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Abstract We present an algorithm which determines the outcome of an arbitrary Hex
game-state by finding a winning virtual connection for the winning player. Our
algorithm performs a recursive descent search of the game-tree, combining fixed
and dynamic game-state virtual connection composition rules with some new
Hex game-state reduction results based on move domination.The algorithm is
powerful enough to solve arbitrary 7�7 game-states; in particular, we use it to
determine the outcome of a 7�7 Hex game after each of the 49 possible opening
moves, in each case finding an explicit proof-tree for the winning player.

Keywords: Hex, virtual connection, pattern set, move ordering, move domination, game-state
reduction

1. Introduction

Hex is the classic two-player board game invented by Piet Hein in 1942 and
independently by John Nash around 1948 (Gardner, 1959; Nasar, 1998). The
board consists of a rhombus-shapedn�n array of hexagons, also called cells.
Each player is assigned a set of stones and two opposing boardsides, all with
the same colour; say Black gets black stones and sides, whileWhite gets white
stones and sides. Players alternately place a stone on an unoccupied cell. The
first player to form a path connecting his/her two sides with his/her stones wins
the game. See Figure 1. For more on Hex, see Browne (2000) and Hayward
and Van Rijswijck (200x).

In Hex, an unrestricted opening allows the first player to gain a considerable
advantage: it is known that there exists a winning strategy for the first player
(Gardner, 1959), and while no explicit strategy which holdsfor arbitrary sized
boards is known, most players believe that opening in the centermost cell in
particular is a winning move. In order to offset this openingmove advantage,
the game is often started according to the following “swap rule”: colours are
assigned to the four sides of the board, but not to the players; one player then
places a stone on any cell; the other player then chooses which colour stones
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Figure 1. An empty 7�7 board, and : : : a finished game; Black wins.

to play with. The second move is played by the player whose stones are the
opposite colour of the first stone. From then on, the game continues in normal
fashion, namely with players alternating moves.

With respect to Hex, aboard-statedescribes a particular placement of some
number of black stones and some number of white stones, such that each cell
has at most one stone. We assume no constraint on the relativenumber of stones
of each colour, as the game may have started with a handicap advantage for one
of the players. Theempty board-statehas no stones on the board. Ak-opening
is a board-state with exactlyk stones on the board. Aturn-statedescribes
which player has the next move. Agame-state, or simply astate, consists of
a board-state and a turn-state. We denote byG = [P;B℄ the game-state with
turn-stateP and board-stateB; for this game-state, we say thatP winsG if P
has a winning strategy forG. For a board-stateB, we say thatP winsB if P
winsG = [P;B℄.

A state issolvedif the winning player is known, andexplicitly solvedif a
winning strategy is known. As we have already remarked, for arbitrarily large
boards, Hex has been solved for the empty board-state, but not explicitly solved.

In this paper we consider the problem of solving arbitrary Hex states, and
present an algorithm which solves this problem. The worst-case running time
of our algorithm is exponential in the number of cells in the board, which is not
surprising given that solving arbitrary Hex states is PSPACE-complete (Reisch,
1981). As a benchmark for the efficiency of our algorithm, we solve all 7�7
1-openings. Previously known 1-opening results are summarized in Figure 2.

Our results yield the first computer solution of any Hex stateon a 7�7 or
larger board. Solving Hex states on 5�5 or smaller boards is a computationally
routine task. To solve arbitrary 6�6 Hex states, Van Rijswijck (2000, 1999-
2003) used an alpha-beta search guided by a Hex-specific evaluation function;
his algorithm solved all 1-openings and many longer openings. As this method
was not strong enough to solve 7�7 states, he further described but did not
implement an alternative recursive-descent algorithm (Van Rijswijck, 2002).
Recently Yang et al. solved by hand several 7�7 1-openings (Yang et al., 2001,
2002a), one 8�8 1-opening (Yang et al., 2002b), and one 9�9 1-opening (Yang,
2003).
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Figure 2. Previously known 1-opening results. The stone on each cell indicates the winner
with perfect play if White’s first move is to that cell. For cells with no stone, the winner was not
previously known. The 6�6 results were obtained by Van Rijswijck by computer (Van Rijswijck,
2002). The 7�7 results were obtained by Yang et al. (2001, 2002) by hand.

Our algorithm solves an arbitrary Hex state by computing a winning virtual
connection according to dynamic-state composition rules.Following the re-
cursive descent game-tree search proposed by Van Rijswijck, our algorithm is
enhanced by the computation of fixed-state virtual connections; additionally,
some new Hex move domination and state reduction results allow significant
pruning of the game-tree.

Before presenting our algorithm in Section 4 and our 7�7 results in Section 5,
we provide necessary background information on virtual connections in Section
2 and state reductions in Section 3.

2. Connection Sets

Roughly, aconnection setin Hex is a subgame in which one of the players
can form a connection between two specified sets of cells. If the player can
connect the two sets even if the opponent moves first, the connection set is called
a virtual connectionor link; if the player must have the first move in order to
guarantee the connection, the connection set is called aweak connectionor
prelink.

More formally, with respect to a fixed Hex state, a playerP , sets of cells1X;Y , and a set of cellsS, (P :X;S; Y ) is avirtual connectionor link if there
exists a strategy whereby, in the game restricted to the set of cellsX [ S [ Y ,P can form a chain connecting at least one cell ofX with at least one cell ofY , even ifP ’s opponent moves first; in other words,(P :X;S; Y ) is a virtual
connection if there exists a second-player-win strategy for P to connectX and

1Here each of the four sides is also be considered as a cell.
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Figure 3. A virtual connection formed by weak connections. Each of thethree leftmost figures
shows a Black weak connection, indicated by the dotted cells, from the black stone to the bottom
right side; the white dot indicates a cell whose occupation would transform the weak connection
into a virtual connection. The common intersection of theseweak connections is empty, so their
union forms a Black virtual connection from the black stone to the bottom right side, shown in
the rightmost figure.Y in the game restricted toX [ S [ Y . Analogously,(P :X;S; Y ) is aweak
connectionor prelink if there exists a strategy whereby, in the game restricted
to the set of cellsX [ S [ Y , P can form a chain connectingX andY if P
moves first; in other words,(P :X;S; Y ) is a weak connection if there exists
a first-player-win strategy forP to connectX andY in the game restricted toX [ S [ Y . A P -link (respectivelyP -prelink) is a link (prelink) for playerP .
See Figure 3.

In this paper, all virtual and weak connections have the form(P :X;S; Y )
whereX and Y each consist of a single cell; we denote such connections(P :x; S; y) where nowx andy represent single cells instead of sets of cells.

Although defined slightly differently by different authors, virtual connections
have long been recognized as being central to Hex strategy. References to
virtual connections permeate the Hex literature, where they are also referred
to as “connections” or “safe groups”. For example, virtual connections are
discussed by Berge (1977)2 and Browne (2000).

Virtual connections are useful in solving states since, when accompanied by
an explicit strategy, a virtual connection serves as a proofor certificate that a
pair of cells can be connected.

In particular, ifP has a virtual connection(P :x; S; y) wherex andy are the
two sides belonging toP , then this virtual connection certifies thatP wins the
game. For this reason, we call(P :x; S; y), awin-link (respectivelywin-prelink)
if it is a link (prelink) andx andy areP ’s two sides. Since the sides of each
player are fixed, we will sometimes abbreviate(P :x; S; y) by P :S wheneverx; y are the sides ofP .

Connection sets are particularly effective in Hex end-gameanalysis. For
example, the following is a restatement in our terminology of an observation
made by Berge.

2A translated version of appears in Hayward (2003a).
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playerP has the next turn andP ’s opponentQ has one or more win-prelinks.
ThenQ wins unlessP ’s next move is to a cell which intersects allQ-win-
prelinks, for otherwiseQ can on the next move convert a win-prelink to a
win-link.

In light of this result, for any fixed state and a playerP with opponentQ, we
refer to the set of unoccupied cells in the intersection of all Q-win-prelinks asP ’s mustplay region. Notice that the computation of a mustplay region is a
form of null move analysis, as it involves the considerationof what can occur
if a player skips a turn.

A useful feature of virtual connections is that smaller onescan be combined
in various ways to form larger ones. The knowledge of this fact is as old as
Hex itself; for example, it is discussed in detail by Berge (1977) and Hayward
(2003a). Recently, Anshelevich (2002) used the following set of combining
rules to compute connection sets in an inductive or “bottom-up” fashion. AP -stone is a stone belonging toP ; � denotes the empty set.Theorem 2 (Anshelevic, 2002)(P :x; �; y) is a virtual connection ifx andy are adjacent. Also, if(P :x; S; y) and (P :y; T; z) are virtual connections
and fxg [ S and T [ fzg do not intersect, then(P :x; S [ fyg [ T; z) is
a virtual connection ify is occupied by aP -stone and a weak connection
if y is unoccupied. Also, if(P :x; S1; y), (P :x; S2; y), : : : , (P :x; Sk; y) are
weak connections and the common intersection of the setsSj is empty, then(P :x; S; y) is a virtual connection, whereS is the union of the setsSj.
Notice that this set of rules is static, in that it yields a class of connection sets for
a fixed state. This set of rules is not sufficient to establish all virtual connections
of a state, and is thus not strong enough to solve all Hex states. However, the
rules do yield a sufficiently large class of virtual connections to provide an
effective subroutine of a strong Hex-playing program (Anshelevich, 2002).

As Van Rijswijck observed, an alternative method of computing connection
sets is to proceed through the game-tree dynamically. LetG = [P;B℄ be a state
and letQ be the opponent ofP . For each unoccupied cellx of B, letB+ x be
the board-state obtained by adding toB aP -stone atx, and letG + x be the

Figure 4. A white win-prelink : : : and a corresponding win-link.
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associated state, namelyG+x = [Q;B+x℄. Call a collection of setsmutually
exclusiveif the intersection of all the sets is empty. Van Rijswijck’scomments
suggest the following rules for solving a state.Theorem 3 (Van Rijswijck, 2002) IfP (respectivelyQ) has a winning chain
in B thenP :� (respectivelyQ:�) is a win-link. If neither player has a winning
chain inB, thenP winsG if and only ifP winsG + x for some movex; in this case,G+ x has some win-linkP :S andG has a win-prelinkP :S + x,Q winsG if and only ifQ winsG + x for all movesx; in this case, for

eachx, G + x has a win-prelinkQ:Sx and any collectionC consisting
of one suchSx for eachx is mutually exclusive; also, for eachC 0 � C,
if C 0 is mutually exclusive then the unionU of the elements ofC 0 is a
win-linkQ:U for G.

Figure 5 illustrates this theorem. The root stateG is a loss for White. Three
of White’s possible moves are explored. In each stateG + xi, the moveyi
yields a black win; the resulting stateG + xi + yi has a black win-linkSi, soG+xi has a black win-prelinkSi [ yi; this win-prelink implies thatxi loses inG, and moreover thatanywhite move outside ofSi [ yi loses. The set of these
three win-prelinks is mutually exclusive. Indeed, the set containing just the
win-prelinksS2 [ y2 andS3 [ y3 is already mutually exclusive, which means
that the union of these two prelinks is a black win-link inG. It also means that
the exploration of these two branches of the game-tree is sufficient to determine
that White losesG; the consideration of any other move is unnecessary.

We omit the proof of correctness of the preceding theorem, which follows by
elementary game-theory arguments from the fact that any Hexstate has exactly
one winner.3 Notice that these rules are by their definition complete: they can
be used to solve any arbitrary Hex state.

From a computational point of view, the difficulty with both of these sets of
rules is that the number of possible connection sets that canbe computed in
this way is exponential in the number of cells. For this reason, an exhaustive
approach to computing connection sets based on either rule set will be forced
to limit the number of intermediate connection sets computed. For example,
Anshelevich’s (2002) game-playing program has maximum effectiveness when
the number ofx-to-y connection sets stored is limited to about 40 per pair of
cellsx; y .

For both the static and dynamic computational processes, what is needed
is some way of distinguishing those intermediate connection sets which are

3This fact in turn requires some care to prove; see for exampleBeck (1969), Gale (1979), and Hayward and
Van Rijswijck (200x).
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White to move loses, Black win-linkS = fS2 [ y2g [ fS3 [ y3gy1S1S1G+ x1

Black wins, win-prelinkS1 [ y1 y2S2S2G+ x2
Black wins, win-prelinkS2 [ y2 y3S3S3S3S3G+ x3

Black wins, win-prelinkS3 [ y3
S1S1G+ x1 + y1

White loses, win-linkS1 S2S2G+ x2 + y2
White loses, win-linkS2 S3S3S3S3G+ x3 + y3

White loses, win-linkS3
Figure 5. An example illustrating Theorem 3.

critical to solving the particular state from those which are not. We close this
section by giving evidence that this is likely to be a difficult problem.

Assume that at some point in a computation involving the dynamic rules it
is discovered that playerP has no winning move in a stateG. It follows thatP ’s opponentQ has a win-prelinkSx after each possible movex by P and
that the union of any collection of these win-prelinks whichhave an empty
intersection establishes a win-link forQ. If G is an intermediate state in the
process of solving some earlier state, thenP needs to compute such a win-link
to pass back to the state which gave rise toG. It is reasonable to expect that a
useful win-link to pass back would be one that has the smallest number of cells,
among all such possible win-links. However, it is also reasonable to expect
this problem to be computationally difficult, since it seemsto be intimately
related to determining the outcome of a Hex game, which we have already
noted is PSPACE-complete. Saks (2003) observed that this problem is indeed
computationally difficult, as we now explain.

Formally, theMin-Union Empty Intersection Problem (MUEIP)is the de-
cision problem which takes as input an integerk together with a setS =fS1; : : : ; Stg of subsets of a finite setV and asks whether there is a subsetT
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of S whose element-intersection is empty and whose element-union has size
at mostk. Min Coveris the decision problem which takes as input an integerk together with a setA = fA1; : : : ; Atg of subsets of a finite setV and asks
whether there is a subset of at mostk elements ofA whose union isV .Theorem 4 (Saks, 2003) MUEIP is NP-complete.

Proof. Consider an instance of Min Cover, wherek,A, andV are as defined
above andn = jV j. This instance can be transformed in polynomial time into
an instance of MUEIP, as follows.

For each indexj, let Bj be the set complement (with respect toV ) of Aj ,
and letB = fB1; : : : ; Btg. Observe that the union ofk elements ofA is equal
to V if and only if the intersection of the correspondingk elements ofB is
empty. LetV 0 be the set obtained by addingt(n+ 1) new elements toV . For
each indexj, letB0j be the set obtained by addingn+1 of the new elements toBj in such a way that eachBj gets expanded by a set of new elements disjoint
from all other new elements. LetB0 = fB01; : : : ; B0tg. Observe that a set ofk elements ofB has empty intersection if and only if the corresponding set
of k element ofB0 has empty intersection, and this occurs if and only if the
same set ofk elements ofB0 has empty intersection and union with size at mostk(n+ 1) + n.

Since MUEIP is clearly in NP, the theorem follows from the preceding trans-
formation and the fact that Min Cover is NP-complete (Karp, 1972). 2

Since using virtual connections alone to solve arbitrary Hex states is likely
to be computationally difficult, some extra game knowledge must be used to
reduce the complexity of searching through the game-tree. We discuss some
such reductions in the next section.

3. Move Domination and Game-State Reduction

One reason that Hex is a challenge for computers to play or solve is the
high branching factor; especially in the early stages of thegame, the number
of possible moves is high. In this section we describe some move ordering
informationwhichconsiderablystrengthens the algorithmic approach implicitly
described by the virtual connection composition rules of the previous section.

A particularly useful form of move ordering information is move domination.
Informally, one move dominates another if the former is at least as good as the
latter. Since we are interested here only in solving states,namely in determining
which player has a win-strategy, one move is “at least as goodas” another if
the former yields a win whenever the latter yields a win. Formally, for possible
movesu; v from a state[P;B℄, we say thatu dominatesv if P wins [Q;B+u℄
wheneverP wins [Q;B + v℄.



Solving 7�7 Hex: Virtual Connections and Game-State Reduction 269

Domination results are useful for our purposes since any dominated move
can be ignored in searching for a winning move. Unfortunately, few results
have been proved to date on domination in Hex. Beck (1969) proved that on
an empty board size 2�2 or larger, moving to an acute corner (for example, A1
in Figure 74), is a losing, and so dominated, move. Using similar arguments,
Hayward (2003b) recently obtained a move domination resultinvolving certain
three-cell configuration, as we now explain.

For a playerP , a side cellis any cell which borders one ofP ’s two sides,
a side pairfx1; x2g consists of two adjacent side cells which border the same
side, and aside triangle(x1; x2; t) consists of a side pairfx1; x2g together
with a third cell, called thetip, adjacent to the two side cells. See Figure 7. AP -triangle is a side triangle belonging toP .Theorem 5 (Hayward, 2003b) LetP be a player with opponentQ and letB be a board-state with an emptyP -triangle (x1; x2; t). For each subsetS ofT = fx1; x2; tg, let B + S be the board-state obtained fromB by adding aP -stone at each cell ofS.

Then, for eachj = 1; 2, P wins [Q;B + t℄ if P wins [Q;B + xj ℄. Also,P
wins any one of the four states[Q;B + t℄, [Q;B + ft; x1g℄, [Q;B + ft; x2g℄,[Q;B + ft; x1; x2g℄ if and only ifP wins all of them.

Our algorithm uses the above results in the following two ways. Firstly, for
any state[P;B℄ with an emptyP -triangle,P can ignore the two moves to the
side of the triangle, since they are dominated by the move to the tip. Secondly,
for any state[Q;B℄ with aP -triangle with aP -stone at the tip and the two side
cells empty,P -stones can be added to the two side cells, since this addition
does not change the outcome of the game. As can be seen from Figure 12, the
second result is particularly useful when combined with ourvirtual connection
computation approach.

A
1

B

2

C

3

D

4

E

5

F

6

G

7

Figure 6. Illustrating the second part of Theorem 5. Applying this result to the white side
triangle with tip E2, it follows that a player has a winning strategy for one of these board-states
if and only if that player has a winning strategy for all of these board-states.

4Throughout this paper, whenever we need to refer to a particular board cell, we assume that the board is
oriented as in Figure 7, and use the coordinate system shown there.
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4. The Algorithm

Our algorithmSolver combines the approaches suggested by Theorems 1,
2, 3, and 5. For a playerP with opponentQ, the algorithm solves a stateG = [P;B℄ as follows.Algorithm Solver(G = [P;B℄) For each side triangle for which the
second part of Theorem 5 applies, add stones to the appropriate side cells; call
the resulting boardB�. Statically compute virtual and weak connections. If a
win-prelink forP or a win-link forQ is detected, then return the link (and if
the win-link uses the tip of a triangle whose side was filled in, then add the side
cells to the link).

Otherwise, letT be the set consisting of allQ-win-prelinks forG and letR
be theP -mustplay region. IfT is empty, then initializeR to be all unoccupied
cells; otherwise, intializeR to be the intersection of all elements ofT . Remove
fromR any side-cells from any emptyP -triangle. WhileR is not empty, pick a
cell x in R, and do the following:

LetB�x be the state obtained fromB� by adding aP -stone atx
and, ifxwas the tip of an emptyP -triangle before this move, filling
in the triangle. Recursively solveGx = [Q;B�x℄.
If P winsGx, say with win-linkX, then add toX the cellx as
well as the two associated side-cells ifx was the tip of an emptyP -triangle, and exit the while loop and return. IfQ winsGx, say
with win-prelinkX, then addX to T .

If the while loop terminates without discovering a win-prelink for P , then the
union of elements ofT forms a win-link forQ.

A sample execution of the algorithm is described in Figures 7through 9.
The correctness of our algorithm follows easily from the previous theorems;
we omit the proof.

A
1

B

2

C

3

D

4

E

5

F

6

G

7

Figure 7. Solver solves b6: initialization. After the initial move (left), the game-state
is reduced by applying Theorem 5 and adding white stones to the two side-cells of the white
side-triangle with tip b6. In the resulting state, White hastwo win-prelinks (center-left and
center-right) whose resulting intersection yields a 13-cell black mustplay region (right). If Black
has a winning move, it has a winning move to one of these 13 cells.
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A
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E
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G
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Figure 8. Solver solves b6-c4. As shown by theSolver b6 recursion tree in Figure 13, c4
is the first black response considered to the white b6 opening(left). Following the topmost path
b6-c4-f2-d5-d4-c5-e5-e4-g3-f3-g2-f4 in the recursion tree and applying Theorem 5 after f2 leads
to the first solved state (center, with white win-prelink); since f4 is a leaf of the recursion tree,
the white win-prelink here was discovered statically.Solver continues solving the c4-subtree,
eventually determining that c4 is a black loss (right, with white win-prelink). This win-prelink
does not contain c4 or b5, so, of the 13 possible b6-responsescorresponding to the initial black
mustplay region described in Figure 7, 11 moves remain to be checked.
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Figure 9. Solver solves b6: conclusion. The move to f1 is the last black reply considered in
response to the white b6 opening (left, with white win-prelink), since after the discovery of this
last white win-prelink, the set of such win-prelinks has empty intersection. The union of these
11 white win-prelinks gives the final win-link for White (right).

5. SOLVER 7�7 1-Opening Solutions

As mentioned earlier,Solver is strong enough to solve arbitrary 7�7 states.
Figures 10 and 11 summarize the results obtained by runningSolver on all
49 7�7 1-openings. Figures 13 and 14 show theSolver recursion trees from
two of these executions, while Figure 15 shows a longest lineof play from
each of the 49 solutions. Each execution was performed on a single processer
machine5; in each case, the run time was roughly proportional to the number
of nodes in theSolver recursion tree, taking about one minute for the five 1-
openings with the smallest node-counts, and about 110 hoursfor the 1-opening
with the largest node-count; the total run time for all 49 1-openings was about
615 hours. A listing of all 49 trees (including a tree viewer)is available athttp://www.
s.ualberta.
a/~hayward/hex7trees.

5The program was compiled with gcc 3.1.1 and run on an AMD Athlon 1800+ MHz processor with 512 MB
memory running Slackware Linux.
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C4
C4

C4
B6
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B6

E3
E3

C5

D4

F2

B6

D4

E3

C5
C5

B6
B6

B6
D3

D3
D3

Figure 10. All 7�7 1-opening results, as found bySolver. The stone on each cell indicates
the winner with perfect play if White’s first move is to that cell. The move indicated on each
losing cell is the winning countermove discovered.
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Figure 11. Number of nodes in theSolver 7�7 1-opening recursion trees.

For any size Hex board, the set of winning open-move cell locations is sym-
metric with respect to reflection through the center of the board. Notice that theSolver node-counts do not share this symmetry, as neither the orderin whichSolver considers moves nor the static computation of virtual connections is
designed to reflect this symmetry.

Figure 12 demonstrates the relative strength of the three key parts of our
algorithm, namely virtual connection computation, side-triangle move domi-
nation, and side-triangle fill-in, by showingSolver node-counts when various
of these features are turned off. In particular, notice thatadding side-triangle
fill-in to virtual connection computation results in a substantial decrease in the
number of nodes considered, while further adding side-triangle domination has
little effect.
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Figure 12. Number of nodes in the 6�6 1-opening recursion trees forSolver (top entry),Solver�D, namelySolver without side-cell domination (middle entry), andSolver�FD,
namelySolver with neither side-cell domination nor fill-in (bottom entry). While correspond-
ing data were obtained for some 7�7 1-openings,Solver�FD in particular was too slow
to execute for all such openings. For example, the b7Solver�FD tree has 824796 nodes,
compared to only 1196 forSolver.

In comparing the winning 7�7 opening moves (Figure 10) with winning
opening moves on smaller boards (Figure 2), some features common to each of
thesen� n boards are worth noting. For example,

then cells on the short diagonal (obtuse corner to obtuse corner)are all
first-player winning openings,

then � 1 cells on each of the first-player’s sides (except for the cellin
the short diagonal) are all first-player losing openings.

It wouldbe of considerable interest to show whether these results hold in general,
especially if the proof is positive (as opposed to say a single counterexample),
since to date, for arbitrarily largen� n boards,

no particular move is known to be a first-player win,

the only moves which are known to be first-player losses are

– for n � 2, the two acute corner cells (Beck, 1969)

– for n � 3, the two cells each in the first-player’s side and adjacent
to the acute corner cell (Beck, 2000).
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d5 d4 c5 e5 e4 g3
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b3 a4
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c4 d3 e3 a5
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e2 e4 e3 b3

f1 c3 c4 d3 d4 a5

a6 b5 b4 a4

b5 a6 b4 a4

b4 a4

Figure 13. TheSolver recursion tree for the 7�7 opening White-b6 (with the ten nodes
connected by dotted edges added so that every path ends with awinning move). For each node,
the order of child generation is top-to-bottom. EachSolver recursion tree is a subtree of the
complete game-tree, as the only replies to a winning move which appear in the recursion tree
are those replies in that state’s mustplay region. For example, consider for the tree shown here
the stateG after White plays b6. As shown in the second diagram in Figure7, White has a win-
prelink created by playing at c4 which does not contain d4; thus d4 is not in the black mustplay
region forG, soSolver never needs to consider the black move to c4, so c4 does not appear as a
child of b6 in this recursion tree. Notice from the tree shownhere that in solving the b6 opening
the selection of d2 as the first move considered at the b6-c5-c3-c2 subtree was unfortunate, as
d2 leads to a white loss whereas f2, the second move considered, leads to a white win. If f2 had
been considered first, the d2 subtree would not have been explored, and the resulting recursion
tree would have had only 97 nodes instead of 197.
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f1 b6

d5 e6

f6 e4

f5 e4

g4 e4

e4 e6

d6 d5

c5 d3

c6 d4

f6 e5

g4 e5
c6 d3

f5 d3 c4 c5

f6 f5 d6 d5

g4 f2

e3 e5 d5 c7

b7 c6 d6 d7

c6 b7 d6 d7

d6 d7

c6 d4 e4 d5 e5 f2 e3 e2

e5 f2
c4 d3

e3 d3
f4 d5

c5 e5

d5 e4 e3 c7

f5 f2 e3 e4 f3 d3

g3 f2

f3 d3 e3 e6

g2 e4 d5 e6

g3 f2 e3 d3

g4 f2 e3 e2

Figure 14. TheSolver recursion tree for the 7�7 opening White-f1 (with the five nodes
connected by dotted edges added so that every path ends with awinning move). For each node,
the order of child generation is top-to-bottom. Notice thatthe f1-b6 subtree, which establishes
that b6 is a winning countermove to f1, is paradoxically smaller than the b6 subtree shown in
Figure 13, in part because of the move ordering here is more fortunate than there. In this f1-tree,
whenever it is White’s turn to play, the first move consideredturns out to be a winning move;
this is not the case in the b6 tree shown in Figure 13.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19a1 
4 a6 f2 d3 b6 e4 d4 e3 e5 d5 e1 e2 f1 a3 b2 
2 
3 a4 d2 b5 a2 b3 a5 b4 a7 
5 
7 b7 
6 d6 d7a2 e3 f4 d5 
5 d3 g2 e6 e5 
7 d6 d7 g5 f7 e7 f6 b6 d2 
6 g1 f2 f1 e1 e2 a4 b3a3 d4 
5 b4 
4 d2 
3 
2 b3 b1 b2 
1 e4 f2 e2 d5 d3 b7 a7 b6 a6 b5 e3 e5 
6 
7 d6 d7a4 b3 d3 d5 
5 d2 
2 b7 a7 b6 a6 b5 e5 
3 a5 b1 a3 b2 e4 f1 e2 e1 g1 f2 g2 f3 g3 f4 g4 f5 g5 f7 f6 e7 e6 d7 
4a5 b6 
5 e3 f4 d5 
6 
3 d3 e1 e2 f1 g1 f2 d2 d1 g2 f3 g3 e6 d6 e5 g5 f7 e7 f6 d4 e4a6 f1 
3 b5 
6 d4 
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1 
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3 d2 
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7 b7 
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2 b2 
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4 
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7 b6 
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2 d1 e2 d3 e3 d4 e4 e1 g1 d5 e5 f2 g2 f3 g3 f4 g4b6 
4 f2 d5 d4 
5 e5 e4 g3 f3 g2 f4 g4b7 b6 e4 d5 e5 e3 g2 f3 g3 e6 f5 f6 
6 
5 d6 f4 d4 d3 g4 g1 
4 
3 f2 f1 e2 e1 d2 d1
1 
4 a6 f2 d3 b6 e4 d4 e3 e5 d5 e1 d2 
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7 b7 
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5 
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6 d3 
3 b5 a5 
7 d6 b4 a4e7 d3 a5 b3 e3 d4 e4 f1 e2 e1 d2 d1 
2 
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2 
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6 
1 
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5 
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Figure 15. Longest 7�7 Solver lines of play. For each of the 49 7�7 1-openings, the
corresponding line shows a longest line of play from the the associatedSolver solution. The
top row shows the move number of that column.
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6. Conclusions and Open Problems

We have shown how combining static and dynamic virtual connection com-
putation methods with some move domination results yields an algorithm strong
enough to solve arbitrary 7�7 Hex states. A next step is to design an algorithm
strong enough to solve 8�8 states; preliminary results suggest that this is con-
siderably more difficult and that further techniques will berequired. Another
direction is to useSolver to gather 7�7 information which can be used to
find better move ordering heuristics for Hex game-tree search on (much) larger
boards; for example, such data would be useful in analyzing any local config-
uration with effective board size at most 7�7.
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