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Introduction: Game of Hex

Figure: Hex is played on rhombus
board.

I Invented in 1942, and in
1948 independently by John
Nash.

I Played on rhombus board,
11 ⇥ 11 most popular.

I Two-player, perfect
information, and zero-sum.

I No draws.



Introduction: Algorithmic Solving Hex

Facts we already know.

1. By strategy stealing, there is
a wining strategy for first
player from empty board.

2. The explicit strategy is
unknown.

3. Solving arbitrary position is
PSPACE-complete (Reisch
1981).

How to e�ciently solve Hex
positions by search?

Search Virtual Connections by
Hierarchical Algebra (Anshelevich
2000), but

H-Search is incomplete.

Needs Tree Search.



Introduction: Algorithmic Solving Hex

Tree search to solve Hex,

I Inferior Cells Analysis can be helpful for pruning

I H-Search helps detect early win or lose

With these techniques + Depth-first search
I 7x7 Hex is solved in 2004 (Hayward, Bjornsson, Johnson,

Kan, Po and Rijswijck),

I 8x8 Hex is solved in 2008 (Henderson & Hayward).

Solving even larger board sizes is di�cult,

Better tree search algorithms?



Review Proof Number Search

Proof number search (Allis et al. 1994).
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�(a) = min{�(b), �(c)}
�(a) = �(b) + �(c)
�(s)/�(s) is the minimum number
of leaf nodes to prove/disprove s.

Following �, �, there exists most
promising node to expand. (requires
the least e↵ort to solve the root!)

PNS is best-first, works in an iterative fashion:

1. Select an MPN

2. Expand MPN, set children’s proof and disproof number

3. Backup



Depth-first Proof number search

Problems of PNS

I Needs to save the whole tree

I Unnecessary traversal of the
tree even MPN does not
change

Alleviation: Depth-first PNS
(Nagai, 2002):

I Use of bounds to avoid
unnecessary traversal

I Use of fixed size
transposition table (TT)

Is the algorithm still complete with fixed size TT?

No, but usually works fine if not #nodes � TT.



Focused depth-first proof number search

Rethink of the definition of proof
and disproof number:

I Shape of the tree matters,
PNS exploits narrow and
deep branches.

Hex has near “uniform
branching factor”.

Solution: FDFPN
focus on promising nodes
(Henderson 2010).

I Resistance as move ordering

I Expands only µ · A(s) nodes.

Twice faster than DFPN in 8 ⇥ 8
Hex.

9 ⇥ 9 Hex openings are solved by parallel FDFPN (Pawlewicz &
Hayward 2014), took > 17 months.

Can we make FDFPN better?



Rethink the original FDFPN

Problems of the original FDFPN (Henderson 2010).

I Resistance often pathological

I “Artificial branching factor” is created in an uninformative
manner.

Redefine Focused DFPN..
with the help of neural nets..



Redesign FDFPN

General idea:

I Use policy neural net for move ordering

I Use value neural net to create “artificial branching factor”

The motivation:

I policy neural net has high top-k prediction accuracy.

I value net provides reliable estimation of the optimal value of
expanding node.



Redesign FDFPN with CNNs
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(l = |A(s)| ⇥ min{µ, 1 + v✓(s)} + 1,

L = {a 2 A(s)|P�(s, a) � P�(s, â)},

where â is the lth move in A(s).
===================)

v✓(s) 2 [�1.0, 1.0] is the output of the value net.
µ is parameter.
P�(s, a) is the prior probability from the policy net for state-action
(s, a).

Smaller v✓(s), smaller search window!



Redesign FDFPN with CNNs

Why smaller window when v✓ is small?

PNS favours “narrow” branches.
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Experiment: Game studied

8 ⇥ 8 Hex openings.
Tractable but non-trivial.
A Hex-board can be turn into an square board.



Experiments: Neural net architecture

input , shape 10 ⇥ 10 ⇥ 5

...

(1 ⇥ 1, 1) Conv

with position bias

reshape, softmax

4 repetition of

(3 ⇥ 3, 48) Con-

vution with bias,

followed by ReLU

Figure: Architecture for policy net

input , shape 10 ⇥ 10 ⇥ 5

...

(1 ⇥ 1, 1) Conv

with position bias

(1 ⇥ 1, 48) Conv

FC 48 units

FC , tanh

4 repetition of

(3 ⇥ 3, 48) Con-

vution with bias,

followed by ReLU

Figure: Architecture for value net



Experiments: policy and value net

Data: 6.5 ⇥ 105 state-action or state-value pairs.
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Figure: Top k prediction accuracy on the test data

MSE of value net: 0.083.



Experiments: compare policy net and Resistance
Could FDFPN perform better by just replacing its move ordering
function with policy net?
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I policy net is better at small winder factor.
I widening factor is close to 1, both recede to normal DFPN.

policy net selects better moves than Resistance.



Experiments: FDFPN-CNN

Solving all 8x8 opening positions:
Improvement:

I #expansion: 46.7%

I #time: 40% (with Tensorflow 1.0)



Experiments: further investigation of the value net

In the discovered solution graph, for each node,
compare the estimated value with ground truth.
A simple classifier:

f (s) =

(
1, if v✓(s) > 0

0, if v✓(s)  0

What is the error rate of f ?
about 14.3%.



Conclusions

Conclusion:

I FDFPN-CNN is stronger than FDFPN

Reason:

I Better move selection using policy net

I Creating “artificial” non-uniform branching factor with value
net.



Further work

Further improvement:

1. Better neural network design, perhaps residual neural net, and
more regularization..

2. Dealing with the imperfectness of the training data.

3. Exploiting AND/OR structure to improve the value estimation
accuracy.

4. Modify the calculation/initialization of proof and disproof
number with value net.
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