve L(P+) using the bounded variable revised simplex algorithm.
5. if (L(P+) is infeasible) then return SMIP .
6. else SLP ← the optimal solution found by solving L(P+).
7. isFeas← (SLP is P -feasible).
8. if (not isFeas) then
9. construct the Gomory Cut αx ≥ β

from the row corresponding to the most integer-infeasible binary variable.
10. while (not isFeas and a PGC1 Type 1 pivot exists)
11. perform PGC1 Type 1 Pivot; SLP ← resulting L(P+)-feasible solution.
12. if (SLP satisfies αx ≥ β) then
13. isFeas← (SLP is P -feasible).
14. if(not isFeas) then
15. add αx ≥ β in L(P+).
16 construct the resulting new Gomory Cut αx ≥ β from the row

corresponding to the most integer-infeasible binary variable.
17. if (not isFeas) then
18. construct the Gomory cut αx ≥ β based on the current L(P+)

from the row corresponding to the most integer-infeasible binary variable.
19. determine the parameter d using k.
20. construct a search neighbourhood by adding αx ≥ β and αx ≤ β + d to P .
21. apply either a branch-and-bound or a branch-and-cut mixed integer program

solver on the search neighbourhood with node limit nls.
22. modify P and nls based on the termination statuses of the MIP-solver.
23. if (feasible solution found by the MIP-solver) then
24. isFeas←true.
25. if(isFeas)
26. update SMIP and add the objective cutoff to P .
27. apply procedure LB at tree node with parameter p and nl.
28. if (the procedure LB at tree node finds a new P -feasible solution)
29. update SMIP and add the objective cutoff to P .
30. until (elapsedTime≥ T)
31. return SMIP .

Figure 5.1: A pseudo-code description of NPGC.

83

programming language with the mixed integer program search tree generated by Cplex-D. Notice

that within the implementation of LB, we had to implement Procedure LB at tree node which we

used in NPGC as an improvement procedure. Also notice that LB and RINS are improvement

heuristics, and so require an initial solution to start with. Since LB and RINS were implemented

within the search tree generated by Cplex-D, they started working when Cplex-D found a solution.

The three methods namely LB, RINS, and NPGC have a set of parameters which needed to be

set. As in [29], for LB we set p = 10 and nl = 1000, and for RINS we used Cplex 9.13 with the

parameter IloCplex::MIPEmphasis set to 4, where according to [29] f = 100 and nl = 1000.

Since, in NPGC, it is better to obtain the feasible solution as early as possible, we ran an exper-

iment on choosing parameter k. For that experiment, as is the case with LB and RINS, we set node

limit nls = 1000 in NPGC. Then we ran NPGC for one CPU-hour on the 53 benchmark instances

with k = 1, 10, 100, and 1000. NPGC failed to find solutions for 13, 13, 8, and 18 instances with

k = 1, 10, 100, and 1000 respectively. It suggests that if the size of neighbourhood is too large,

as in k=1 or 10, the solver is not able to find a solution earlier. On the other hand, if the size of

neighbourhood is too small, as in k=1000, the neighbourhood may not include a solution. Following

this experimental results, we set k = 100. Since our goal was to design NPGC as a heuristic rather

than an exact solver, we set nls = 1000 instead of∞, and whenever the solver became unsuccessful

in finding a feasible solution within the node limit, in an attempt to explore the next neighbourhoods

more intensely, we doubled the nls. We alloted one CPU-hour to each solver.

We use the measure ‘percentage of gap’ as defined in § 4.2.1 to capture the quality of obtained

solutions. Table B.19 of Appendix B shows the percentage of gap obtained at the end of one CPU-

hour by all the four solvers, where the bold face identifies the best solver for the corresponding

instance; multiple bold faces appear for an instance if there are multiple solvers obtaining the same

solution.

From the results shown on Table B.19 of Appendix B, we see that all the solvers find solutions

in 47 out of 53 benchmark instances. Notice that, NPGC fails to find a solution for two instances,

namely ‘net12’ and ‘dc1l’, for which Cplex-D finds solutions. On the other hand, Cplex-D fails to

84

find a solution for two instances, namely ‘protfold’ and ‘rd-rplusc-21’, for which NPGC finds solu-

tions. Since LB and RINS start working when Cplex-D finds the first solution, they are successful

in the same number of instances as Cplex-D.

Following the criteria shown in § 4.2.1 we group the 45 instances, for which all the solvers find

a solution, into three different sets namely ‘small spread’, ‘medium spread’, and ‘large spread’. The

percentage of gaps shown in Table B.19 of Appendix B are used to group the instances.

We use two measures to evaluate the performance of different solvers.

Our first measure is the number of instances for which a solver finds a better solution than the

solutions obtained by other solvers.

Our second measure is the percentage of gap as defined in § 4.2.1. We calculate the average

and the standard deviation of percentage of gaps over a group of instances. Here, we do not use the

percentage of improvement as a measure since the solvers do not start with the same initial solution.

Table 5.1- 5.3 summarize the performance of NPGC, with respect to the first measure, against

Cplex-D, LB, and RINS. Table 5.4 shows the average and the standard deviation of percentage of

gaps obtained by different solvers.

Table 5.1: Cplex-D versus NPGC on 45 benchmark instances for which

both find solutions. Cplex-D better: the number of instances at which

Cplex-D finds better solution than NPGC. NPGC better: the number of

instances at which NPGC finds better solution than Cplex-D. Tied: the

number of instances at which both Cplex-D and NPGC find the same

improved solution. Entries indicate number of instances.

Cplex-D better NPGC better Tied

17 23 5

85

Table 5.2: LB versus NPGC on 45 benchmark instances for which both

find solutions. Entries indicate number of instances.

LB better NPGC better Tied

18 21 6

Table 5.3: RINS versus NPGC on 45 benchmark instances for which

both find solutions. Entries indicate number of instances.

RINS better NPGC better Tied

28 11 6

Table 5.4: The average (x) and the standard deviation (δ) of percentage

of gaps obtained by Cplex-D, LB, RINS, and NPGC on 45 benchmark

instances for which each solver finds a solution.

Cplex-D LB RINS NPGC

x δ x δ x δ x δ

On all 45 instances 63.45 235.51 73.37 231.73 71.61 315.00 153.82 712.71

On 32 small spread instances 1.50 2.01 1.41 1.99 0.77 1.32 1.29 1.86

On 7 medium spread instances 20.02 19.73 20.97 22.73 12.51 19.25 24.31 22.24

On 6 large spread instances 444.53 534.92 518.35 444.17 518.40 772.10 1117.82 1783.76

Analyzing the results shown on Table 5.1- 5.4, we find that on the chosen benchmark instances,

NPGC is slightly better than Cplex-D and LB in small spread instances, is competitive with Cplex-

86

D and LB in medium spread instances, but worse than Cplex-D and LB in large spread instances.

Unfortuantely, NPGC is worse than RINS on these benchmark instances.

87

Chapter 6

Generating Hard Integer Program

Instances

While there exists an established set of benchmark instances on which different heuristics can be

compared, for example as mentioned in § 2.3.1, it is of interest to find new hard instances that might

be added to the benchmark suite. In particular, due to the recent development of new feasibility

heuristics, it is of interest to find new feasibility-hard instances. In 1998, Cornuéjols and Dawande

showed how to pseudo-randomly generate both optimality-hard and feasibility-hard instances from

different variations of Williams’s market-sharing problem. In this chapter, we show how to pseudo-

randomly generate a related class of instances that are both feasibility-hard and optimality-hard.

Before presenting our new class of instances, we review the Cornuéjols-Dawande feasibility-

hard instances.

6.1 Cornuéjols-Dawande Feasibility-Hard Instances

Recall from § 2.3.2 that, for instances with n variables and m constraints, Cornuéjols-Dawande

chose n = 10(m − 1) for generating their optimality-hard instances. Also recall from § 2.3.2 that

dropping the slack/surplus variables from the constraints, every Cornuéjols-Dawande optimality-

88

hard instance gives rise to a Cornuéjols-Dawande feasibility-hard instance.

Using probability measures, namely the probability that a generated instance is infeasible and the

expected number of solutions of a generated instance, Aardal et al. [1] showed that the Cornuéjols-

Dawande feasibility-hard instances generated with n = 10(m− 1) are with high probability infea-

sible.

Since our objective is to generate instances for the purpose of evaluating heuristics, the generated

instances should have at least one feasible solution, and finding any such solution should be hard.

Therefore, the relation n = 10(m− 1) is not suitable for us.

Following the analysis of Aardal et al. Table 6.1 shows the probability measures for some n and

m. We present a short form of this table in § 3.4.5.

Table 6.1: Probability measures for the Cornuéjols-Dawande feasibility-

hard instances generated with different n andm. The values are obtained

using the analysis of Aardal et al. [1].

Problem size Probability of Expected number

n m being infeasible of solutions

10 1 0.01 4.44

10 2 0.97 0.03

10 3 0.99 2.1e-4

20 1 0.00 3.24e+3

20 2 2.8e-7 15.05

20 3 0.93 0.08

20 4 0.99 4.1e-4

30 1 0.00 2.7e+6

Continued on next page

89

Table 6.1 – Continued from previous page

Problem size Probability of Expected number

n m being infeasible of solutions

30 2 0.00 1.0e+4

30 3 1.4e-19 43.41

30 4 0.83 0.19

30 5 0.99 8.6e-4

40 1 0.00 2.4e+9

40 2 0.00 7.9e+6

40 3 0.00 2.8e+4

40 4 8.4e-49 110.69

40 5 0.647 0.434

40 6 0.998 1.73e-3

In order to generate feasibility-hard instances with at least one feasible solution, it appears from

this table that a good choice for the relation between n and m is to pick n = 10m, since for

this choice, the probability of a generated instance being infeasible is close to zero, and the ex-

pected number of solutions is small as well as larger than one. In § 3.4.5 we presented experimental

results comparing feasibility heuristics on some pseudo-randomly generated Cornuéjols-Dawande

feasibility-hard instances using n = 10m. However, we found in experiments that with this choice

of n = 10m, many pseudo-randomly generated instances were infeasible. Assume that one wants

to generate feasibility-hard instances with 30 variables. Then following the probability measures,

there are only three options for choosingm. It can be either 3 or 2 or 1, and we see that the expected

number of solutions increases quite rapidly as m changes from 3 to 2 to 1. This rapid increase in

expected number of solutions may rapidly reduce the difficulty of solving instances.

90

This observation led us to introduce a constrained version of the Williams’s market-sharing prob-

lem for which we have more options in choosing m for a particular n, and for which the expected

number of solutions changes much more smoothly as m changes. In the next section we introduce

this constrained problem and a way to pseudo-randomly generate instances from the problem. Then

we will show that the new class of instances has the aforementioned properties.

6.2 Constrained Williams’s Market-Sharing Problems

We use the following constrained version of Williams’s market-sharing problem to pseudo-randomly

generate our new class of instances. The difference between this problem and the original version

of Williams’s market-sharing problem are indicated by italics.

A large company has two divisions D1 and D2. The company supplies retailers with

several products. The goal is to allocate each retailer to either division D1 or divi-

sion D2 so that D1 controls y% of the company’s market for each product and D2 the

remaining (100-y)% or, if such a perfect y/(100 − y) split is not possible for all the

products, the goal is to minimize the sum of percentage deviations from the desired

split with the new imposed constraints thatD1 has a specific choice to control less than

y% of company’s market for some (say m1) products and a specific choice to control

greater than y% of company’s market for remaining (m−m1) products.

We model this problem as the following integer program,

min
∑m

i=1 si

s.t.
∑n

j=1 aijxj + si = bi i = 1, ...,m1

∑n
j=1 aijxj − si = bi i = (m1 + 1), ...,m

xj ∈ {0, 1} j = 1, ..., n

si ≥ 0 i = 1, ...,m

where n, m, aij are the number of retailers, the number of products, and the demand of retailer j for

product i respectively. For the desired y/(100− y) split, bi = bf ∑n
j=1 aijc, where f = y

100 .

91

With respect to the desired split, the firstm1 constraints specify the condition on the products for

which D1 has a choice to under-produce, and the remaining constraints specify the condition on the

products for whichD1 has a choice to over-produce. The motivation of our construction comes from

the observation that most of the 2n possibilities for vector x which satisfies the first m1 constraints

violates the remaining constraints and vice versa; therefore, the instances of this construction are

feasible only for a few choice over x. Since these inequality constraints are less stringent than the

equality constraints of Cornuéjols-Dawande feasibility-hard instances, our intuition was that there

might be more options for choosing m for a particular n. As a result, the expected number of

solutions of a generated instance might change smoothly as m changes. We will show later that the

computed probability measures support our intuition.

As with the Cornuéjols-Dawande feasibility-hard instances, for constrained market-sharing

feasibility-hard instances, we choose a split of 50/50 and each integer aij uniformly between 0

and (d − 1), where d = 100. A 50/50 split makes f equal to 1/2. We set m1 = dpme when

0 < p ≤ 0.5 or m1 = bpmc when 0.5 < p < 1. Notice that, for some p′, using p = p′ or p = 1− p′

generates similar hard instances, since the value of m1 with p = p′ becomes the value of (m−m1)

with p = 1− p′ and vice versa. We will show later what value should be chosen for p.

The complexity of finding a feasible solution for an instance of the proposed problem class

is equivalent to the complexity of answering the yes/no question “Is there a solution satisfying the

constraints mentioned in the above formulation?”; we can show this to be NP-complete whenm = 2.

When m = 2, for any p with 0 < p < 1, an instance of the proposed problem class contains the two

constraints
∑n

j=1 a1jxj + s1 = b1 and
∑n

j=1 a2jxj − s2 = b2. In the case where a1j = a2j for

all j, the instance is equivalent to finding a solution to
∑n

j=1 a1jxj = b1 which is the subset sum

problem, which is NP-complete [36].

Recall that our objective is to generate instances that have feasible solutions with high probabil-

ity but for which finding any such solutions is hard. Therefore, following the probability analysis

of Aardal et.al. [1], for a generated instance of our proposed constrained market-sharing problem

we compute the probability of being infeasible and the expected number of solutions. Our anal-

92

ysis, which is similar to the analysis of Aardal et al. for the Cornuéjols-Dawande feasibility-hard

instances, is described in the next sections.

6.2.1 The Expected Number of Solutions

As in [1], we consider that aij are uniformly distributed integers from the set {0, · · · , d − 1}, and

bi = bf ∑n
j=1 aijc.

Consider each possible solution x of an instance as a subset S ⊆ {1, 2, · · · , n} where xj = 1 if

j ∈ S, and xj = 0 otherwise.

In order to determine the probability that a vector x satisfies row i of a generated instance,

consider a random variable zi(S) =
∑

j∈S aij −bf
∑n

j=1 aijc representing the difference between

the values of the both sides of row i, which is equivalent to the absolute value of the slack/surplus

variable si. The probability that x satisfies a row of type
∑n

j=1 aijxj + si = bi is denoted by

Pr[zi(S) ≤ 0], and that x satisfies a row of type
∑n

j=1 aijxj−si = bi is denoted by Pr[zi(S) ≥ 0].

Following Aardal et al. assume that the random variable yi(S) =
∑

j∈S aij − f
∑n

j=1 aij , and

the random variable ui = f
∑n

j=1 aij − bf
∑n

j=1 aijc. Thus, zi(S) = yi(S) + ui. For any rational

number f = g/h, where g and h are relatively prime positive natural numbers, yi(S) = k
h for some

integer k, and ui = k′

h for some integer k′ between 0 and (h− 1). Therefore, we have

Pr[zi(S) ≤ 0] = Pr[yi(S) ≤ −ui] =

∞
∑

k=0

Pr

[

yi(S) = −k
h

]

,

and

Pr[zi(S) ≥ 0] = Pr[yi(S) ≥ −ui] =

h−1
∑

k=−∞
Pr

[

yi(S) = −k
h

]

.

Aardal et al. derived the probability generating function of yi(S) as the following.

Gyi(S)(x) =
1

dn

1

xf(d−1)(n−|S|)

(

x(1−f)d − 1

x(1−f) − 1

)|S| (
xfd − 1

xf − 1

)n−|S|
,

93

which has the expansion of the form
∑

j cjx
j/h, where cj = Pr[yi(S) = j

h]. For f = 1
2 , the

probability generating function becomes the following.

Gyi(S)(x) =
1

dn

1

x(d−1)(n−|S|)/2

(

xd/2 − 1

x1/2 − 1

)n

.

We use the following lemma to find the Taylor expansion of the factors in the above expression.

Lemma 6.2.1 (Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1])

((yd − 1)/(y − 1))n =
∑∞

j=0 ajy
j , where

aj =

min{n,bj/dc}
∑

k=0









n

k









(−1)k









j − dk + n− 1

j − dk









.

Also, notice that aj = 0 for j > (d− 1)n.

Since cj depends on d, n, and the size of S, we denote Pr[zi(S) ≤ 0] by q1(n, d, |S|), where

q1(n, d, |S|) =
1

dn

(d−1)(n−|S|)
∑

k=0

ak,

and Pr[zi(S) ≥ 0] by q2(n, d, |S|), where

q2(n, d, |S|) =
1

dn

(d−1)n
∑

k=(d−1)(n−|S|)−1

ak.

Now, the probability that a vector x constitutes a feasible solution for a generated instance is

q1(n, d, |S|)m1q2(n, d, |S|)m−m1 . Therefore, the expected number of solutions,

E[number of solutions] =
∑

S⊆{1,···,n} q1(n, d, |S|)m1q2(n, d, |S|)m−m1

=
∑n

s=0 αq1(n, d, s)
m1q2(n, d, s)

m−m1 ,

where s = |S| and α = (ns).

94

6.2.2 Probability of Generating Infeasible Instances

For simplicity we assume that each distinct subset S is independent. Thus the probability of gener-

ating infeasible instances becomes,

Pr[number of solution is zero] = Pr[S yields no solution, ∀S ⊆ {1, 2, · · · , n}]

≈
∏

S⊆{1,···,n} Pr[S yields no solution]

=
∏

S⊆{1,···,n}(1− q1(n, d, |S|)m1q2(n, d, |S|)m−m1)

=
∏n

s=0 ((1− q1(n, d, s)m1q2(n, d, s)
m−m1))

α
,

where s = |S| and α = (ns).

Following the above computation, Table 6.2 shows the probability measures for constrained

market-sharing instances. Since we want to show these measures as the relation of n
m changes, we

introduce a new variable k and define m to be bn
k c.

Table 6.2: Probability measures for the constrained market-sharing in-

stances. PI: the probability of a generated instance being infeasible, ES:

the expected number of solutions, n, p: the parameters described in the

problem formulation, k: a variable used to define m.

p = 0.9

n = 10 n = 20 n = 30

k PI ES PI ES PI ES

0.55 0.540 0.613 0.352 1.042 0.348 3.356

0.6 0.297 1.209 0.054 2.918 3.4e-8 17.18

0.65 0.181 1.701 2.7e-4 8.196 1.1e-20 45.90

0.7 0.090 2.396 7.8e-8 16.35 5.8e-75 170.9

0.75 0.033 3.383 6.2e-15 32.69 2.7e-144 330.54

0.8 0.008 4.787 3.4e-29 65.53 0.000 891.8

Continued on next page

95

Table 6.2 – Continued from previous page

n = 10 n = 20 n = 30

k PI ES PI ES PI ES

0.85 0.001 6.794 4.6e-41 92.86 0.000 1.7e+3

0.9 0.001 6.794 6.3e-58 131.6 0.000 3.3e+3

0.95 5.3e-5 9.681 6.6e-82 186.8 0.000 6.6e+3

1.0 5.3e-5 9.681 5.1e-116 265.3 0.000 9.2e+3

p = 0.5

1.1 0.567 0.566 0.431 0.839 0.243 1.414

1.2 0.314 1.152 0.032 3.412 1.0e-5 11.46

1.3 0.092 2.371 0.001 6.903 9.5e-11 23.07

1.4 0.092 2.371 8.2e-7 14.01 1.6e-41 93.92

1.5 0.007 4.943 4.0e-13 28.54 3.1e-83 189.9

1.6 0.007 4.943 4.3e-26 58.38 4.5e-340 781.3

1.7 2.4e-5 10.49 7.3e-53 120.0 0.000 1.5e+3

1.8 2.4e-5 10.49 7.3e-53 120.0 0.000 3.2e+3

1.9 2.4e-5 10.49 1.7e-108 248.0 0.000 6.6e+3

2.0 2.4e-5 10.49 1.7e-108 248.0 0.000 6.6e+3

The values shown in Table 6.2 suggest that, for a fixed value of p, since the expected number

of solutions increases as k increases, the hardness of finding a feasible solution should decrease.

Experiments with various solvers support this claim.

The information in Table 6.2 also suggests that the smallest hard instances, in terms of nm, of

this class occurs when p = 0.5, since for a fixed n, almost similar expected number of solutions are

obtained at larger value of k for p = 0.5 than for p > 0.5. For example, the expected number of

solutions of the instances generated with p = 0.9, n = 30, k = 0.7 is close to the expected number

96

of solutions of the instances generated with for p = 0.5, n = 30, k = 1.5. However, the size of

instances in terms of nm is 30 × b 30
0.7c = 1260 for the setting with p = 0.9, whereas the size of

instances in terms of nm is 30× b 30
1.5c = 600 for the setting with p = 0.5.

Comparing the probability measures for Cornuéjols-Dawande feasibility-hard instances and our

constrained market sharing instances, notice that for a fixed n, the expected number of solutions

changes more smoothly in the constrained market sharing instances as m changes. For example,

considering p = 0.5, to generate constrained market-sharing instances with 30 variables, m can be

any number from 1 to b 30
1.1c = 27. By contrast, m can be only between 1 and 3 for Cornuéjols-

Dawande feasibility-hard instances.

In the next section, we present the performance of different solvers on some pseudo-randomly

generated constrained market-sharing instances.

6.3 Solver Performance on Constrained Market-Sharing In-

stances

Based on the probability measures shown in Table 6.2, we chose k = 2, k = 1.5, and k = 1.3 with

p = 0.5 to generate instances. We did not decrease k further since even with k = 1.3, experiments

showed that many instances generated were infeasible.

For generating pseudo-random numbers aij with uniform distribution, we used the ‘rand()’ func-

tion from the C programming language. The rand() function gives an integer in the [0,M], whereM

is compiler dependent. For example,M was 2147483647 in the compiler we used. The rand() func-

tion uses the linear congruential generator algorithm [32], one of the best known pseudo-random

number generators. The expression rand()
M+1 gives a pseudo-random floating point number in the in-

terval [0, 1). For generating integers in the interval [0, 99], we used the integer part of 100 ∗ rand()
M+1 .

Setting k = 1.3 and p = 0.5, we generated 100 pseudo-random instances with 50, 75, and 100

variables each; setting k = 1.5 and p = 0.5, we generated 100 pseudo-random instances with 50,

75, and 100 variables each; setting k = 2 and p = 0.5, we generated 100 pseudo-random instances

97

with 50, 100, and 150 variables each.

On these generated instances, we applied each of the five solvers, namely Cplex-D, Cplex-F,

PBS4, FP, and PGC, with one CPU-hour time limit to find an initial feasible solution. We ran all

the experiments on an 2403 MHz AMD Athlon processor with 128 MByte of memory under Redhat

Linux 9.0.

Table 6.3 summarizes the performance of FP, Cplex-D, Cplex-F, PBS4, and PGC1.

Table 6.3: The performance summary of different solvers to find a feasi-

ble solution on pseudo-randomly generated constrained market-sharing

instances. The measure ‘successful’ indicates the number of instances

for which a solver finds a feasible solution. The measure ‘takes least

amount of time in’ indicates the number of instances for which a solver

takes the least amount of time among the five solvers.

Problem size FP Cplex-D Cplex-F PBS4 PGC1

n k m

successful 100 0 100 64 100

50 2.0 25 among the 100 instances at which at least one solver succeeds

takes least amount of time in 1 0 0 0 99

successful 96 0 95 0 100

100 2.0 50 among the 100 instances at which at least one solver succeeds

takes least amount of time in 1 0 0 0 99

successful 55 0 0 0 100

150 2.0 75 among the 100 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 100

Continued on next page

98

Table 6.3 – Continued from previous page

Problem size FP Cplex-D Cplex-F PBS4 PGC1

n k m

successful 94 0 97 1 97

50 1.5 33 among the 97 instances at which at least one solver succeeds

takes least amount of time in 2 0 10 0 88

successful 54 0 73 0 90

75 1.5 50 among the 90 instances at which at least one solver succeeds

takes least amount of time in 2 0 3 0 85

successful 15 0 10 0 83

100 1.5 66 among the 83 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 83

successful 63 0 67 0 67

50 1.3 38 among the 67 instances at which at least one solver succeeds

takes least amount of time in 1 0 14 0 52

successful 17 0 32 0 50

75 1.3 57 among the 50 instances at which at least one solver succeeds

takes least amount of time in 2 0 2 0 48

successful 1 0 0 0 31

100 1.3 76 among the 31 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 31

In the alloted one CPU-hour, Cplex-D found 3 and 33 infeasible instances among the 100 in-

stances generated with n = 50, k = 1.5 and n = 50, k = 1.3 respectively. Therefore, from the

99

experiments, it seems that some instances generated with k = 1.5 and k = 1.3 may have no feasi-

ble solution. For this reason, Table 6.3 shows the comparison only on the number of instances for

which at least one solver finds a feasible solution within the alloted time. The results shown on this

table suggest that, it is difficult for the solvers to find a solution for the constrained market-sharing

instances as the number of variable goes beyond roughly 150 when k = 2.0, 100 when k = 1.5, and

75 when k = 1.3.

Notice that, we can also use the constrained market-sharing instances as optimality-hard in-

stances without changing the model, whereas we need to change the model to obtain optimality-hard

instances from Cornuéjols-Dawande feasibility-hard instances. In § 4.2.5, we have seen that it is also

difficult to find an optimal solution for the constrained market-sharing instances.

Our new feasibility heuristic PGC shows much stronger performance than other solvers on con-

strained market-sharing instances, but shows much worse performance than Cplex on Cornuéjols-

Dawande feasibility-hard instances. We do not know the reason for this difference in PGC’s perfor-

mance. However, we point out the following differences between these two class of instances which

might have a role in PGC’s performance.

One difference is that the feasible region corresponding to the linear programming relaxation

of a Cornuéjols-Dawande feasibility-hard instance is a hyperplane generated by the intersection

of several hyperplanes, whereas that of a constrained market-sharing instance is a region bounded

by several hyperplanes. PGC might handle those instances better for which the feasible region is

bounded by hyperplanes rather than intersection of hyperplanes.

Another difference is that the Cornuéjols-Dawande feasibility-hard instances have no

slack/surplus variables in the initial formulation, whereas constrained market-sharing instances have

many slack/surplus variables in the initial formulation. PGC introduces new surplus variables only

when they add Gomory cuts. Therefore, PGC, at the beginning, fails to find Type 1 pivots in the

Cornuéjols-Dawande feasibility-hard instances; it performs only Type 2 pivots which does not bring

integer variables out of the basis. In contrast, PGC, at the beginning, may perform Type 1 pivots in

the constrained market-sharing instances.

100

Chapter 7

Conclusions

It is of interest to develop heuristics that will be effective for any given mixed integer program

irrespective of its underlying form. If we consider a particular optimization problem such as the set

cover problem, then all the inequalities have the same form, that is
∑n

j=1 aijxj ≥ 1; the set packing

problem, then all the inequalities have the form
∑n

j=1 aijxj ≤ 1; the set partition problem, then

all the inequalities have the form
∑n

j=1 aijxj = 1. However, most real world problems come with

inequalities having different forms. In this thesis, we have presented three heuristics for general

mixed integer programs.

We have introduced a new feasibility heuristic, PGC. It uses the simplex tableau pivoting frame-

work of PC. PGC replaces the PC restart phase, which fails in a large number of instances, with a

Gomory cut based restart phase, which is guaranteed to succeed. PGC also replaces the PC pivot

rules, focused on finding solutions with better objective value, with a set of Gomory cut based pivot

rules, focused on finding feasible solutions as quickly as possible. We have chosen Gomory cuts as

the cutting planes to use in PGC since they are easy to derive from a simplex tableau. Experimental

results suggest that PGC is a competitive alternative to the recent heuristic FP. Besides this, on a

set of pseudo-randomly generated hard 0-1 instances, PGC outperforms all the considered solvers,

namely PBS4, FP, and the commercial solver Cplex. We were not able to show that PGC terminates

in a finite number of steps. However, we hope that, like the recent heuristic FP which has no finite

101

convergence property but practically works well, the introduced PGC has the merit to stand as a

competitive heuristic in practice. The introduction of PGC raises several open questions that would

be interesting to answer. Is the number of Gomory cuts added in PGC finite? Would generating

Gomory cuts from the rows corresponding to other integer-infeasible integer-constrained variables,

than the row corresponding to the most integer-infeasible integer-constrained variable, give a better

variant of PGC? Would incorporating some other cuts such as lift-and-project cuts, those are not

obtained in a straight-forward way from the simplex tableau, in place of Gomory cuts, result a better

heuristic? Would incorporating PGC in different nodes of branch-and-bound or branch-and-cut like

exact solvers be beneficial?

We have also introduced a new improvement heuristic, DINS. It defines neighbourhoods, based

on a distance metric, using ideas from the LB and RINS as well as some new ideas. These ideas

include changing the bounds of the integer-constrained variables and using the history of integer-

constrained variables in the mixed integer program search tree. Experimental results suggest that

DINS performs better than existing comparable heuristics. Experimental results also suggest that

exploring useful small neighbourhoods as in DINS is better in the long run than exploring use-

ful large neighbourhoods as in RINS, but worse at the initial level of computation. Future works

could include establishing a hybrid strategy of small neighbourhood search and large neighbourhood

search that might come out as a better option than using only one type of neighbourhood search. It

would be also interesting to know if there is any better way to model the distance metric used in

DINS.

We have also introduced NPGC, a ‘find-and-improve’ heuristic. NPGC is extention of PGC

that is similar in approach to the implementation of LB incorporated in a mixed integer program

search tree. In such an implementation, LB is applied whenever the mixed integer program search

tree, which is generated by branch-and-bound or branch-and-cut like exact solver, finds a new fea-

sible solution. NPGC replaces the mixed integer program search tree by its Gomory cut based

neighbourhood search. In other words, in NPGC, LB is applied whenever the Gomory cut based

neighbourhood search finds a new feasible solution. Though NPGC is not better than the compara-

102

ble heuristic RINS, it is a natural extension of PGC that finds feasible solutions for some instances

in a period of time in which the commercial solver Cplex fails to find such solutions.

We have also presented a new class of hard 0-1 instances, namely constrained market-

sharing instances, obtained by modifying Williams’s Market-sharing problem and using the idea of

Cornuéjols-Dawande optimality-hard instances. PGC appears significantly stronger than any other

heuristics when tested on these constrained market-sharing instances. It would be interesting to see

a mathematical reasoning behind this performance, which might help us to categorize the class of

instances for which PGC works well.

As a final remark, we hope that this thesis has increased the state-of-the-art for mixed integer

program heuristics by introducing three new heuristics, and showing several new directions for

further research.

103

104

Bibliography

[1] K. Aardal, R.E. Bixby, C.A.J. Hurkens, A.K. Lenstra, and J.W. Smeltink. Market split and
basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal
on Computing, 12(3):192–202, 2000.

[2] F. Aloul and B. Al-Rawi. Pseudo-boolean solver version 4. 2005.
http://www.eecs.umich.edu/ faloul/Tools/pbs4.

[3] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo-boolean
solver. Symposium on the Theory and Applications of Satisfiability Testing (SAT), 2002.

[4] F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Generic ILP versus Specialized 0-1
ILP: An update. International Conference on Computer Aided Design, pages 450–457, 2002.

[5] K. Anderson, G. Cornuéjols, and Y. Li. Reduce-and-split cuts: Improving the performance of
mixed integer Gomory cuts. Management Science, 51:1720–1732, 2005.

[6] D. Avis and V. Chvátal. Notes on Bland’s pivoting rule. Mathematical Programming Study,
8:24–34, 1978.

[7] E. Balas. Intersection cuts – a new type of cutting planes for integer programming. Operations
Research, 19:19–39, 1971.

[8] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979.

[9] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295–324, 1993.

[10] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework. Management Science, 42(9):1229–1246, 1996.

[11] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations Research
Letters, 19:1–9, 1996.

[12] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. Octane: a new heuristic for pure
0-1 programs. Operations Research, 49(2):207–225, 2001.

[13] E. Balas and C.H. Martin. Pivot and complement – a heuristic for 0-1 programming. Manage-
ment Science, 26(1):86–96, 1980.

[14] E. Balas and C.H. Martin. Pivot and shift – a heuristic for mixed integer programming. Tech-
nical report, GSIA, Carnegie Mellon University, 1986.

[15] E. Balas and M. Perregaard. A precise correspondence between lift-and-project cuts, simple
disjunctive cuts and mixed integer Gomory cuts for 0-1 programming. Mathematical Program-
ming B, 94:221–245, 2003.

[16] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift – a mixed integer programming heuristic.
Discrete Optimization, 1:3–12, 2004.

[17] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-boolean optimiza-
tion. Technical report, Max-Plank-Institut Für Informatik, 1995.

105

[18] R.E. Bixby, E.A. Boyd, and R.R. Indovina. MIPLIB: A test set of mixed integer programming
problems. SIAM News, 25(20):16, March 1992.

[19] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsberg. An updated mixed integer pro-
gramming library. MIPLIB 3.0, 1998. Department of Computational and Applied Mathemat-
ics, Rice University, Web address: http://www.caam.rice.edu/ bixby/miplib/miplib.html.

[20] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. Procedure of the 40th
Design Automation Conference, pages 830–835, 2003.

[21] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathe-
matics, 4:305–337, 1973.

[22] V. Chvátal. Hard knapsack problems. Operations Research, 28:1402–1411, 1980.

[23] V. Chvátal. Linear Programming. W.H. Freeman and Company, New York, 1983.

[24] W. Cook, T. Rutherford, H.E. Scarf, and D. Shallcross. An implementation of the generalized
basis reduction algorithm for integer programming. ORSA Journal on Computing, 5(2):206–
212, 1993.

[25] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial Optimiza-
tion. John Wiley & Sons, 1998.

[26] G. Cornuéjols. Revival of the gomory cuts in the 1990’s. to be appeared on State of the Art
and Recenet Advances in Integer Programming.

[27] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. 6th IPCO, Lecture Notes
in Computer Science, 1412:284–293, 1998.

[28] H. Crowder, E.L. Johnson, and M. Padberg. Solving large-scale zero-one linear programming
problems. Operations Research, 31(5):803–834, 1983.

[29] E. Danna, E. Rothberg, and C.L. Pape. Exploring relaxation induced neighborhhods to improve
mip solutions. Mathematical Programming, 102:71–90, 2005.

[30] G.B̃. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
In Tj. C. Koopmans, editor, Activity Analysis of Production and Allocation, pages 339–347.
Wiley, New York, 1951.

[31] DEIS. Library of instances. http://www.or.deis.unibo.it/research pages/ORinstances/
MIPs.html.

[32] D.E.Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, 1997.

[33] B.H. Faaland and F.S. Hillier. Interior path methods for heuristic integer programming proce-
dures. Operations Research, 27(6):1069–1087, 1979.

[34] M. Fischetti, F. Glover, and A. Lodi. The feasibilty pump. to be appeared on Mathematical
Programming.

[35] M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98:23–49, 2003.

[36] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

[37] S. Ghosh. Distance induced neighbourhood search - a mixed integer programming heuristic.
2006. In preparation.

[38] S. Ghosh and R. Hayward. Pivot and Gomory cut: a mixed integer programming heuristic.
2006. In preparation.

[39] D. Goldfarb and W.Y. Sit. Worst case behavior of the steepest edge simplex method. 1:277–
285, 1979.

[40] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
AMS, 64:275–278, 1958.

106

[41] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The
Rand Corporation, Santa Monica, CA, 1960.

[42] U.-U. Haus, M. Köppe, and R. Weismantel. The integral basis method for integer program-
ming. Mathematical Methods of Operations Research, 53:353–361, 2001.

[43] F.S. Hillier. Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17(4):600–637, 1969.

[44] K.L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-and cut.
Management Science, 39(6):657–682, 1993.

[45] T. Ibaraki, T. Ohashi, and H. Mine. A heuristic algorithm for mixed integer programming
problems. Mathematical Programming Study, 2:115–136, 1974.

[46] R.G. Jerslow. The simplex algorithm with the pivot rule of maximizing criterion improvement.
4:367–377, 1973.

[47] N. Karmarker. A new polynomial-time algorithm for linear programming. In Proceedings
of the Sixteenth Annual ACM Symposium on Theory of Computing (Washington, 1984), pages
302–311. The Association of Computing Machinery, New York, 1984. [also: Combinatorica
4 (1984) pp.373-395].

[48] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972.

[49] L.G. Khachiyan. A polynomial algorithm in linear programming (in russian). Doklady
Academi Nauk SSSR, 244:1093–1096, 1979. [English translation: Soviet Mathematics Dok-
lady 20 (1979) pp. 191-194].

[50] L.G. Khachiyan. Polynomial algorithms in linear programming (in russian). Zhurnal Vychis-
litel’noi Matematiki i Matematicheskoi Fiziki, 20:51–68, 1980. [English translation: U.S.S.R.
Computational Mathematics and Mathematical physics 20 (1980) pp. 53-72].

[51] V. Klee and G.J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities
III, pages 159–175. Academic Press, New York, 1972.

[52] A.H. Land and A.G. Doig. An automatic method for solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[53] L.Lovász and H.E. Scarf. The generalized basis reduction algorithm. Mathematics of Opera-
tions Research, 17:751–764, 1992.

[54] A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems using
tabu search. European Journal of Operational Research, 106:624–658, 1998.

[55] A. Løkketangen, K. Jörnsten, and S. Storøy. Tabu search within a pivot and complement
framework. International Transactions in Operational Research, 1(3):305–317, 1994.

[56] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient SAT solver. In selected papers
from SAT 2004, Lecture notes in Computer Science, 3542:360–375, 2005.

[57] J.P. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfiabil-
ity. IEEE Transaction on Computers, 48:506–521, 1999.

[58] A. Martin, T. Achterberg, and T. Koch. Miplib 2003. http://miplib.zib.de.

[59] S. Mehrotra. On the implementation of a Primal-Dual interior point method. SIAM Jornal of
Optimization, 2:575–601, 1992.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. Procedure of Design Automation Conference, 2001.

[61] M. Nediak and J. Eckstein. Pivot, cut, and dive: A heuristic for mixed 0-1 integer program-
ming. RUTCOR Research Report, RRR 53-2001, 2001.

[62] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

107

[63] G.L. Nemhauser and L.A. Wolsey. Integer programming. In G.L. Nemhauser, A.H.G. Rin-
nooy, and M.J. Todd, editors, Handbooks in OPerations Research and Management Science 1:
Optimization, pages 447–527. North-Holland, Amsterdam, 1989.

[64] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM Rev., 33:60–100, 1991.

[65] R.G. Parker and R.L. Rardin. Discrete Optimization. Academic Press, New York, 1988.

[66] S.D. Prestwich. Randomised backtracking for linear pseudo-boolean constraint problems.
Fourth International Workshop on Integration of AI and OR techniques in Constraint Pro-
gramming for Combinatorial Optimisation Problems, pages 7–20, 2002.

[67] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[68] V.V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

[69] J.P. Walser. Solving linear pseudo-boolean constraints with local search. Proceedings of the
Eleventh Conference on Artificial Intelligence, pages 269–274, 1997.

[70] X. Wang. A new implementation of the generalized basis reduction algorithm for convex integer
programming. PhD Thesis, Yale University, 1997.

[71] J.P. Warners. A linear-time transformation of linear inequalities into conjunctive normal form.
Information Processing Letters, 68:63–69, 1998.

[72] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability engine.
Procedure of the Design Automation Conference, 2001.

[73] H.P. Williams. Model Building in Mathematical Programming. Wiley, 1978.

[74] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[75] H. Zhang. SATO: An efficient propositional prover. International Conference on Automated
Deduction, 1997.

108

Index

Approximation Algorithms, 8

Benchmark Instances, 25
Branch-and-Bound, 9, 10
Branch-and-Cut, 11

Constrained Market-sharing Problem, 91
Convexity Cut, 20

Distance Induced Neighbourhood Search, 57

Feasibility Pump, 22

Gomory Cuts, 12

Integer Program, 4
Complexity, 7
Solution Methods, 2

Exact, 2, 9
Heuristic, 2, 15

Interior Path Method, 21

Linear Programming Relaxation, 5
Local Branching, 23

Market-sharing Problem, 26

Neighbourhood Pivot and Gomory Cut, 80

Octane, 17

Pivot and Complement, 15, 29
Pivot and Gomory Cut, 34
Pivot, Cut, and Dive, 18
Pivot-and-Shift, 16

Relaxation Induced Neighbourhood Search,
24

SAT Problem, 8
Simplex Method, 5

Simplex Tableau, 6

Tabu Search, 20

Vertex Cut, 20

109

Appendix A

Pseudo-Code of PGC

Here we give a more detailed pseudo-code description of our heuristic algorithms PGC0 and PGC1.

These two algorithms are composed of the following procedures.

Procedure Check P Feasible Checks whether the current L(P+) solution is P -feasible.

Procedure Round Truncate Checks whether rounding or truncating the current

L(P+) solution yields a P -feasible solution.

Procedure Generate Gomory Cut Generates a cut from the tableau row corresponding to

the most integer-infeasible integer-constrained variable.

Procedure Add Gomory Cut Adds a Gomory cut to the simplex tableau.

Procedure PGC0 Type1 Pivot Searches for a PC Type 1 pivot and, if one is found,

performs the pivot.

Procedure PGC0 Type2 Pivot Searches for a PC Type 2 pivot and, if one is found,

performs the pivot.

Procedure PGC1 Type1 Pivot Searches for a PGC1 Type 1 pivot and, if one is found,

performs the pivot.

Procedure PGC1 Type2 Pivot Searches for a PGC1 Type 2 pivot and, if one is found,

performs the pivot.

110

Procedure Restart Tries to cross the cut. If P has a feasible solution,

it is guaranteed to be successful.

Procedure PGC0 The main PGC0 procedure.

Procedure PGC1 The main PGC1 procedure.

Procedure Check P Feasible
INPUT: the linear programming relaxation L(P+) of P with the current basis,

and the current basic feasible solution x∗.
OUTPUT: return true if x∗ is P -feasible, else return false.

1. for each basic variables xi do
2. if (the type of xi restricts it to be integer and x∗i is not integer) then
3. return false.
4. return true.

Procedure Round Truncate
INPUT: the linear programming relaxation L(P+) of P with the current basis,

and the current basic feasible solution x∗.
OUTPUT: if successful, return a P -feasible solution xmip, else return null.

1. xmip ← null.
2. store the information of current basis of L(P+).
3. store the existing bound information of integer-constrained variables in L(P+).

CHECK ROUNDING
4. set new fixed bound for each of the integer constrained variables in L(P+)

to the nearest integer value of the respective value in x∗.
5. solve the L(P+) using the bounded variable revised simplex algorithm.
6. if (a solution xmip to L(P+) is found) then
7. return xmip.

CHECK TRUNCATING
8. set new fixed bound for each of the integer constrained variables in L(P+)

to the largest integer value that is not larger than the respective value in x∗.
9. solve the L(P+) using the bounded variable revised simplex algorithm.
10. if (a solution xmip to L(P+) is found) then
11. return xmip.
12. restore the actual bound information of integer-constrained variables in L(P+).
13. restore the current basis of L(P+).
14. return xmip.

111

Procedure Generate Gomory Cut
INPUT: the linear programming relaxation L(P+) of P with the current basis,

and the current basic feasible solution x∗.
OUTPUT: return a Gomory cut constructed from the row corresponding to

the most integer-infeasible integer constrained variable.

1. variable index← 0; infeasibility←0.
2. for each basic variable xi do
3. if (the type of xi restricts it to be integer and

the difference of x∗i from its nearest integer is larger than infeasibility) then
4. variable index←i.

infeasibility←the difference of x∗i from its nearest integer.
5. extract the row of the current simplex tableau corresponding to variable index.
6. generate the Gomory cut from that row.
7. return the Gomory cut.

Procedure Add Gomory Cut
INPUT: the linear programming relaxation L(P+) of P with the current basis,

and the current Gomory cut αx ≥ β.
OUTPUT: new formulation of L(P+) with one extra row for the added Gomory cut

keeping the current basic solution unchanged.

1. express the Gomory cut αx ≥ β in terms of the current nonbasic variables.
2. consider α′x′ ≥ β′ is the Gomory cut in terms of the current nonbasic variables.
3. introduce a slack variable, say xn+m+1, to make the cut α′x′ − xn+m+1 = β′.
4. add xn+m+1 = −β′ + α′x′ as a new row to the L(P+).
5. return L(P+).

Procedure PGC0 Type1 Pivot
INPUT: the linear programming relaxation L(P+) of P with the current basis,

the current basic feasible solution x∗.
OUTPUT: return true if it finds a PC Type 1 pivot, else return false.

1. p← 0; q← 0; existP1← 0.
2. for each nonbasic variable xj do
3. if (the type of xj does not restrict it to be integer) then
4. maintaining primal feasibility, find the basic variable xi

which should leave the basis if xj enters into the basis.
5. if (the type of xi restricts it to be integer) then
6. evaluate the new basic feasible solution x∗new if this pivot

between xi and xj is performed.
7. newObjective← objective value at the solution x∗new .
8. if (existP1 = 0) then
9. p← i; q← j; objective← newObjective; existP1←1.
10. elsif (newObjective < objective) then
11. p← i; q← j; objective← newObjective.
12. if (existP1 6= 0) then
13. perform the pivot between xp and xq .
14. return true.
15. return false.

112

Procedure PGC0 Type2 Pivot
INPUT: the linear programming relaxation L(P+) of P with the current basis,

the current basic feasible solution x∗.
OUTPUT: return true if it finds a PC Type 2 pivot, else return false.

1. currentIntegerInfeasibility← sum of the measure of integer infeasibility
at the current solution x∗.

2. for each nonbasic variable xj do
3. maintaining primal feasibility, find the basic variable xi

which should leave the basis if xj enters into the basis.
4. if (the types of xi and xj both restrict them to be integer or

both do not restrict them to be integer) then
5. evaluate the new basic feasible solution x∗new if this pivot

between xi and xj is performed.
6. newIntegerInfeasibility← sum of the measure of integer infeasibility

at the solution x∗new .
7. if (newIntegerInfeasibility < currentIntegerInfeasibility) then
8. perform the pivot between xi and xj .
9. return true.
10. return false.

Procedure PGC1 Type1 Pivot
INPUT: the linear programming relaxation L(P+) of P with the current basis,

the current basic feasible solution x∗, the current Gomory cut αx ≥ β.
OUTPUT: return true if it finds a PGC1 Type 1 pivot, else return false.

1. current lhs← αx evaluated at the current solution x∗.
2. for each nonbasic variable xj do
3. if (the type of xj does not restrict it to be integer) then
4. maintaining primal feasibility, find the basic variable xi

which should leave the basis if xj enters into the basis.
5. if (the type of xi restricts it to be integer) then
6. evaluate the new basic feasible solution x∗new if this pivot

between xi and xj is performed.
7. new lhs←αx evaluated at the new solution x∗new .
8. if ((β − new lhs) < (β − current lhs)) then
9. perform the pivot between xi and xj .
10. return true.
11. return false.

113

Procedure PGC1 Type2 Pivot
INPUT: the linear programming relaxation L(P+) of P with the current basis,

the current basic feasible solution x∗, the current Gomory cut αx ≥ β.
OUTPUT: return true if it finds a PGC1 Type 2 pivot, else return false.

1. currentDifference← β − (αx evaluated at the current solution x∗).
2. p← 0; q← 0; countEligibleP2← 0.
3. for each nonbasic variable xj do
4. maintaining primal feasibility, find the basic variable xi

which should leave the basis if xj enters into the basis.
5. if (the types of xi and xj both restrict them to be integer or

both do not restrict them to be integer) then
6. evaluate the new basic feasible solution x∗new if this pivot

between xi and xj is performed.
7. newDifference← β − (αx evaluated at the solution x∗new).
8. if (newDifference < currentDifference) then
9. countEligibleP2← countEligibleP2 + 1.
10. if (countEligibleP2≤ blognc) then
11. if (countEligibleP2 = 1) then
12. p← i; q← j; difference← newDifference.
13. elsif ((newDifference < difference) or

(newDifference < 0 and newDifference > difference)) then
14. p← i; q← j; difference← newDifference.
15. else exit from the for loop.
16. if (countEligibleP2 6= 0) then
17. perform the pivot between xp and xq .
18. return true.
19. return false.

114

Procedure Restart
INPUT: the linear programming relaxation L(P+) of P with the current basis,

and the current Gomory cut αx ≥ β.
OUTPUT: if successful return true, else return false.

1. status← false.
2. express the Gomory cut αx ≥ β in terms of the current nonbasic variables.
3. consider α′x′ ≥ β′ is the Gomory cut in terms of the current nonbasic variables.
4. replace the objective function “min cx” of L(P+) with “max α′x′”.
5. repeat
6. choose a nonbasic variable xj according to the bounded variable simplex method.
7. if (there is no nonbasic variable which should enter the basis) then
8. return false.
9. using the bounded variable simplex method, find a basic variable xi

which should leave the basis if xj enters into the basis.
10. if (there is no basic variable xi which should leave the basis) then
11. introduce a slack variable, say xn+m+1, to make the cut α′x′ − xn+m+1 = β′.
12. add xn+m+1 = −β′ + α′x′ as a new row to the L(P+).
13. perform a pivot between xj and xn+m+1 to make the basic solution feasible.
14. re-establish the objective function of L(P+) to “min cx”.
15. status←true.
16. else
17. perform pivot between xi and xj .
18. if (αx evaluated at new solution is greater or equal to β) then
19. introduce a slack variable, say xn+m+1, to make the cut α′x′ − xn+m+1 = β′.
20. add xn+m+1 = −β′ + α′x′ as a new row to the L(P+).
21. re-establish the objective function of L(P+) to “min cx”.
22. status←true.
23. until status
24. return status.

115

Algorithm PGC0

INPUT: a 0-1 mixed integer problem P and a time limit T .
OUTPUT: a P -feasible solution x∗ (null in case of failure).

1. x∗ ← null, elapsedTime← 0
2. construct L(P+) from P
3. find optimal solution x∗ of L(P+) using bounded variable revised simplex algorithm
4. if (Check P Feasible) then return x∗.
5. elsif (Round Truncate is not null) then

return the P -feasible solution obtained from the procedure Round Truncate.
6. repeat

BEGIN SEARCH PHASE
7. Generate Gomory Cut.
8. atDeadEnd← false
9. repeat
10. while (PGC0 Type1 Pivot)
11. x∗ ← resulting L(P+)-feasible solution
12. if (x∗ satisfies αx ≥ β) then
13. if (Check P Feasible)) then return x∗
14. else
15. Add Gomory Cut.
16. Generate Gomory Cut.
17. if (PGC0 Type2 Pivot) then
18. x∗ ← resulting L(P+)-feasible solution
19. if (x∗ satisfies αx ≥ β) then
20. if (Check P Feasible) then return x∗
21. else
22. Add Gomory Cut.
23. Generate Gomory Cut.
24. else atDeadEnd← true
25. until atDeadEnd

END SEARCH PHASE
26. if (Round Truncate is not null) then

return the P -feasible solution obtained from the procedure Round Truncate.
BEGIN RESTART PHASE

27. if (not Restart) then return null.
END RESTART PHASE

28. until (elapsedTime≥ T)
29. return x∗

116

Algorithm PGC1

INPUT: a 0-1 mixed integer problem P and a time limit T .
OUTPUT: a P -feasible solution x∗ (null in case of failure).

1. x∗ ← null, elapsedTime← 0
2. construct L(P+) from P
3. find optimal solution x∗ of L(P+) using bounded variable revised simplex algorithm
4. if (Check P Feasible) then return x∗.
5. elsif (Round Truncate is not null) then

return the P -feasible solution obtained from the procedure Round Truncate.
6. repeat

BEGIN SEARCH PHASE
7. Generate Gomory Cut.
8. atDeadEnd← false
9. repeat
10. while (PGC1 Type1 Pivot)
11. x∗ ← resulting L(P+)-feasible solution
12. if (x∗ satisfies αx ≥ β) then
13. if (Check P Feasible)) then return x∗
14. else
15. Add Gomory Cut.
16. Generate Gomory Cut.
17. if (PGC1 Type2 Pivot) then
18. x∗ ← resulting L(P+)-feasible solution
19. if (x∗ satisfies αx ≥ β) then
20. if (Check P Feasible) then return x∗
21. else
22. Add Gomory Cut.
23. Generate Gomory Cut.
24. else atDeadEnd← true
25. until atDeadEnd

END SEARCH PHASE
26. if (Round Truncate is not null) then

return the P -feasible solution obtained from the procedure Round Truncate.
BEGIN RESTART PHASE

27. if (not Restart) then return null.
END RESTART PHASE

28. until (elapsedTime≥ T)
29. return x∗

117

Appendix B

Experimental Results

B.1 Benchmark Instances

We present the description of the benchmark instances in the following tables.

Table B.1: All mixed integer program instances from MIPLIB 2003.

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

10teams 230 2025 1800 0 924

a1c1s1 3312 3648 192 0 11505.43*

aflow30a 479 842 421 0 1158

aflow40b 1442 2728 1364 0 1168

air04 823 8904 8904 0 56137

air05 426 7195 7195 0 26374

arki001 1048 1388 415 123 7580813.04*

atlanta-ip 21732 48738 46667 106 95.009*

cap6000 2176 6000 6000 0 −2451377

dano3mip 3202 13873 552 0 688.26*

danoint 664 521 56 0 65.6667

Continued on next page

118

Table B.1 – Continued from previous page

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

ds 656 67732 67732 0 413.78*

disctom 399 10000 10000 0 −5000

fast0507 507 63009 63009 0 174

fiber 363 1298 1254 0 405935

fixnet6 478 878 378 0 3983

gesa2 1392 1224 240 168 2.57e+07

gesa2-o 1248 1224 384 336 2.57e+07

glass4 396 322 302 0 1460013800.0*

harp2 112 2993 2993 0 −73899798

liu 2178 1156 1089 0 1212*

manna81 6480 3321 18 3303 −13164

markshare1 6 62 50 0 1

markshare2 7 74 60 0 1

mas74 13 151 150 0 11801.2

mas76 12 151 150 0 40005.1

misc07 212 260 259 0 2810

mkc 3411 5325 5323 0 −563.846

mod011 4480 10958 96 0 −5.4558e+07

modglob 291 422 98 0 2.07405e+07

momentum1 42680 5174 2249 0 346535*

momentum2 24237 3732 1808 1 15216.987*

momentum3 56882 13532 6598 1 370177.036*

msc98-ip 15850 21143 20237 53 2.327e+07*

mzzv11 9499 10240 9989 251 −21718

mzzv42z 10460 11717 11482 235 −20540

net12 14021 14115 1603 0 214

noswot 182 128 75 25 −41

nsrand-ipx 735 6621 6620 0 51200

Continued on next page

119

Table B.1 – Continued from previous page

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

nw04 36 87842 87842 0 16862

opt1217 64 769 768 0 −16

p2756 755 2756 2756 0 3124

pk1 45 86 55 0 11

pp08a 136 240 64 0 7350

pp08aCUTS 246 240 64 0 7350

protfold 2112 1835 1835 0 -30*

qiu 1192 840 48 0 −132.873

rd-rplusc-21 125899 622 457 0 167297.61*

roll3000 2295 1166 246 492 12890*

rout 291 556 300 15 1077.56

set1ch 492 712 240 0 54537.8

seymor 4945 1372 1372 0 423

sp97ar 1761 14101 14101 0 661778926.6*

stp3d 159488 204880 204880 0 No solution known

swath 884 6805 6724 0 471.03*

t1717 551 73885 73885 0 216557*

timtab1 171 397 64 107 764772

timtab2 294 675 113 181 1096557*

tr12-30 750 1080 360 0 130596

vpm2 234 378 168 0 13.75

120

Table B.2: All mixed integer program instances from DEIS operations

research library.

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

a1c1s1 3312 3648 192 0 11505.43*

a2c1s1 3312 3648 192 0 10889.14*

b1c1s1 3904 3872 288 0 24544.25*

b2c1s1 3904 3872 288 0 25740.15*

biella1 1203 7328 6110 0 3065084.57*

nsr8k 6284 38356 32040 0 2.0301e+07*

rail507 509 63019 63009 0 174*

rail2536c 2539 15293 15284 0 689*

rail2586c 2589 13226 13215 0 953*

rail4284c 4287 21714 21705 0 1071*

rail4872c 4875 24656 24645 0 1550*

sp97ar 1761 14101 14101 0 661778926.6*

sp97ic 1034 12497 12497 0 428079014.2*

sp98ar 1436 15085 15085 0 529814784.7*

sp98ic 826 10894 10894 0 449144758.4*

bg512142 1307 792 240 0 189183.16*

dg012142 6310 2080 640 0 2706923.5*

dc1c 1649 10039 8380 0 1843531.06*

dc1l 1653 37297 35638 0 1813853.08*

dolom1 1803 11612 9720 0 20560415.03*

siena1 2220 13741 11775 0 13360676.13*

trento1 1265 7687 6415 0 5190144*

CMS750 4 16381 11697 7196 0 253*

berlin 5 8 0 1532 1083 794 0 62*

railway 8 1 0 2527 1796 1177 0 400*

usAbbrv.8.25 70 3291 2312 1681 0 121*

Continued on next page

121

Table B.2 – Continued from previous page

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

blp-ic97 923 9845 9753 0 4048.35*

blp-ic98 717 13640 13550 0 4494.68*

blp-ar98 1128 16021 15806 0 6211.45*

blp-ir98 486 6097 6031 0 2342.31*

umts 4465 2947 2802 72 30121483*

Table B.3: 15 new 0-1 mixed integer program instances used in [29].

Binary Integer Objective value of

Name Constraints Variables variables variables Optimal/Best known*

solution

ljb2 1482 771 681 0 0.5077*

ljb7 8133 4163 3920 0 0.1145*

ljb9 9231 4721 4460 0 0.739*

ljb10 10742 5496 5196 0 0.508*

ljb12 9596 4913 4633 0 0.399*

rococoB10-011000 1667 4456 4320 136 19449*

rococoB10-011001 1677 4456 4320 136 21265*

rococoB11-010000 3792 12376 12210 166 32246*

rococoB11-110001 8148 12431 12265 166 42444*

rococoB12-111111 8978 9109 8778 331 39831*

rococoC10-001000 1293 3117 2993 124 11460*

rococoC10-100001 7596 5864 5740 124 16664*

rococoC11-010100 4010 12321 12155 166 20889*

rococoC11-011100 2367 6491 6325 166 20889*

rococoC12-100000 21550 17299 17112 187 35512*

rococoC12-111100 10842 8619 8432 187 35909*

122

B.2 PGC Experimental Results

We present the details of experimental results related to PGC in the following tables.

Table B.4: Experimental results of PC, PGC0, and PGC1 on 77 bench-

mark instances. + : a time limit of 1 CPU-hour exceeded. − : heuristic

reported failure. Solution: objective value of found solution. Time: sec-

onds to find a solution or to report failure excluding the time to solve the

initial LP. R: the number of times restarted.

Name PC PGC0 PGC1

Solution Time R Solution Time R Solution Time R

10teams − 1.2 1 − + 379 − + 197

a1c1s1 − 95.1 1 20439.08 231.4 9 21987.69 92.4 2

aflow30a − 0.6 1 2136 0.6 1 1930 0.2 0

aflow40b − 7.1 1 2177 15.6 5 2719 5.5 3

air04 − + 1 56913 41.1 0 57974 32.3 3

air05 − 12.9 1 34442 88.3 13 30174 16.3 3

cap6000 -2407434 4.7 0 -2442801 0.1 0 −2442801 0.1 0

dano3mip − + 0 − + 0 − + 0

danoint − 9.2 1 66.5 17.0 0 66.5 170.4 0

ds − 88.1 1 − + 35 − + 41

disctom − 26.9 1 −5000 437.9 41 −5000 927.8 47

fast0507 250 32.1 0 239 36.0 0 282 52.4 3

fiber 2131825.48 1.4 0 2131825.48 1.4 0 2323978.76 0.6 0

fixnet6 59044 6.4 0 63144 6.5 0 92308 0.8 0

glass4 − 0.2 1 12000171916 0.7 17 3000029600 3.1 11

harp2 − 0.4 1 -61991165 3.4 42 −62747758 1.8 17

liu 3998 22.1 0 6450 0.1 0 6450 0.1 0

markshare1 340 0.0 0 923 0.0 0 923 0.0 0

Continued on next page

123

Table B.4 – Continued from previous page

Name PC PGC0 PGC1

Solution Time R Solution Time R Solution Time R

markshare2 558 0.0 0 558 0.0 0 558 0.0 0

mas74 19197.46 0.0 0 56379.25 0.0 0 56379.25 0.0 0

mas76 44839.82 0.0 0 80297.61 0.0 0 80297.61 0.0 0

misc07 − 0.2 1 4815 6.0 148 4445 1.2 36

mkc -2.05 18.4 0 -2.05 18.7 0 335.15 0.2 0

mod011 −42783986 78.6 0 0.0 0.1 0 0.0 0.1 0

modglob 20808306.8 0.3 0 35147088.8 0.0 0 35147088.8 0.0 0

momentum1 − + 0 − + 0 − + 0

net12 − 2266.3 1 − + 4 − + 79

nsrand-ipx 237600 0.4 0 237600 0.7 0 336000 0.4 3

nw04 19882 1.8 0 19882 4.1 0 17516 2.1 0

opt1217 −16 0.0 0 −14 0.0 0 −14 0.0 0

p2756 − 1.8 1 119888 4.1 24 111375 3.3 1

pk1 35 0.0 0 48 0.0 0 48 0.0 0

pp08a 11270 0.1 0 11180 0.1 0 17700 0.0 2

pp08aCUTS 9950 0.2 0 9950 0.2 0 13670 0.1 0

protfold − 219.7 1 − + 255 − + 99

qiu − 1.1 1 2728.93 185.2 44 706.34 118.8 27

rd-rplusc-21 − 554.5 1 − + 4 − + 4

set1ch 101342 3.4 0 101342 3.4 0 170306 1.0 0

seymor 616 134.3 0 617 133.9 0 644 37.8 7

sp97ar 847665971 9.9 0 847665971.4 9.9 0 885031424.4 12.4 0

swath − 3.5 1 − + 259 − + 243

t1717 − 323.3 1 − + 9 − + 4

tr12-30 − 11.0 1 147784 12.2 6 225057 10.6 0

vpm2 − 0.1 0 19.25 0.1 3 21.25 0.1 4

a2c1s1 − 86.8 1 19435.61 125.0 7 21550.91 123.7 4

b1c1s1 − 171.7 1 72509.89 328.4 22 83070.85 545.7 7

b2c1s1 − 228.8 1 65868.57 1203 8 66650.90 386.0 2

Continued on next page

124

Table B.4 – Continued from previous page

Name PC PGC0 PGC1

Solution Time R Solution Time R Solution Time R

biella1 − 154.1 1 115610810.1 204.7 2 25976128.6 117.6 8

nsr8k − + 0 − + 0 − + 0

rail507 248 52.3 0 241 54.8 0 278 29.8 0

rail2536c 975 320.3 0 788 320.4 0 942 43.0 2

rail2586c 1491 1008.7 0 1531 996.4 0 1617 469.6 3

rail4284c − + 0 − + 0 − + 0

rail4872c − + 0 − + 0 − + 0

sp97ic 660936153 1.4 0 678371143.0 1.7 0 604080493.7 2.0 0

sp98ar − 16.9 1 737228733.6 7.7 0 785793816.3 6.6 0

sp98ic 614965469 1.1 0 550312567.3 1.5 0 641234440.3 2.4 1

bg512142 8774550 30.7 0 120738665 0.0 0 120738665 0.0 0

dg012142 34067266 923.2 0 153406945.5 0.1 0 153406945.5 0.1 0

dc1c − 481.3 1 178531140.7 446.0 1 9999999999.9 272.3 8

dc1l − 1633.8 1 150135254.2 1038 0 162070107.1 1127 3

dolom1 − + 0 − + 0 − + 11

siena1 − + 0 − + 0 − + 0

trento1 − 374.5 1 437090154.0 432.9 0 10000000000 131.8 2

cms750-4 − + 0 − + 0 − + 0

berlin-5-8-0 − 25.5 1 80 35.4 20 79 22.0 20

railway-8-1-0 − 90.1 1 441 125.3 50 440 77.6 21

usabbrv-8-25-70 − 272.9 1 165 361.4 52 160 180.9 34

blp-ic97 − 6.6 1 6791.58 11.0 6 5953.77 17.7 9

blp-ic98 − 10.8 1 10089.33 25.4 15 7983.30 20.8 6

blp-ar98 − 25.5 1 11472.17 28.6 5 10670.70 49.7 7

blp-ir98 − 4.4 1 2930.49 5.6 8 3688.45 4.1 4

ljb2 0.976 22.5 0 7.23 0.1 0 7.23 0.1 0

ljb7 − + 0 8.61 1.9 0 8.61 1.9 0

ljb9 − + 0 9.47 2.3 0 9.47 2.3 0

ljb10 − + 0 7.31 2.7 0 7.31 2.7 0

Continued on next page

125

Table B.4 – Continued from previous page

Name PC PGC0 PGC1

Solution Time R Solution Time R Solution Time R

ljb12 − + 0 6.19 1.9 0 6.19 1.9 0

Table B.5: Experimental results of FP and PGC1 on 77 benchmark in-

stances. + : a time limit of 1 CPU-hour exceeded. − : heuristic reported

failure. Solution: objective value of found solution. Time: seconds to

find a solution or to report failure excluding the time to solve the initial

LP. N: the number of iterations.

Name FP PGC1

Solution Time N Solution Time

10teams 1024 13.9 49 − +

a1c1s1 19280.05 15.6 6 21987.69 92.4

aflow30a 4351 0.3 5 1930 0.2

aflow40b 6035 0.7 4 2719 5.5

air04 60175 333.4 10 57974 32.3

air05 31988 12.1 2 30174 16.3

cap6000 -2322939 0.8 7 −2442801 0.1

dano3mip 813.105 201.0 3 − +

danoint 76.33 2.1 12 66.5 170.4

ds − + 24 − +

disctom -5000 56.1 3 −5000 927.8

fast0507 204 282.8 3 282 52.4

fiber 2270781.03 0.5 5 2323978.76 0.6

fixnet6 14665 0.1 5 92308 0.8

glass4 13200143054 39.0 3108 3000029600 3.1

harp2 -39771742 2.4 116 −62747758 1.8

liu 6022 0.5 0 6450 0.1

Continued on next page

126

Table B.5 – Continued from previous page

Name FP PGC1

Solution Time N Solution Time

markshare1 1329 0.0 5 923 0.0

markshare2 558 0.0 2 558 0.0

mas74 14372.87 0.0 2 56379.25 0.0

mas76 43774.25 0.0 2 80297.61 0.0

misc07 3945 1.7 56 4445 1.2

mkc -85.85 0.6 3 335.15 0.2

mod011 0.0 0.1 0 0.0 0.1

modglob 35147088.88 0.0 0 35147088.88 0.0

momentum1 − + 20 − +

net12 − + 81 − +

nsrand-ipx 357920 1.0 3 336000 0.4

nw04 19792 3.2 1 17516 2.1

opt1217 0 0.0 0 −14 0.0

p2756 − + 12993 111375 3.3

pk1 48 0.0 0 48 0.0

pp08a 13190 0.0 4 17700 0.0

pp08aCUTS 12280 0.1 3 13670 0.1

protfold − + 34 − +

qiu 2416.85 0.6 3 706.34 118.8

rd-rplusc-21 − + 14 − +

set1ch 149959 0.1 11 170306 1.0

seymor 481 35.4 4 644 37.8

sp97ar 1561625924 27.5 4 885031424 12.4

swath 30965.35 10.3 57 − +

t1717 − + 13 − +

tr12-30 271121 3.0 21 225057 10.6

vpm2 31.5 0.1 6 21.25 0.1

a2c1s1 24016.87 121.0 48 21550.91 123.7

b1c1s1 68768.09 29.0 9 83070.85 545.7

Continued on next page

127

Table B.5 – Continued from previous page

Name FP PGC1

Solution Time N Solution Time

b2c1s1 67760.77 36.5 9 66650.90 386.0

biella1 9999999999 29.5 4 25976128.64 117.6

nsr8k − + 2 − +

rail507 181 249.5 3 278 29.8

rail2536c − + 6 942 43.0

rail2586c 10000000000 1321 3 1617 469.6

rail4284c − + 4 − +

rail4872c − + 3 − +

sp97ic 723692147 10.3 4 604080493 2.0

sp98ar 966779165 42.5 6 785793816 6.6

sp98ic 1200994883 7.0 4 641234440 2.4

bg512142 120738665 0.2 0 120738665 0.0

dg012142 153406945.5 1.4 0 153406945.5 0.1

dc1c 9999999999 222.5 6 9999999999 272.3

dc1l 26899359.89 1195 6 162070107.1 1127

dolom1 10000000000 637.0 6 − +

siena1 − + 3 − +

trento1 10000000000 145.1 2 10000000000 131.8

cms750-4 − + 33 − +

berlin-5-8-0 80 4.0 15 79 22.0

railway-8-1-0 441 11.7 13 440 77.6

usabbrv-8-25-70 172 96.8 80 160 180.9

blp-ic97 8504.96 4.4 10 5953.77 17.7

blp-ic98 13973.87 4.0 7 77983.30 20.8

blp-ar98 − + 1648 10670.70 49.7

blp-ir98 6866.19 1.4 7 3688.45 4.1

ljb2 7.23 0.5 0 7.23 0.1

ljb7 8.61 13.4 0 8.61 1.9

ljb9 9.47 18.3 0 9.47 2.3

Continued on next page

128

Table B.5 – Continued from previous page

Name FP PGC1

Solution Time N Solution Time

ljb10 7.31 28.1 0 7.31 2.7

ljb12 6.19 19.1 0 6.19 1.9

Table B.6: Time to solve the initial linear programming relaxation of 77

benchmark instances by GLPK 4.0 and Cplex 9.13.

Name LP solution Name LP solution

time (secs) time (secs)

GLPK Cplex GLPK Cplex

10teams 0.18 0.09 sp97ar 8.70 1.93

a1c1s1 1.21 0.01 swath 0.09 0.08

aflow30a 0.03 0.03 t1717 84.09 8.57

aflow40b 0.29 0.09 tr12-30 0.12 0.00

air04 14.42 2.55 vpm2 0.01 0.00

air05 2.48 0.44 a2c1s1 1.16 0.04

cap6000 0.43 0.09 b1c1s1 1.96 0.04

dano3mip 55.14 52.97 b2c1s1 2.04 0.05

danoint 0.15 0.06 biella1 8.54 4.56

ds 83.97 44.07 nsr8k 2903.14 962.27

disctom 15.63 4.05 rail507 46.78 23.32

fast0507 48.01 21.53 rail2536c 101.57 9.50

fiber 0.02 0.00 rail2586c 116.91 37.81

fixnet6 0.02 0.00 rail4284c 496.63 135.97

glass4 0.00 0.00 rail4872c 527.94 167.22

harp2 0.04 0.03 sp97ic 3.31 1.37

liu 0.21 0.02 sp98ar 7.98 2.49

markshare1 0.00 0.00 sp98ic 2.99 1.24

Continued on next page

129

Table B.6 – Continued from previous page

Name LP solution Name LP solution

time (secs) time (secs)

GLPK Cplex GLPK Cplex

markshare2 0.00 0.00 bg512142 0.23 0.09

mas74 0.00 0.00 dg012142 1.63 0.35

mas76 0.00 0.00 dc1c 21.00 10.30

misc07 0.02 0.00 dc1l 145.78 52.02

mkc 0.24 0.10 dolom1 39.88 18.38

mod011 0.96 0.13 siena1 129.09 49.18

modglob 0.01 0.00 trento1 32.18 11.31

momentum1 49.43 1.36 cms750-4 57.16 0.89

net12 4.69 6.35 berlin-5-8-0 0.27 0.02

nsrand-ipx 0.29 0.28 railway-8-1-0 0.93 0.06

nw04 3.17 2.16 usabbrv-8-25-70 1.49 0.10

opt1217 0.01 0.01 blp-ic97 0.45 0.29

p2756 0.01 0.00 blp-ic98 0.66 0.45

pk1 0.00 0.00 blp-ar98 1.41 0.54

pp08a 0.01 0.00 blp-ir98 0.18 0.15

pp08aCUTS 0.01 0.01 ljb2 0.21 0.02

protfold 3.08 1.10 ljb7 9.09 0.57

qiu 0.26 0.09 ljb9 12.80 0.74

rd-rplusc-21 136.26 2.09 ljb10 17.05 1.01

set1ch 0.01 0.01 ljb12 13.30 0.76

seymor 5.21 1.70

130

Table B.7: Experimental results of Cplex-D, Cplex-F, and PGC1 on 77

benchmark instances. + : a time limit of 1 CPU-hour exceeded. − :

heuristic reported failure. Solution: objective value of found solution.

Time: seconds to find a solution or to report failure excluding the time to

solve the initial LP. Nd: the number of nodes of the search tree.

Name Cplex-D Cplex-F PGC1

Solution Time Nd Solution Time Nd Solution Time

10teams 952 3.4 0 924 6.1 385 − +

a1c1s1 14595.12 4.9 0 13174.27 2.7 140 21987.69 92.4

aflow30a 1307 0.1 0 1307 0.1 0 1930 0.2

aflow40b 1489 12.3 550 1635 26.5 3480 2719 5.5

air04 57306 2.0 0 59734 4.7 43 57974 32.3

air05 26861 0.9 0 31189 2.4 90 30174 16.3

cap6000 −2445344 0.2 0 −2445344 0.2 0 −2442801 0.1

dano3mip 768.375 8.5 0 768.375 8.4 0 − +

danoint 66.5 0.6 0 69.5 1.2 51 66.5 170.4

ds 5418.56 3.4 0 5418.56 1.5 0 − +

disctom -5000 208.8 61 −5000 83.6 4843 −5000 927.8

fast0507 201 1.6 0 201 1.6 0 282 52.4

fiber 422169.4 0.1 0 422169.4 0.1 0 2323978.76 0.6

fixnet6 4505 0.0 0 4505 0.0 0 92308 0.8

glass4 2.900e+09 0.2 171 3.8167e+09 1.2 5660 3000029600 3.1

harp2 -7.2977e+07 0.1 0 -7.2977e+07 0.1 0 −62747758 1.8

liu 6450 0.1 0 6450 0.1 0 6450 0.1

markshare1 1095 0.0 0 1095 0.0 0 923 0.0

markshare2 944 0.0 0 944 0.0 0 558 0.0

mas74 19197.46 0.0 0 19197.46 0.0 0 56379.25 0.0

mas76 44877.42 0.0 0 44877.42 0.0 0 80297.61 0.0

misc07 3615 0.3 10 3870 0.1 30 4445 1.2

mkc -496.46 0.2 0 -496.46 0.2 0 335.15 0.2

Continued on next page

131

Table B.7 – Continued from previous page

Name Cplex-D Cplex-F PGC1

Solution Time Nd Solution Time Nd Solution Time

mod011 −42902314 0.2 0 −42902314 0.1 0 0.0 0.1

modglob 20786787.0 0.0 0 20786787.0 0.0 0 35147088.8 0.0

momentum1 − + 100 − + 500 − +

net12 214 838.0 130 255 411.1 185 − +

nsrand-ipx 57600 0.5 0 57600 0.5 0 336000 0.4

nw04 18228 6.0 0 18228 5.9 0 17516 2.1

opt1217 −1 0.0 0 −12 0.1 0 −14 0.0

p2756 3378 0.1 0 3378 0.1 0 111375 3.3

pk1 57 0.0 0 57 0.0 0 48 0.0

pp08a 15300 0.0 0 15300 0.0 0 17700 0.0

pp08aCUTS 13490 0.0 0 13490 0.0 0 13670 0.1

protfold − + 3200 −14 506.7 260 − +

qiu 1805.17 0.1 0 1805.17 0.1 0 706.34 118.8

rd-rplusc-21 − + 33800 − + 35800 − +

set1ch 107267 0.0 0 107267 0.0 0 170306 1.0

seymor 457 0.4 0 457 0.4 0 644 37.8

sp97ar 697232594.6 0.9 0 697232594.6 0.9 0 885031424 12.4

swath 1405.57 0.2 0 1405.57 0.2 0 − +

t1717 233768 480.1 720 342258 261.8 890 − +

tr12-30 146513 0.8 0 141874 0.6 90 225057 10.6

vpm2 16 0.0 0 16.75 0.0 0 21.25 0.1

a2c1s1 20865.33 0.1 0 20865.33 0.1 0 21550.91 123.7

b1c1s1 69933.52 0.1 0 69933.52 0.1 0 83070.85 545.7

b2c1s1 70575.52 0.1 0 70575.52 0.1 0 66650.90 386.0

biella1 3154183.34 447.2 240 3377565.2 67.5 570 25976128.6 117.6

nsr8k − + 0 − + 0 − +

rail507 198 2.0 0 198 2.0 0 278 29.8

rail2536c 762 0.7 0 762 0.6 0 942 43.0

rail2586c 1073 1.0 0 1073 0.9 0 1617 469.6

Continued on next page

132

Table B.7 – Continued from previous page

Name Cplex-D Cplex-F PGC1

Solution Time Nd Solution Time Nd Solution Time

rail4284c 1213 1.9 0 1213 1.9 0 − +

rail4872c 1723 2.8 0 1723 2.8 0 − +

sp97ic 470971128.6 1.0 0 470971128.6 0.9 0 604080493 2.0

sp98ar 566534466.7 1.3 0 566534466.7 1.2 0 785793816 6.6

sp98ic 513738135 0.9 0 513738135 0.9 0 641234440 2.4

bg512142 120670203.5 0.1 0 120670203.5 0.1 0 120738665 0.0

dg012142 153397324 0.3 0 153397324 0.3 0 153406945.5 0.1

dc1c 19026816.89 2717.9 9459 6044895.95 256.7 4572 9999999999 272.3

dc1l 751870828.7 1.8 0 751870828.7 1.8 0 162070107.1 1127

dolom1 − + 6900 44243931.13 226.0 315 − +

siena1 − + 2100 74142275.93 861.0 590 − +

trento1 46015409 32.9 0 9076504.046 141.6 210 10000000000 131.8

cms750-4 296 498.9 920 342 18.8 940 − +

berlin-5-8-0 64 1.5 1470 73 0.3 155 79 22.0

railway-8-1-0 406 2.3 0 418 0.9 326 440 77.6

usabbrv-8-25-70 130 156.7 42290 − + 80 160 180.9

blp-ic97 4149.34 27.0 360 4295.57 19.0 2200 5953.77 17.7

blp-ic98 4695.86 51.7 1000 4777.00 26.7 1910 77983.30 20.8

blp-ar98 6554.69 112.7 2640 6636.40 50.0 3880 10670.70 49.7

blp-ir98 2364.10 3.1 70 2775.23 2.4 410 3688.45 4.1

ljb2 1.726 0.3 0 1.457 0.2 30 7.23 0.1

ljb7 8.61 2.1 0 0.732 2.3 100 8.61 1.9

ljb9 9.47 3.6 0 2.026 4.4 180 9.47 2.3

ljb10 1.916 2.7 0 1.13 3.3 90 7.31 2.7

ljb12 3.375 0.8 0 1.40 3.4 110 6.19 1.9

133

Table B.8: Experimental results of PBS4 and PGC1 on 10 benchmark

0-1 integer program instances. −: no solution found. +: a time limit

of 1 CPU-hour exceeded. Solution: objective value of found solution.

Time: seconds to find a solution.

Name PBS4 PGC1 Name PBS4 PGC1

Solution Time Solution Time Solution Time Solution Time

air04 − + 57974 46.7 nw04 62498 5.8 17516 5.3

air05 41859 6.03 30174 18.8 p2756 267435 0.03 111375 3.3

cap6000 -222820 223.95 -2442801 0.6 protfold -20 0.01 − +

disctom − + -5000 943.4 seymor 1308 0.01 644 43.1

fast0507 122425 73.99 282 63.4 t1717 406325 359.49 − +

Table B.9: Time taken to find a feasible solution on the Cornuéjols-

Dawande feasibility model instances generated with n = 10m. +: A

time limit of 1 CPU-hour exceeded. CD-Feasxx-y: name of the instance,

where xx and y represent n and the number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CD-Feas10-1 0.00 0.00 0.01 0.01 0.00

CD-Feas10-2 0.01 0.01 0.00 0.00 0.01

CD-Feas10-3 0.01 0.01 0.00 0.00 0.00

CD-Feas10-4 0.01 0.00 0.00 0.04 0.00

CD-Feas10-5 0.00 0.00 0.00 0.02 0.00

CD-Feas20-1 0.04 0.09 0.01 2.83 0.41

CD-Feas20-2 0.01 0.02 0.01 1.39 10.66

CD-Feas20-3 0.01 0.00 0.00 0.46 1.39

CD-Feas20-4 0.01 0.01 0.00 1.75 0.14

CD-Feas20-5 0.00 0.00 0.01 1.68 0.04

Continued on next page

134

Table B.9 – Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CD-Feas30-1 3.60 2.93 5.54 71.26 10.69

CD-Feas30-2 1.61 1.31 218.74 77.52 38.64

CD-Feas30-3 2.03 6.63 254.63 413.96 787.97

CD-Feas30-4 2.66 2.42 9.42 1609.58 2981.63

CD-Feas30-5 9.79 7.50 51.36 743.55 1298.91

CD-Feas40-1 88.48 21.21 + + +

CD-Feas40-2 406.21 150.84 + + +

CD-Feas40-3 24.05 14.71 + + +

CD-Feas40-4 429.71 255.77 + + +

CD-Feas40-5 446.87 446.42 + + +

CD-Feas50-1 + + + + +

CD-Feas50-2 + + + + +

CD-Feas50-3 + + + + +

CD-Feas50-4 + + + + +

CD-Feas50-5 + + + + +

Table B.10: Time taken to find a feasible solution on constrained market-

sharing instances generated with k = 2.0. +: a time limit of 1 CPU-hour

exceeded. CMSxxx-y: name of the instance, where xxx and y represent

n and the number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS50-1 + 2.95 3.01 0.90 0.11

CMS50-2 + 1.65 5.13 0.24 0.02

CMS50-3 + 4.34 3.12 3.41 0.05

CMS50-4 + 7.00 + 5.55 0.12

Continued on next page

135

Table B.10 – Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS50-5 + 4.42 7.96 2.30 0.10

CMS100-1 + 1217.24 + 1628.33 1.54

CMS100-2 + 228.87 + 161.31 0.36

CMS100-3 + 776.17 + 25.06 0.87

CMS100-4 + 197.40 + 377.64 5.00

CMS100-5 + 826.36 + 24.73 2.51

CMS150-1 + + + + 11.68

CMS150-2 + + + 259.79 104.37

CMS150-3 + + + 139.23 1.49

CMS150-4 + + + 1088.52 10.23

CMS150-5 + + + + 11.93

CMS200-1 + + + + 399.07

CMS200-2 + + + + 180.00

CMS200-3 + + + + 226.12

CMS200-4 + + + + 44.30

CMS200-5 + + + + 88.78

CMS250-1 + + + + 638.70

CMS250-2 + + + + +

CMS250-3 + + + + +

CMS250-4 + + + + 1159.38

CMS250-5 + + + + 466.62

CMS300-1 + + + + 2788.31

CMS300-2 + + + + 2542.34

CMS300-3 + + + + +

CMS300-4 + + + + 2334.55

CMS300-5 + + + + 1050.26

CMS350-1 + + + + 1684.35

CMS350-2 + + + + +

CMS350-3 + + + + +

CMS350-4 + + + + +

Continued on next page

136

Table B.10 – Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS350-5 + + + + 2540.84

CMS400-1 + + + + +

CMS400-2 + + + + +

CMS400-3 + + + + +

CMS400-4 + + + + +

CMS400-5 + + + + +

Table B.11: Time taken to find a feasible solution on constrained market-

sharing instances generated with k = 1.5. +: a time limit of 1 CPU-hour

exceeded. CMSxxx-y: name of the instance, where xxx and y represent

n and the number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS50-1 + 43.08 + 523.33 77.89

CMS50-2 + 3.57 + 5.31 0.18

CMS50-3 + 5.56 + 11.62 0.03

CMS50-4 + 15.90 + 68.11 0.12

CMS50-5 + 40.96 + 25.30 23.52

CMS75-1 + 1811.92 + + 834.04

CMS75-2 + 1582.52 + 832.26 41.27

CMS75-3 + 344.70 + 3329.37 6.66

CMS75-4 + 2094.63 + 2320.46 19.75

CMS75-5 + 124.88 + 541.85 2.32

CMS100-1 + 1198.96 + + 11.97

CMS100-2 + + + + 282.44

CMS100-3 + + + + 164.05

Continued on next page

137

Table B.11 – Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS100-4 + 3470.68 + + 29.36

CMS100-5 + + + + 1182.79

CMS125-1 + + + + 746.46

CMS125-2 + + + + +

CMS125-3 + + + + 388.88

CMS125-4 + + + + 513.99

CMS125-5 + + + + 300.03

CMS150-1 + + + + +

CMS150-2 + + + + 336.80

CMS150-3 + + + + +

CMS150-4 + + + + +

CMS150-5 + + + + 1202.67

CMS175-1 + + + + +

CMS175-2 + + + + +

CMS175-3 + + + + +

CMS175-4 + + + + +

CMS175-5 + + + + 1875.09

CMS200-1 + + + + +

CMS200-2 + + + + +

CMS200-3 + + + + +

CMS200-4 + + + + +

CMS200-5 + + + + +

138

Table B.12: Time taken to find a feasible solution for constrained market-

sharing instances with k = 1.3. +: a time limit of 1 CPU-hour exceeded.

CMSxxx-y: name of the instance, where xxx and y represent n and the

number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PGC1

CMS50-1 + 78.75 + 299.60 30.72

CMS50-2 + 36.62 + 1692.57 1.79

CMS50-3 + 54.38 + 125.35 125.41

CMS50-4 + 80.20 + 1403.09 14.75

CMS50-5 + 13.50 + 160.87 0.35

CMS75-1 + + + + +

CMS75-2 + + + + +

CMS75-3 + 1841.53 + + 62.28

CMS75-4 + + + + 436.24

CMS75-5 + + + + 238.98

CMS100-1 + + + + +

CMS100-2 + + + + 237.64

CMS100-3 + + + + +

CMS100-4 + + + + +

CMS100-5 + + + + 1938.22

CMS125-1 + + + + 598.22

CMS125-2 + + + + +

CMS125-3 + + + + +

CMS125-4 + + + + +

CMS125-5 + + + + +

CMS150-1 + + + + +

CMS150-2 + + + + +

CMS150-3 + + + + +

CMS150-4 + + + + +

CMS150-5 + + + + +

139

B.3 DINS Experimental Results

We present the details of experimental results related to DINS in the following tables.

Table B.13: Percentage of gap of the solutions obtained by different

solvers in one CPU-hour starting from the presumably poor solutions

on 64 benchmark instances. Bold face identifies the best solver for the

corresponding instance.

problem Percentage of Gap

Cplex-D LB RINS DINS

Small spread instances

a1c1s1 2.347 0.250 0.000 0.079

a2c1s1 2.978 1.889 0.000 0.024

b1c1s1 5.977 1.786 0.933 4.444

b2c1s1 4.240 2.701 0.559 1.010

biella1 0.309 0.806 0.426 0.739

danoint 0.000 0.000 0.000 0.000

mkc 0.180 0.049 0.043 0.021

net12 0.000 0.000 0.000 0.000

nsrand-ipx 0.625 0.625 0.313 0.000

rail507 0.000 0.000 0.000 0.000

rail2586c 2.518 2.204 1.994 1.574

rail4284c 1.774 1.867 1.027 1.027

rail4872c 1.742 1.290 1.097 1.032

seymour 0.473 0.473 0.000 0.236

sp97ar 0.428 0.513 0.335 0.000

sp97ic 0.793 0.642 0.551 0.000

sp98ar 0.184 0.106 0.177 0.228

Continued on next page

140

Table B.13 – Continued from previous page

problem Percentage of Gap

Cplex-D LB RINS DINS

sp98ic 0.270 0.146 0.204 0.072

tr12-30 0.000 0.024 0.000 0.000

arki001 0.003 0.003 0.004 0.002

roll3000 0.543 0.303 0.070 0.070

umts 0.013 0.049 0.022 0.002

berlin-5-8-0 0.000 0.000 0.000 0.000

bg512142 7.257 5.192 0.161 0.000

blp-ic97 0.779 0.653 0.358 0.000

blp-ic98 0.961 1.056 0.746 0.515

blp-ar98 0.655 0.060 0.461 0.000

cms750-4 2.372 0.791 1.186 0.791

dc1l 2.018 8.166 6.994 1.572

railway-8-1-0 0.250 0.000 0.250 0.250

usabbrv-8-25-70 3.306 2.479 0.000 1.653

aflow40b 0.257 1.455 0.000 0.000

dano3mip 2.602 3.595 4.724 2.230

fast0507 0.000 0.575 0.575 0.000

harp2 0.001 0.001 0.023 0.000

t1717 7.948 1.939 5.979 7.948

noswot 0.000 0.000 0.000 0.000

timtab1 7.469 7.779 0.000 0.000

ljb2 0.256 3.329 1.576 3.329

rococoB10-011000 0.802 2.848 0.437 0.437

rococoB11-010000 5.039 5.839 1.768 2.196

rococoB12-111111 5.204 4.489 3.738 2.541

rococoC10-001000 0.044 0.113 0.044 0.000

rococoC11-011100 6.018 9.991 9.244 5.879

rococoC12-111100 5.188 5.188 1.298 4.016

Medium spread instances

Continued on next page

141

Table B.13 – Continued from previous page

problem Percentage of Gap

Cplex-D LB RINS DINS

glass4 13.014 7.534 2.740 4.794

swath 18.067 5.679 8.089 4.622

dg012142 17.457 25.984 4.963 3.943

liu 2.475 10.066 3.465 5.281

timtab2 16.373 18.484 3.188 0.912

ljb7 7.424 21.834 4.367 8.908

ljb9 50.717 70.866 55.074 50.690

ljb10 0.807 13.929 13.693 8.578

rococoB10-011001 7.660 5.309 5.220 10.082

rococoB11-110001 9.994 19.558 4.267 6.894

rococoC10-100001 16.041 7.387 13.316 10.070

rococoC11-010100 27.431 13.615 10.546 9.029

rococoC12-100000 12.928 10.090 5.623 2.799

Large spread instances

markshare1 500.000 400.00 400.00 500.00

markshare2 1300.000 1100.000 2000.000 1800.000

dc1c 695.213 2.353 0.296 0.773

trento1 0.000 193.118 1.912 0.402

ds 11.226 945.745 11.226 6.119

ljb12 39.273 323.183 49.599 64.987

142

Table B.14: Experimental results of Cplex-D, LB, RINS, and DINS

on Cornuéjols-Dawande optimality-hard instances. CD-Optxxx-y: name

of the instance, where xxx and y represent n and the number of the in-

stance respectively. Initial solution: the first solution obtained by Cplex-

D, which is used as the starting solution. Entries indicate objective value

of found solutions. Bold face identifies the solver which obtains the new

best solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt40-1 587 1 1 3 3

CD-Opt40-2 512 1 1 2 2

CD-Opt40-3 642 1 2 1 2

CD-Opt40-4 982 1 1 1 0

CD-Opt40-5 555 2 1 1 2

CD-Opt40-6 848 1 0 1 0

CD-Opt40-7 780 1 1 1 1

CD-Opt40-8 528 2 2 2 1

CD-Opt40-9 507 1 1 1 2

CD-Opt40-10 653 1 1 0 3

CD-Opt50-1 926 5 3 4 4

CD-Opt50-2 815 6 5 5 6

CD-Opt50-3 667 4 3 3 5

CD-Opt50-4 790 5 5 4 5

CD-Opt50-5 946 3 6 5 5

CD-Opt50-6 1155 5 4 3 5

CD-Opt50-7 842 4 5 3 4

CD-Opt50-8 916 5 4 4 5

CD-Opt50-9 692 4 5 5 5

CD-Opt50-10 906 4 4 3 2

Continued on next page

143

Table B.14 – Continued from previous page

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt60-1 1267 9 8 10 8

CD-Opt60-2 1301 8 8 7 11

CD-Opt60-3 952 5 9 9 5

CD-Opt60-4 822 9 9 9 9

CD-Opt60-5 1528 7 8 9 7

CD-Opt60-6 1348 10 8 8 9

CD-Opt60-7 1080 7 7 10 10

CD-Opt60-8 1289 8 7 6 11

CD-Opt60-9 722 10 8 7 10

CD-Opt60-10 1012 9 6 9 9

CD-Opt70-1 1727 13 11 16 15

CD-Opt70-2 1929 16 14 16 17

CD-Opt70-3 1713 11 12 14 14

CD-Opt70-4 1883 15 11 15 10

CD-Opt70-5 1576 14 12 17 16

CD-Opt70-6 1902 13 14 16 17

CD-Opt70-7 1734 13 13 11 18

CD-Opt70-8 1522 12 10 13 18

CD-Opt70-9 1580 16 11 14 15

CD-Opt70-10 1442 10 13 15 15

CD-Opt80-1 2081 19 20 23 23

CD-Opt80-2 2496 23 27 14 22

CD-Opt80-3 1602 21 18 21 23

CD-Opt80-4 2230 19 24 21 24

CD-Opt80-5 1904 19 19 20 23

CD-Opt80-6 1686 13 23 21 24

Continued on next page

144

Table B.14 – Continued from previous page

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt80-7 2196 19 18 21 21

CD-Opt80-8 1492 20 18 24 24

CD-Opt80-9 1798 20 15 23 23

CD-Opt80-10 2143 22 17 25 26

CD-Opt90-1 2467 27 33 30 30

CD-Opt90-2 3287 34 31 30 33

CD-Opt90-3 2183 32 29 34 30

CD-Opt90-4 2177 24 25 26 33

CD-Opt90-5 2494 33 25 28 26

CD-Opt90-6 2531 17 29 33 35

CD-Opt90-7 3335 35 34 29 30

CD-Opt90-8 1796 20 27 28 17

CD-Opt90-9 2547 37 30 34 29

CD-Opt90-10 1919 26 23 28 23

CD-Opt100-1 3210 39 55 31 35

CD-Opt100-2 3605 40 44 38 35

CD-Opt100-3 3461 40 48 46 42

CD-Opt100-4 3522 33 48 34 40

CD-Opt100-5 2575 48 43 40 42

CD-Opt100-6 4122 46 47 43 40

CD-Opt100-7 3085 41 41 41 42

CD-Opt100-8 3173 45 43 46 42

CD-Opt100-9 3473 47 46 40 27

CD-Opt100-10 3157 50 42 40 43

145

Table B.15: Experimental results of Cplex-D, LB, RINS, and DINS on

constrained market-sharing instances with k = 2.0. CMSxxx-y: name of

the instance, where xxx and y represent n and the number of the instance

respectively. Initial solution: the first solution obtained by PGC1, which

is used as the starting solution. Entries indicate objective value of found

solutions. Bold face identifies the solver which obtains the new best

solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 1381 1381 1381 830 768

CMS50-2 1890 1890 1890 803 803

CMS50-3 1798 1798 1798 918 870

CMS50-4 1996 1996 1996 856 904

CMS50-5 1638 1638 1638 661 820

CMS50-6 1681 1681 1111 923 874

CMS50-7 1960 1960 1960 898 841

CMS50-8 2127 2127 2127 880 838

CMS50-9 1481 1481 1285 1005 873

CMS50-10 1421 1421 1421 701 729

CMS100-1 4747 4747 4747 4747 4747

CMS100-2 5667 5667 5667 5667 4075

CMS100-3 4303 4303 4303 4303 4303

CMS100-4 4846 4846 4846 4846 4846

CMS100-5 5047 5047 5047 5047 5047

CMS100-6 5483 5483 5483 5483 5483

CMS100-7 4814 4814 4814 4814 4814

CMS100-8 5462 5462 5462 5462 3381

CMS100-9 4625 4625 4625 4625 4625

CMS100-10 5374 5374 5374 5374 5374

Continued on next page

146

Table B.15 – Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS150-1 10611 10611 10611 10611 10611

CMS150-2 9618 9618 9618 9618 9618

CMS150-3 9416 9416 9416 9416 9416

CMS150-4 8186 8186 8186 8186 8186

CMS150-5 9652 9652 9652 9652 9652

CMS150-6 8613 8613 8613 8613 8613

CMS150-7 9188 9188 9188 9188 9188

CMS150-8 8995 8995 8995 8995 8995

CMS150-9 9174 9174 9174 9174 9174

CMS150-10 9290 9290 9290 9290 9290

Table B.16: Experimental results of Cplex-D, LB, RINS, and DINS on

constrained market-sharing instances with k = 1.5. CMSxxx-y: name of

the instance, where xxx and y represent n and the number of the instance

respectively. Initial solution: the first solution obtained by PGC1, which

is used as the starting solution. Entries indicate objective value of found

solutions. Bold face identifies the solver which obtains the new best

solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 2079 2079 2079 1845 1804

CMS50-2 2530 2530 2530 2057 1716

CMS50-3 2296 2296 2296 2197 1413

CMS50-4 2424 2424 2424 2424 1715

CMS50-5 1880 1880 1880 1880 1769

Continued on next page

147

Table B.16 – Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS50-6 2374 2374 2374 1848 1877

CMS50-7 2507 2507 2507 1917 1533

CMS50-8 2499 2499 2499 1727 1710

CMS50-9 2778 2778 2778 1562 1991

CMS50-10 2170 2170 2170 1731 1649

CMS75-1 4886 4886 4886 4886 3999

CMS75-2 4233 4233 4233 4233 2993

CMS75-3 4095 4095 4095 4095 3531

CMS75-4 4313 4313 4313 4313 3263

CMS75-5 5096 5096 5096 5096 3564

CMS75-6 4489 4489 4489 4489 3701

CMS75-7 3855 3855 3855 3855 3247

CMS75-8 4342 4342 4342 4342 3336

CMS75-9 4556 4556 4556 4556 3963

CMS75-10 4284 4284 4284 4284 4284

CMS100-1 6742 6742 6742 6742 6742

CMS100-2 7311 7311 7311 7311 7311

CMS100-3 6571 6571 6571 6571 6571

CMS100-4 6030 6030 6030 6030 6030

CMS100-5 6465 6465 6465 6465 5334

CMS100-6 6073 6073 6073 6073 6073

CMS100-7 7921 7921 7921 7921 7921

CMS100-8 6433 6433 6433 6433 6433

CMS100-9 7368 7368 7368 7368 7368

CMS100-10 6023 6023 6023 6023 6023

148

Table B.17: Experimental results of Cplex-D, LB, RINS, and DINS

on constrained market-sharing instances with k = 1.3. Entries indi-

cate objective value of found solutions. Initial solution: the first solution

obtained by PGC1, which is used as the starting solution. CMSxxx-y:

name of the instance, where xxx and y represent n and the number of the

instance respectively. Bold face identifies the solver which obtains the

new best solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 3197 3197 3197 3197 2226

CMS50-2 2283 2283 2283 2283 2283

CMS50-3 2924 2924 2924 2924 2216

CMS50-4 2896 2896 2788 2896 2149

CMS50-5 2495 2495 2495 2495 2495

CMS50-6 3138 3138 2253 2261 2253

CMS50-7 2785 2785 2785 2785 2704

CMS50-8 2439 2439 2439 2439 2151

CMS50-9 2590 2590 2590 2590 2496

CMS50-10 2427 2427 2169 2169 2074

CMS75-1 4639 4639 4639 4639 4639

CMS75-2 5900 5900 5900 5900 5116

CMS75-3 4850. 4850 4850 4850 4546

CMS75-4 4684 4684 4684 4684 4669

CMS75-5 5267 5267 5267 5267 5267

CMS75-6 4858 4858 4858 4858 4858

CMS75-7 4668 4668 4668 4668 4668

CMS75-8 4792 4792 4792 4792 4661

CMS75-9 5263 5263 5263 5263 5263

CMS75-10 4426 4426 4426 4426 4426

Continued on next page

149

Table B.17 – Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS100-1 8687 8687 8687 8687 8687

CMS100-2 7218 7218 7218 7218 7218

CMS100-3 7463 7463 7463 7463 7463

CMS100-4 8344 8344 8344 8344 8344

CMS100-5 7884 7884 7884 7884 7884

CMS100-6 7861 7861 7861 7861 7861

CMS100-7 8448 8448 8448 8448 8448

CMS100-8 6969 6969 6969 6969 6969

CMS100-9 8029 8029 8029 8029 8029

CMS100-10 7585 7585 7585 7585 7585

Table B.18: RINS neighbourhoods versus DINS neighbourhoods. NN:

the number of explored neighbourhoods, ER: the average enumeration

ratio.

problem RINS DINS problem RINS DINS

NN ER NN ER NN ER NN ER

a1c1s1 219 0.571 252 0.276 bg512142 266 0.633 473 0.390

a2c1s1 204 0.593 216 0.294 blp-ic97 1038 0.010 1432 0.005

b1c1s1 86 0.598 101 0.243 blp-ic98 911 0.006 1477 0.003

b2c1s1 63 0.636 84 0.269 blp-ar98 756 0.011 1163 0.006

biella1 134 0.084 240 0.030 cms750-4 627 0.156 476 0.110

danoint 321 0.652 343 0.471 dc1c 56 0.063 89 0.028

glass4 27595 0.223 13237 0.206 dc1l 29 0.015 56 0.005

markshare1 50956 0.490 47290 0.642 dg012142 137 0.449 222 0.187

markshare2 45069 0.452 43875 0.535 railway-8-1-0 5029 0.248 4071 0.173

mkc 429 0.048 819 0.027 trento1 77 0.074 225 0.022

Continued on next page

150

Table B.18 – Continued from previous page

problem RINS DINS problem RINS DINS

NN ER NN ER NN ER NN ER

net12 14 0.449 28 0.195 usabbrv-8-25-70 3792 0.315 4216 0.241

nsrand-ipx 1293 0.017 934 0.012 aflow40b 3400 0.042 2561 0.041

rail507 77 0.004 78 0.002 dano3mip 3 0.243 7 0.064

rail2586c 22 0.099 47 0.025 ds 37 0.014 55 0.003

rail4284c 17 0.072 52 0.021 fast0507 24 0.005 76 0.002

rail4872c 11 0.083 57 0.022 harp2 17010 0.029 21697 0.026

seymour 82 0.328 134 0.109 liu 1503 0.330 431 0.273

sp97ar 436 0.013 667 0.007 t1717 168 0.008 198 0.002

sp97ic 1521 0.006 2131 0.004 ljb2 2239 0.091 1832 0.069

sp98ar 766 0.010 1087 0.006 ljb7 297 0.048 160 0.035

sp98ic 1029 0.007 1817 0.004 ljb9 250 0.061 73 0.044

swath 5864 0.010 5510 0.008 ljb10 174 0.080 126 0.045

tr12-30 4035 0.217 1618 0.168 ljb12 195 0.086 101 0.047

berlin-5-8-0 1605 0.267 3605 0.233

151

B.4 NPGC Experimental Results

We present the details of experimental results related to NPGC in the following table.

Table B.19: Percentage of gap of the solutions obtained by different

solvers in one CPU-hour on 53 0-1 mixed integer program benchmark

instances. Bold face identifies the best method for the corresponding

instance. + : a time limit of 1 CPU-hour exceeded.

problem Cplex-D LB RINS NPGC

Small spread instances

a1c1s1 2.057 0.077 0.017 0.768

a2c1s1 2.978 1.889 0.000 0.746

b1c1s1 5.977 7.305 0.933 3.242

b2c1s1 4.240 2.701 0.559 6.017

biella1 0.368 0.272 0.005 0.232

danoint 0.000 0.000 0.000 0.000

mkc 0.344 0.148 0.000 2.518

nsrand-ipx 0.313 0.625 0.313 0.313

rail507 0.000 0.575 0.000 0.000

rail2586c 2.518 1.154 1.994 2.099

rail4284c 1.774 2.334 1.027 1.587

rail4872c 1.613 0.581 1.355 1.161

seymour 0.473 0.236 0.000 0.236

sp97ar 0.544 0.109 0.260 0.580

sp97ic 0.793 0.642 0.551 1.120

sp98ar 0.218 0.023 0.177 0.091

sp98ic 0.222 0.172 0.090 0.366

tr12-30 0.009 0.047 0.000 0.080

berlin-5-8-0 0.000 0.000 0.000 0.000

bg512142 7.939 5.192 0.502 0.580

blp-ic97 1.203 0.152 0.640 1.879

Continued on next page

152

Table B.19 – Continued from previous page

problem Cplex-D LB RINS NPGC

blp-ic98 0.823 1.259 1.492 4.901

blp-ar98 0.407 0.343 0.593 0.197

cms750-4 1.581 1.186 0.395 0.791

railway-8-1-0 0.000 0.000 0.000 0.000

usabbrv-8-25-70 0.826 4.132 0.826 0.000

aflow40b 0.257 0.000 1.455 0.000

dano3mip 1.220 3.595 4.724 3.214

fast0507 0.000 0.575 0.575 0.575

harp2 0.002 0.001 0.010 0.000

t1717 5.979 6.449 5.979 0.427

ljb2 3.329 3.329 0.039 7.564

Medium spread instances

glass4 13.014 8.733 2.740 7.306

swath 18.067 5.679 8.089 17.305

dg012142 16.611 10.904 1.596 6.449

liu 3.300 10.066 1.980 0.000

ljb7 23.581 21.834 4.367 44.192

ljb9 61.529 70.866 55.074 58.701

ljb10 4.013 18.690 13.693 36.238

Large spread instances

markshare1 500.000 400.000 400.000 2400.000

markshare2 1300.000 1100.000 2000.000 4200.000

dc1c 821.785 2.353 656.689 1.467

trento1 3.800 193.094 0.008 3.792

ds 11.226 1016.086 11.226 29.168

ljb12 30.426 398.596 42.506 72.531

net12 0.000 0.000 0.000 +

dc1l 2.018 8.776 969.933 +

momentum1 + + + +

protfold + + + 70.000

Continued on next page

153

Table B.19 – Continued from previous page

problem Cplex-D LB RINS NPGC

rd-rplusc-21 + + + 0.000

nsr8k + + + +

dolom1 + + + +

siena1 + + + +

154

