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Abstract

We develop a method for searching for Hajós constructions. Our results include

the discovery of new constructions for some well-known graphs, including the

Grötzsch graph, Chvátal graph, and Brinkmann graph; also, we prove that

the first two of these are shortest possible constructions. These are the first

published constructions for these graphs.
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Chapter 1

Introduction

In 1981, Mansfield and Welsh investigated the graph construction system of

Hungarian mathematician György Hajós and found interesting complexity the-

ory implications. They noted that a Hajós construction of a graph can be used

to provide a proof of a lower bound on the graph’s chromatic number [14]. A

sequence of Hajós construction steps that begins with a k-clique and ends in

a graph G provides a certificate that G cannot be k-1 coloured. This seems

surprising, as Graph Colouring is NP-complete, and it is not believed to be

possible in general to provide polynomially verifiable certificates of negative

results to NP-complete problems. If polynomially sized Hajós constructions

exist for all graphs, it would imply that NP = CoNP, which is considered

unlikely.

As part of their investigation, Mansfield and Welsh noted that outside of

a few special cases it seems hard to find a construction for a given arbitrary

graph, describing the problem as being “exceptionally difficult” [14]. Based

on this challenge, they defined the Hajós number of a graph as the length of

the minimum Hajós construction for the graph.

In the literature we find few examples of nontrivial Hajós constructions

and little further work on finding Hajós constructions or Hajós numbers.

We are interested in problems related to finding Hajós numbers and short

Hajós constructions for graphs. We investigate algorithms for generating con-

structions of graphs and the challenges involved in combinatorial search ap-

proaches to finding short constructions. We also investigate finding minimum
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Hajós constructions and proving the value of the Hajós number of a graph.

We look at some short constructions for various graphs that we have found,

including a minimum construction and Hajós number for the Grötzsch graph,

answering a question posed by Mansfield and Welsh.

1.1 Graph Colouring and Complexity Theory

A vertex k-colouring of a graph can be considered a proof that the graph is

k-colourable; moreover, this proof of k-colorability can be quickly—i.e. in time

polynomial in the size of the graph—verified: it suffices to confirm, for each

pair of adjacent vertices, that the colours assigned to the vertices differ. By

contrast, for graphs that are not k-colourable, there is no known proof that

confirms non-k-colorability and that can be verified in polynomial time.

For those familiar with complexity theory, the previous paragraph can be

summarized: k-colorability is in the class NP and is not known to be in the

class co-NP. See Garey and Johnson for a discussion of the class NP [7].

As Mansfield and Welsh observe, every k-chromatic graph has a Hajós

construction from k-cliques, and such a construction is a proof that the graph

is not (k-1)-colourable. Verifying that a k-construction is valid is a proof that

the graph is not (k-1)-colourable, and the time to check the proof is polynomial

in the size of the construction.

If every k-chromatic graph has a Hajós construction whose size is polyno-

mial in the size of the graph, then every graph can have its k-chromaticity

confirmed in polynomial time. This would imply that NP=co-NP, which is

considered unlikely. This raises the question: how does one find a short Hajós

construction?

Pitassi and Urquhart characterize the Hajós construction in terms of a

proof system known as the Hajós calculus. They show that the Hajós calculus

is equivalent in power to extended Frege proof systems, a powerful class of

proof systems for the propositional calculus. Specifically, they show that “the

Hajós calculus is polynomially-bounded if and only if extended Frege proof

systems are polynomially bounded” [18]. This indicates that the complexity
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questions of the Hajós calculus are likely difficult to resolve.

A graph G is an ordered pair of disjoint sets (V,E) such that E is a set

of unordered pairs of V . The set V is the set of vertices and the set E is the

set of edges [2]. If the edge (x, y) exists, then vertices x and y are said to

be adjacent. G = (V,E) is isomorphic to G′ = (V ′, E ′) if there is a bijection

γ : V ↔ V ′ such that (x, y) ∈ E iff (γ(x), γ(y)) ∈ E ′ [2].

For graph theory terms that we do not define here, refer to Bollobás [2].

Definition 1.1 (Hajós sum). Given graphs G1 = (V1, E1) and G2 = (V2, E2)

with disjoint vertex sets, an edge (x1, y1) ∈ E1, and an edge (x2, y2) ∈ E2, the

Hajós sum G3 = G1(x1, y1) +H G2(x2, y2) is the graph obtained as follows:

begin with G′
3 = (V1 ∪ V2, E1 ∪ E3); then in G′

3 delete edges (x1, y1) and

(x2, y2), identify vertices x1 and x2, and add edge (y1, y2). Now define G3 as

the current G′
3.

See Figure 1.1, where a Hajós sum is performed on two 4-cliques, producing

the Hajós graph.

x1

y1

x1

y2

(a) Take two disjoint graphs. The dotted
arrows denote the edges that we will per-
form the sum on.

y1 y2

x1, x2

(b) Identify vertices x1, x2.

y1 y2

x1, x2

(c) Delete edges x1, y1 and x2, y2.

y1 y2

x1, x2

(d) Add the edge y1, y2, denoted with a
bold line. The unlabelled version of the re-
sulting graph is known as the Hajos graph.

Figure 1.1: A Hajós sum.
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We now define an operation due to Ore [17, 19] that is useful because it

expresses Hajós constructions in a more compact form.

Definition 1.2 (Ore merge). Given graphs G1 and G2 with disjoint vertex

sets, an edge (x1, y1) of G1, an edge (x2, y2) of G2, a vertex subset S1 of G1−x1,

and a bijection γ : S2 ↔ S1 where S2 is a subset of G2−x2, and <y2, y1> does

not exist in γ, the Ore merge G3 = O+(G1, G2, (x1, y1), (x2, y2), S1, S2, γ) is the

graph obtained by the Hajós sum G3 = G1(x1, y1) +H G2(x2, y2) followed by

identifying vertices v, γ(v) for all v in S2.

Definition 1.3 (Hajós construction). Given a graph G and an integer k, a

k-Hajós-construction of G is a sequence of graphs G0, . . . , Gt, where G0 is a

k-clique, Gt = G, and for each j ≥ 1, one of the following holds:

• for some x <= y < j, Gj an Ore merge of Gx and Gy, or

• for some x < j, Gj is Gx with two non-adjacent vertices identified, or

• for some x < j, Gj is a supergraph of Gx.

See Figure 1.2 for an example of a Hajós construction. In our figures, we

use a dashed arrow to indicate the edges that are used as inputs to a Hajós

sum, where the heads of the arrows are the vertices that will be merged.

Definition 1.4 (Ore construction). Given a graph G and an integer k, a

k-Ore-construction of G is a sequence of graphs G0, . . . , Gt, where G0 is a

k-clique, Gt = G, and for each j ≥ 1,

• either, for some x <= y < j, Gj is an Ore merge of Gx and Gy, or

• for some x < j, Gj is a supergraph of Gx.

We also make use of the following terms.

Chromatic number χ(G) is the smallest number of colours, k, that can be

used to colour a graph, G, such that for each pair of adjacent vertices in

G, the colours assigned to the vertices differ. A graph is k-chromatic if

χ(G) = k.
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(a) Begin with two copies of K4. Hajós
sum the graphs and identify the inte-
rior vertices, marked in grey, to pro-
duce the 5-wheel.

(b) Hajós sum the 5-wheel and another
K4, and again identify the interior ver-
tices in the resulting graph. This pro-
duces the 7-wheel.

Figure 1.2: A Hajós construction of the 7-wheel, showing the details of the
Hajós sum and vertex identifications of the construction.

Figure 1.3: The 7-wheel construction in Ore merge operations.

Criticality A k-chromatic graph G is k-critical if removing any edge from G

results in a graph that is not k-chromatic.

Girth The girth of a graph is the length of the shortest cycle in the graph. For

example, a graph that contains a cycle of length four, but no triangles,

has a girth of four.

Constructability A graph G is Hajós k-constructible if there is a Hajós con-

struction that begins with the k-clique and produces G.
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Construction Length The length of a Hajós or Ore construction is the num-

ber of applications of the operations listed in the definition of the respec-

tive construction [18].

Monotonicity A construction is monotonically increasing if any graph gen-

erated by an operation in the construction has at least as many vertices

as any of its inputs.

Hajós Number hk(G), is the length of the minimum Hajós k-construction

of a k-chromatic graph G [14].

For example, it follows that the 7-wheel construction of Figure 1.3 has a

construction length of two.

Following the approach of Mansfield and Welsh, we define Hajós construc-

tions in terms of the Ore merge. In a Hajós construction, the Ore merge op-

eration can identify any number of vertices so long as, for each pair of vertices

being merged, the vertices are not from the same input graph. Conversely, the

vertex identification operation of a Hajós construction—which does not exist

as an independent operation in the Ore construction—allows any non-adjacent

vertices to be merged. This distinction has implications for the complexity of

the Hajós construction, as we will see in Chapter 6. Ore constructions use the

same Ore merge and supergraph operations as Hajós constructions, but they

do not allow the independent vertex identification operation. Thus, all Ore

constructions are Hajós constructions, but not all Hajós constructions are Ore

constructions.

Notice that an Ore merge consists of a Hajós sum followed by a vertex

identification step. Also notice that a Hajós sum that is not followed by a

vertex identification step is equivalent to an Ore merge with an empty set of

vertices identified. Often, we will discuss Ore merges in terms of their Hajós

sum and vertex identification parts, as shown in Figure 1.3. When we discuss

the length of a construction the Hajós sum and vertex identification step are

counted as one Ore merge operation.

Mansfield and Welsh pose finding the Hajós number of a graph as a problem

with unknown complexity. This problem is known to be at least NP-hard, but

6



it is possible that it is not in P-SPACE if the Hajós calculus is not polynomially

bounded [14].

1.2 Contributions

Mansfield and Welsh use the Grötzsch graph to demonstrate the difficulty of

finding the Hajós number of a graph and leave finding a construction as an

open problem. In Chapter 2, we give a length-four construction of the Grötzsch

graph, and we prove that this length is the minimum, thus proving the Hajós

number of the graph is four.

Based on Hajós’ original proof of completeness, we describe a top-down

approach to finding constructions for graphs in Chapter 3. Building on these

ideas, we develop algorithms for computer search for short and minimum Hajós

constructions in Chapter 4.

In Chapter 5, we apply our search approach to some well-known graphs.

Our results include a short construction for the Brinkmann graph and a min-

imum construction of the Chvátal graph. The code used to find these con-

structions is available at https://github.com/eej/hajos-search.

In investigating the Ore construction, we find an equivalence with a con-

struction defined by Pitassi and Urquhart. This equivalence proves that the

Ore calculus is not polynomially bounded and demonstrates a complexity dif-

ference between the Hajós and Ore constructions. In Chapter 6, we prove this

equivalence and look at the implied differences between the Hajós and Ore

constructions.

In Chapter 7, we discuss a sequence of short k-chromatic, (k-1)-clique-free

graphs that can be generated via a simple Hajós construction.

7
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Chapter 2

The Grötzsch Graph

Figure 2.1: The Grötzsch graph.

2.1 Background

The Grötzsch graph, shown in Figure 2.1, is the smallest triangle-free 4-

chromatic graph [8, 5]. It is also the only triangle-free, 4-chromatic graph

with eleven vertices.

In addition to Mansfield and Welsh’s use in illustrating the difficulty of find-

ing Hajós numbers, Liu and Zang use the Grötzsch graph to generate graphs

that are difficult to colour using common search approaches [13]. Liu and

Zang generate large triangle-free 4-chromatic graphs using Hajós sums with

the Grötzsch graph as a base, but they do not provide full Hajós constructions

from cliques for their graphs.
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2.2 Construction

In Figure 2.2, we show a length four Hajós construction for the Grötzsch graph.

In this figure our graphs have labeled vertices. Hajós constructions are gen-

erally considered in the context of unlabelled graphs; however, for illustrative

purposes, we show many example graphs with labels, and we allow vertex

relabelling. Additionally, for clarity we illustrate the Hajós sum and vertex

identification operations as separate steps. However, as noted in Section 1.1,

these sum and identification steps represent the component steps of a single

Ore merge operation.

2.3 Minimality of the Construction

The construction in Figure 2.2 is minimum, and the Hajós number of the

Grötzsch graph is four. To prove this, we show that the Grötzsch graph cannot

be constructed in one, two, or three steps. It is trivial to show that one step is

not possible: a Hajós sum of two 4-cliques yields a graph with seven vertices,

while the Grötzsch graph has 11.

To show that it is not possible to construct the graph in two or three steps

we rely on the following property.

Lemma 2.3.1. Any Hajós construction of a triangle-free graph must include at

least one graph G such that G has an edge (a, b) in which all triangle subgraphs

include (a, b).

Proof. Consider how triangle-free graphs are formed in Hajós constructions.

All constructions begin with cliques which have multiple triangle subgraphs.

Thus, at some point in the construction an operation must take a graph that

contains triangles and produce a graph that is triangle-free. We examine how

this transition to triangle-free graphs can occur.

First, consider the vertex identification operation. Adjacent vertices cannot

be merged, so a triangle subgraph cannot be eliminated by collapsing the

triangle through vertex identification. Also, merging other vertices in the

graph cannot eliminate a triangle subgraph. Multiple triangle subgraphs can

9
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1
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3

2'

1'

0'

3

2

1

0

1

2

3

4

5

0

Edge to be Hajós 
summed on. Arrow 
indicates vertex
that will be identified.

3

2

1

0

Edge introduced by
Hajos sum.

(a) Hajós sum two 4-cliques to form the
Hajós graph. Identify 0′ → 0 to create
the 5-wheel. Relabel: (1’, 2’) 7→ (5, 4).

3

4

5
1

2
0

1'

2'
3'

4'

5'

0'

3

4

5

6

7

0
2

1

3

4

5
1

2

0
1'

2'

3'

4'

5'

(b) Take two copies of the 5-wheel. Hajós
sum (0, 1) with (0′, 1′). Identify: (3’, 4’,
5’) → (5, 4, 3). Relabel: (1’, 2’) 7→ (7,
6).

34

5

6
7

0
2

1

34

5

6 7

0
2

1

3'

4'

5'

6'
7'

2'

1'

3'

4'

5'

6'
7'

0'
2'

1'

34

5

6 7

0
2

1

8

9

(c) Take two copies of the graph con-
structed in 2.2b. Hajós sum (0, 3) with
(0′, 3′). Identify: (3’, 4’, 5’, 6’, 7’) → (7,
6, 5, 4, 3). Relabel: (1’, 2’) 7→ (9, 8).

3

4 5

6

7

0

2
1

8

9

3'

4'5'

6'

7'

0

2'1'

8'

9'

3

4 5

6

7

0

2
1

8

9

3'

4'
5'

6'

7'

2'1'

8'

9'

3

4 5

6

7

0

2 1

8

9

10

(d) With two copies from 2.2c, Hajós sum
(0, 5) with (0′, 5′). Identify: (1’, 2’, 3’,
4’, 5’, 7’, 8’, 9’) → (5, 4, 3, 2, 1, 9, 8, 7).
Relabel: 6′ 7→ 10.

Figure 2.2: A shortest Hajós construction of the Grötzsch graph, found by
hand. This is construction has length four.
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be merged into a single triangle, but at least one triangle will remain, and

it cannot be eliminated via vertex merges. Next, consider the supergraph

operation. If a graphG1 contains a triangle, any supergraph ofG1 also contains

this triangle, and this operation cannot produce new triangle-free graphs in a

Hajós construction.

Thus, a Hajós sum is the only operation that can eliminate triangles. Con-

sider the sum of a graph G1 with a triangle {a, b, c} and a graph G2. If the

sum is on an edge in {a, b, c}, that edge is removed in the resulting graph G

and {a, b, c} will not induce a triangle in G. Conversely, we can see that in the

case of a sum operation on an edge not in {a, b, c}, then {a, b, c} still induces a

triangle in G. This argument holds for all triangles in G1. Thus, for all triangle

subgraphs of G1 to be removed in G, all triangles in G1 must share a common

edge on which a Hajós sum will be performed. By symmetry, this argument

also applies to G2, where any triangles in G2 must share a common edge that

will be eliminated by a Hajós sum operation for G to be triangle-free.

Thus, to generate any triangle-free graph in a Hajós construction, we must

first generate at least one graph where all triangle subgraphs share a single

edge.

(a) Hajós graph (b) 5-wheel

Figure 2.3: Graphs generated by Hajós summing 4-cliques.

Using Lemma 2.3.1, we evaluate the triangle-free graphs that are obtainable

in three operations and show the following.

Lemma 2.3.2. Every 4-chromatic triangle-free graph with Hajós number less

than four has 14 or more vertices.

Proof. A Hajós sum on two 4-cliques gives the Hajós graph. See Figure 2.3a.

Identifying the two vertices marked in grey in this figure produces the 5-wheel.

11



See Figure 2.3b. Any vertex identification on the Hajós graph produces either

the 5-wheel or a supergraph of the 4-clique. Any identification on the 5-wheel

produces a supergraph of the 4-clique. None of the graphs obtainable from a

single Hajós sum have all triangles sharing a single edge. Thus, a triangle-free

graph cannot be produced from two Hajós sums. Further, we have defined

the set of candidate graphs that can be used to produce graphs in three Hajós

sums. See Figure 2.4.

Figure 2.4: Candidate graphs for constructing graphs in 2 Hajós sums. Dashed
arrows indicate edges that we consider for Hajós sum inputs. Any other sum
operations on edges in these graphs yield graphs that are isomorphic to graphs
yielded by sums on these edges.

We consider triangle-free graphs that can be generated from three Hajós

sum operations. As an intermediate step, we consider graphs obtainable from

the graphs in Figure 2.4, where all triangles share a single edge. In the 5-

wheel and 4-clique graphs, there are multiple independent triangle subgraphs,

and eliminating a single edge leaves multiple triangles. However, the Hajós

graph has four triangles, and the triangles form two pairs such that each pair

of triangles share an edge. In Figure 2.5, we show how this can be used to

construct a graph where all triangles share a single edge.

The Hajós sum performed in Figure 2.5a yields a graph where all triangle

subgraphs share one of two edges, and the triangle subgraphs form two disjoint

sets. See Figure 2.5b. In this graph the closest vertices between the two sets

of triangles have an intermediate vertex between them. This allows the two

sets of triangles to be merged into one without introducing new independent

triangles. No other Hajós sum operations performed on our candidates from

Figure 2.4 have this property. Thus, the graphs in Figures 2.5c and 2.5d are

the only graphs obtainable in two Hajós sum operations where all triangle

subgraphs share a single edge.
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(a) Begin by Hajós summing two Hajós
graphs. The dashed arrows represent the
edges to be summed on.

(b) The resulting graph has the introduced
edge shown in bold. Every triangle sub-
graph shares one of the two edges that are
shown as dotted lines. We merge the ver-
tices of these edges.

(c) In the resulting graph, every triangle
subgraph shares the edge shown as a dotted
line.

(d) The two centre vertices from the previ-
ous graph can be identified, resulting in an
additional graph where all triangles share
a single edge. Any other vertex identifica-
tions introduces independent triangles.

Figure 2.5: Constructing graphs where all triangles share a single edge starting
from two copies of the Hajós graph.

Figure 2.6 shows the triangle-free graphs obtainable from the graphs in

Figure 2.5. The two output graphs in Figure 2.5 are the only graphs obtainable

in two Hajós sums that satisfy Lemma 2.3.1. Thus, the graphs in Figure 2.6, in

addition to any triangle-free graphs obtainable through vertex identifications

of these graphs, form the complete set of triangle-free graphs obtainable in

three Hajós sums.

In Figure 2.6, we label the largest of the graphs to discuss vertex merges.

Similar to how the graph of Figure 2.5d is constructed via a vertex merge on

the graph of Figure 2.5c, the two smaller graphs in Figure 2.6 can be obtained

by merging vertices 7 and 8, vertices 14 and 15, or both pairs of vertices. Thus,

any triangle-free graph that can be constructed in three Hajós sums can be

obtained through vertex merges on the bottom graph in Figure 2.6.
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Figure 2.6: Triangle-free graphs generated from the graphs in Figure 2.5.

We now consider graphs that can be obtained through vertex merges on our

generated graph. Table 2.1 lists all possible vertex merges and shows whether

the resulting graph has a triangle.

As already noted, vertices 7 and 8 can be merged as well as 14 and 15.

Also, vertices in the 5-cycle (1, 2, 3, 4, 5) can be merged with the vertices in

the 5-cycle (17, 18, 19, 20, 21). An important restriction on this second set of

merges is that each vertex from the first 5-cycle can only merge with one vertex

from the second 5-cycle. After the two 5-cycles are merged, no further merges

can result in triangle-free graphs. Thus, we can reduce the vertex count by

five vertices by merging the two 5-cycles, and we can further reduce the count

by two through merging 7, 8, and 14, 15. This results in a 14-vertex graph,

the smallest triangle-free graph that one can generate through vertex merges.

Thus, the smallest triangle-free graph obtainable from three Hajós sums has

14 vertices.
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15 20

211612
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19
84

5 9 11

7
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6 10
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 X — 1, 3, 4 1, 2, 3 — — 1, 6, 9 1, 4, 5 1, 2, 3 1, 2, 7 1, 2, 7 1, 6, 11 1, 6, 10 1, 6, 10 1, 6, 10 1, 6, 10 X X X X X
2 X — 1, 2, 4 2, 3, 4 2, 6, 9 — 2, 3, 4 1, 2, 5 1, 2, 6 1, 2, 6 2, 7, 11 2, 7, 10 2, 7, 10 2, 7, 10 2, 7, 10 X X X X X
3 X — 1, 2, 3 — 3, 6, 9 3, 6, 9 — 2, 3, 7 2, 3, 7 3, 6, 11 3, 6, 10 3, 6, 10 3, 6, 10 3, 6, 10 X X X X X
4 X — 1, 4, 5 2, 3, 4 — 4, 8, 9 3, 4, 6 3, 4, 6 4, 8, 11 4, 8, 10 4, 8, 10 4, 8, 10 4, 8, 10 X X X X X
5 X 3, 4, 5 1, 2, 5 5, 8, 9 — 1, 5, 6 1, 5, 6 5, 9, 11 5, 9, 10 5, 9, 10 5, 9, 10 5, 9, 10 X X X X X
6 X 1, 2, 6 3, 4, 6 1, 5, 6 — — 6, 10, 12 6, 11, 12 6, 11, 12 6, 11, 12 6, 11, 12 6, 10, 13 6, 10, 14 6, 10, 13 6, 10, 15 6, 10, 16
7 X X 2, 3, 7 — — 7, 10, 12 7, 11, 12 7, 11, 12 7, 11, 12 7, 11, 12 7, 10, 13 7, 10, 14 7, 10, 13 7, 10, 15 7, 10, 16
8 X 3, 4, 8 — — 8, 10, 12 8, 11, 12 8, 11, 12 8, 11, 12 8, 11, 12 8, 10, 13 8, 10, 14 8, 10, 13 8, 10, 15 8, 10, 16
9 X — — 9, 10, 12 9, 11, 12 9, 11, 12 9, 11, 12 9, 11, 12 9, 10, 13 9, 10, 14 9, 10, 13 9, 10, 15 9, 10, 16

10 X 10, 11, 12 6, 10, 11 — — — — 10, 14, 17 10, 13, 17 10, 14, 18 10, 13, 19 10, 13, 17
11 X — 6, 10, 11 6, 10, 11 6, 10, 11 6, 10, 11 11, 12, 13 11, 12, 14 11, 12, 13 11, 12, 15 11, 12, 16
12 X — — — — 12, 14, 17 12, 13, 17 12, 14, 18 12, 13, 19 12, 13, 17
13 X 13, 16, 17 13, 18, 19 13, 16, 20 — 10, 13, 14 — 10, 13, 15 10, 13, 16
14 X X 14, 17, 18 10, 13, 14 — 10, 13, 14 10, 14, 15 10, 14, 16
15 X 15, 18, 19 10, 13, 15 10, 14, 15 10, 13, 15 — 10, 15, 16
16 X 10, 13, 16 10, 14, 16 — 10, 15, 16 —
17 X — 16, 17, 20 13, 17, 19 —
18 X — 17, 18, 20 16, 18, 19
19 X — 13, 17, 19
20 X —
21 X

Table 2.1: Vertex merge options. X indicates a vertex pair that can be merged without creating a triangle. A list indicates a
triangle that would be created.
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Theorem 2.3.3. The Grötzsch graph has Hajós number four.

Proof. Since the Grötzsch graph has 11 vertices, by Lemma 2.3.2 we conclude

that the Grötzsch graph cannot be obtained in three or fewer Hajós operations.

We have demonstrated a length four construction; thus, the Hajós number of

the Grötzsch graph is four.

2.4 Alternate Constructions of the Grötzsch

Graph

The construction shown in Figure 2.2 is minimum but not unique. Other

length-four constructions exist. See Figure 2.7. There the construction begins

by generating the 5-wheel graph from 4-cliques; however, the intermediate

graphs differ from those of Figure 2.2.
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(a) Hajós sum two 4-cliques to form the
Hajós graph. Identify 0’ → 0 to create the
5-wheel. Relabel: (1’, 2’) 7→ (4, 5).
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(b) Take two copies of the 5-wheel. Hajós
sum (0, 5) with (0′, 5′). Identify: (1’, 2’, 3’)
→ (2, 3, 4). Relabel: (4’, 5’) 7→ (6, 7)
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(c) Take two copies of the graph con-
structed in 2.7b. Hajós sum (4, 0) with
(4′, 0′). Identify: (0’, 1’, 3’, 2’) → (2, 1,
3, 0). Relabel: (5’, 6’, 7’) 7→ (8, 9, 10).
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(d) With two copies from 2.7c, Hajós sum
(0, 2) with (0′, 2′). Identify: (1’, 2’ , 3’, 4’,
5’, 6’, 7’, 8’, 9’, 10’) → (10, 7, 6, 4, 9, 3, 2,
8, 5, 1).

Figure 2.7: Another length four construction of the Grötzsch graph found by
the search techniques discussed in Chapter 4.
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Chapter 3

Variations on Hajós
Constructions

Before investigating the process of finding Hajós constructions for graphs, we

look at different forms constructions can take.

3.1 Tree-Like Hajós Constructions

A Hajós construction can be represented as a directed acyclic graph (DAG)

where each non-isomorphic graph in the construction corresponds to a vertex

in the DAG. The root vertex of the DAG is a clique in the construction,

and directed edges between DAG nodes are the construction operations that

generate new graphs. We define a DAG map as a diagram of the DAG of a

Hajós construction.

Iwama and Pitassi introduce the tree-like Hajós calculus [10] where con-

structions are structured as a tree. Each graph in a tree-like construction

is used only once and must be built independently from cliques. Isomorphic

graphs in the construction are not collapsed to a single node. A tree map is a

DAG map, where the represented DAG is a tree. In an abstract tree represen-

tation, each clique graph represents a leaf node in the tree, and the root of the

tree is the constructed graph. A regular construction, a tree-like construction,

and the DAG and tree maps for the construction are illustrated in Figure 3.1.
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(a) A Hajós construction. Dashed edges rep-
resent the edges to be eliminated in the Hajós
sum step.

(b) The same Hajós construction opera-
tions, expanded to a tree-like construction,
with each graph constructed from clique leaf
nodes.

K4 5w T

(c) The DAG map of the above construction:
K4 is the 4 clique, 5w is the 5-wheel, and T
is the final graph.

K4

5w

T

K4 K4

5w

K4

(d) The Tree map of the above construction.

Figure 3.1: An illustration of a Hajós construction, the same construction
converted to a tree-like form, a DAG map of the first construction, and a tree
map of the second construction.
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K4 5w I2 GI3

(a) DAG map

K4

5w

I2

G

I3

K4 K4

5w

K4 K4

5w

I2

K4 K4

5w

K4K4

5w

I2

I3

K4K4

5w

K4 K4

5w

I2

K4K4

5w

K4

(b) Tree map

Figure 3.2: DAG and tree maps of our construction for the Grötzsch graph of
Figure 2.2. I2 and I3 are intermediate graphs.

Two factors contribute to the size difference between regular and tree-

like constructions. In tree-like constructions, the same graph can occur many

times, and each occurrence contributes to the size of the construction. Addi-

tionally, in tree constructions, each occurrence of a graph results in a subtree

construction until the leaf node clique graphs are reached. See Figure 3.2,

where the DAG map has five vertices, while the tree map has 31.

Iwama and Pitassi show that there are classes of graphs for which tree-

like constructions have exponential size, and that the tree-like Hajós calculus

cannot polynomially simulate the standard Hajós calculus [10]. This is un-

expected, considering that Pitassi and Urquhart’s work shows that the Hajós

calculus can polynomially simulate Extended Frege proof systems, and tree-

like propositional Frege proofs do not lead to significantly larger proofs than

non-tree-like proofs [10].

It is straightforward to expand a regular construction into a tree-like con-

struction; however, reducing a tree-like construction to a regular construction

is more complicated. This requires identifying duplicate instances of graphs,
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so that each unique graph is constructed a single time. Consider a tree-like

construction that includes two graphs that are isomorphic. Because the con-

struction is tree-like, the two graphs are generated independently and may

have been obtained from non-isomorphic subtree constructions. In reducing

such a construction from a tree to a DAG, it is not straightforward to de-

cide which of the two possible subconstructions should be used to obtain the

smallest construction. See Figure 3.3.

T

I1 I1

I2 k5 I3 I4

k5 k5 k5 k5 k5 k5

k5 I2 I1 T

k5

I3

I1 T

I4

Figure 3.3: Two DAG reductions of the same tree-like construction. The
tree has two different subtree constructions of I1. Different reductions yield
constructions of different length.
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3.2 Hajós’ Proof of Completeness

In Section 3.3, we will look at top-down constructions. To understand these

constructions, it is helpful to first examine Hajós’ proof. The Hajós construc-

tion is complete: for any k-chromatic graph G, there is a Hajós construction

of G from k-cliques. The proof below follows the approaches of Bollobás [2]

and Diestel [6].

Theorem 3.2.1. (Hajós [9]) Any graph of chromatic number greater than or

equal to k is Hajós k-constructible.

Proof. Assume the theorem is false. Let G = (V,E), where χ(G) ≥ k, be a

counterexample with minimum number of vertices, and among all such graphs,

have a maximum number of edges. Because G is a counterexample, G cannot

be a k-clique. Also, G cannot be a complete k-partite graph, as that would

imply that G has a k-clique as a subgraph, which would imply that G could

be Hajós constructed via the supergraph operation. Thus, G has vertices a,

b1, and b2 where b1 and b2 are adjacent, and a is not adjacent to b1 or b2.

We show that G can be constructed from two input graphs as follows.

Create a graph G1 = (V1, E1) that is disjoint from G and isomorphic to G,

with γ1 being a bijection between V and V1 as defined by the isomorphism.

Add the edge (γ1(a), γ1(b1)) to E1. Similarly, create a graph G2 = (V2, E2)

that is disjoint from G and isomorphic to G, with γ2 being a bijection between

V and V2. Add the edge (γ2(a), γ2(b2)) to E2. Note that G1 and G2 Hajós

construct G: set G3 = G1(γ1(a), γ1(b1)) +H G2(γ2(a), γ2(b2)); then, for each

v ∈ V−{a}, identify the vertices γ1(v), γ2(v); then set the resulting graph as

G.

Because G is maximal with regard to edges, neither G1 nor G2 are coun-

terexamples, and each has a Hajós construction. Thus, G is Hajós k con-

structible, and we have a contradiction.

In addition to being complete, the Hajós construction is also sound : any

graph G obtained by a Hajós construction from k-cliques has a chromatic

number of at least k. If a graph G′ is obtained from a graph G via supergraph,
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then G′ cannot be (k-1)-coloured, as this would define a (k-1)-colouring for

G, leading to a contradiction. Similarly, if G′ is obtained via a Hajós sum

G′ = G1(x1y1) +H G2(x2y2), then in any colouring of G′ the vertices y1 and

y2 would not both have the same colour as the vertex x1, so this colouring

induces a colouring in either G1 or G2 and thus uses at least k colours [6].

3.3 Top-Down Constructions

Thus far, we have considered Hajós constructions from the bottom up, building

from cliques up to the constructed graph. The proof of completeness for Hajós’

theorem includes an alternative top-down view: start with a graph and derive

cliques.

We wish to derive Hajós constructions in a top-down manner using the

technique of Hajós’ proof. We define this as the add-edge operation.

1. Given a graph G that is not a complete k-partite graph, select three

vertices {a, b1, b2} from G where b1 and b2 are adjacent, and a is not

adjacent to b1 or b2.

2. Create two new graphs: G1, a copy of G with the additional edge (a, b1)

and G2, a copy of G with the additional edge (a, b2).

See Figure 3.4 for an example of add-edge.

Add-edge allows us to find graphs G1 and G2 that can Hajós construct G.

We have created two copies of G, each with one additional edge. In reversing

this step, we eliminate the introduced edges with the Hajós sum, and we merge

the vertices in the two copies of the graph. The edge introduced by the Hajós

sum between b1 of G1 and b2 in G2 merges into the already existing edge (b1, b2)

in G. Figure 3.5 shows how add-edge can be reversed using Hajós sum and

vertex identification.
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a

b1 b2

a

b1 b2

a

b1 b2

Figure 3.4: The add-edge operation. The top graph has adjacent vertices (b1,
b2) and a vertex a that is not adjacent to b1 or b2. Two copies of the top graph
are generated, one with (a, b1) added and the other with (a, b2) added.

a

b1 b2

a

b1 b2

a

b1 b2 b1 b2

a

b1 b2

Figure 3.5: Reversing the add-edge operation. A Hajós sum is performed
between the two graphs, eliminating (a, b1) in the left graph and (a, b2) in
the right graph. The a vertices in the input graphs are merged, and an edge
between b1 from the left graph and b2 from the right graph is added. The
bottom graph is then formed by identifying the corresponding vertices from
the input graphs.
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Add-edge enables a top-down derivation of Hajós constructions: begin with

our target graph, and derive a construction in a top-down manner. By recur-

sively adding edges, build a construction tree until each leaf node contains a

k-clique subgraph. Then add a final step that constructs each of these leaf

nodes by the supergraph rule. See Figure 3.6.

Figure 3.6: Finding a 7-wheel Hajós construction by repeatedly applying add-
edge. The construction ends when each leaf graph has a 4-clique subgraph.

These top-down constructions are similar to tree-like constructions with the

addition of an initial use of the supergraph rule at the leaf nodes. Additionally,

due to the use of add-edge, each intermediate graph in the construction is a

strict supergraph of the target.

It is straightforward to convert from a top-down construction to a tree-like

construction. As shown in Figure 3.5, each add-edge is a Hajós sum and set

of vertex merges. To derive a tree-like construction, we begin with the clique

nodes, but we do not apply the initial supergraph operation. At each stage

of the construction, we perform the Hajós sum corresponding to reversing the

add-edge operation. For vertex merges implied by the add-edge, we merge

vertices that exist in both input graphs in the reduced construction, but we

ignore merge operations otherwise. See Figure 3.7.

In comparing the sequence of graphs of the reduced construction, notice

that each reduced graph is a subgraph of the corresponding graph in the
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(a) A top-down add-edge based construction
for a seven vertex 4-chromatic graph. Dot-
ted edges represent the additional edge at
each step.

(b) A reduced, tree-like construction of the
same graph. Dotted edges indicate the edges
Hajós sums are performed on.

Figure 3.7: Reducing a construction to required subgraphs.

original construction. The leaf nodes have clique subgraphs. Moving up the

construction tree, each edge removed in the construction corresponds to edge

removal and vertex merges that define a new corresponding subgraph in the

reduced tree. Because the graphs in the reduced construction are Hajós k-

constructed subgraphs of the nodes in our original construction, the reduced

construction is a valid Hajós construction for G.

When reducing a top-down construction to a tree-like construction, we

must consider the possibility that the top-down construction is not minimal.

There are non-minimal top-down constructions, where an add-edge operation

is applied, but the added edge is not used in any of the leaf cliques of its

children. In such cases, this add-edge operation and one of the two branches

it creates can be completely removed from the tree, and the resulting tree is

still a valid construction.

Ore shows that Hajós’ proof, and thus the add-edge operation, can be used

to show the completeness of the Ore construction. So any construction gener-

ated with our top-down add-edge approach does not require the independent

vertex identification operation, and thus is an Ore construction.
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Chapter 4

Searching for Hajós
Constructions

4.1 Background

As noted by Mansfield and Welsh [14], finding a Hajós construction for a

graph can be difficult. In this chapter, we examine some approaches to finding

constructions and optimizations to make these approaches practical.

We assume that the graph we wish to construct is k-chromatic and k-

critical. To construct a non-critical graph, it suffices to construct a critical

subgraph, and then apply the supergraph rule to obtain the non-critical graph.

A natural approach is a bottom-up search: start with cliques and derive

graphs via construction operations until the desired graph is discovered. We

find that such an approach has difficulties due to the rate that the number of

obtainable graphs increases as construction length increases. In Section 2.3,

we looked at a bottom-up approach to set a lower limit on the Hajós number

of the Grötzsch graph. In Figures 2.3a and 2.3b, we show the two graphs of

interest as the output of a single step in a Hajós construction starting from

4-cliques. To explore how the set of obtainable graphs grows as construction

length grows, we generate all graphs obtainable from length-two constructions.

To do this, we perform all possible Hajós sum operations on the graphs from

Figure 2.4, and then we find all graphs derivable via vertex identifications.

After removing isomorphic graphs, and eliminating all graphs that have one of

the input graphs as a subgraph, we find there are 210 unique graphs obtainable
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in two Hajós construction operations.

We encounter difficulty when attempting to enumerate the set of unique

graphs obtainable in three operations. Our 210 graphs plus the Hajós graph,

the 5-wheel, and the 4-clique form the set of candidates for input to a length-

three construction. We find that this set contains 3969 edges. Each pair of

edges can be Hajós summed in four ways, and each edge can be summed

with itself in three ways. This gives 4 ∗
(
3969
2

)
+ 3 ∗ 3969 = 31509891 graphs

obtainable via Hajós sum. To estimate what would be obtainable via Ore

merge for each of the 31 million graphs, we consider all possible vertex merge

operations. The number of possible vertex merge operations corresponds to

the number of independent sets in each of the graphs. We estimate that

the average graph in this set would have 20 vertices and an edge density of

36%. An approximation of the number of independent sets in such a graph is∑20
i=2(1− 0.36)(

i
2) ∗

(
20
i

)
≈ 987. This gives us an estimate of 3.1 ∗ 1010 graphs

to consider before isomorphisms are accounted for.

As seen in Chapter 2, the minimum construction for the 11 vertex Grötzsch

graph is length four. Based on the size of the set of graphs obtainable from

length-three constructions, the bottom-up approach as we have described is not

practical for searching for constructions for graphs with minimum construction

length greater than three.

4.2 Hajós’ Algorithm

In Chapter 3.3, we look at Hajós’ proof of completeness and the add-edge op-

eration. Pitassi and Urquhart note that Hajós’ proof yields an algorithm for

finding constructions [18]. However, this algorithm does not find all construc-

tions, nor does it find minimum constructions.

The add-edge operation allows us to begin with our target graph and de-

rive a construction in a top-down manner. The basic algorithm, shown in

Listing 4.1, consists of selecting a triple of vertices that are candidates for the

add-edge operation, creating two new graphs using add-edge on the triple, and

recursing on those graphs until a clique subgraph is generated.
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Supergraph Cons (G) :
i f Has Clique Subgraph (G) :

return G

a , b1 , b2 = Get Tr ip l e (G)

G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

return G, ( Supergraph Cons (G1) , Supergraph Cons (G2) )

Listing 4.1: Hajós’ algorithim.

Hajós’ proof shows that this procedure is guaranteed to produce a con-

struction for a graph, but it does not attempt to find small constructions.

The top-down add-edge based approach generates tree-like constructions; the

number of graphs in the construction doubles at each step, so construction size

grows quickly. To get some feeling for the size of constructions produced by

an undirected search, we implemented Hajós’ algorithm with the vertex triple

chosen at random, and then we generated 10,000 constructions of the Grötzsch

graph. The shortest construction found had 329 nodes in the tree, and the

longest construction had 2145. The mean construction length is 1195.1 graphs

with σ = 253.0. Improvements to this algorithm are needed; the constructions

produced are much larger than the minimum length of four that is possible on

the Grötzsch graph.

4.3 Searching the Constructions Space

One reason that naively generated constructions can be large is that the algo-

rithm is undirected. We have no criteria for deciding which of the candidate

triples of vertices to apply the add-edge operation to. We do not know of any

heuristics for making choices amongst the candidate triples that are useful for

finding small constructions. So we introduce backtrack search to minimize

construction size.

Listing 4.2 shows a brute force algorithm that finds the smallest possible
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Find Min Supergraph Cons (G) :
i f Has Clique Subgraph (G) :

return G

t r i p l e s = G e t A l l T r i p l e s (G)

b e s t S i z e = I n f i n i t y
bestCons = None
for a , b1 , b2 in t r i p l e s :

G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

R1 = Find Min Supergraph Cons (G1)

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

R2 = Find Min Supergraph Cons (G2)

s i z e = 1 + Count Nodes (R1) + Count Nodes (R2)

i f s i z e < b e s t S i z e :
b e s t S i z e = s i z e
bestCons = R1 , R2

return G, bestCons

Listing 4.2: Search for a minimum tree-like supergraph construction.

construction tree that this approach can yield. We have seen that the top-down

supergraph constructions directly convert to tree-like constructions, and that

the add-edge operation is available under the restricted Ore construction rules,

and thus this algorithm produces the minimum tree-like Ore construction for

its input graph.

The presented approach repeatedly derives the same construction subtrees

unnecessarily. The algorithm considers each candidate triple of vertices in-

dependently, but the same edge can occur in multiple triples, and thus the

algorithm will recurse on the same edge multiple times. Another considera-

tion is that isomorphic graphs can be generated by the add-edge operation,

but the algorithm makes no effort to identify graphs that have been previously

constructed.

We will look at more practical approaches in Section 4.5.
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4.4 Isomorphisms and Tree-Like Constructions

To find small constructions, we want to convert from top-down tree-like super-

graph constructions to DAG constructions as discussed in Section 3.3. Reduc-

ing a top-down supergraph construction to a tree-like construction is straight-

forward. But to further reduce the construction, we must identify isomorphic

graphs that occur in our construction multiple times, so that we can collapse

them to single nodes in a DAG construction.

The best proven running time for identifying isomorphic graphs is eO(
√
n logn)

[1, 15]. We use the Nauty software package, a high performance graph isomor-

phism system that gives a canonical labelling for a graph [15]. All isomor-

phisms of a graph receive the same labelling, allowing us to generate a unique

key for any graph. Using this key with a hash table provides a basis for deter-

mining if a graph has already been encountered elsewhere. This allows us to

further reduce a construction from the tree-like form to a DAG, as discussed

in Section 3.1.

# We use a r e cu r s i v e data s t r u c t u r e f o r a cons t ruc t i on :
# C.G − The graph o f the head o f the cons t ruc t i on .
# C. l e f t − The l e f t branch o f the cons t ruc t i on .
# C. r i g h t − The r i g h t branch o f the cons t ruc t i on .

seenGraphs = {}

Calc DAG Length (C) :
i f C == None :

return 0

CannonG = Cannonica l Labe l ing (C.G)
i f CannonG in seenGraphs :

return 0

seenGraphs . add (CannonG)
return 1 + Calc DAG Length (C. l e f t ) + Calc DAG Length (C. r i g h t )

Listing 4.3: Greedily reduce a tree-like construction to a DAG and return its
length.

The algorithm of Listing 4.3 calculates the length of a tree-like construction

when it is reduced to a DAG using a greedy approach.

This greedy approach only counts a graph and its subconstruction if an
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isomorphism of this graph has not already been encountered. This does not

guarantee that the minimum construction size will be returned, as an interme-

diate graph might appear multiple times with multiple different subconstruc-

tions. If our construction contains two different subconstructions for the same

graph, our algorithm greedily takes the first subconstruction encountered, even

if it is not the smallest. A more complicated approach would search across all

possible subconstructions to find the minimum construction.

X
I1

I2
HK4

XHK4 I3

(a) Two different constructions for the same
hypothetical graph X. Considered in isola-
tion the second construction is smaller.

X Y

I1 I2

T

T

X

Y

I1

I2

HK4

T

X

Y

I1

I2

HK4

I3

(b) A hypothetical graph T is constructed
from graphs X and Y, and Y is constructed
from graphs I1 and I2. Considered in the
context of a construction containing graph
Y, the first construction of X from graphs
I1 and I2 results in a smaller DAG, despite
the second construction being smaller in iso-
lation.

Figure 4.1: An illustration of the difficulty in optimizing a top-down search.

Notice that it is impossible to calculate the size of a subconstruction in

isolation: a graph that appears in a subconstruction may appear elsewhere

in the construction tree. Because we do not know the order in which non-

isomorphic subconstructions are generated, we do not know how intermediate

subconstruction sizes will affect the overall construction size. Thus, we know

of no way for a search algorithm to chose an optimal subconstruction without
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knowledge of the complete DAG. This is related to the problem of reducing

a tree-like construction to a DAG. See Section 3.1. This inability to deal

with subconstructions in isolation makes it difficult to apply standard search

optimizations such as memoization and branch and bound to our problem. See

Figure 4.1 for a hypothetical example.

Find Al l Cons (G) :
i f Has Clique Subgraph (G) :

C = new Construct ion ( )
C.G = G

return C

consL i s t = [ ]

t r i p l e s = G e t A l l T r i p l e s (G)

for a , b1 , b2 in t r i p l e s :
G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

C1 = Find Al l Cons (G1)

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

C2 = Find Al l Cons (G2)

for R1 in C1 :
for R2 in C2 :

C = new Construct ion ( )
C.G = G
C. l e f t = R1
C. r i g h t = R2

consL i s t . add (C)

return consL i s t

Listing 4.4: Find all possible top-down constructions.

To work around these limitations, we look at searching all possible con-

structions for a given graph in Listing 4.4.

In Section 3.1, we looked at the relationship between trees and DAGs. It

is straightforward to see that a DAG can be expanded to a tree construc-

tion, and that this expansion is unique. Consider a DAG that is minimal,
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where every graph in the DAG is used in the construction, and where there

are no isomorphism between any of the graphs in the DAG. When expanding

such a minimal DAG to a tree, every pair of isomorphic graphs in the tree

have isomorphic subconstructions—i.e. if the tree contains a graph G with

a subconstruction C, then any graph G′ that is isomorphic to G has a sub-

construction C ′ where every graph in C ′ is isomorphic to a graph in C. Note

that such a tree construction uniquely reduces back to the same DAG that it

was expanded from. Every minimal DAG construction D expands to a unique

tree construction T that uniquely reduces to D. The existence of trees with

unique DAG reductions implies that we can use our greedy DAG reduction

in an exhaustive search. If we consider a tree that uniquely reduces to our

desired DAG, our greedy reduction will produce that DAG.

Consider a minimum Ore construction for a graph. Such a construction

will not have any pair of isomorphic graphs or subconstructions; otherwise,

the construction would not be minimum. Thus, there is a tree construction

that uniquely reduces to the DAG for this minimum construction.

The approach taken in Listing 4.5 exhaustively considers all possible mini-

mal constructions under the Ore construction rules. It generates all construc-

tion trees and then greedily reduces them to DAGs. Because all trees are

considered, a tree that uniquely reduces to a minimum DAG must be consid-

ered. Thus, this approach finds the minimum Ore construction for the input

Find Min Reduced Cons (G) :
b e s t S i z e = I n f i n i t y
bestCons = None

for C in Find Al l Cons (G) :
reduced = Get Required Subgraphs (C)
s i z e = Calc DAG Length ( reduced )

i f s i z e < b e s t S i z e :
b e s t S i z e = s i z e
bestCons = reduced

return bestCons

Listing 4.5: Find a minimum length Ore construction.
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graph. However, as we will see in Section 6, because there are vertex merge

operations that are possible in Hajós constructions that are not allowed in Ore

constructions, there are Hajós constructions that are not considered by this

algorithm. The algorithm as presented is a purely brute force approach and is

impractical even for small graphs. Thus, we need to consider alternatives.

4.5 A Practical Approach

The size of the search space makes the algorithm of Listing 4.5 impractical,

even for small graphs. While there is potential for optimizations to be inte-

grated into the approach, our inability to independently calculate the size of a

subconstruction makes this difficult. In fact, it may be that the complexity in

guaranteeing a minimum construction rivals the complexity of an exhaustive

bottom-up search. However, the tools that we have developed in looking at the

backwards search have proved useful for an algorithm that explores a limited

set of possible constructions. While this is not guaranteed to find minimum

constructions, as we will see in Chapter 5, this approach finds constructions

for several interesting graphs.

A challenge with the backwards search approach is rapid growth in the

size of tree-like constructions. To avoid this, we optimize for constructions

that limit this branching. If we can apply an add-edge rule in a manner that

does not branch, then we can potentially move towards our goal of generating

clique subgraphs without significantly increasing our construction size. Our

first strategy is inspired by the construction shown in Figure 2.2. In our

Grötzsch graph constructions, due to symmetries in G and the selection of the

vertex triple, the generated G1 and G2 graphs are isomorphic. For an add-edge

step that matches these criteria, our search only needs to find a construction

for one new graph. The algorithm in Listing 4.6 can only find constructions

that do not branch.

This algorithm does not reduce the construction to its required subgraphs,

though that operation could be applied to a completed construction. This

limited search is capable of finding the construction of Figure 2.2. We have
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Find Nonbranching Cons (G) :
i f Has Clique Subgraph (G) :

return G

t r i p l e s = G e t A l l T r i p l e s (G)

for a , b1 , b2 in t r i p l e s :
G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

i f Cannonica l Labe l ing (G1) == Cannonica l Labe l ing (G2 ) :
# nodes are isomorphic , search can cont inue
# wi thout branching .
return G, Find Nonbranching Cons (G1)

i f Has Clique Subgraph (G1 ) :
# G1 i s a l e a f node , search can cont inue
# on G2 wi thout branching .
return G, Find Nonbranching Cons (G2)

i f Has Clique Subgraph (G2 ) :
# G2 i s a l e a f node , search can cont inue
# on G1 wi thout branching .
return G, Find Nonbranching Cons (G1)

return None # Fai l ed to f i nd a cons t ruc t i on .

Listing 4.6: Find a non-branching construction.

found this approach useful in finding constructions for small graphs with high

degrees of symmetry, but it fails to find constructions for many graphs. We

wish to expand the capability of the search while maintaining bounds on the

branching.

In Listing 4.6, we check if a graph represents a leaf node by checking

to see if it contains a clique subgraph. To make our search more capable,

while keeping our branching to a minimum, we expand our function to check

for leaf nodes. As noted in Section 2.3, we know there are two graphs that

are directly constructible from 4-cliques. Thus, in addition to our 4-clique,

we can search for instances of the 5-wheel or the Hajós graph as subgraphs.

However, as we try to increase the number of graphs that we test for, we quickly

run into problems. At construction depth of two, we have 210 additional
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SearchDepth = 3

Leaf Search (G, depth , seenGraphs ) :
i f depth == 0 :

return None

i f Has Clique Subgraph (G) :
return G

t r i p l e s = G e t A l l T r i p l e s (G)

for a , b1 , b2 in t r i p l e s :
G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

R1 = Leaf Search (G1, depth−1, seenGraphs )

newSubgraphs = Used Subgraphs (R1)

R2 = Leaf Search (G2, depth−1, seenGraphs+newSubgraphs )

# count the s i z e o f the reduced cons t ruc t i on us ing
# isomorphism and our s e t o f p r e v i o u s l y seen graphs .
s i z e = Count Reduced Size ( (G, R1 , R2) , seenGraphs )

i f s i z e < b e s t S i z e :
b e s t S i z e = s i z e
bestCons = R1 , R2

# return the b e s t cons t ruc t i on we found ,
# and the s e t o f subgraphs t h i s cons t ruc t i on r e qu i r e s
return bestCons , Used Subgraphs ( bestCons )

Listing 4.7: Depth limited leaf search.

graphs to consider for k = 4. Similarly, for k > 4, the number of candidate

graphs that we would wish to consider grows rapidly. In our experiments,

this explosion of candidate graphs and the subgraph isomorphism problem

being NP-Complete, limits the usefulness of a database for terminating search

branches early. Such techniques might be useful for backwards search on very

large graphs. However, finding constructions for such graphs seems to be out

of reach for the techniques that we know of.

In Listing 4.7, we approach finding leaf nodes in a construction with a

depth-limited depth first search. In addition to the depth-limited search, we
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use a required subgraph reduction and greedy isomorphism identification. As

the main search deepens, we propagate the set of graphs that have already been

seen at higher levels of the search. While this doesn’t guarantee a minimum

construction, it is still useful in reducing construction sizes. In Listing 4.8,

we expand on the approach of Listing 4.6, replacing the checks for clique

subgraphs with the search function from Listing 4.7.

By limiting the depth that we search to for leaf nodes, we are able to

construct some graphs that our non-branching search cannot solve, while being

able to control the size of the search space.

Additional optimization opportunities exist—one of which is using graph

isomorphism for memoization. This also serves the function of a transposition

table and allows for another opportunity to reduce construction sizes based

on isomorphism. A second optimization opportunity exists in using a branch

and bound approach. For every subgraph that we are constructing, we can

look at the smallest construction size encountered so far and determine if the

current construction is larger. This approach is limited by our inability to

accurately calculate the size of a subconstruction, but it does offer a potential

speedup considering that our search is already not guaranteed to find minimum

constructions.
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seenGraphs = {}

Find Nonbranching Cons (G) :
i f Leaf Search (G, SearchDepth , seenGraphs ) :

return G

t r i p l e s = G e t A l l T r i p l e s (G)

for a , b1 , b2 in t r i p l e s :
G1 = G. copy ( )
G1 . addEdge ( ( a , b1 ) )

G2 = G. copy ( )
G2 . addEdge ( ( a , b2 ) )

i f Cannonica l Labe l ing (G1) == Cannonica l Labe l ing (G2 ) :
# nodes are isomorphic , search can cont inue
# wi thout branching .
return G, Find Nonbranching Cons (G1)

C1 , newGraphs = Leaf Search (G1, SearchDepth , seenGraphs )
i f C1 :

# G1 i s a l e a f node , search can cont inue
# on G2 wi thout branching .
seenGraphs = seenGraphs + newGraphs
return G, Find Nonbranching Cons (G2)

C2 , newGraphs = Leaf Search (G1, SearchDepth , seenGraphs )
i f C2 :

# G2 i s a l e a f node , search can cont inue
# on G1 wi thout branching .
seenGraphs = seenGraphs + newGraphs
return G, Find Nonbranching Cons (G1)

return None # Fai l ed to f i nd a cons t ruc t i on .

Listing 4.8: Find a construction with branches of specified depth limit using
the leaf search of Listing 4.7.
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Chapter 5

Example Constructions

In Chapter 2, we show a minimum construction for the Grötzsch graph that we

found by hand. We have applied the search ideas described in Chapter 4 to find

constructions of additional triangle-free graphs and present those constructions

here.

5.1 The Chvátal Graph

The Chvátal graph is a 4-regular, 4-chromatic graph of 12 vertices [4]. See

Figure 5.2 for a construction for this graph.

32
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8 9

5

7

0

10 11

1

Figure 5.1: The Chvátal graph.

Figure 5.3 shows the DAG map. This DAG is very similar to the DAG

of the construction of the Hajós graph, illustrated in Figure 3.2a, though the

intermediate and final graphs differ between the two constructions.

By Lemma 2.3.2, there cannot be a length-three construction of the Chvátal

graph. Our construction is length four, and thus the Chvátal graph has Hajós

number four.
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Figure 5.2: A shortest construction of the Chvátal graph, found by our al-
gorithm. This construction has length four. A bold arrow between graphs
indicates an Ore merge, where vertices with the same label are identified. The
7→ arrow indicates an isomorphic copy of a graph with a relabelling of its ver-
tices. For internal graph edges, a bold edge indicates the edge introduced by
the Ore merge in constructing the graph, and a dashed arrow indicates the
edge that will be deleted in the following Ore merge construction step.
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K4 5w I2 CI3

Figure 5.3: The DAG map for Figure 5.2.

5.2 The 13-Cyclotomic Graph
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Figure 5.4: The 13-Cyclotomic graph.

The cyclotomic graph of order 13 is another 4-chromatic, triangle-free, and

4-regular graph [21, 20]. We have found a construction of length four. Again

by Lemma 2.3.2, we know this is a minimum construction, and that this graph

has Hajós number four.

HK4 I2 I1 13Cy

Figure 5.5: A DAG map for the 13-Cyclotomic graph. See Figure 5.6.

The DAG of this construction, see Figure 5.5, has a different form from

that of the Grötzsch and Chvátal constructions, though they are the same

length.

42



12
11

10

9

8
7 6

5

4

3

2
1

0

12
11

10

9

8
7 6

5

4

3

2
1

0
12

11

10

9

8
7 6

5

4

3

2
1

0

12
11

10

9

8
7 6

5

4

3

2
1

0

12
11

8
7

4

3

0

11

10

9

6
5

2
1

12

9

8
7

4

3

0

9

8

4

3 12

8
7

0

Figure 5.6: A shortest construction of the 13-cyclotomic graph, found by our
algorithm. This construction has length four and is illustrated following the
same conventions as Figure 5.2.

43



5.3 The Brinkmann Graph
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Figure 5.7: The Brinkmann graph.

The Brinkmann graph is a 21 vertex 4-regular, 4-chromatic graph of girth

five [3]. So this graph has no triangles or 4-cycles. We show a construction

of length 13 for the Brinkmann graph. Due to the length of this construction

and the size of this graph, Lemma 2.3.2 does not apply, and we do not know

if this is a minimum construction. Thus, we do not know the Hajós number

for the Brinkmann graph.

I8

K4 H

I10

I11 I9

I7
I6

I5 I4 I3

I2 I1 B

Figure 5.8: A DAG map for the Brinkmann graph, found by our algorithm.

The operations of this construction are described in Table 5.1.
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K41 4-clique labeled: (4, 5, 8, 10)
K42 4-clique labeled: (1, 7, 8, 9)
H1 K41(8, 5) +H K42(8, 7)
H2 Relabel H1 (1, 4, 5, 7, 8, 9, 10) 7→ (8, 5, 15, 13, 1, 9, 16)
H3 Relabel H1 (1, 4, 5, 7, 8, 9, 10) 7→ (2, 7, 5, 4, 1, 8, 9)
H4 Relabel H1 (1, 4, 5, 7, 8, 9, 10) 7→ (8, 7, 5, 14, 1, 11, 9)
I10 H1(5, 10) +H H2(5, 16)
I102 Relabel I10 (1, 2, 8, 9, 11, 13, 14, 17, 19, 20) 7→ (1, 4, 5, 7, 8, 9, 10,

13, 15, 16)
I8 H3(8, 2) +H H3(8, 11)
I82 Relabel I8 (1, 2, 4, 5, 7, 8, 9, 11, 14) 7→ (8, 4, 2, 20, 9, 1, 13, 10, 16)
I11 I10(5, 1) +H I8(5, 9)
I9 I102(1, 13) +H I11(1, 9)
I7 I9(20, 8) +H I82(20, 13)
K43 4-clique labeled: (0, 1, 3, 8)
I6 K43(8, 0) +H I7(8, 9)
I5 K43(8, 0) +H I6(8, 4)
I52 Relabel I5 (0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20)

7→ (2, 1, 0, 11, 4, 10, 16, 14, 20, 5, 3, 17, 8, 12, 7, 13, 19, 9)
I4 I5(1, 8) +H I52(1, 14)
I3 I4(1, 16) +H K43(1, 18)
I2 I3(1, 11) +H K43(1, 18)
I22 relabel I2 (0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20) 7→ (1, 0, 9, 3, 7, 5, 4, 6, 2, 12, 13, 10, 11, 15, 14, 17, 16, 19,
18, 20)

I1 I2(3, 18) +H I22(3, 19)
I12 Relabel I1 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20) 7→ (1, 9, 0, 7, 3, 8, 5, 13, 12, 19, 6, 4, 15, 17, 10, 14, 11, 16, 2,
20, 18)

B I1(1, 0) +H I12(1, 9)

Table 5.1: Operations of a Hajós construction of the Brinkmann graph. Sam-
ples of the intermediate graphs are illustrated in figures 5.9 and 5.10. In this
construction, each Hajós sum operation is followed by identifying all vertices
that share a label.
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(a) The Hajós graph.
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(f) Intermediate graph 5.

Figure 5.9: Intermediate graphs of our construction of the Brinkmann graph.
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(a) Intermediate graph 6.
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(b) Intermediate graph 7.
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(c) Intermediate graph 8.
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(d) Intermediate graph 9.
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(f) Intermediate graph 11.

Figure 5.10: Intermediate graphs of our construction of the Brinkmann graph,
continued.
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5.4 The 5-Chromatic Mycielski Graph
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Figure 5.11: M5: the 5-chromatic Mycielski graph.

Mycielski gives a graph construction showing that a triangle-free graph

exists for any chromatic number k [16, 5]. Define Mk as the k-chromatic

Mycielski graph, where M3 is the 5-cycle and M4 is the Grötzsch graph. Fig-

ure 5.11 illustrates M5. This graph has 23 vertices, is triangle-free, and is

5-chromatic.

Due to the size of the search space, we were unable to find a construc-

tion for this graph using the approach described in Section 4.5. Instead, we

hand-guided the search based on selecting triples, finding resulting critical

subgraphs, and then applying the search algorithm to the resulting graph. We

were able to find a length-24 construction. See Figure 5.12 for the DAG map.

We do not know the minimum length of a construction for M5. The operations

of this construction are described in Table 5.2 and Table 5.3.
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Figure 5.12: DAG map of a length-24 construction of M5. The top four steps,
I4-I3-I2-I1-M5, were found by hand; our algorithm then found the rest of the
construction.
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K51 5-clique labeled: (2, 3, 8, 15, 22)
K52 5-clique labeled: (1, 3, 8, 13, 22)
I11 K52(22, 1) +H K51(22, 2)
I112 Relabel I11 (1, 2, 3, 8, 13, 15, 22) 7→ (0, 1, 8, 15, 22, 2, 3)
I10 I11(1, 3) +H I112(1, 15)
I102 Relabel I10 (0, 1, 2, 3, 8, 13, 15, 22) 7→ (12, 5, 15, 8, 22, 21, 0, 7)
I9 I10(8, 3) +H I102(8, 7)
I103 Relabel I10 (0, 1, 2, 3, 8, 13, 15, 22) 7→ (5, 21, 7, 0, 22, 8, 12, 15)
I8 I9(15, 2) +H I103(15, 12)
I104 Relabel I10 (0, 1, 2, 3, 8, 13, 15, 22) 7→ (12, 5, 15, 8, 22, 21, 0, 7)
I7 I8(8, 1) +H I104(8, 7)
I105 Relabel I10 (0, 1, 2, 3, 8, 13, 15, 22) 7→ (7, 3, 13, 8, 22, 15, 1, 0)
I106 Relabel I10 (0, 1, 2, 3, 8, 13, 15, 22) 7→ (1, 5, 15, 8, 22, 21, 0, 7)
I14 I105(8, 1) +H I106(8, 7)
I142 Relabel I14 (0, 1, 5, 7, 13, 15) 7→ (1, 11, 6, 9, 4, 13)
I143 Relabel I14 (0, 1, 5, 7, 8, 13, 15, 21) 7→ (8, 21, 6, 9, 1, 7, 13, 11)
I18 I142(9, 1) +H I143(9, 8)
I182 Relabel I18 (1, 3, 4, 6, 7, 8, 9, 11, 13, 21) 7→ (8, 1, 5, 9, 13, 4, 7, 21,

11, 3)
I17 I18(8, 1) +H I182(8, 11)
I172 Relabel I17 (1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 21) 7→ (5, 8, 11, 4, 7, 15, 9,

13, 1, 21, 3)
I16 I17(8, 4) +H I172(8, 11)
I15 I14(22, 0) +H I16(22, 9)
I13 I14(22, 0) +H I15(22, 6)
I12 I7(22, 0) +H I13(22, 1)
I6 I7(22, 0) +H I12(22, 4)
I72 Relabel I7 (0, 1, 2, 8, 12, 13, 21) 7→ (8, 10, 9, 0, 21, 20, 12)
I19 I7(7, 0) +H I72(7, 8)
I5 I6(0, 7) +H I19(0, 22)
I173 Relabel I17 (1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 21) 7→ (7, 8, 13, 1, 9, 12, 6,

15, 3, 21, 0)
I162 Relabel I16 (1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 21) 7→ (13, 0, 15, 3, 21,

1, 10, 12, 8, 6, 20, 7)

Table 5.2: Operations of a Hajós construction of M5. Additional operations
are shown in Table 5.3. Each Hajós sum operation is followed by identifying
all vertices that share a label.
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I23 I173(22, 9) +H I162(22, 10)
I232 Relabel I23 (0, 1, 3, 6, 7, 12, 13) 7→ (3, 2, 0, 7, 6, 13, 12)
I22 I23(22, 1) +H I232(22, 2)
I233 Relabel I23 (1, 3, 6, 7, 8, 9, 10, 12, 13, 15, 20, 21) 7→ (12, 10, 1, 8, 3,

6, 2, 15, 7, 20, 17, 13)
I183 Relabel I18 (1, 3, 4, 6, 7, 8, 9, 11, 13, 21) 7→ (2, 10, 7, 15, 17, 12, 20,

3, 8, 0)
I24 I233(22, 1) +H I183(22, 2)
I21 I22(22, 6) +H I24(22, 10)
I20 I19(8, 0) +H I21(8, 12)
I4 I5(0, 8) +H I20(0, 22)
I42 Relabel I4 (1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 15, 17, 20) 7→ (4, 3, 2, 1, 9, 8,

7, 6, 15, 14, 12, 20, 17)
I3 I42(22, 2) +H I4(22, 3)
I32 Relabel I3 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20) 7→ (3,

4, 0, 1, 2, 8, 9, 5, 6, 7, 14, 15, 11, 12, 13, 20, 18)
I2 I32(22, 6) +H I3(22, 7)
I22 Relabel I2 (0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 20) 7→ (1, 0, 4,

2, 6, 5, 9, 7, 12, 11, 15, 13, 16, 20, 18)
I1 I22(22, 6) +H I2(22, 5)
I12 Relabel I1 (1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 20) 7→ (4, 3, 2,

1, 9, 8, 7, 6, 15, 14, 13, 12, 20, 19, 17)
M5 I12(22, 7) +H I1(22, 8)

Table 5.3: Operations to Hajós construct M5, continued. Each Hajós sum
operation is followed by identifying all vertices that share a label.
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Chapter 6

Hajós and Ore

Hajós’ proof that all graphs are Hajós constructible also proves that all graphs

are Ore constructible. Urquhart shows a further equivalence between the Hajós

operations and the Ore operation: even in the absence of the supergraph rule,

any graph that can be constructed via a sequence of Ore merges and vertex

identifications can also be constructed via a sequence of only Ore merges [19].

However, there is an important difference between the systems. In a Hajós

construction, any two non-adjacent vertices in a graph can be merged at any

time, but in an Ore construction a vertex cannot be merged with another ver-

tex in the same graph. Instead, vertices are merged only when two graphs

are combined to construct a new graph, and vertices may merge only across

the two input graphs. We find that the ability to perform these interior ver-

tex merges gives the Hajós construction additional computational power that

distinguishes it from the Ore construction.

To examine the difference between the constructions, we build on the work

of Pitassi and Urquhart, who use somewhat different terminology than we

have been using so far: a graph calculus is a collection of initial graphs and a

finite collection of rules that allow the derivation of new graphs [18]. As we

note in earlier chapters, both the Hajós and Ore construction systems define

a calculus for proving chromatic numbers of graphs. We have thus far been

concerned with construction length, but here we look at size. The size of a

graph is the number of edges in the graph, and the size of a construction is

the total size of all of the non-isomorphic graphs in the construction. Note
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that the size of a construction is polynomially related to its length [18].

Given two graph calculus systems, C1 and C2, then C1 polynomially simu-

lates C2 if there is a polynomial time computable function f , such that for all

graphs G, if c1 is a construction of G in C2, then f(s) is a construction of G

in C1. C1 and C2 are polynomially equivalent if C1 polynomially simulates C2,

and C2 polynomially simulates C1.

Pitassi and Urquhart prove that the Hajós calculus is polynomially equiv-

alent in computational complexity to extended Frege proof systems [18]. As

part of this work, they define a graph calculus, HC, that is similar to the Hajós

calculus. HC, like the Hajós calculus, begins with the clique graph and also

allows non-adjacent vertices to be merged. But HC replaces Ore merge with

Edge Elimination.

Edge Elimination: Let G1 and G2 be graphs that include the edge (v1, v2),

where G1 and G2 are isomorphic except that G1 has the additional edge

(v1, v3) and G2 has the additional edge (v2, v3). Edge Elimination con-

structs the graph G3 that is obtained by removing the edge (v1, v3) from

G1.

Notice that Edge Elimination can be simulated by Hajós sum and vertex

merge operations the same way our add-edge operation, defined in Section 3.3,

can be simulated by Hajós construction operations. Our top-down search

approach using add-edge produces constructions that map directly to Edge

Elimination based HC constructions.

Pitassi and Urquhart also define a proof system they call HC-. This system

is the same is as HC, except that it does not allow vertex merges.

The full rules of HC- are as follows:

1. Clique base: Start with a k-clique.

2. Edge Elimination: Let G1 and G2 be graphs that include the edge

(v1, v2), where G1 and G2 are isomorphic except that G1 has the ad-

ditional edge (v1, v3) and G2 has the additional edge (v2, v3). Edge Elim-
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ination constructs the graph G3 that is obtained by removing the edge

(v1, v3) from G1.

3. Supergraph: Take any existing graph and add any set of vertices and

edges.

Pitassi and Urquhart show that graphs with non-polynomial minimum HC-

constructions exist. Precisely, they show the following:

Theorem 6.0.1. (Pitassi and Urquhart [18]) There exists a family of non-

3-colorable graphs {Gn | n ∈ N} such that for n sufficiently large, any HC-

construction of Gn has size at least 2nε, for some ε, 0 < ε < 1.

We will use this theorem to show that the Ore calculus has non-polynomial

constructions by showing that HC- polynomially simulates the Ore calculus.

The full rules of the Ore calculus are as follows:

1. Clique base: Start with a k-clique.

2. Ore merge: Given graphs G1 and G2 with disjoint vertex sets, an edge

(x1, y1) of G1, an edge (x2, y2) of G2, a vertex subset S1 of G1−x1, and

a bijection γ : S2 ↔ S1 where S2 is a subset of G2−x2, the Ore merge

G3 = O+(G1, G2, (x1, y1), (x2, y2), S1, S2, γ) is the graph obtained by the

Hajós sum G3 = G1(x1, y1)+HG2(x2, y2) followed by identifying vertices

v, γ(v) for all v in S2.

3. Supergraph: Take any existing graph and add any set of vertices and

edges.

We demonstrate the equivalence of HC- and the Ore calculus following the

form used by Pitassi and Urquhart to demonstrate the equivalence of HC and

the Hajós calculus.

Theorem 6.0.2. HC- is polynomially equivalent to the Ore Calculus.

Proof. As both systems include the Clique base and Supergraph rules, it re-

mains to show that Edge Elimination can polynomially simulate Ore merge
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and vice versa. Consider a graph G1 with the edge (v1, v2) and a graph G2

with the edge (v3, v4). Generate a graph G by applying Ore merge on the

noted edges of G1 (v1, v2) and G2 (v3, v4). Without loss of generality, we allow

the generation of G to include any number of vertex merges, as long as each

of the vertices being merged originated in one of the two independent graphs,

as the Ore merge step permits. We wish to construct G using the HC- rules.

By the constraints of the Ore merge, G must be a supergraph of G1, with the

exception that G does not contain the edge (v1, v2). We create a supergraph

of G1, G
′
1, which is equivalent to G with the additional edge (v1, v2). Simi-

larly, we create G′
2 as the supergraph of G2 that is equivalent to G with the

addition of the edge (v3, v4). Using the Edge Elimination rule of HC-, we can

now create G from G′
1 and G′

2 by eliminating the edge (v1, v2) or (v3, v4).

Conversely, let graphs G1 and G2 be isomorphic, except that G1 has an

additional edge (v1, v2), and G2 has an additional edge (v1, v3), where both

graphs have the edge (v2, v3). Using HC-, let G be a graph generated by

Edge Elimination on G1 and G2, and is thus identical to G1 with the edge

(v1, v2) removed. G is generated from G1 and G2 under the Ore construction

by eliminating (v1, v2) and (v1, v3), merging the vertices v1 across the two

graphs and creating an edge between vertex v2 in G1 and v3 in G2. Then

every vertex of G2 is merged with the corresponding vertex of G1, as defined

by the isomorphism between G1 and G2.

The mapping from Ore merge to Edge Elimination is illustrated in Fig-

ure 6.1.

By the equivalence to HC-, there must exist families of graphs which cannot

be Ore constructed in size polynomial to the size of the graph. This extension

to Pitassi and Urquhat’s works implies an important distinction between the

Ore construction and the Hajós construction. Graphs exist that have non-

polynomial minimum Ore constructions, but it is not known if graphs exist

which have non-polynomial minimum Hajós constructions.

This difference between the constructions does not impact our proof that

the Hajós number for the Grötzsch, Chvátal, and 13-Cyclotomic graphs is four.
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G1

v1

v2

G2

v3

v4

v2

v1

v4
G

(a) A graph G is obtained via Ore merge on
G1 (v1, v2) and G2 (v3, v4) with the identi-
fication of some number of vertices.

v2

v3

v4
G2'

v2

v1

v4
G1'

v2

v1

v4
G

G1

v1

v2

G2

v3

v4

(b) To construct G under HC-, obtain G1’
from G1 and G2’ from G2 via Supergraph.
G is obtained from G1’ and G2’ via Edge
Elimination.

Figure 6.1: Simulating an Ore merge in HC-.

While each of the constructions we have demonstrated is an Ore construction,

our proof that a triangle-free 4-chromatic graph of less that 14 vertices can-

not be constructed in length less than four considers the full range of Hajós

operations, and holds for both Hajós and Ore constructions.

6.1 Hajós Versus Ore

By the previous theorem, we know there are families of graphs that have

minimum Ore constructions of greater than polynomial size, while Hajós con-

structions may be polynomial. The difference between Pitassi and Urquhart’s

HC and HC-, and by extension between Hajós and Ore, is the option to merge

arbitrary vertices at any point in the construction. That arbitrary merge has

two implications for differences in constructions. One is that the depth of an

Ore construction is bounded, since Ore constructions are monotonically in-
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creasing, whereas a Hajós construction for a graph might include intermediate

graphs with more vertices than the target graph. It may be possible that there

are graphs with minimum constructions that follow this pattern.

A second implication of the arbitrary merge option is that it can be used

to reduce construction sizes by taking advantage of additional isomorphisms

between intermediate graphs in a construction. Under the Hajós rules, one

can take a copy of an already constructed graph G1 and identify a vertex to

create a new graph, G2, and use this new graph in the construction without

requiring any further construction steps for G2. Under the Ore rules, this is

not allowed. To use G2 in an Ore construction, it would have to be constructed

separately from G1. See Figure 6.2.

6.2 Top-Down Search with Vertex Merges

As noted in Chapter 4, the top-down search approach that we have developed

derives Ore constructions. Since it is possible that the vertex identification

operation may allow for smaller constructions, we consider an extension to the

top-down algorithm to account for this difference. To modify our top-down

search to cover the full range of Hajós constructions, consider a vertex split

operation used in addition to add-edge, as described in Section 3.3.

Vertex Split: Given a k-chromatic graph G, generate G′ as follows. Create G′

as copy of G and select a vertex v with degree d greater than k. Create

two vertices v1 and v2. Connect k to d-1 of v’s neighbours to v1, and

connect k to d-1 of v’s neighbours to v2, such that all of v’s neighbours

are connected to one of v1 or v2. Remove v from G′, and perform a

graph-colouring search to attempt to k-1 colour G′. If G′ cannot be

k-1 coloured, then G′ is a valid candidate for a top-down search for

a construction of G. Note that G can be Hajós constructed from G′

through identifying vertex v1 with v2.

While Vertex Split allows for a top-down search that explores the full pos-

sibility space of Hajós constructions, it is not practical. When generating a
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(a) A Hajós construction of a graph. The
final step involves vertex merges on the ver-
tices marked in white. This results in a final
graph with reduced subgraph isomorphism.

(b) An Ore construction of the same graph.

K4 H I1 RI2

K4

H I3

R

5W I4

(c) The DAG maps of the two constructions.
Note that the Ore construction requires one
extra intermediate graph.

Figure 6.2: A demonstration of a smaller Hajós construction and a larger Ore
construction for a graph.
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new graph via vertex split, one needs to test if the graph is (k-1)-chromatic,

which would impose significant overhead on a search algorithm. Addition-

ally, because splitting a vertex will increase the degree of at least some of the

neighbouring vertices, the number of graphs that can be generated by a vertex

split seems to be unbounded. This indicates that the search space cannot be

exhaustively explored without first finding a bound via some other method.

It is unclear if a top-down search including a vertex split would offer any

advantages over a bottom-up search. To find minimum Hajós constructions,

new techniques and optimizations will be needed.
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Chapter 7

A Sequence of (k-1)-Clique-Free
k-Chromatic Graphs

Using a brute force search, Jensen and Royle found that there are 56 5-

chromatic 4-clique-free graphs with 11 vertices [11]. As an exercise, the reader

might like to try to find one of these graphs before reading the rest of this

chapter. We have found a sequence that, for any k greater than four, gener-

C5 C6

C7

Figure 7.1: The 5-chromatic, 6-chromatic, and 7-chromatic graphs of our se-
quence.
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ates a k-chromatic (k-1)-clique free graph with only 2∗k+1 vertices. C5 is the

11-vertex graph from our sequence, one of the 56 found by Jensen and Royle.

See Figure 7.1. This sequence is defined by a simple set of Hajós construction

steps and produces small graphs.

In Section 2.3, we examined a construction that begins with 4-cliques and

produces a triangle-free graph in three Hajós sum operations. See Figures 2.4,

2.5, and 2.6. It is straightforward to see how this construction can be extended

to construct (k-1)-clique-free graphs by beginning with any k-clique where k

is greater than three.

We show a construction that produces (k-1)-clique-free graphs in two Hajós

sum operations for k greater than four. In addition to requiring one less sum

operation, this construction also produces smaller graphs than the previous

approach.

To construct Ck, the k-chromatic graph in our sequence, the following

Hajós operations are used:

1. With a k-clique K1, where k > 4, label one vertex v1 and a second vertex

v2. With a second k-clique, K2, label one vertex v′1, and a second vertex

v3.

2. Generate a graph S1 via Hajós Sum on K1 (v1, v2) +H K2 (v′1, v3).

3. In S1, merge two independent vertices not in {v1, v2, v3}. Perform this

step k-3 times. This results in a (k-3)-clique of hub vertices that is fully

connected to a set of vertices that form a 5-cycle. Label the two unla-

belled vertices of the 5-cycle as v4 and v5. Note that this step combined

with the previous step is a single Ore merge.

4. Take a copy of S1, S
′
1. Generate S2 via Hajós sum between a hub edge

of S1 and S ′
1. This yields a graph that is (k-1)-clique-free.

5. Create the final graph Ck from S2 by pairwise merging the two vertices

labeled v5 and the two vertices labeled v2. This reduces the size of

the graph by two vertices, while retaining the (k-1)-clique-free property.

61



Again note that this step combined with the previous step is a single

Ore merge.

These individual steps are illustrated in Figure 7.2 for C5.

V1

V2

V1'

V3

V1

V2 V3

V4

V1

V2

V5

V3

V4

V1

V2

V5

V3

V4

V1

V2

V5

V3

V4

V1

V2

V5

V3

V4

V1

V3

1.

2.

3.

4.

5.

Figure 7.2: Our construction of C5. In step 3, hub vertices are grey.

We now examine how these construction steps yield a (k-1)-clique-free

graph of 2k+1 vertices. The construction begins with the combination of

two k-cliques into a graph with a cycle of five surrounding vertices and k-3

hub vertices. See step three of Figure 7.2. Observe that in these wheel-like

graphs, any (k-1)-clique subgraph must include all of the hub vertices. This

indicates that a (k-1)-clique-free graph can be generated by eliminating an

edge between any pair of hub vertices. We do this by performing a Hajós sum

between two copies of the wheel graph. With the initial wheel graphs we have

five outer vertices plus k-3 hub vertices, resulting in k+2 vertices. In step
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4, Hajós summing the two graphs yields a graph that has 2∗(k+2)-1=2k+3

vertices. This Hajós sum eliminates all (k-1)-clique subgraphs.

On the resulting graph, we have a single vertex that was merged as part of

the Hajós sum, two sets of vertices that compose the remaining hub vertices

from the input graphs, and two sets of vertices that compose the outer five

cycles from the input graphs. Select two non-adjacent vertices from one five

cycle, and merge them with two non-adjacent vertices from the second five

cycle. This yields a k-chromatic, (k-1)-clique-free graph of 2k+1 vertices.

Our sequence demonstrates that k-chromatic (k-1)-clique-free graphs can

be obtained from length-two Hajós constructions for any k greater than four.

In contrast, from Section 2.3 we know that a construction of length three is

required to obtain a 4-chromatic triangle-free graph.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Motivated by the aim of finding Hajós constructions for some interesting

graphs, we have investigated using computer search to generate Hajós con-

structions.

Our work uses Hajós’ proof to develop a top-down search approach that

is effective for finding constructions for small triangle-free graphs. Using this

approach, we have found provably minimum constructions for the Grötzsch

graph, the Chvátal graph, and the 13-cyclotomic graph. By proving these con-

structions are minimum, we have demonstrated the Hajós numbers for these

graphs to be four. We have also found constructions for the Brinkmann graph

and Mycielski’s 5-chromatic graph. These are the first published constructions

for all of the graphs that we have considered.

Our work also builds on the work of Pitassi and Urquhart, proving that

Ore’s construction is not polynomially bounded. We examined this difference

in power between the Ore construction and the Hajós construction, and we

explored the impact this result has on the difficulty in finding minimum Hajós

constructions for graphs.

We have also defined a sequence of graphs that are k-chromatic, (k-1)-

clique-free of order 2k+1 that can be constructed in two Ore merge steps.
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8.2 Future Work

The barriers that we encountered with optimization in our top-down search

approach show some of the difficulty inherent in the problem of finding small

Hajós constructions. These challenges present an interesting combinatorial

search problem. Despite the difficulty in applying search optimization ap-

proaches such as branch and bound, it may be possible to make progress in

this area, allowing for a more efficient search, and finding constructions for

larger graphs.

We have also found that proving a lower bound on construction lengths

is quite difficult. Our work in Section 2.3 provides a lower bound for small

triangle-free 4-chromatic graphs. But it is unclear how to approach proving

lower bounds, and thus Hajós numbers for larger graphs. We have seen that

exhaustively searching for minimum constructions is awkward due to the size

of the search spaces. However, further optimization work could allow for ex-

haustive searches to be performed. This may allow Hajós numbers to be found

for more graphs.
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