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Hex

● White and Black alternate placing stones
● Winner is the player who connects their two sides by an unbroken group of stones
● On the order of 10^80 states for 13x13



Reinforcement learning 
● In supervised learning we want to learn to approximate a function from a large 

amount of input-output examples
● By contrast Reinforcement learning seeks to build algorithms which allow 

agents to learn to choose actions to maximize some cumulative reward in an 
initially unknown environment

● Despite the difference in goals we can often apply many of the same 
techniques



Basic Reinforcement learning Definition
State (S): Immediate information available to the agent at the current time-step

Action (A): Choice made by the agent from some set, based on current state, 
which in general affects the next state and reward received

Reward (r): Scalar value supplied by the environment after each action, the agent 
tries to maximize the cumulative reward (also called return) in each episode

Policy (π(A,S)): Probability distribution defining probability of taking each action 
from each state  

Action Value (Qπ(S,A)): Expected sum of rewards received by the agent if they 
take action A from state S and then follow policy π



● In Q-learning the agent tries to learn the action values Q(S,A) for each 
state-action pair and then follows the policy which picks the optimal action in 
each state

● In each time step the estimated value of the action chosen is updated 
according to:

● In Deep Q-learning a neural network is used to estimate Q(S,A) which takes 
an encoding of the state S as input and outputs a vector of values for all 
available actions. The update above is performed as a gradient step.

(Deep) Q-Learning



Our State Representation
● State of hex board is encoded by a tensor with 2 spatial dimensions and 6 

channels as follows:
○ White stone present
○ Black stone present
○ Black stone group connected to North edge
○ Black stone group connected to South edge
○ White stone group connected to East edge
○ White stone group connected to West edge

● In addition to the actual board there are 2 cells of padding on each side which 
are edge connected by default and belong to the player trying to connect that 
edge.



Our Reward Structure
● We use the convention that a win is worth +1 reward and a loss is worth -1 

reward, rewards for all time-steps which do not end the game are 0
● Since we are in the “episodic case” we use a discount factor of 1 meaning a 

win one move ahead is just as valuable as a win 20 moves ahead
● Thus all action-values lie between 1 and -1 and correspond to the network's 

estimate of P(win)-P(loss)



Our Model
● Our model was inspired by that used by Deep-Mind’s alphaGo
● Model consists of a convolutional neural network with 10 convolutional layers 

and one fully connected layer at the output
● Each convolutional layer includes some 5 by 5 and some 3 by 3 convolutions 

for a total of 128 filters in each layer, the ratio of 3 by 3 to 5 by 5 increases 
toward the higher layers

● Convolutions are hexagonal rather than square, to hopefully better capture 
the games notion of locality



Input 
Boardstate
17 x 17 x 6

Layer 0
(Conv + ReLU) 
D3 = 48
D5 = 80

Layer 4
(Conv + ReLU) 
D3 = 112
D5 = 16

Layer 9
(Conv + ReLU) 
D3 = 128
D5 = 0

Fully Connected Layer + 
Sigmoid Activation

Q(a,s) over all 169 cells



Our Model
● Each layer outputs over the whole board in space and is zero padded to 

maintain the same size as the input
● All activations are relu except the output which uses a sigmoid (necessary 

since Q-values must lie between 1 and -1) 
● No pooling layers are used



Our Q-learning Implementation 
● Our implementation was inspired by Deep Mind’s DQN for Atari:



Our Q-learning Implementation
● Like that work we use experience replay, wherein each 

State-Action-Reward-State pair is stored in a large memory from which 
random elements are drawn  each step to perform a batch update (batch size 
64 in our case)

● Our network only learns to play as white and the board is transformed such to 
the equivalent black state when it plays as black

● Our target differs from the one in the DQN algorithm in that the target is given 
as the negation of our opponents best available move in the next state rather 
than our own best available move (we seek to make our opponent’s next state 
as bad as possible, as opposed to making our own as good as possible)



Our Q-learning Implementation
● Training proceeds by drawing a start state from a database of games played 

by another strong agent (called wolve)
● It then proceeds by self play until the game ends making one batch update 

after each move
● During self play the agent follows the “epsilon greedy policy”, playing the 

move with the highest Q value most of the time but occasionally playing 
randomly to facilitate exploration



Mentoring
● Deep Q-learning is relatively slow since each step updates the evaluation of 

only one move and discovering strategies by random exploration takes time
● Also in our case reward is given only at the end of a game so the network 

takes a long time to propagate this reward back to mid/early game positions
● Thus to speed up initial training we first train the network to replicate a 

common hex heuristic based on electrical resistance 
● This serves the dual purpose of making mid-game update steps somewhat 

meaningful from the very start, and providing the network with some trained 
filters that give some useful information about the game



Results

Average magnitude of value assigned to each 
position encountered during training. Roughly 
measures how certain the network is about the 
value of positions.

Average magnitude of cost (difference between 
target value for action and current assigned 
value). Indicates how rapidly the network is 
learning.



Results
● Win-rate of final network v.s. Mohex, a strong search-based players with 1s 

search time over 1000 games as white and black
○ As white (2nd move): 2.1%
○ As black (1st move): 20.4%

● Note that mohex is a very complex and highly optimized Monte Carlo tree 
search based player, making use of many theorems for pruning moves and 
detecting wins early. Though the obtained winrate is quite low we consider it a 
reasonable success and an indication that the network could probably be 
incorporated into a search routine (perhaps even into mohex itself) to produce 
a strong player.



Future Work
● Augment the input space with more features to give tactical information 

specific to the game of hex such as virtual connections, dead cells and 
capture patterns

● Build a search based player using the trained network or incorporate it into an 
existing search player like mohex

● Use an actor-critic type method to train a policy network in addition to the Q 
network and see how this affects training time and effectiveness

● Continue training for a longer period of time to test the limits of the learning 
process

● Test the necessity of drawing initial positions from a state database, as well 
as heuristic supervised mentoring



Thank You!


