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Abstract. We present a concise and/or-tree notation for describing Hex
strategies together with an easily implemented algorithm for verifying
strategy correctness. To illustrate our algorithm, we use it to verify Jing
Yang’s 7×7 centre-opening strategy.

1 Introduction

Hex is the classic two-player board game invented by Piet Hein in 1942 and
independently by John Nash around 1948 [1,2,6,7,8,9]. The game is named after
the board, which consists of a parallelogram-shaped m×n array of hexagons,
also called cells. Each player is assigned a set of stones and two opposing board
sides; players alternately place a stone on an unoccupied cell; the first player
to form a path connecting her1 two sides with her stones wins the game. For
example, Fig. 1 shows the start and end of a game on a 3×3 board. White
succeeds in joining her two sides, so White wins this game. For more on Hex, see
the recent survey by Hayward and Van Rijswijck [3] or the web page by Thomas
Maarup [7].
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Fig. 1. The start (left) and finish (right) of a Hex game on a 3×3 board

An intriguing aspect of the game of Hex is that for all n×n boards, although
a winning first-player strategy is known to exist [1,2,9], explicit such strategies
have been found only for small boards. While finding such strategies is routine on
very small boards, the task quickly becomes challenging as board size increases.
This is not surprising since, as Stefan Reisch has shown, determining the winner
of arbitrary Hex positions is PSPACE-complete [11].
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Fig. 2. A winning first-player 3×3 Hex strategy. Fig. 1 shows one line of this strategy.

For 7×7, 8×8, and 9×9boards, JingYang found strategies byhand [12,13,15,16].
Later, Hayward et al. found other 7×7 strategies by computer [4,5], while Noshita
found 7×7 strategies and one 8×8 strategy similar to Yang’s by hand [10]. For
boards 10×10 or larger, no winning strategies are known.

As the search for winning strategies on larger boards continues, it is of inter-
est to provide algorithms for verifying strategy correctness. Recently, Noshita
described strategies in a manner that arguably facilitates human verification
[10]. By contrast, in this paper we present a system that allows for computer
verification. To demonstrate the utility of our system, we use it to confirm the
correctness of Yang’s original 7×7 strategy [13].

2 Excised Trees and Autotrees

The underlying feature of our verification system is the condensed tree notation
we use to represent strategies.2 Our notation allows the standard tree description
of a strategy to be condensed in three ways. First, it permits the use of an “and”
operation corresponding to the combinatorial sum of independent substrategies.
Second, it permits the use of a macro descriptor for representing repeatedly
occurring substrategies. Third, it allows all opponent moves to be excised from
the tree by replacing each set of opponent responses with a single anonymous
meta-response.

The first two of these three ideas are well known; for example, they were used
by Yang in his description of his proofs [12,13,15,16]. The third idea, namely
using excised trees, is new. In the rest of this section we illustrate the excision
process and show that it does not hamper verification.

To begin, consider the first-player strategy tree in Fig. 2. The nodes at even
depth indicate first-player moves; the nodes at odd depth indicate second-player
moves; the game in Fig. 1 follows one root-to-leaf path through the tree. Notice
that the first-player strategy described by the tree is complete: after each second-
player move, there is a unique first-player response; after each first-player move,

2 This notation could also be used for other two-player board games in which game
pieces are fixed once they have been placed.
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Fig. 3. The tree obtained from the strategy tree in Fig. 2 by replacing each set of oppo-
nent response nodes with a single “•” meta-node (top), and the excised tree obtained
by then repeatedly merging identical subtrees (bottom)

there is every possible second-player response. Also, each leaf node establishes a
first-player win, so this is a winning strategy for the first player.

Next, consider the two trees shown in Fig. 3. The top tree is obtained from
the tree in Fig. 2 by excising nodes corresponding to second-player moves; each
set of second-player moves is replaced with a single meta-node, indicated in
our diagrams by a dot (•). The bottom tree is obtained from the top tree by
repeatedly merging identical subtrees into a single subtree until, for each node,
all subtrees are distinct. We refer to the bottom tree as an excised tree.

More generally, given any complete (but not necessarily winning) strategy
tree, the following process, which we call excision, replaces the tree with an
excised tree.

For each non-leaf first-player node, merge the children into a single meta-
node. Next, as long as some second-player node has two identical sub-
trees, remove one of these subtrees.

Excised trees represent equivalence classes of strategies, so some information
is lost when a strategy tree is replaced with its excised tree. However, excision
can be reversed in the following sense: for any excised tree E for a player, there
is a set S of strategy trees such that E is the excised tree of every tree in S.
Furthermore, it is easy to construct all elements of S from E via the following
process, which we call restoration:

At each meta-node m, for each possible opponent move to a cell c, select
for the player’s responding move any cell r that is the root of a subtree
of m in which c does not appear.
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For example, consider the restoration process for the excised tree shown at
the bottom of Fig. 3. Start with the top-most meta-node m∗, namely the child
of c1. For this board position, the cell set of possible opponent moves is {a1,
a2, a3, b1, b2, b3, c2, c3}. Consider the first such cell, a1. The cell sets of the
subtrees of m∗ are {c2, b3, c3}, {a3, b2, a2, b1, a1}, and {b2, a3, b3}. Since a1 is
not in the first or third of these three cell sets, we can select the root of either
the first or third subtree of m∗. Let us assume in this example that we always
select the root of the first available subtree. Thus, as the response to a1 we select
the root of the first subtree, namely c2. Continuing in this fashion, we select c2
as the response for opponent moves to a2, a3, b1, and b2, and we select a3 as the
response for opponent moves to b3, c2, and c3. Having selected all responses to
m∗, we continue in top-down order to process meta-nodes until all such nodes
have been dealt with and the excised tree has been replaced with a complete
strategy tree S′ of S.

Notice that S′ is different from the strategy tree S of Fig. 2 from which E was
derived; for example, in the restoration process we never selected the root of the
third subtree of m∗ as a response to an opponent move. However, by repeating
the restoration process once for each of the possible permutations of choices for
r, we would construct all possible strategy trees associated with E, including S.

In the restoration process it will always be possible to find at least one value
of r at each meta-node as long as the excised tree being restored was obtained
from a complete strategy tree. This follows from Observation 1, which in turn
follows from the fact that in Hex, stones never move once played.

With respect to a strategy, a π-move is a move made by player π. With respect
to a strategy tree, a π-node is a node associated with a π-move, and a π-node is
a node associated with π’s opponent.

Observation 1. Let T be a complete Hex strategy tree for a player π, let p be
a π-node of T that is not a leaf, let S1,. . . ,Sk be the subtrees of T rooted at the
children of p, and for each Sj let Pj be the set of cells associated with the π-nodes
of Sj. Then the combined intersection I = P1 ∩ . . . ∩ Pk is empty.

Proof. For each index j, let qj be the cell associated with the root of Sj . T is
complete, so Q = {q1, . . . , qt} corresponds to all possible opponent responses to
p, namely all the unoccupied cells after the move p. Also, for each index j, qj is
occupied by an opponent’s stone and so is not in Pj , and so is not in I. Thus I
is empty.

The following is a corollary of the preceding observation.

Observation 2. Let E(T ) be the excised tree obtained from a complete Hex
strategy tree T for a player π, let m be a meta-node of E(T ) that is not a leaf,
let S1,. . . ,Sk be the subtrees of E(T ) rooted at the children of m, and for each
Sj let Pj be the set of cells associated with the π-nodes of Sj. Then the combined
intersection I = P1 ∩ . . . ∩ Pk is empty.

We refer to the class of trees that we use in our verification system as “autotrees”;
we use this term since such trees make explicit mention only of a player’s own
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moves. Autotrees have the same form and function as excised trees; however,
they may not have arisen via excision, and so we do not define them with re-
spect to excision. An autotree is defined as follows: each node at one set of
alternating levels is a special node called a meta-node; each node at the other
set of alternating levels is labeled with a board cell.

We call an autotree elusive if it satisfies the conditions of Observation 2. Notice
that restoration generates a complete strategy tree from an autotree if and only
if the autotree is elusive.

As an initial step in our verification algorithm, we check whether the input
autotree is elusive. The second and final step in our verification algorithm is to
determine whether the strategies associated with the input autotree are winning.
We call an autotree of a player satisfying if, for every leaf, the cells of the root-
to-leaf path satisfy the conditions of a win, namely join the player’s two sides
on the Hex board. An elusive autotree represents a winning strategy if and only
if the autotree is satisfying. This follows from the following theorems, which in
turn follow by straightforward arguments from our definitions and the discussion
to this point; we omit the details of the proofs.

Theorem 3. For Hex, for any complete strategy tree there is a unique associated
elusive excised tree, and for any elusive autotree there is a unique set of associated
complete strategy trees. Furthermore, for any complete strategy tree S and the
excised tree E(S) derived from S, S is winning if and only if all strategy trees
S′ created via restoration from E(S) are winning.

Theorem 4. An autotree represents a winning strategy if and only if the au-
totree is elusive and satisfying.

3 And/or Autotrees with Leaf Patterns

To complete the description of our notation, we need only to describe how we
add two features to autotrees: and-nodes and leaf patterns.

Notice that the children of a meta-node in an autotree correspond to an “or”
decision in a strategy; depending on the opponent’s move at the meta-node,
the player will play the strategy corresponding to the first subtree, or the next
subtree, or the next subtree, and so on; see the excised tree in Fig. 3. By contrast,
in Hex as in many other games, a particular strategy often decomposes into two
or more independent substrategies that each need to be followed.

Such “and” operations are easily incorporated into our notation by allowing
each labeled node (namely, not a meta-node) of a modified autotree to have any
number of children. We refer to autotrees that are modified in this way as and/or
autotrees since, when interpreting them as strategies, the odd depth nodes (the
meta-nodes) are or-nodes while the even depth nodes (with cell labels) are and-
nodes.

Consider for example Fig. 4, which shows an and/or autotree for a winning
4×4 strategy. The root is an and-node, so we have to play all substrategies simul-
taneously; in this case, there is only one subtree so there is only one substrategy
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Fig. 4. An and/or autotree for a winning first-player 4×4 Hex strategy. Odd depth
nodes (•) are “or”-nodes; even depth nodes (cell labels) are “and”-nodes. Fig. 5 shows
one line of this strategy.

to follow. Suppose that the opponent’s response to the player’s initial move d1
is b3. Then the player can select any subtree not containing b3, say the first
subtree; thus the player moves to c3, the root of the first subtree. This root is
an and-node with two subtrees, so now the player has to follow these two sub-
strategies simultaneously; the player must ensure that she reaches a leaf node
in each of the subtrees of every and-node. For example, if the opponent’s next
move is at one of {b4, c4}, the player must immediately reply with the other of
these two cells or risk not reaching a leaf of the {b4, c4} subtree. Similarly, if the
opponent’s next move is at one of {c2, d2}, the player must immediately reply
with the other of these two cells. If the opponent’s next move is not in {b4, c4}
or {c2, d2}, the player can move anywhere. Fig. 5 illustrates another line of play
of this strategy.

Finally, subtrees of and/or autotrees that correspond to isomorphic substrate-
gies can be replaced with a special node corresponding to such substrategies. This
is illustrated in Fig. 6, where two substrategy macros are used to simplify the
tree of Fig. 4.

Modifying our verification algorithms to handle and- and or-nodes is straight-
forward. For or-nodes, the test for the elusive property is the same as with un-
modified autotrees: check whether the combined intersection of all child nodes is
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Fig. 5. The start (left) and finish (right) of one line of the strategy of Fig. 4
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Fig. 6. An and/or autotree with two macro pattern nodes. This tree is equivalent to
the tree in Fig. 4; pattern parameters have been omitted.

the empty set. For and-nodes, it is necessary to check whether the intersection
of each pair of child nodes is empty. Another algorithmic approach one might
take here is to expand the and/or autotree into the corresponding equivalent au-
totree; however, the resulting trees can be large,3 so this approach would require
significantly more space than our approach.

Testing the satisfying property on and/or autotrees involves checking every
root-to-leaf path in the associated expanded autotree. For reasons of efficiency
we do not want to generate the expanded autotree; we thus carry out this task
in an implicit fashion. By using a simple indexing scheme for each root-to-leaf
path in the and/or autotree, we can reconstruct the cell sets for each possible
root-to-leaf path in the associated autotree. Each node stores the number of
root-to-leaf paths it contains. We consider all such paths and verify that each
satisfies the winning condition.

We implement the isomorphic substrategy feature in the simplest possible way,
namely using macro substitution to generate the equivalent and/or autotree.

4 Verifying Yang’s Proof

As a benchmark for testing our system, we used it to verify the first known
winning 7×7 Hex strategy, namely Yang’s original 7×7 center-opening strategy
[14,13]. Yang described his strategy in an easily understood notation similar to
that used in the C programming language; an applet that follows this strategy is
available on his homepage[12]. The version of the strategy that we tested is from
a preprint also available from his web page [14]. In Yang’s notation, his strategy
uses about 40 patterns (not counting pattern variations) comprising about six
pages of text. A recursion tree indicating the hierarchy of his patterns is shown
in Fig. 7.

3 For example, an and-node with k subtrees of two nodes each corresponds in the
expanded autotree to a node with 2k subtrees.
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Fig. 7. Part of the recursion tree for Yang’s proof. References to frequently occurring
small patterns have been omitted. Labels indicate pattern numbers. Nodes labeled +
are and-nodes; all other nodes are or-nodes.

( pattern8

// called by: 1

((c6 BR) (d4 BR))

(d6 e3 e4 e5 e6 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6)

(c6 d4 BR)

[(f3 [(pattern2ab (e3 e4) (d4 f3))]

[(pattern2ab (g2 g3) (f3 BR))])

(e5 [(d6) (e4)]

[(pattern13 (e6 f4 f5 f6 g3 g4 g5 g6) (e5 BR))])

(f2 [(pattern2ab (g1 g2) (f2 BR))]

[(pattern9 (g5 g4 f5 f4 f3 e5 e4 e3) (BR f2 d4))])

(e3 [(pattern17 (d6 e5 e6 f2 f3 f4 f5 g1 g2 g3 g4 g5) (c6 d4 e3 BR))]) ])

Fig. 8. Yang’s Pattern 8 in our notation

We translated Yang’s proof into our notation by hand, following his pattern
naming convention. As an example of our notation, see Fig. 8. The first line gives
the name of the pattern. The second line is a comment noting that the only pat-
tern calling this pattern is Pattern 1. The third line gives the connections that are
achieved by the pattern; in this case at least one of two connections is achieved,
either between c6 and the bottom right side of the board, or between d4 and
the bottom right side; this information is given only to aid in human debugging
purposes and is not used by our algorithm. The fourth line lists the cells that
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pattern1 connect: (TL BR)

empty: (a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7 c1 c2 c3 c4 c5 c6 c7

d1 d2 d3 d5 d6 d7 e1 e2 e3 e4 e5 e6 e7 f1 f2 f3 f4 f5 f6 f7 g1

g2 g3 g4 g5 g6 g7)

played: (TL d4 BR)

stats: AND = 1480, OR = 2339, Leafs = 3514

paths: 25574/25574

VALID pattern.

Fig. 9. Diagnostics returned after verifying Yang’s proof

must be unoccupied at this point; the fifth line lists the cells that the player
must already occupy. The subsequent lines describe the and/or autotree, where
parentheses surround the subtrees of an or-node and square brackets surround
the subtrees of an and-node.

In the process of verifying the description of Yang’s proof, we found only one
typographical error: in the description of Pattern 11 there is a call to Pattern
17 that should instead be a call to Pattern 19.

Our notation represents Yang’s strategy in about 700 lines of text. The diag-
nostic message returned by our program after recursively verifying Yang’s proof
is shown in Fig. 9. The resulting tree had 1,480 and-nodes, 2,339 or-nodes, 3,514
leaves, and 25,574 implicit root-to-leaf paths. The verification took less than one
second to execute on our computer, a single-processor Athlon64 3200+ with 1
gigabyte of memory.

5 Conclusions

We have introduced the notion of an excised tree as a compressed representation
of a complete strategy tree from which all explicit opponent moves have been
excised. We used excised trees in a simple algorithm that verified the correctness
of Yang’s original winning 7×7 Hex strategy.

One way in which our system could be improved would be to automate the
process of translating strategies from other notations into our notation.

Another improvement concerns the number of paths that our algorithm checks
in verifying the correctness of a strategy. Currently our system explicitly verifies
that every possible cell set that a player might end up with contains a winning
path. For example, for Yang’s strategy this was a total of 25,574 cell sets that
were checked. The problem with this approach is that the number of such cell
sets, corresponding to the number of root-to-leaf paths in the complete strategy
tree, increases exponentially in the board size.

Consider for example Martin Gardner’s winning second-player strategy for
the player with the longer sides on an n×n − 1 board [2]. The strategy consists
of the and of f(n) = n × (n − 1)/2 substrategies each consisting of the or of
two moves. The associated excised tree thus has 2f(n) root-to-leaf paths. Even
for n as small as 14, 2f(n) = 291, and checking this many paths individually is
currently computationally infeasible.
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Thus, as board size increases, verification algorithms will be required that do
not explicitly check the winning condition for each root-to-leaf path.
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