Solving Hex: Beyond Humans

Arneson Hayward Henderson

Comp Sci U of A Edmonton Alberta Canada

Sept 2010

Henderson

- 2010 ... our solver surpasses humans
- 9×9 Hex ... 53/81 openings

by hand ... early era

- 1942 Hein ... 4×4 ... easy-peasy
- 1942 Hein 5×5...lemon-squeezy
- 1957 Gardner 6×6?

by hand ... early era

- 1942 Hein4×4 ... easy-peasy
- 1942 Hein 5×5...lemon-squeezy
- 1957 Gardner 6×6?

Henderson

```
by hand ... early era
```

- 1942 Hein ... 4×4 ... easy-peasy
- 1942 Hein 5×5...lemon-squeezy
- 1957 Gardner 6×6 ?

```
by hand ... early era
```

- 1942 Hein ... 4×4 ... easy-peasy
- 1942 Hein 5×5...lemon-squeezy
- 1957 Gardner 6×6?

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 2001 Yang 7×7 17/49 (40 templates 12 pages)
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7 (union connection)
- 2005 Noshita 8×8
- 2006 Mishima et al. 8×8

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ...capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- $0...7 \times 7$ 49/49
- ... connections: H-search, mustplay
- ...capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ... connections: H-search, mustplay
- ...capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ... capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ...capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ...capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ... capture pattern

- 1995 Enderton 6×6
- 2000 van Rijswijck 6×6
- 2003 Hayward Björnsson Johanson Kan Po van Rijswijck
- ...7×7 49/49
- ...connections: H-search, mustplay
- ... capture pattern

overview background solver10 features

- 2009 A H H solver09 8×8 64/64
- ...250 inferior cell patterns
- ...split decompositions
- ...position deduction

- 2009 A H H solver09 8×8 64/64
- ... 250 inferior cell patterns
- ...split decompositions
- ...position deduction

- 2009 A H H solver09 8×8 64/64
- ... 250 inferior cell patterns
- ...split decompositions
- ...position deduction

- 2009 A H H solver09 8×8 64/64
- ... 250 inferior cell patterns
- ...split decompositions
- ...position deduction

Henderson

- 7×7 49/49: 0.17 hours
- 8×8 64/64: 300 hours
- 9×9 0/81 : 600+ hours

- $0.7 \times 7.49/49 : 0.?$ hours
- 8×8 64/64: 31 hours
- 9×9 53/81: 24 576 hours each

Henderson

- 7×7 49/49 : 0.17 hours
- 8×8 64/64: 300 hours
- 9×9 0/81 : 600+ hours

- $0.7 \times 7.49/49 : 0.?$ hours
- 8×8 64/64: 31 hours
- 9×9 53/81: 24 576 hours each

● 7×7 49/49 : 0.17 hours

● 8×8 64/64 : 300 hours

• 9×9 0/81 : 600+ hours

solver10

• 7×7 49/49 : 0.? hours

8×8 64/64: 31 hours

9×9 53/81: 24 - 576 hours each

Henderson

• 7×7 49/49 : 0.17 hours

● 8×8 64/64 : 300 hours

• 9×9 0/81 : 600+ hours

 $0.7 \times 7.49/49 : 0.?$ hours

8×8 64/64: 31 hours

9×9 53/81: 24 - 576 hours each

• 7×7 49/49 : 0.17 hours

8×8 64/64 : 300 hours

• 9×9 0/81 : 600+ hours

solver10

 $0.7 \times 7.49/49 : 0.?$ hours

8×8 64/64: 31 hours

9×9 53/81: 24 - 576 hours each

• 7×7 49/49 : 0.17 hours

● 8×8 64/64 : 300 hours

• 9×9 0/81 : 600+ hours

solver10

• 7×7 49/49 : 0.? hours

8×8 64/64: 31 hours

9×9 53/81: 24 - 576 hours each

- 7×7 49/49 : 0.17 hours
- 8×8 64/64 : 300 hours
- 9×9 0/81 : 600+ hours

- 7×7 49/49 : 0.? hours
- 8×8 64/64 : 31 hours
- 9×9 53/81: 24 576 hours each

- 7×7 49/49 : 0.17 hours
- 8×8 64/64 : 300 hours
- 9×9 0/81 : 600+ hours

solver10

- 7×7 49/49 : 0.? hours
- 8×8 64/64 : 31 hours
- 9×9 53/81 : 24 576 hours each

Henderson

- search? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis?

- DES ? ⇒ F-DEPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis?

- DES ? ⇒ F-DEPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis?

- DES ? ⇒ F-DEPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis ?

- DFS ? ⇒ F-DFPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis ?
- + permanently inferior

- DFS ? ⇒ F-DFPNS

- search ? + strategy-stealing symmetry check
- H-search? + captured cells
- inferior cell analysis?
- + permanently inferior
- + captured-reversible
- + star-decomposition domination
- DFS ? ⇒ F-DFPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis ?
- + permanently inferior
- + captured-reversible
- + star-decomposition domination
- DFS ? ⇒ F-DFPNS

- search ? + strategy-stealing symmetry check
- H-search ? + captured cells
- inferior cell analysis?
- + permanently inferior
- + captured-reversible
- + star-decomposition domination
- DFS ? ⇒ F-DFPNS

- PNS Allis et al.
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

- PNS Allis et al.
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

- PNS Allis et al.
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

Henderson

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

- PNS Allis et al.
- DFPNS Nagai
- DFPNS in Hex ?
- ... requires non-incremental H-search :(
- uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS

F-DFPNS (1)

- expand node
- consider first $b + \lceil f \times 6 \rceil = 4$ (of 6) live children

F-DFPNS (2)

- discover move 3 loses
- consider first $b + \lceil f \times 5 \rceil = 4$ (of 5) live children

F-DFPNS (3)

- discover move 5 loses
- consider first $b + \lceil f \times 4 \rceil = 3$ (of 4) live children

Henderson

F-DFPNS (4)

- discover move 2 wins, so . . .
- ...root solved without exploring 6th move

modify H-search

and/or combining rules + capture

- permanently inferior cells
- captured reversible cells

- permanently inferior cells

- permanently inferior cells
- captured reversible cells

- permanently inferior cells
- captured reversible cells
- star decomposition domination

strategy stealing symmetry pruning

1st player wins on color-symmetric board

strategy stealing symmetry pruning

1st player wins on color-symmetric board

feature contributions (8×8)

feature f turned off	time (s)	time ratio
captured-cell H-search	196,227	1.75
inferior cell analysis improvements	126,201	1.13
strategy-stealing pruning	118,010	1.05
_	112,121	1.00

feature contributions (8×8)

feature f turned off	time (s)	time ratio
captured-cell H-search	196,227	1.75
inferior cell analysis improvements	126,201	1.13
strategy-stealing pruning	118,010	1.05
_	112,121	1.00

- all $n \times n$ openings \approx one $(n+1) \times (n+1)$
- estimate: one $10 \times 10 \approx 870$ days
- estimate: all $10 \times 10 \approx 750*870$ days ≈ 1800 years

board size	fastest opening	all openings
7×7	0.5	384
8×8	155	112,121
9×9	96,168	???????

• all $n \times n$ openings \approx one $(n+1) \times (n+1)$

• estimate: one $10 \times 10 \approx 870$ days

• estimate: all $10 \times 10 \approx 750*870$ days ≈ 1800 years

board size	fastest opening	all openings
7×7	0.5	384
8×8	155	112,121
9×9	96,168	???????

- all $n \times n$ openings \approx one $(n+1) \times (n+1)$
- estimate: one $10 \times 10 \approx 870$ days
- estimate: all $10 \times 10 \approx 750*870$ days ≈ 1800 years

board size	fastest opening	all openings
7×7	0.5	384
8×8	155	112,121
9×9	96,168	???????

• all $n \times n$ openings \approx one $(n+1) \times (n+1)$

• estimate: one $10 \times 10 \approx 870$ days

• estimate: all $10 \times 10 \approx 750*870$ days ≈ 1800 years

board size	fastest opening	all openings
7×7	0.5	384
8×8	155	112,121
9×9	96,168	???????

• all $n \times n$ openings \approx one $(n+1) \times (n+1)$

• estimate: one $10 \times 10 \approx 870$ days

• estimate: all $10 \times 10 \approx 750*870$ days ≈ 1800 years

board size	fastest opening	all openings
7×7	0.5	384
8×8	155	112,121
9×9	96,168	???????

10 sec solver data: stones vs % solved

60 sec solver data: stones vs % solved

- players can use 1-thread for solver
- ullet \sim 60s/move, so many/most solved by move 35/45

Henderson

- ...compute power: 32×
- ullet ... 6 imes solving time pprox 4 stones
- ... Hex stones: + 32/6 * 4 \approx + 21
- ...many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim 60$ s/move, so many/most solved by move 35/45

- ... compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: $+ 32/6 * 4 \approx + 21$
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- ullet \sim 60s/move, so many/most solved by move 35/45

- ...compute power: 32×
- $\bullet \ \dots 6 \times \ \text{solving time} \approx 4 \ \text{stones}$
- ... Hex stones: + 32/6 * 4 \approx + 21
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim$ 60s/move, so many/most solved by move 35/45

- ...compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: $+ 32/6 * 4 \approx + 21$
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim$ 60s/move, so many/most solved by move 35/45

- ... compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: $+ 32/6 * 4 \approx + 21$
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim$ 60s/move, so many/most solved by move 35/45

- ... compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: $+ 32/6 * 4 \approx + 21$
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim$ 60s/move, so many/most solved by move 35/45

- ... compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: $+ 32/6 * 4 \approx + 21$
- ... many/most solved by move 14/24

- players can use 1-thread for solver
- $\bullet \sim$ 60s/move, so many/most solved by move 35/45

- ... compute power: 32×
- ... $6 \times$ solving time ≈ 4 stones
- ... Hex stones: + 32/6 * 4 \approx + 21
- ... many/most solved by move 14/24

thanks to

- NSERC Alberta Ingenuity
- UofA GAMES UofA Hex
- M Mueller J Schaeffer

Henderson