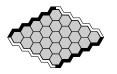
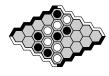
Hex Rules and Properties Related Work New Techniques Results and Analysis Summary

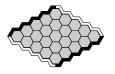
Solving 8 × 8 Hex

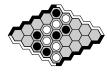

Philip Henderson


Department of Computing Science University of Alberta Edmonton, Alberta, Canada

Joint work with Broderick Arneson and Ryan B. Hayward

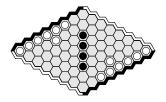
Hex Rules and Properties




Rules

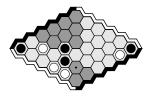
- Two players alternate turns playing on any empty cell
- Stones are permanent (no moving or capturing)
- Goal is to connect your two sides of the board

Hex Rules and Properties

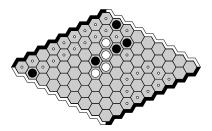


Properties

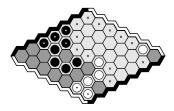
- Extra P-stones never disadvantageous for player P
- Draws are impossible
- First player wins: strategy-stealing argument
- Determining winner is PSPACE-complete


Previously Solved States

- Last milestone for automated Hex solvers in 2004
- All 7 × 7 openings solved in two weeks (Hayward et al)
- By hand, humans have solved centre opening on 9×9 (Yang) and a few openings on 8×8 (Mishima et al, Yang)


H-Search

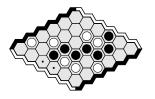
- H-Search: algorithm that deduces existing connection strategies in a given Hex position (Anshelevich)
- Virtual connections (VC): 2nd-player connection strategy
- Semi-connections (SC): 1st-player connection strategy
- Carrier: empty cells required for a connection strategy


Mustplay

- Identifying a winning VC terminates search
- Identifying winning SCs immediately prunes losing moves
- Mustplay: intersection of winning opponent SC carriers

Inferior Cell Analysis

- Graph-theoretic properties and combinatorial game theory
- Fill-in: can add stones to the board without changing its win/loss value
- Reversible and dominated moves: can be pruned from consideration

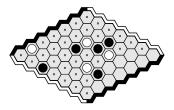



Opposite Color Bridges

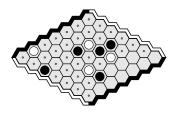
- If a P-chain is adjacent to both P edges, then splits board into two independent regions
- Easy to detect these decompositions, but very rare
- Opposite-color bridges: can treat the two carrier cells as non-adjacent

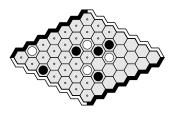
Split Decompositions

- Two chains touch if they are adjacent or form an opposite-color bridge
- Split decomposition: when a P-chain touches both P-edges


Four-Sided Decompositions

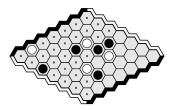
- Four-sided decomposition: a 4-cycle of touching Black and White chains
- If player P has a VC connecting the two P-chains of a four-sided decomposition, the region can be filled-in with P-stones


Proof Set Pruning

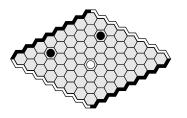


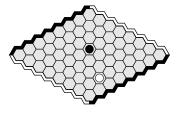
- During search we identify previously-unknown winning SCs
- Can use discovered SCs to further reduce mustplay
- The smaller the SC carrier, the more moves can be pruned

Proof Set Reduction



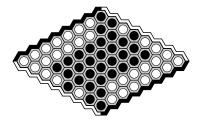
- Given a discovered SC, we try to shrink its carrier
- Cells outside the SC for player P can be assigned to \overline{P}
- Inferior cell analysis may identify \overline{P} -fill-in
- These cells can be deleted from the SC's carrier


Proof Set Transpositions



- While solving states we track the winning strategy's carrier
- The losing player's stones can be any combination of cells outside of this carrier
- We can store the result for all these combinations as well

Player Exchange Transpositions



- Want to translate a solved state to equivalent ones with players reversed
- Mirroring stones and reversing their colors is not adequate
- Stone must be added or removed; depends on player to move and who won

Current Results

- 7 × 7: 10 minutes
- ullet 8 imes 8: 300 hours and 10⁸ internal nodes
- ullet 9 \times 9: Cannot solve any opening in two weeks time

Feature Contributions on 7 × 7

feature f	only f off		only f on	
	time	nodes	time	nodes
rotation/transposition deduction	2.17	2.22	0.43	0.43
decompositions	1.29	1.51	0.68	0.61
proof set reduction	0.98	1.01	1.03	0.87

Summary

- New: decompositions, proof set reduction, transposition deductions
- Enhanced H-search, inferior cell analysis
- First automated solver for 8 × 8 Hex openings

Future Work

- ullet 9 imes 9 at least 3 magnitudes more difficult
- Depth-first proof-number search (parallelized)
- Further improve inferior cell analysis, decompositions, etc

Any Questions?

Thanks to:

- NSERC, iCORE, AIF, Martin Müller, Jonathan Schaeffer, Lorna Stewart for funding support
- University of Alberta GAMES group and referees for helpful comments