
ICGA Journal 0 (0) 1 1
IOS Press

A Transferable Neural Network for Hex

Chao Gao a,∗, Siqi Yan b, Ryan Hayward b and Martin Müller b

a Department of Computing Science, University of Alberta, Canada
E-mail: cgao3@ualberta.ca
b Department of Computing Science, University of Alberta, Canada
E-mails: syan3@ualberta.ca, hayward@ualberta.ca, mmueller@ualberta.ca

Abstract. The game of Hex can be played on multiple boardsizes. Transferring neural net knowledge learned on one board-
size to other boardsizes is of interest, since deep neural nets usually require large size of high quality data to train, whereas
expert games can be unavailable or difficult to generate. In this paper we investigate neural transfer learning in Hex. We
show that when only boardsize independent neurons are used, the resulting neural net obtained from training on one base
boardsize can effectively generalize — without fine-tuning — to multiple target boardsizes, larger or smaller. When trans-
ferring to larger boardsizes, fine-tuning provides faster learning and better performance. The strength of the transferable
network can be amplified with search: with a single neural net model trained on games from a base boardsize, we obtain
players stronger than MoHex 2.0 on multiple target boardsizes.

Keywords: Hex game, deep learning, transfer learning, neural network

1. INTRODUCTION

Invented by Piet Hein in 1942 (Hein, 1942), Hex is a two-player alternate-turn zero-sum perfect-
information game played on an n× n hexagonal board. Players Black and White each own a distinct
pair of opposing borders. On a turn, a player places a stone of their colour on an empty hexagonal cell.
The winner is whoever forms a chain that connects their two borders. 11×11 is the original boardsize,
with 13×13 and 19×19 also popular (Hayward and Weninger, 2017). Hex allows no draws: this
follows by simple graph theoretic arguments (Pierce, 1961) equivalent to a two-dimensional version
of Brouwer’s fixed-point theorem (Gale, 1979). Nash (Nash, 1952) ultra-weakly solved the game with
a strategy stealing argument. However, finding an explicit winning strategy for an arbitrary position
is PSPACE-complete (Reisch, 1981; Édouard Bonnet et al., 2016). In practice, to mitigate the first
player’s paramount advantage, a swap rule is usually applied, by which White has the option to steal
Black’s opening move as their first move. Figure 1 shows Hex games on different boardsizes.

Hex games on different boardsizes are related: 1) by placing extra stones along the borders, the smaller
size can be considered as a special case of the larger; 2) by placing extra empty rows along the borders,
the larger size can be considered as a generalization of the smaller.

Deep neural networks have been applied to two-player board games, in particular Go (Tian and Zhu,
2015; Clark and Storkey, 2015; Maddison et al., 2015; Silver et al., 2016, 2017) and Hex (Gao et al.,
2017a,b; Anthony et al., 2017), showing that the superior representation learning ability of deep nets
can be harnessed for providing high quality knowledge. However, these studies are limited to a fixed
boardsize, whereas the games allow multiple boardsizes. As seen in Figure 1, the similarities between
Hex on different boardsizes raise the following questions:

*Corresponding author. E-mail: cgao3@ualberta.ca.

1389-6911/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:cgao3@ualberta.ca
mailto:syan3@ualberta.ca
mailto:hayward@ualberta.ca
mailto:mmueller@ualberta.ca
mailto:cgao3@ualberta.ca

2 Gao et al. / A Transferable Neural Net for Hex

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1S

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

2728

29

30

31

323334

35

3637

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m

m

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

1

23

4

5

6

7

8

9

10

11

1213

1415

1617

18

19

20

21

2223

2425

2627

28

29

3031

3233

3435

3637

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

5556

57

5859

6061

62

63

64

65

66

67

68 69

70

71 72

7374

75

76

77

78

79

80

Fig. 1. Classic (left) and 13×13 (right) Hex games (Gao et al., 2017a).

• To what extent can learned neural net knowledge be reused on a smaller board?
• To what extent can such knowledge be generalized to a larger board?

In this paper, we investigate neural transfer learning (Pan and Yang, 2010; Yosinski et al., 2014) in
Hex. We make these contributions:

• we introduce a transferable neural net architecture for multiple-boardsize Hex;
• we quantify knowledge transferability, both upward and downward;
• we improve MoHex 2.0 on multiple boardsizes.

2. GENERAL NEURAL NETWORKS IN HEX

2.1. General Architecture

Typical transfer learning with neural networks aims to reuse a base network fθA , which has been
trained on data set DA for task TA, when learning a target neural net for task TB. Assume that the base
network has n layers. These approaches could be used:

(1) Design a new network for TB, which borrows the first m ∈ {1, 2, . . . , n} layers from fθA , then
adds task specific layers onward. This approach requires a dataset DB for the target task. When
training on the new dataset, there are two obvious options: 1) keep the m borrowed layers frozen;
2) fine-tuning: use only the borrowed neurons’ initial weights and optimize the whole neural net
as usual.

(2) Let the target network have the same architecture and the same set of neural parameters as in the
base network, and reuse all learned weights from fθA in the target net.

A limitation of 1. is that a dataset for target task must be available. A challenge of 2. is that the
architecture used by fθA must avoid task dependent neurons, e.g., fully-connected units. In Hex, 2. is
more appealing, since for many boardsizes expert data are scarce and costly to generate. Also, neural
nets are usually combined with search, which can amplify the net’s strength via averaging lookahead

Gao et al. / A Transferable Neural Net for Hex 3

evaluation. So, when transferring a neural net, it is desirable that the network can be strong enough to
be useful in search, even without fine-tuning.

Convolution neural networks (CNNs) have been applied to various visual recognition tasks (LeCun
et al., 1998). Unlike fully-connected neural nets, CNNs exploit spatial locality by using convolution
filters, where each filter responds to patterns in a local receptive field. By a weight sharing scheme, a
CNN filter is replicated across the entire visual field, so replicated units share the same parameteriza-
tion. This replication allows convolution filters to detect specific features regardless of their location
within the visual field.

In this paper, leveraging the translation invariance (LeCun et al., 1998) of CNNs, we make an effort
towards 2.— we describe a Hex network that uses mainly boardsize independent neurons for move
and value predictions, anticipating that the learned convolution filters can be instantly useful beyond
the board size of training.

As with Go (Silver et al., 2017), we take a zero-knowledge approach when encoding input features.
A Hex state is independent of move history, so we encode a position with four binary planes: 1) black
plane (black stones are marked 1, others are 0); 2) white plane; 3) empty plane (empty board cells are
marked 1, others are 0); 4) to-play plane, (1 if Black moves next, else 0).

(N + 2)× (N + 2)× 4

(3 × 3, 32)
Convolution

...
(1 × 1, 1)

Convolution

softmax

(1 × 1, 1)
Convolution

1 fully con-
nected unit

tanh

tanh

10 residual blocks

q

v

p

(a) Multiple size Hex: architecture.

x

Batch Normalization

Add

ReLU

32 3x3 convolution filters

Batch Normalization

ReLU

32 3x3 convolution filters

(b) A residual block.

Fig. 2. A given Hex state of boardsize 8 ≤ N ≤ 19 is padded with black or white stones along each border, then fed into a
feedforward neural net with convolution filters. A fully-connected bottom layer compresses results to a single scalar v.

Figure 2 shows the architecture for multiple-boardsize Hex. The neural net output has three heads: p,
q, v respectively estimate a move probability vector, an action-value vector, and a state-value scalar.
The net has a total of 4 · 3 · 3 · 32 + (32 · 3 · 3 · 32 + 32 + 32) · 2 · 10 + 1 + 1 + n · n = 185890 + n2

weights, where only the final fully-connected v-prediction layer depends on input boardsize n. The
main difference between Figure 2 and the three-head architecture (Gao et al., 2018b) is that fully-
connected layers are removed for the q-head: by doing so we expect that the action-value vector can
generalize to boardsizes not used in training.

4 Gao et al. / A Transferable Neural Net for Hex

2.2. Optimization

Following (Gao et al., 2018b), to optimize the three-head neural net fθ, we use a loss function that
combines policy and value:

(1)
L(fθ;D) =

∑
(s,a,zs)∈D

(
w
(
1

2
(zs − v(s))2 +

1

2
(zs + q(s, a))2

+
max(−zs, 0)

|A(s)|
∑

a′∈A(s)

(zs+q(s, a′))2+(min
a′

q(s, a′)+v(s))2
)
−log π(a|s)+c||θ||2

)

where 0 < w ≤ 1 is a weighting factor used to control the relative weight of the value loss; c is a
constant for the level of L2 regularization; (s, a) is a state-action pair from dataset D; zs is the game
result with respect to the player to-play at s, which can be extracted from dataset D; A(s) is the set
of actions at s. Hex has deterministic transitions, so q(s, a) is equivalent to v(s′) given s a−→ s′. The
neural net value outputs v(s), q(s, a) are with respect to the player-to-move at s or (s, a). The loss
function has four parts: policy loss − log π(a|s); L2 regularization c||θ||2; w weighted value loss; and
a quadratic inconsistency penalty between state-value v(s) and minimum action-value mina′ q(s, a′).

3. RELATED WORK

Transferable learning (Pan and Yang, 2010; Yosinski et al., 2014) is an everlasting quest of artificial
intelligence. Starting with image recognition (Krizhevsky et al., 2012), learned deep neural networks
have shown curious generalization ability on tasks that differ from their training. (Yosinski et al., 2014)
documented transferability of neural features learned on ImageNet, concluding that transferability is
negatively influenced by the distance between the base and target tasks. Even for distant target tasks,
transferring neurons from an existing model improved performance after fine-tuning, perhaps because
of the reduction of over-fitting due to neural co-adaption.

Training a net with separate policy and value estimates has been explored in computer Go (Sil-
ver et al., 2016, 2017). The trained nets provide high quality expert knowledge of the game, re-
sembling human quick-decision intuition. This is amplified when combined with Monte Carlo Tree
Search (MCTS) (Coulom, 2006; Silver et al., 2016, 2017). Deep neural nets have also been used in
Hex (Gao et al., 2017a), yielding MoHex-CNN, which is stronger than MoHex 2.0 (Huang et al., 2013;
Pawlewicz et al., 2015) on 13×13 Hex. MoHex-CNN uses policy net output for move prior probabil-
ities during the in-tree phase. For leaf evaluation, MoHex-CNN still uses pattern-based playouts as
in MoHex 2.0. After replacing the pattern-based playouts with neural value estimates, a three-head
neural net (Gao et al., 2018b) — when trained on the same dataset — outperforms MoHex-CNN on
13×13 Hex.

4. EXPERIMENTS

4.1. Datasets

We use three publicly available datasets:

Gao et al. / A Transferable Neural Net for Hex 5

• about 6 × 104 8 × 8 games from interplay of MoHex 2011, MoHex 2.0 and Wolve (Gao et al.,
2017b);

• 9 × 9 MoHex 2.0 self-play games yielding about 1 million state-action-value tuples (Gao et al.,
2018a);

• about 1.5× 104 13×13 MoHex 2.0 self-play games (Gao et al., 2017a).

4.2. Setup

Our neural net is implemented using Tensorflow (Abadi et al., 2016), trained by the Adam (Kingma
and Ba, 2014) optimizer with learning rate 0.001 and mini-batch size 128 for 100 epochs. Model
parameters are saved after each epoch. Experiments ran on an Intel i7-6700 CPU computer with one
GTX 1080 GPU. We set the L2 regularization constant c to 10−5, with value loss weight w = 0.01.
We ran two sets of experiments:

• Train the neural net on 13×13 games and investigate transferability to smaller boards. We split the
13×13 dataset into training and test sets as in (Gao et al., 2017a).

• Train the neural net on 9×9 games and investigate transferability to larger boards. We split the 9×9
dataset in the same way as (Gao et al., 2018a).

4.3. Prediction Accuracy across Boardsizes

We first investigate prediction accuracies of the saved neural net models. Figure 3 shows the test pre-
diction accuracies of p and q heads of the neural net models obtained from learning on 13×13 games.
As expected, neural net models optimized on 13×13 games achieved high accuracy on smaller boards.
Prediction accuracy on 8×8 and 9×9 are better than on 13×13, reflecting that smaller boardsizes are
easier to master. Compared to the neural net designed specifically for 13×13 Hex and trained on the
same dataset (Gao et al., 2018b), this network’s q- and p-heads generally achieved slightly larger
errors. However, this sacrifice seems worthwhile in light of the ability of the new architecture to
generalize to other boardsizes.

0 20 40 60 80 100

0.5

0.55

0.6

0.65

Epoch number

A
cc
u
ra
cy

Accuracy on 13×13

Accuracy on 9×9

Accuracy on 8×8

0 20 40 60 80 100

0.4

0.6

0.8

1

Epoch number

M
S
E

MSE of q on 13×13
MSE of q on 9×9
MSE of q on 8×8

Fig. 3. 13×13 training: prediction accuracy across boardsizes.

It is more interesting to measure transferability from smaller boards to larger, as on smaller boards it
is easier produce high quality games. Figure 4 shows prediction accuracy after training the net on 9×9
games. Surprisingly, both q and p yield reasonable prediction accuracy even on 13×13 Hex. However,
on 13×13 Hex, by comparison, prediction accuracy of Figure 4 is much worse than in Figure 3.

6 Gao et al. / A Transferable Neural Net for Hex

0 20 40 60 80 100

0.4

0.5

0.6

0.7

Epoch number

A
cc
u
ra
cy

Accuracy on 13×13

Accuracy on 13×13

Accuracy on 8×8

0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

Epoch number

M
S
E

MSE of q on 13×13
MSE of q on 9×9
MSE of q on 8×8

Fig. 4. 9×9 training: prediction accuracy across boardsizes.

4.4. Combined with Search

How useful are our neural nets when used in search? In this section we answer this question by
combining our nets with the MCTS of MoHex 2.0. As in (Gao et al., 2017a, 2018b), we leave the
search framework and hyper-parameters unchanged but 1) replace move prior probability with neural
net move prediction (Gao et al., 2017a) and 2) use action-value in q to back up leaf estimates (Gao
et al., 2018b). The v-head is boardsize dependent, so we use it only when the running boardsize is
the same as that used in training; otherwise, only the q- and p-heads are used. In our implementation,
move prior and action-value are both stored at each node creation. We call this new transferable neural
net program MoHex3H.

We evaluate 10 neural net models at an epoch interval of 10. Each model is combined with MoHex3H
and played against MoHex 2.0. Table 1 shows the results on boardsizes 9×9 to 13×13. We did not
include 8×8 data, because positions on this board are easily solved (Henderson et al., 2009; Pawlewicz
et al., 2015). For all programs, we allow 104 simulations per move, since on the GTX 1080 GPU,
MoHex 2.0 and the new programs with neural nets take similar time per simulation (Gao et al., 2017a).
Each tournament is played by iterating over all N×N opening moves. Each opening is used twice, with
each program playing as first-player and second-player; and no swap rule.

Table 1
MoHex3H using 13×13-trained nets: win rate (%) versus MoHex 2.0 and MoHex-CNN. Columns 2-11 show strength by

epoch.

Boardsize
Epoch number

10 20 30 40 50 60 70 80 90 100

9×9 71.0 64.8 69.1 75.9 73.5 77.2 69.1 74.7 77.8 67.9
10×10 71.0 78.0 66.5 71.0 82.5 83.5 80.5 78.0 78.5 72.5
11×11 67.4 67.8 71.5 74.0 71.9 76.4 74.8 78.5 78.1 76.4
12×12 67.0 71.9 70.5 73.6 76.4 78.5 78.1 77.4 79.9 75.7
13×13 63.0 63.3 68.3 69.8 73.7 76.3 74.9 75.4 74.3 74.9
13×13 44.1 42.9 46.5 55.3 58.8 61.2 55.3 52.4 61.2 55.3

Table 1 shows results against MoHex 2.0 using net models learned from the 13×13 dataset. Notice
that the high p- and q-head prediction accuracy of Figure 3 yields strong play on smaller boardsizes.
MoHex-CNN ran only on 13×13 Hex, so we include the data against MoHex-CNN in the last row:

Gao et al. / A Transferable Neural Net for Hex 7

Table 2
MoHex3H using 9×9-trained nets: win rate (%) versus MoHex 2.0.

Boardsize
Epoch number

10 20 30 40 50 60 70 80 90 100

9×9 63.6 69.1 63.0 65.4 65.4 72.2 74.7 72.8 71.6 72.8
10×10 63.5 70.0 71.5 68.0 67.0 75.5 76.0 76.0 76.5 77.5
11×11 62.8 58.3 64.0 66.1 69.0 66.1 67.8 64.0 66.1 65.7
12×12 51.0 45.8 56.2 53.5 45.8 60.1 54.9 49.3 58.7 58.0
13×13 35.3 39.4 47.1 47.6 46.5 42.9 42.4 42.9 52.9 54.1

Table 3
MoHex3H using 9×9-trained nets, with p-head only: win rate (%) versus MoHex 2.0.

Epoch number
Boardsize

9×9 10×10 11×11 12×12 13×13

90 68.5 75.5 68.2 65.3 60.6
100 68.5 70.5 70.7 67.4 63.5

MoHex3H defeats MoHex-CNN with this transferable neural net, although the win rate is lower than
that of a three-head net with fully connected bottom layer (Gao et al., 2018b).

Table 2 shows results against MoHex 2.0 using net models learned from the 9×9 dataset. The resulting
program defeats MoHex 2.0 even on boardsize 13×13, although its margin of victory there is less than
on other boardsizes. MoHex 2.0’s playout policy was trained mostly on 13×13 games (Huang et al.,
2013), so we conjecture that the low q-head prediction accuracy is insufficient to match the strength of
MoHex 2.0 playouts. To verify this, we ran extra tournaments with the q-head in MoHex3H’s search
disabled, forcing MoHex3H to use the same pattern-based playouts as MoHex 2.0. By comparing the
results in Tables 2 and 3, we can see that, at epochs 90 and 100, the winrate against MoHex 2.0
dropped on boardsizes 9×9 and 10×10 but rose on boardsizes 11×11 and larger, suggesting that the
p-head consistently aided search, while the q-head was insufficiently accurate to replace pattern-based
playouts on larger boardsizes.

In summary, we conclude that 1) without fine-tuning, transferring neural knowledge to larger board-
sizes is harder than to smaller and 2) when transferring to larger boardsizes, the p-head seems more
robust than the q-head.

4.5. Fine-tuning

We further investigate fine-tuning 9×9-trained neural models on 13×13 data. Specifically, we use the
neural net model at epoch 100 in Figure 4 to initialize training on the 13×13 dataset.

Figures 5 and 6 compare the learning curves on the same 13×13 dataset by warm initialization and by
starting from random weights. Notice that learning benefits from warm initialization: the neural net
learns faster and achieves better accuracies. This strength gain is amplified with search: when used
with the MCTS of the previous section, the resulting player quickly passed 70% wins against MoHex
2.0: at epoch 10, the rate is already 72.4%. By comparison, Table 1 shows that with random weights
initialization this took more than 40 epochs.

8 Gao et al. / A Transferable Neural Net for Hex

0 20 40 60 80 100

0.45

0.5

0.55

0.6

Epoch number

A
cc
u
ra
cy

Train accuracy with random init.

Train accuracy with warm init.

0 20 40 60 80 100
0.7

0.8

0.9

1

1.1

Epoch number

M
S
E

Train value error with random init.

Train value error with warm init.

Fig. 5. 13×13 training errors, with and without warm initialization.

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

Epoch number

A
cc
u
ra
cy

Test Accuracy with random init.

Test Accuracy with warm init.

0 20 40 60 80 100
0.7

0.8

0.9

1

Epoch number

M
S
E

Test error with random init.

Test error with warm init.

Fig. 6. 13×13 test errors, with and without warm initialization.

5. CONCLUSIONS AND FUTURE WORK

We have described a transferable neural network for the game of Hex. Our experiments show that
both policy and value predictions can be used on boardsizes different than those used in training: as
expected, knowledge transfer to smaller boards is more effective than to larger boards. Nonetheless,
when combined with search, reusing neural network weights on larger boardsizes can result in strong
play, regardless of whether there is fine-tuning.

To date, computer Hex players are weak on large boardsizes such as 19×19. A direction for future
work is to use transferable neural nets to bootstrap the development of high performance playing pro-
grams on such boardsizes. Research on Go (Silver et al., 2017) has shown that iteratively optimizing
neural nets on ever-stronger games generated by MCTS with previous neural net parameters produces
a strong player. However, on regular computer hardware, an initially weak player might require long
training times (). By using neural knowledge from smaller boardsizes, high performance playing on
19×19 Hex might be achieved with smaller training cost.

Gao et al. / A Transferable Neural Net for Hex 9

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,
J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467.

Anthony, T., Tian, Z. & Barber, D. (2017). Thinking Fast and Slow with Deep Learning and Tree
Search. arXiv preprint arXiv:1705.08439.

Clark, C. & Storkey, A. (2015). Training deep convolutional neural networks to play Go. In Interna-
tional Conference on Machine Learning (pp. 1766–1774).

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree search. In Interna-
tional Conference on Computers and Games (pp. 72–83). Springer.

Édouard Bonnet, Jamain, F. & Saffidine, A. (2016). On the complexity of connection games. Theo-
retical Computer Science, 644, 2 –28. Recent Advances in Computer Games.

Gale, D. (1979). The game of Hex and the Brouwer fixed-point theorem. The American Mathematical
Monthly, 86(10), 818–827.

Gao, C., Hayward, R.B. & Müller, M. (2017a). Move Prediction using Deep Convolutional Neural
Networks in Hex. IEEE Transactions on Games.

Gao, C., Müller, M. & Hayward, R. (2017b). Focused Depth-first Proof Number Search using Con-
volutional Neural Networks for the Game of Hex. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17 (pp. 3668–3674).

Gao, C., Müller, M. & Hayward, R. (2018a). Adversarial Policy Gradient for Alternating Markov
Games. In ICLR 2018 workshop.

Gao, C., Müller, M. & Hayward, R. (2018b). Three-Head Neural Network Architecture for Monte
Carlo Tree Search. In IJCAI.

Hayward, R. & Weninger, N. (2017). Hex 2017: MoHex wins the 11x11 and 13x13 tournaments.
ICGA Journal, 222–227.

Hein, P. (1942). Vil De laere Polygon. Politiken newspaper.

Henderson, P., Arneson, B. & Hayward, R.B. (2009). Solving 8×8 Hex. In Proc. IJCAI (Vol. 9, pp.
505–510). Citeseer.

Huang, S.-C., Arneson, B., Hayward, R.B., Müller, M. & Pawlewicz, J. (2013). MoHex 2.0: a
pattern-based MCTS Hex player. In International Conference on Computers and Games (pp. 60–71).
Springer.

Kingma, D. & Ba, J. (2014). Adam: A method for stochastic optimization. In International Conference
on Learning Representations.

Krizhevsky, A., Sutskever, I. & Hinton, G.E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems (pp. 1097–1105).

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Maddison, C.J., Huang, A., Sutskever, I. & Silver, D. (2015). Move evaluation in Go using deep
convolutional neural networks. In International Conference on Learning Representations.

10 Gao et al. / A Transferable Neural Net for Hex

Nash, J. (1952). Some Games and Machines for Playing Them. Technical report D-1164, RAND
Corporation.

Pan, S.J. & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10), 1345–1359.

Pawlewicz, J., Hayward, R., Henderson, P. & Arneson, B. (2015). Stronger Virtual Connections in
Hex. IEEE Transactions on Computational Intelligence and AI in Games, 7(2), 156–166.

Pierce, J.R. (1961). Symbols, Signals and Noise (pp. 10–13). Harper and Brothers.

Reisch, S. (1981). Hex ist PSPACE-vollständig. Acta Informatica, 15(2), 167–191.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587), 484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.
& Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676),
354–359.

Tian, Y. & Zhu, Y. (2015). Better computer Go player with neural network and long-term prediction.
In International Conference on Learning Representations.

Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. (2014). How transferable are features in deep neural
networks? In Advances in neural information processing systems (pp. 3320–3328).

Leela-zero. https://github.com/gcp/leela-zero. Accessed: 2018-02-28.

https://github.com/gcp/leela-zero

	Introduction
	General Neural Networks in Hex
	General Architecture
	Optimization

	Related Work
	Experiments
	Datasets
	Setup
	Prediction Accuracy across Boardsizes
	Combined with Search
	Fine-tuning

	Conclusions and Future Work
	References

