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A graph is triangulated if it has no chordless cycle with four or more vertices. It
follows that the complement of a triangulated graph cannot contain a chordless
cycle with five or more vertices. We introduce a class of graphs (namely, weakly
triangulated graphs) which includes both triangulated graphs and complements of
triangulated graphs (we define a graph as weakly triangulated if neither it nor its
complement contains a chordless cycle with five or more vertices). Our main result
is a structural theorem which leads to a proof that weakly triangulated graphs are
perfect. @1 1985 Academic Press, Inc.

Claude Berge defined a graph G to be perfect if, for each induced sub-
graph F of G, the chromatic number of F equals the largest number of
pairwise adjacent vertices in F. A part of Berge’s inspiration came from
previous results on triangulated graphs, defined as graphs containing no
chordless cycles with at least four vertices: Hajnal and Suranyi [8] proved
that complements of triangulated graphs are perfect, and Berge [1] proved
that triangulated graphs are perfect. We shall call a graph weakly
triangulated if it has no induced subgraph isomorphic to a chordless cycle
with five or more vertices, or to the complement of such a cycle. It is easy
to see that the chordless cycle with five vertices is isomorphic to its com-
plement, and that the complement of every chordless cycle with at least six
vertices contains a chordless cycle with four vertices; hence triangulated
graphs are weakly triangulated, and complements of triangulated graphs
are weakly triangulated. Our main result states that weakly triangulated
graphs are perfect.

Our key tool is a lemma involving the notion of a star-cutset: this is a
cutset C such that some vertex in C is adjacent to all the remaining vertices
in C. The term minimal imperfect graph, used in the lemma, refers to an
imperfect graph G such that every proper induced subgraph of G is perfect.

THE STAR-CUTSET LEMMA (CHVATAL [6]). If G is a minimal imperfect
graph then neither G nor its complement G has a star-cutset.
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Chvatal conjectured that G or G has a star-cutset whenever G is a
weakly triangulated graph with at least three vertices. This conjecture will
be proved as our Theorem 2. A preliminary result of independent interest is
presented first.

THEOREM 1. Let N be a minimal cutset of a weakly triangulated graph
G, and let N induce a connected subgraph of G. Then each connected com-
ponent of G — N includes at least one vertex adjacent to all the vertices of N.

Proof of Theorem 1. We first show that

every two non-adjacent vertices in N
have a common neighbour in each component of G— N. (1)

For this purpose, consider arbitrary non-adjacent vertices x and y in N,
and an arbitrary component 4 of G— N. Since the cutset N is minimal,
each vertex in N has at least one neighbour in 4; now connectedness of A
implies the existence of a path from x to y with all interior vertices in A;
the shortest such path P is chordless. The same argument, applied to
another component B of G — N, shows the existence of a chordless path Q
from x to y with all interior vertices in B. The two paths P and Q combine
into a chordless cycle in G; since G contains no chordless cycle with five or
more vertices, each of the two paths must have only one interior vertex. In
particular, the interior vertex of P is a common neighbour of x and y in A4,
and (1) is proved.
Next, let us show that

the theorem holds whenever no two vertices in N are adjacent. (2)

To prove (2), we use induction on |N|. When |N|=1, the conclusion
follows from the fact that the cutset N is minimal. When | N| =2, the con-
clusion is guaranteed by (1). When | N| >3, choose distinct vertices x, y, z
in N and consider an arbitrary component 4 of G — N. Note that N —xis a
minimal cutset of G—x, and that (G—x)—(N—x)=G—N. Hence the
induction hypothesis guarantees the existence of a vertex u in A that is
adjacent to all vertices in N — x. By the same argument, some vertex v in 4
is adjacent to all vertices in N — y, and some vertex w in A4 is adjacent to all
vertices in N —z. We will show that at least one of the vertices u, v, w is
adjacent to all the vertices in N. Assuming the contrary, note that u, v, w
must be distinct. Now u cannot be adjacent to v (else y, u, v, x and any
common neighbour of x and y in G— N — A4, whose existence is guaranteed
by (1), would induce a chordless cycle in G); by the same argument, u can-
not be adjacent to w, nor v to w. But then x, w, y, 4, z, v induce a chordless
cycle in G. This contradiction completes the proof of (2).
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To prove the theorem in its full generality, we again use induction on
|N|. When |N| <2, the conclusion follows from (2). When |N| =3, we
may assume that at least two vertices in N are adjacent (else the conclusion
is guaranteed by (2) again). Now we claim that N includes distinct vertices
x and y such that

1

(i) x and y are adjacent in G, and
(ii) both N—x and N—y induce connected subgraphs of G.

(To justify this claim, we only need choose x and y so that, in the subgraph
of G induced by N, the shortest path from x to y is as long as possible.)
Consider an arbitrary component 4 of G — N. By the induction hypothesis,
A includes vertices ¥ and v such that u is adjacent to all the vertices in
N —x and v is adjacent to all the vertices in N—y. We will show that at
least one of the vertices u and v is adjacent to all the vertices in N. Assum-
ing the contrary, note that 1 and » must be distinct. By (i), the shortest
path P from x to y in the subgraph of G induced by N has at least one
interior vertex. Now u and v must be adjacent: else u, v and P would induce
a chordless cycle in G. Next, the argument showing the existence of v in 4
shows also the existence of a vertex r in G — N — 4 such that r is adjacent
to all the vertices in N—y. If r is not adjacent to y then u, r and P induce a
chordless cycle in G; else u, r, v and P induce a chordless cycle in G. This
contradiction completes the proof.

THEOREM 2. If G is a weakly triangulated graph with at least three ver-
tices then G or G has a star-cutset.

Proof of Theorem 2. The star-cutset may be found as follows. Choose
an arbitrary vertex w in G. For each vertex x other than w, put x in the set
N if x is adjacent to w; else put x in the set M. If N is empty then stop: {u}
is a star-cutset in G for every vertex # in M. If M is empty then stop: {v} is
a star-cutset in G for every vertex v in N.

Now, both M and N are nonempty. If M induces a disconnected sub-
graph of G then stop: {w} U N is a star-cutset in G. If N induces a discon-
nected subgraph of G then stop: {w}u M is a star-cutset in G.

Now, M induces a nonempty connected subgraph of G and N induces a
nonempty connected subgraph of G. If some vertex v in N is adjacent to no
vertex in M then stop: {w} U(N— {v}) is a star-cutset in G. In the other
case, each vertex in N is adjacent to at least one vertex in M; note that N is
a minimal cutset in G. Now, Theorem 1 guarantees that some vertex u in
M is adjacent to all the vertices in N. Stop: {w}u (M — {u}) is a star-cut-
set in G.

CoROLLARY. All weakly triangulated graphs are perfect.
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Let P, stand for the chordless path with k vertices. Graphs G, = (V,, E,)
and G,=(V,, E,) are said to have the same P,-structure if, for some bijec-
tion f: ¥V, - V,, a subset S of ¥, induces a P, in G, if and only if f(S)
induces a P, in G,. Note that P, is isomorphic to its own complement, and
so every graph G has the P,-structure of G. The Semi-Strong Perfect Graph
Theorem, conjectured by Chvatal [4] and proved recently by Reed [10], is
as follows: if a graph G has the P,-structure of a perfect graph then G is
perfect. A special case of this theorem is implied by the following result,
which follows easily from Theorem 1 and a result by Chvatal [4] concern-
ing the P,-structures of chordless cycles: if a graph G has the P,-structure
of a triangulated graph then G is weakly triangulated.

In the rest of the paper we show how weakly triangulated graphs relate
to certain other classes of perfect graphs. The class of perfectly orderable
graphs, introduced by Chvatal [3], consists of those graphs characterized
by the existence of a linear order < on the set of vertices such that no
chordless path with vertices a, b, ¢, d and edges ab, bc, cd has a<b and
d<c. A clique of a graph is a set of pairwise adjacent vertices. A stable set
of a graph is a set of pairwise nonadjacent vertices. The class of perfectly
orderable graphs is contained in the class of strongly perfect graphs,
introduced by Berge and Duchet [2]. These are graphs G such that every
induced subgraph H of G has a stable set meeting all maximal cliques in H.
Triangulated graphs and complements of triangulated graphs are perfectly
orderable, and hence strongly perfect; however, this is not true of weakly
triangulated graphs. The graph in Fig. 1 is weakly triangulated but not
strongly perfect.

Dirac [7] showed that every minimal cutset in a triangulated graph is a
clique. Weakly triangulated graphs do not have this property. In fact, it is
easy to construct weakly triangulated graphs with no clique cutset. Let G
be any graph with some clique cutset C, and let S be any graph with at
least two nonadjacent vertices. Let G’ be the graph obtained from G by
substituting the graph S for some vertex ¢ in C. Then the cutset C' of G’
corresponding to the cutset C in G is not a clique cutset. In fact, any
weakly triangulated graph (with at least one clique cutset) can be transfor-
med into a weakly triangulated graph with no clique cutset by repeatedly
performing the above procedure (G’ will be weakly triangulated if and only
if G and S are weakly triangulated). A homogeneous set H in a graph G is a
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proper subset of the vertices of G, such that H has at least two vertices, and
every vertex of G not in H is adjacent to either all or none of the vertices of
H. Note that the above procedure for eliminating a clique cutset creates a
homogeneous set (the vertices of S form a homogeneous set in G').
However, there are weakly triangulated graphs with no clique cutset, no
clique cutset in the complement, and no homogeneous set. The smallest
such graph appears in Fig. 2.

A vertex x is said to be dominated by a vertex y if every vertex z (dif-
ferent from x and y) that is adjacent to x is also adjacent to y. Call a graph
with no dominated vertex domination-free. It is easy to see that if G (with
at least three vertices) has a dominated vertex, then either G or G has a
star cutset. We close this paper with the description of a domination-free
weakly triangulated graph W. Our search for such a graph was inspired by
Mahadev {9].

The set of vertices of W is the union of the sets X = {xq, X, X35y Xy }
and Y= {yo, ¥1» Y2»-» Y11 }- The only edges of W with both endpoints in X
are (X, Xax+1) and (X3¢ 415 X3c42)» for k=0, 1, 2, 3. The only edges of W
with both endpoints in Y are (ys, Vss1) and (Vaee1,Yse+2)» for
k=0, 1, 2, 3. Finally, for k=0, 1, 2, 3, (all indices are modulo 12)

the only edge of W between
{(Vskr Vak v 1o Vaer2} and  {X3p, X3i 15 Xae a2} IS (V3o X2 ),
the only edge of W between
{VorY3k+1> Y3k 42 } and {X3k+30 X3k 44> X3ca5 1 1S W3es X33 )s
the only edge of W between
(Vs Paks 1> Vaer2 y A0 {X3e s 65 X3k475 X3k v § 1S (Vaws X34 7),
the only edge of W between
{¥36s Y3k+ 12 Y32 } @0d { X3k 05 X364 105 Xk 411 }is (Vak a1 X3k 40)-

FIGURE 2
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TABLE I

a,=1 if and only if x; is adjacent to y; in W

100 010 111 011
000 O00CO0C O011 11
000 00O 111 11
011 100 010 P11
111 000 O0O0O0 011
111 000 000 1 11
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Table I lists that part of the adjacency matrix of W representing edges of
the form (x;, y,). Fig. 3 is a drawing of the subgraph of W induced by
XU (Vs Yskr1s Yaca2 }-

Note that W is self-complementary: the permutation P defined by
P(x;)=y;and P(y;})=x;,; for i=0,1,.., 11 sends edges of W onto edges
of W and vice versa.

Since W is self-complementary, in order to prove that W is weakly
triangulated it is sufficient to show that W has no chordless cycle C with at
least 5 vertices. Argue by contradiction: suppose that W contains such a C.
Recall that

(i) the subgraph of W induced by X consists of four disjoint P;’s,
(ii) the subgraph of W induced by Y consists of four disjoint Pj’s.

X3k+1  X3k4+3  *3k+5  *3k47 X3k4e X3k
X3k _ X3k+2 _ X3k +4 _ X3k 46 _ *3k 48 _xu_.+s _

T et
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It is left to the reader to verify the following three claims:

(iii) W contains no chordless path (p,, p,, p3, p4) whose intersection
with X is {p,,p;},

(iv) W contains no chordless path (p,, p,, p3, ps, ps) whose intersec-
tion with X is {p2, p3, P4},

(v) W contains no chordless cycle (¢,, ¢,, ¢3, ¢4, c5 ) whose intersec-
tion X is {c,, €3, ¢4 }. From (v) and the fact that both W and C; are self-
complementary, it follows that

(vi) W contains no chordless cycle (c,, ¢,, ¢5, ¢4, ¢s) whose intersec-
tion with X is {c,, ¢;}.

Because of (i), C cannot be properly contained in X. Because of (ii), C
cannot be properly contained in Y. Hence, let C, be the subgraph of W
induced by those vertices of C in X and C, be the subgraph of W induced
by those vertices of C in Y. Both C, and C, must consist of disjoint chor-
dless paths. Because of (i), C, contains no P, with k> 3. Because of (iv)
and (v), C, contains no P;. Because of (iii), C, contains no P,. Thus C,
consists of pairwise nonadjacent vertices. C, cannot consist of a single ver-
tex, because then C, would contain a P,, with k>4, contradicting (ii).
Thus C, consists of at least two non-adjacent vertices; hence C, consists of
(at least two) disjoint chordless paths. But C, cannot contain three or
more disjoint chordless paths, because then C, would contain a triangle,
contradicting (ii). Thus C, consists of exactly two disjoint paths; now (ii)
implies that one of these paths is an isolated vertex, and the other has two
vertices (each subgraph of W induced by at least four vertices in Y is con-
nected). But then the cycle would have to consist of exactly five vertices
(cy, €2, €3, C4, €5) Whose intersection with Y is {c,, ¢4, ¢5}, contradicting
(vi). Thus, W is weakly triangulated.

To verify that W is domination-free, assume the contrary: some vertex u
is dominated by a vertex v. First, consider the case when u is in X. By sym-
metry, we may assume that # = x, with 0 <i<2. To see that v cannot be in
Y, consult Table II.

TABLE IT

Neighbours of x, Nonadjacent to y, in W

Yo V1 Y2 Vs Ya Vs Ye Y1 Vs Yo Yo Vn

Xo _k__.x__k__k__k__.«__\5_\—;_.5_%3_.«.:_.«.5_
 lxnlxlxnlunlelolyplyslyil el ol bol

lxlxlxalxlxlxlylyslylyelynl yol




WEAKLY TRIANGULATED GRAPHS 207

Thus we must have v=x; for some j; consider the subgraph of W
induced by X, we conclude easily that 0<j<2. But now we only need
observe that

yo is adjacent to xg and nonadjacent to x,, x,,
y, is adjacent to x,, x, and nonadjacent to x,
ye is adjacent to x, and nonadjacent to x,
x, is adjacent to x, and nonadjacent to x,.

Thus u cannot be in X.

Next, consider the case when u is in Y. By symmetry, we may assume
that u=y, with 0<i<2. To see that v cannot be in X, observe that u is
adjacent to both x, and xg, at least one of which is nonadjacent to v. The
only remaining subcase, with u and v both in Y, is reduced to a previous
subcase by considering the permutation P that sends W onto its com-
plement: clearly, P(v) is dominated by P(u), and both P(u) and P(v) are in
X. Thus W is domination-free.

Incidentally, W has neither a clique cutset nor a homogeneous set;
neither is W strongly perfect. This is left to the reader to verify. (Using the
algorithm due to Whitesides [11], it is easy to check that W has no clique
cutset. Verifying that W has no homogeneous set seems to be a rather
tedious task. To show that W is not strongly perfect, if suffices to show that
the subgraph induced by {xo, X, X2, Xe: X7, X8+ Yos V1> Ye» Y7} 1S not
strongly perfect.)
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