
Focused Depth-first Proof Number Search Using
Convolutional Neural Networks for the Game of

Hex

Chao Gao, Martin Müller, Ryan Hayward

Department of Computing Science,

University of Alberta, Edmonton, Canada

IJCAI August 23, 2017

Contents

Backgrounds
Game of Hex
Algorithmic Solving Hex
Proof Number Search, DFPN
Focused DFPN

Focused DFPN with CNNs
Problem of the original FDFPN
FDFPN with Policy and Value network

Experiments
Accuracies of policy and value net
Improvements

Conclusions

Introduction: Game of Hex

Figure: Hex is played on rhombus
board.

I Invented in 1942, and in
1948 independently by John
Nash.

I Played on rhombus board,
11 ⇥ 11 most popular.

I Two-player, perfect
information, and zero-sum.

I No draws.

Introduction: Algorithmic Solving Hex

Facts we already know.

1. By strategy stealing, there is
a wining strategy for first
player from empty board.

2. The explicit strategy is
unknown.

3. Solving arbitrary position is
PSPACE-complete (Reisch
1981).

How to e�ciently solve Hex
positions by search?

Search Virtual Connections by
Hierarchical Algebra (Anshelevich
2000), but

H-Search is incomplete.

Needs Tree Search.

Introduction: Algorithmic Solving Hex

Tree search to solve Hex,

I Inferior Cells Analysis can be helpful for pruning

I H-Search helps detect early win or lose

With these techniques + Depth-first search
I 7x7 Hex is solved in 2004 (Hayward, Bjornsson, Johnson,

Kan, Po and Rijswijck),

I 8x8 Hex is solved in 2008 (Henderson & Hayward).

Solving even larger board sizes is di�cult,

Better tree search algorithms?

Review Proof Number Search

Proof number search (Allis et al. 1994).

a

1,2

b

1,2

d

0,1

h

1,1

i

0,1

e

1,2

j

1,1

k

1,0

l

1,1

c

1,0

f

1,0

g

1,1

�(a) = min{�(b), �(c)}
�(a) = �(b) + �(c)
�(s)/�(s) is the minimum number
of leaf nodes to prove/disprove s.

Following �, �, there exists most
promising node to expand. (requires
the least e↵ort to solve the root!)

PNS is best-first, works in an iterative fashion:

1. Select an MPN

2. Expand MPN, set children’s proof and disproof number

3. Backup

Depth-first Proof number search

Problems of PNS

I Needs to save the whole tree

I Unnecessary traversal of the
tree even MPN does not
change

Alleviation: Depth-first PNS
(Nagai, 2002):

I Use of bounds to avoid
unnecessary traversal

I Use of fixed size
transposition table (TT)

Is the algorithm still complete with fixed size TT?

No, but usually works fine if not #nodes � TT.

Focused depth-first proof number search

Rethink of the definition of proof
and disproof number:

I Shape of the tree matters,
PNS exploits narrow and
deep branches.

Hex has near “uniform
branching factor”.

Solution: FDFPN
focus on promising nodes
(Henderson 2010).

I Resistance as move ordering

I Expands only µ · A(s) nodes.

Twice faster than DFPN in 8 ⇥ 8
Hex.

9 ⇥ 9 Hex openings are solved by parallel FDFPN (Pawlewicz &
Hayward 2014), took > 17 months.

Can we make FDFPN better?

Rethink the original FDFPN

Problems of the original FDFPN (Henderson 2010).

I Resistance often pathological

I “Artificial branching factor” is created in an uninformative
manner.

Redefine Focused DFPN..
with the help of neural nets..

Redesign FDFPN

General idea:

I Use policy neural net for move ordering

I Use value neural net to create “artificial branching factor”

The motivation:

I policy neural net has high top-k prediction accuracy.

I value net provides reliable estimation of the optimal value of
expanding node.

Redesign FDFPN with CNNs

s

A B C D E F

Sort A(s) by policy net
===============)

s

B D A E F C

s

B D A E F C

(l = |A(s)| ⇥ min{µ, 1 + v✓(s)} + 1,

L = {a 2 A(s)|P�(s, a) � P�(s, â)},

where â is the lth move in A(s).
===================)

v✓(s) 2 [�1.0, 1.0] is the output of the value net.
µ is parameter.
P�(s, a) is the prior probability from the policy net for state-action
(s, a).

Smaller v✓(s), smaller search window!

Redesign FDFPN with CNNs

Why smaller window when v✓ is small?

PNS favours “narrow” branches.

s
0.95

c1

�0.9

c2

�0.7

c3

�0.8

c4

0.1

v✓(s)

Smaller window forces PNS prefer node c

1

(Smaller proof/disproof
number).

Experiment: Game studied

8 ⇥ 8 Hex openings.
Tractable but non-trivial.
A Hex-board can be turn into an square board.

Experiments: Neural net architecture

input , shape 10 ⇥ 10 ⇥ 5

...

(1 ⇥ 1, 1) Conv

with position bias

reshape, softmax

4 repetition of

(3 ⇥ 3, 48) Con-

vution with bias,

followed by ReLU

Figure: Architecture for policy net

input , shape 10 ⇥ 10 ⇥ 5

...

(1 ⇥ 1, 1) Conv

with position bias

(1 ⇥ 1, 48) Conv

FC 48 units

FC , tanh

4 repetition of

(3 ⇥ 3, 48) Con-

vution with bias,

followed by ReLU

Figure: Architecture for value net

Experiments: policy and value net

Data: 6.5 ⇥ 105 state-action or state-value pairs.

0 1 2 3 4 5 6 7 8 9 10 11

50

55

60

65

70

75

80

85

90

95

100

k

A
cc

u
ra

cy
(
%

)

Figure: Top k prediction accuracy on the test data

MSE of value net: 0.083.

Experiments: compare policy net and Resistance
Could FDFPN perform better by just replacing its move ordering
function with policy net?

10000

15000

20000

25000

30000

35000

40000

45000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im
e
(s
)

Widening factor

FDFPN-resistance
FDFPN-p�

I policy net is better at small winder factor.
I widening factor is close to 1, both recede to normal DFPN.

policy net selects better moves than Resistance.

Experiments: FDFPN-CNN

Solving all 8x8 opening positions:
Improvement:

I #expansion: 46.7%

I #time: 40% (with Tensorflow 1.0)

Experiments: further investigation of the value net

In the discovered solution graph, for each node,
compare the estimated value with ground truth.
A simple classifier:

f (s) =

(
1, if v✓(s) > 0

0, if v✓(s) 0

What is the error rate of f ?
about 14.3%.

Conclusions

Conclusion:

I FDFPN-CNN is stronger than FDFPN

Reason:

I Better move selection using policy net

I Creating “artificial” non-uniform branching factor with value
net.

Further work

Further improvement:

1. Better neural network design, perhaps residual neural net, and
more regularization..

2. Dealing with the imperfectness of the training data.

3. Exploiting AND/OR structure to improve the value estimation
accuracy.

4. Modify the calculation/initialization of proof and disproof
number with value net.

	Backgrounds
	Game of Hex
	Algorithmic Solving Hex
	Proof Number Search, DFPN
	Focused DFPN

	Focused DFPN with CNNs
	Problem of the original FDFPN
	 FDFPN with Policy and Value network

	Experiments
	Accuracies of policy and value net
	Improvements

	Conclusions

