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Abstract We present an algorithm which determines the outcome of bitrary Hex
game-state by finding a winning virtual connection for thaming player. Our
algorithm performs a recursive descent search of the geeeegombining fixed
and dynamic game-state virtual connection compositioasrwith some new
Hex game-state reduction results based on move dominafioa.algorithm is
powerful enough to solve arbitrary<#7 game-states; in particular, we use it to
determine the outcome of a«7 Hex game after each of the 49 possible opening
moves, in each case finding an explicit proof-tree for thenivig player.

Keywords:  Hex, virtual connection, pattern set, move ordering, mareidation, game-state
reduction

1. Introduction

Hex is the classic two-player board game invented by Piat iel942 and
independently by John Nash around 1948 (Gardner, 1959;rNE&28). The
board consists of a rhombus-shapexin array of hexagons, also called cells.
Each player is assigned a set of stones and two opposing biokasl all with
the same colour; say Black gets black stones and sides, Whiiite gets white
stones and sides. Players alternately place a stone on aoupied cell. The
first player to form a path connecting his/her two sides wiifter stones wins
the game. See Figure 1. For more on Hex, see Browne (2000) aywfdtid
and Van Rijswijck (200x).

In Hex, an unrestricted opening allows the first player tmgeconsiderable
advantage: it is known that there exists a winning strategyte first player
(Gardner, 1959), and while no explicit strategy which hd@sarbitrary sized
boards is known, most players believe that opening in théecerost cell in
particular is a winning move. In order to offset this openingve advantage,
the game is often started according to the following “swdp”rucolours are
assigned to the four sides of the board, but not to the plapess player then
places a stone on any cell; the other player then choosediwhblour stones
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Figure 1. An empty 77 board, and ... afinished game; Black wins.

to play with. The second move is played by the player whoseestare the
opposite colour of the first stone. From then on, the gameraoes in normal
fashion, namely with players alternating moves.

With respect to Hex, hoard-statedescribes a particular placement of some
number of black stones and some number of white stones, batledch cell
has at most one stone. We assume no constraint on the relativeer of stones
of each colour, as the game may have started with a handivaptage for one
of the players. Thempty board-statbas no stones on the board.kAopening
is a board-state with exactly stones on the board. Airn-statedescribes
which player has the next move. game-stateor simply astate consists of
a board-state and a turn-state. We denoté&by [P, B] the game-state with
turn-stateP and board-statés; for this game-state, we say th&twinsG if P
has a winning strategy far. For a board-stat&, we say thaiP wins B if P
winsG = [P, B].

A state issolvedif the winning player is known, andxplicitly solvedif a
winning strategy is known. As we have already remarked, foitrarily large
boards, Hex has been solved for the empty board-state, bexpilicitly solved.

In this paper we consider the problem of solving arbitrary ld&ates, and
present an algorithm which solves this problem. The waaseaunning time
of our algorithm is exponential in the number of cells in tloaikd, which is not
surprising given that solving arbitrary Hex states is PSPA®mplete (Reisch,
1981). As a benchmark for the efficiency of our algorithm, wkve all 7x7
1-openings. Previously known 1-opening results are suiaethin Figure 2.

Our results yield the first computer solution of any Hex staiea 77 or
larger board. Solving Hex states or 5 or smaller boards is a computationally
routine task. To solve arbitrary>x@® Hex states, Van Rijswijck (2000, 1999-
2003) used an alpha-beta search guided by a Hex-specificatizad function;
his algorithm solved all 1-openings and many longer openidg this method
was hot strong enough to solvex7 states, he further described but did not
implement an alternative recursive-descent algorithrm (Rgswijck, 2002).
Recently Yang et al. solved by hand severalr71-openings (Yang et al., 2001,
2002a), one &8 1-opening (Yang et al., 2002b), and one®1-opening (Yang,
2003).
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Figure 2.  Previously known 1-opening results. The stone on each ngitates the winner
with perfect play if White's first move is to that cell. For telvith no stone, the winner was not
previously known. The &6 results were obtained by Van Rijswijck by computer (VarsRijck,
2002). The %7 results were obtained by Yang et al. (2001, 2002) by hand.

Our algorithm solves an arbitrary Hex state by computing ranmig virtual
connection according to dynamic-state composition rulesllowing the re-
cursive descent game-tree search proposed by Van Rijswijclkalgorithm is
enhanced by the computation of fixed-state virtual conoesti additionally,
some new Hex move domination and state reduction resuti® alignificant
pruning of the game-tree.

Before presenting our algorithm in Section 4 and o fesults in Section 5,
we provide necessary background information on virtuahegtions in Section
2 and state reductions in Section 3.

2. Connection Sets

Roughly, aconnection seih Hex is a subgame in which one of the players
can form a connection between two specified sets of cellshelfplayer can
connectthe two sets even if the opponent moves first, thesobion set is called
avirtual connectionor link; if the player must have the first move in order to
guarantee the connection, the connection set is calleéak connectioror
prelink

More formally, with respect to a fixed Hex state, a playersets of cells
X,Y, and a set of cell§, (P:X, S,Y) is avirtual connectionor link if there
exists a strategy whereby, in the game restricted to thefselle X U S U Y,

P can form a chain connecting at least one celXofvith at least one cell of
Y, even if P’s opponent moves first; in other words?: X, S,Y) is a virtual
connection if there exists a second-player-win strategy’fto connectX and

1Here each of the four sides is also be considered as a cell.
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Figure 3.  Avirtual connection formed by weak connections. Each ofliinee leftmost figures
shows a Black weak connection, indicated by the dotted,dedis the black stone to the bottom
right side; the white dot indicates a cell whose occupationld/transform the weak connection
into a virtual connection. The common intersection of th@sak connections is empty, so their
union forms a Black virtual connection from the black stomé¢he bottom right side, shown in
the rightmost figure.

Y in the game restricted t& U S U Y. Analogously,(P:X,S,Y) is aweak
connectionor prelink if there exists a strategy whereby, in the game restricted
to the set of cellsX U S U Y, P can form a chain connectiny andY if P
moves first; in other wordg,P: X, S,Y’) is a weak connection if there exists
a first-player-win strategy foP to connectX andY in the game restricted to
X USUY. A P-link (respectivelyP-prelink) is a link (prelink) for player.
See Figure 3.

In this paper, all virtual and weak connections have the foRnX, S, Y)
where X andY each consist of a single cell; we denote such connections
(P:z, S,y) where nowr andy represent single cells instead of sets of cells.

Although defined slightly differently by different authossrtual connections
have long been recognized as being central to Hex strategjeréhces to
virtual connections permeate the Hex literature, wherg Hre also referred
to as “connections” or “safe groups”. For example, virtuahigections are
discussed by Berge (1977and Browne (2000).

Virtual connections are useful in solving states since,mdmcompanied by
an explicit strategy, a virtual connection serves as a pooakrtificate that a
pair of cells can be connected.

In particular, if P has a virtual connectiofP:z, S, y) wherez andy are the
two sides belonging t@, then this virtual connection certifies th&twins the
game. For this reason, we célt:z, S, y), awin-link (respectivelywin-prelink)
if it is a link (prelink) andx andy are P’s two sides. Since the sides of each
player are fixed, we will sometimes abbrevidfe:x, S, y) by P:S whenever
x,1y are the sides aoP.

Connection sets are particularly effective in Hex end-gamalysis. For
example, the following is a restatement in our terminolo§am observation
made by Berge.

2A translated version of appears in Hayward (2003a).
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THEOREM 1 (Berge, 1977; Hayward, 2003a) Consider a state in which a
player P has the next turn ané’’s opponent) has one or more win-prelinks.
Then(@ wins unlessP’s next move is to a cell which intersects é)fwin-
prelinks, for otherwise) can on the next move convert a win-prelink to a
win-link.

In light of this result, for any fixed state and a play@mwith opponent(), we
refer to the set of unoccupied cells in the intersection lof)alvin-prelinks as
P’s mustplay region Notice that the computation of a mustplay region is a
form of null move analysis, as it involves the consideratiénvhat can occur
if a player skips a turn.

A useful feature of virtual connections is that smaller oces be combined
in various ways to form larger ones. The knowledge of this fm@s old as
Hex itself; for example, it is discussed in detail by Berg8qZ) and Hayward
(2003a). Recently, Anshelevich (2002) used the followiaaf combining
rules to compute connection sets in an inductive or “bottgphfashion. A
P-stone is a stone belonging f& ¢ denotes the empty set.

THEOREM 2 (Anshelevic, 2002) P:z, ¢, y) is a virtual connection if: and

y are adjacent. Also, ifP:z,S,y) and (P:y, T, z) are virtual connections
and {z} U S and T U {z} do not intersect, thettP:z,S U {y} UT,z) is

a virtual connection ify is occupied by aP-stone and a weak connection
if y is unoccupied. Also, ifP:z,S1,y), (P:z,S2,y), ..., (P:z,Sk,y) are
weak connections and the common intersection of theSeis empty, then
(P:z, S,y) is a virtual connection, wher§ is the union of the sets;.

Notice that this set of rules is static, in that it yields aslaf connection sets for
a fixed state. This set of rules is not sufficient to establiskirsual connections
of a state, and is thus not strong enough to solve all Hexsstatewever, the
rules do yield a sufficiently large class of virtual connect to provide an
effective subroutine of a strong Hex-playing program (Aeishiich, 2002).

As Van Rijswijck observed, an alternative method of commttonnection
sets is to proceed through the game-tree dynamicallyGLet| P, B] be a state
and letQ) be the opponent aP. For each unoccupied cellof B, let B + = be
the board-state obtained by addingBaa P-stone atr, and letG + x be the

Figure 4. A white win-prelink ...and a corresponding win-link.
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associated state, naméel+x = [(), B + z]. Call a collection of setmutually
exclusivef the intersection of all the sets is empty. Van RijswijckBmments
suggest the following rules for solving a state.

THEOREM 3 (Van Rijswijck, 2002) If? (respectively)) has a winning chain
in B thenP: ¢ (respectivelyQ): ¢) is a win-link. If neither player has a winning
chain in B, then

m P winsG if and only if P wins G + x for some move;; in this case,
G + x has some win-link?: S and G has a win-prelinkP: S + z,

= @ winsG if and only if@Q wins G + z for all movese; in this case, for
eachz, G + = has a win-prelink@:.S, and any collectiorC' consisting
of one suchS,, for eachz is mutually exclusive; also, for eadtf C C,
if C" is mutually exclusive then the uni@n of the elements of’ is a
win-link Q:U for G.

Figure 5 illustrates this theorem. The root states a loss for White. Three
of White’s possible moves are explored. In each s@te x;, the movey;
yields a black win; the resulting sta€é + z; + y; has a black win-linkS;, so
G + z; has a black win-prelini§; U y;; this win-prelink implies that:; loses in
G, and moreover thatnywhite move outside of; U y; loses. The set of these
three win-prelinks is mutually exclusive. Indeed, the smitaining just the
win-prelinks Sy U 9 and.S3 U ys is already mutually exclusive, which means
that the union of these two prelinks is a black win-linkdn It also means that
the exploration of these two branches of the game-treefisisutt to determine
that White loses7; the consideration of any other move is unnecessary.

We omit the proof of correctness of the preceding theorenigiwfollows by
elementary game-theory arguments from the fact that anyskége has exactly
one winner Notice that these rules are by their definition completey tan
be used to solve any arbitrary Hex state.

From a computational point of view, the difficulty with bothtbese sets of
rules is that the number of possible connection sets thabeatomputed in
this way is exponential in the number of cells. For this reasm exhaustive
approach to computing connection sets based on eitheretieils be forced
to limit the number of intermediate connection sets conghutéor example,
Anshelevich’s (2002) game-playing program has maximuecgifeness when
the number ofz-to-y connection sets stored is limited to about 40 per pair of
cellsz,y .

For both the static and dynamic computational processeat isimeeded
is some way of distinguishing those intermediate connecsiets which are

SThis fact in turn requires some care to prove; see for exaBtdk (1969), Gale (1979), and Hayward and
Van Rijswijck (200x).
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Black wins, win-prelinkS; U y; Black wins, win-prelinkSs U y2 Black wins, win-prelinkSs U y3

G+ x4+ G+ x2+ y2 G+ z3+ys
White loses, win-linkSy White loses, win-linkSs White loses, win-linkS3

Figure 5. An example illustrating Theorem 3.

critical to solving the particular state from those whick apt. We close this
section by giving evidence that this is likely to be a diffiqmioblem.

Assume that at some point in a computation involving the dyinaules it
is discovered that playaP has no winning move in a state. It follows that
P’s opponent@ has a win-prelinkS,, after each possible move by P and
that the union of any collection of these win-prelinks whitdve an empty
intersection establishes a win-link f@}. If G is an intermediate state in the
process of solving some earlier state, tlieneeds to compute such a win-link
to pass back to the state which gave ris&tolt is reasonable to expect that a
useful win-link to pass back would be one that has the smaidlasber of cells,
among all such possible win-links. However, it is also readde to expect
this problem to be computationally difficult, since it seetnshe intimately
related to determining the outcome of a Hex game, which we laready
noted is PSPACE-complete. Saks (2003) observed that thiildgm is indeed
computationally difficult, as we now explain.

Formally, theMin-Union Empty Intersection Problem (MUEIR the de-
cision problem which takes as input an integetogether with a sef§ =
{S1,...,S;} of subsets of a finite sét and asks whether there is a subifet
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of S whose element-intersection is empty and whose elementiumas size

at mostk. Min Coveris the decision problem which takes as input an integer
k together with a sel = {A,,..., A;} of subsets of a finite sét and asks
whether there is a subset of at mélements ofA whose union id/.

THEOREM 4 (Saks, 2003) MUEIP is NP-complete.

Proof. Consider an instance of Min Cover, whéred, andV are as defined
above andr = |V/|. This instance can be transformed in polynomial time into
an instance of MUEIP, as follows.

For each indey, let B; be the set complement (with respectifp of A;,
and letB = {By, ..., B;}. Observe that the union éfelements of4 is equal
to V if and only if the intersection of the correspondihkgelements ofB is
empty. LetV’ be the set obtained by adding + 1) new elements t& . For
each index, let B} be the set obtained by addingt 1 of the new elements to
Bj in such a way that each; gets expanded by a set of new elements disjoint
from all other new elements. L&’ = {Bj,..., B;}. Observe that a set of
k elements ofB has empty intersection if and only if the corresponding set
of & element of B’ has empty intersection, and this occurs if and only if the
same set of elements o3’ has empty intersection and union with size at most

k(n+1) +n.
Since MUEIP is clearly in NP, the theorem follows from theqa@ing trans-
formation and the fact that Min Cover is NP-complete (Kai@/2). O

Since using virtual connections alone to solve arbitrary ktates is likely
to be computationally difficult, some extra game knowledgesiie used to
reduce the complexity of searching through the game-tree.dMtuss some
such reductions in the next section.

3. Move Domination and Game-State Reduction

One reason that Hex is a challenge for computers to play @edslthe
high branching factor; especially in the early stages ofghme, the number
of possible moves is high. In this section we describe someenoodering
information which considerably strengthens the algorittapproach implicitly
described by the virtual connection composition rules effirevious section.

A particularly useful form of move ordering information isorre domination.
Informally, one move dominates another if the former is asteas good as the
latter. Since we are interested here only in solving statsely in determining
which player has a win-strategy, one move is “at least as gasddnother if
the former yields a win whenever the latter yields a win. Faltypfor possible
movesu, v from a statg P, B], we say that: dominates if P wins[Q, B + u]
wheneverP wins [Q), B + v].
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Domination results are useful for our purposes since anyimaied move
can be ignored in searching for a winning move. Unforturyatiew results
have been proved to date on domination in Hex. Beck (1969)eprthat on
an empty board sizex22 or larger, moving to an acute corner (for example, Al
in Figure 7), is a losing, and so dominated, move. Using similar argus)en
Hayward (2003b) recently obtained a move domination résudiving certain
three-cell configuration, as we now explain.

For a playerP, aside cellis any cell which borders one @’s two sides,
aside pair{z1, 2} consists of two adjacent side cells which border the same
side, and aside triangle(z1,z2,t) consists of a side paifz,, z,} together
with a third cell, called thdip, adjacent to the two side cells. See Figure 7. A
P-triangleis a side triangle belonging tB.

THEOREM 5 (Hayward, 2003b) Lef’ be a player with opponer® and let
B be a board-state with an empfy-triangle (x1, z2,t). For each subse$ of
T = {z1,z9,t}, let B 4+ S be the board-state obtained from by adding a
P-stone at each cell of.

Then, for eacly = 1,2, P wins[Q, B + t] if P wins[Q, B + z;]. Also, P
wins any one of the four statéQ, B + t], [, B + {t,z1}], [Q, B + {t,z2}],
[Q, B + {t,z1,z2}] if and only if P wins all of them.

Our algorithm uses the above results in the following two svairstly, for
any statg P, B] with an emptyP-triangle, P can ignore the two moves to the
side of the triangle, since they are dominated by the moveadip. Secondly,
for any staté@, B] with a P-triangle with aP-stone at the tip and the two side
cells empty,P-stones can be added to the two side cells, since this additio
does not change the outcome of the game. As can be seen frone B, the
second result is particularly useful when combined withwatiual connection
computation approach.

Figure 6. lllustrating the second part of Theorem 5. Applying thisufeso the white side
triangle with tip E2, it follows that a player has a winningaséegy for one of these board-states
if and only if that player has a winning strategy for all of skeeboard-states.

4Throughout this paper, whenever we need to refer to a phatitward cell, we assume that the board is
oriented as in Figure 7, and use the coordinate system shmxe. t
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4. The Algorithm

Our algorithmSorLveERr combines the approaches suggested by Theorems 1,
2, 3, and 5. For a playeP with opponent@, the algorithm solves a state
G = [P, B] as follows.

ALGORITHM SOLVER(G = [P, B]) For each side triangle for which the
second part of Theorem 5 applies, add stones to the apptemside cells; call
the resulting board3*. Statically compute virtual and weak connections. If a
win-prelink for P or a win-link for ) is detected, then return the link (and if
the win-link uses the tip of a triangle whose side was filledhian add the side
cells to the link).

Otherwise, lefl" be the set consisting of al)-win-prelinks forG and letR
be theP-mustplay region. Iff" is empty, then initialize? to be all unoccupied
cells; otherwise, intializeR to be the intersection of all elementsiof Remove
from R any side-cells from any empBtriangle. WhileR is not empty, pick a

cell z in R, and do the following:
Let B be the state obtained frol3* by adding aP-stone atz

and, ifx was the tip of an emptk-triangle before this move, filling

in the triangle. Recursively soh&, = [Q, B].
If P winsG,, say with win-linkX, then add toX the cellz as

well as the two associated side-cellgifvas the tip of an empty
P-triangle, and exit the while loop and return. @f wins G, say

with win-prelink X, then addX to T
If the while loop terminates without discovering a win-pr&lfor P, then the

union of elements @ forms a win-link forQ).

A sample execution of the algorithm is described in Figurglr@dugh 9.
The correctness of our algorithm follows easily from theves theorems;
we omit the proof.

Figure 7. Sorver solves b6: initialization. After the initial move (left)hé game-state
is reduced by applying Theorem 5 and adding white stonesetdvth side-cells of the white
side-triangle with tip b6. In the resulting state, White s win-prelinks (center-left and
center-right) whose resulting intersection yields a 1Bltack mustplay region (right). If Black
has a winning move, it has a winning move to one of these 18.cell
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Figure 8. SoLVER solves b6-c4. As shown by tlso1.vER b6 recursion tree in Figure 13, c4
is the first black response considered to the white b6 opéiefty) Following the topmost path
b6-c4-f2-d5-d4-c5-e5-e4-g3-f3-g2-f4 in the recursi@etand applying Theorem 5 after f2 leads
to the first solved state (center, with white win-prelinkjice f4 is a leaf of the recursion tree,
the white win-prelink here was discovered staticaipLvER continues solving the c4-subtree,
eventually determining that c4 is a black loss (right, withite win-prelink). This win-prelink
does not contain c4 or b5, so, of the 13 possible b6-respamusessponding to the initial black
mustplay region described in Figure 7, 11 moves remain tdbeked.

Figure 9. SoLvER solves b6: conclusion. The move to f1 is the last black rephsidered in
response to the white b6 opening (left, with white win-prk)i since after the discovery of this
last white win-prelink, the set of such win-prelinks has ¢yriptersection. The union of these
11 white win-prelinks gives the final win-link for White ().

5. SOLVER 7x 7 1-Opening Solutions

As mentioned earlie§OLVER is strong enough to solve arbitrary 7 states.
Figures 10 and 11 summarize the results obtained by rurffinger on all
49 7x 7 1-openings. Figures 13 and 14 show 8w.vER recursion trees from
two of these executions, while Figure 15 shows a longestdinglay from
each of the 49 solutions. Each execution was performed amgéesprocesser
machiné; in each case, the run time was roughly proportional to thrabrer
of nodes in theéSOLVER recursion tree, taking about one minute for the five 1-
openings with the smallest node-counts, and about 110 lfautse 1-opening
with the largest node-count; the total run time for all 49denings was about
615 hours. A listing of all 49 trees (including a tree viewsr)available at
http://www.cs.ualberta.ca/ hayward/hex7trees.

5The program was compiled with gcc 3.1.1 and run on an AMD AtHIBOO+ MHz processor with 512 MB
memory running Slackware Linux.
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Figure 10. All 7 x7 1-opening results, as found Bp1vER. The stone on each cell indicates
the winner with perfect play if White’s first move is to thatiiceThe move indicated on each
losing cell is the winning countermove discovered.
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Figure 11. Number of nodes in thBor.vER 7x 7 1-opening recursion trees.

For any size Hex board, the set of winning open-move celltiona is sym-
metric with respect to reflection through the center of therdoNotice that the
SOLVER node-counts do not share this symmetry, as neither the rdéich
SOLVER considers moves nor the static computation of virtual cotioes is
designed to reflect this symmetry.

Figure 12 demonstrates the relative strength of the thrgepkés of our
algorithm, namely virtual connection computation, sidartgle move domi-
nation, and side-triangle fill-in, by showiripLvVER hode-counts when various
of these features are turned off. In particular, notice #ufiting side-triangle
fill-in to virtual connection computation results in a swrgtal decrease in the
number of nodes considered, while further adding sidexgifiadomination has
little effect.
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Figure 12.  Number of nodes in thex66 1-opening recursion trees fSOLVER (top entry),
SorveEr—D, namelySorvEr without side-cell domination (middle entry), aSdi1ver—FD,
namelySoLvER with neither side-cell domination nor fill-in (bottom entryWhile correspond-
ing data were obtained for somex7 1-openingsSoLvER—FD in particular was too slow
to execute for all such openings. For example, theSb7vEr—FD tree has 824796 nodes,
compared to only 1196 f@BOLVER.

In comparing the winning X7 opening moves (Figure 10) with winning
opening moves on smaller boards (Figure 2), some featuremon to each of
thesen x n boards are worth noting. For example,

m then cells on the short diagonal (obtuse corner to obtuse coanerall
first-player winning openings,

m then — 1 cells on each of the first-player’s sides (except for theicell
the short diagonal) are all first-player losing openings.

Itwould be of considerable interestto show whether thesdtehold in general,
especially if the proof is positive (as opposed to say a sisglinterexample),
since to date, for arbitrarily large x n boards,

= no particular move is known to be a first-player win,
= the only moves which are known to be first-player losses are

— forn > 2, the two acute corner cells (Beck, 1969)

— forn > 3, the two cells each in the first-player’s side and adjacent
to the acute corner cell (Beck, 2000).
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g4—f3 a— g—f4
e4—4 " a /fe:—f43
f3—e3 L A3—e
¢
S—>b g2—14 Sg2——#4
g4——f3 g4——i3
4——b e4——i4
f3—e3
b a—bj—c1—bE_ "
e4—4 e4—f4 9
3 e3 \\\13 3 9 f3
g2—f4 Yo——f4
) g4—13 Y4——3
¢S eb—f4
44
3 e3 3—a. 3 e3
g2—f4
— 4 o 4—f4
g4—3
g4—i3 3 e3
4
g4—3
2 e3—d3—e2—d2
t4——d3—e3---- a5

Figure 13. The SorvER recursion tree for the 37 opening White-b6 (with the ten nodes
connected by dotted edges added so that every path endswiitimiag move). For each node,
the order of child generation is top-to-bottom. E&bhLvER recursion tree is a subtree of the
complete game-tree, as the only replies to a winning movelwappear in the recursion tree
are those replies in that state’s mustplay region. For el@mpnsider for the tree shown here
the states after White plays b6. As shown in the second diagram in Figuk&hite has a win-
prelink created by playing at c4 which does not contain dds ¥ is not in the black mustplay
region forG, soSoLVER never needs to consider the black move to c4, so c4 does redieppa
child of b6 in this recursion tree. Notice from the tree shdwne that in solving the b6 opening
the selection of d2 as the first move considered at the b&eaR2csubtree was unfortunate, as
d2 leads to a white loss whereas f2, the second move condjdeagls to a white win. If f2 had
been considered first, the d2 subtree would not have beearegpland the resulting recursion
tree would have had only 97 nodes instead of 197.
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/f6 ed
d5 e6; 5 ed
~ c5——d3
g4 e4
c6 d4
d6——dsZ_
6 eb

fl bo— c6 d4 e4 d5 e5 f2 e3---- e2

c4 d3
e5—12_
e3——d3
f4——d5
d5 e4 e3d----- c7

c5 e5/ 15 f2 e3 e4 f3 d3
~

g3——f2
f3——d3 e3——eb
g2——e4 d5 eb6

g3 f2 e3 d3

g4——1i~2 e3——e2

Figure 14. The SorvER recursion tree for the ¥7 opening White-f1 (with the five nodes

connected by dotted edges added so that every path ends wiitimiag move). For each node,

the order of child generation is top-to-bottom. Notice tinet f1-b6 subtree, which establishes
that b6 is a winning countermove to f1, is paradoxically derahan the b6 subtree shown in
Figure 13, in part because of the move ordering here is monafate than there. In this f1-tree,

whenever it is White’s turn to play, the first move considet@uhs out to be a winning move;

this is not the case in the b6 tree shown in Figure 13.
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b3 d3 d5 c5 d2 c2 b7 a7 b6 a6 b5 e5 c3 ab bl a3 b2 e4 f1 e2 el gl 2 g2 £3 g3 f4 g4 f5 gb f7 f6 e7 e6 d7 c4

f1 c3 b5 c6 d4 c4 c5 ab b4 a4 b3 a3 a7 b6 bl b2 cl c2 dl el d2 e2 d3 e4 db e5 e3 g2 f2 gl £3 g3 f4 g4
d5 ¢3 d2 c2 c4 ab b4 a4 a6 e4 d4 e5 e3 b5 b3 a3 bl b2 b6 c6 cb g2 £3 g3 gl f2 f1 e2 d3 el f4 g4

c4 a6 f2 d3 b6 e4 d4 e3 eb d5 el e2 f1 a3 b2 c2 c3 a4 d2 b5 a2 b3 ab b4 a7 cb c7 b7 c6 d6 47

e3 g2 gl a6 b3 c3 d2 £f2 f1 el e2 c2 b5 d4 c4 d3 d5 cb b7 a7 b6 ab b4 e4 e5 c6 c7 d6 d7

b6 e4 d5 eb5 e3 g2 f3 g3 e6 f5 f6 c6 c5 d6 f4 d4 d3 g4 gl c4 c3 f2 f1 e2 el d2 di

c4 a6 f2 d3 b6 e4 d4 e3 eb5 d5 el d2 c2 a3 dl b4 a4 b3 bl e2 b2 f1 c7 b7 c6 a7 bb ab c3 d6 d7
d5 c5 b7 a7 b6 a6 b5 ab b3 c4 f1 b4 c3 e2 d3 e3 d4 eb e4 g3 f3 g2 gl £2 d2 el f4 g4

d4 b6 b5 cb cl c4 d2 a2 b2 a3 b3 a4 b4 c2 dl e2 d3 e4 d5 eb e3 g2 f2 gl £3 g3 f4 g4

c3 b6 d3 e3 f1 d2 e2 b3 b5 b4 cb d4 d5 eb e4 g3 £3 g2 gl £2 b2 c2 f4 g4

d5 c2 b7 a7 b6 a6 b5 ab b3 c4 f1 b4 c3 e2 d3 e3 d4 eb e4 g3 f3 g2 gl £f2 d2 el f4 g4

d3 c3 c4 e3 d5 c5 d4 e5 e4 ab b4 a4 b3 a3 bl b2 b5 a6 a7 b6 cl c2 dl d2 el e2 f1 gl f2 g
b6 e4 d5 e5 e3 g2 f3 g3 e6 f5 f6 c6 c5 d6 f4 d4 d3 g4 gl c4 c3 f2 f1 e2 el d2 di

N

£3 g3 f4 g4

c5 e4 d3 f2 e5 d5 £f3 e3 c7 b6 c6 b5 c3 c4 d4 a4 b2 b3 c2 d6 d7

d3 c4 c3 e3 f1 c2 d2 el e2 gl f2 £3 g2 a4 b3 a3 bl b2 b4 ab

d4 £f2 e4 g3 £3 g2 £f5 e5 f4 c4 c5 a6 a7 b6 b7 c6 d3 c3 b5 ab c7 e6 b4 a4

e3 c4 d5 b6 c3 d3 b5 cb el f2 e2 f3 e5 d4 e4 g4 f6 e6 f5 d2 di

b6 e4 d5 eb5 e3 g2 f3 g3 e6 f5 f6 c6 c5 d6 f4 d4 d3 g4 gl c4 c3 f2 f1 e2 el d2 di

d5 e5 e4 cb5 d3 e3 d4 c3 c4 g3 f4 g4 3 g2 f2 gl £f5 gb £f7 f6 e7 e6 d7 c6 d6 ab b5 a6 a7 b6 b4 a4

d4 e5 f4 e4 f2 e2 e3 c4 cb a6 a7 b6 b7 c6 d3 c3 b5 ab c7 e6 d5 d6 b4 ad

c5 f5 d3 e3 f1 gl £3 d4 e4 c4 d5 a6 a7 b6 b5 ab b7 c6 c7 d6 d7 f6 e5 e6 b4 ad

d4 f2 f3 e3 e4 c4 cb5 a6 a7 b6 b7 c6 d3 c3 bb ab c7 d6 d7 f6 e5 e6 b4 ad

cb a6 a7 g2 f5 e5 d6 b6 b7 c6 d5 c4 c7 e6 f3 e4 e3 d4 c3 d3 el e2 f1 gl f2 f4 g3 d2 di

d3 ab b3 e3 d4 e4 f1 e2 el d2 dl c2 cl1 a2 b2 gl £2 g2 £3 g3 f4 g4 £f6 f5 e6 e5 d6 c5 b4

b7 e5 e4 £3 d6 g4 f2 e3 f4 g3 e7 g6 gb £f5 f6 d7 e6 c6 d5 c5 c7 a7 g2 e2 d4 c4 b6 a6 d3 c3 b5 ab b4 a4
b7 e5 £3 e2 d3 e3 e4 d4 d5 a7 c5 g3 f4 g4 £f2 gl f5 gb f7 f6 e7 e6 d7 d6 c7 b6 c6 ab b4 a4 b5 ab

f2 e3 cb d4 c2 a2 b3 e2 d5 eb e4 £f3 f4 g4 f5 gb f7 f6 e7 e6 d7 d6 c7

e7 c5 d3 c3 b6 c4 c7 c6 cl b7 d2 a2 b2 a3 b3 a4 b4 ab b5 c2 dl e3 d4 e4 d5 e5 f1 el e2 gl f2 g2 £3 g3 d6 eb
d4 c4 d3 e3 e4 c3 c5 a6 b3 b5 a7 b6 b7 c6 c7 d6 d7 e6 e7 g6 f5 f6 dl c2 cl a2 b2 d2 el

c5 g2 f5 c4 c3 e5 £3 f4 g3 b4 d3 a3 d4 a6 a5 b5 a7 b6 bl b2 a4 b3 b7 c6 cl c2 dl

d3 c3 c5 c4 e4 d5 d4 a6 a7 b6 b5 ab b3 b4 b7 c6 c7 d6 d7 e6 e7 f6 £f7 g6 dl c2 cl a2 b2 d2 el

Figure 15. Longest %7 SorvEeR lines of play. For each of the 49x77 1-openings, the
corresponding line shows a longest line of play from the $seiatedSOLVER solution. The
top row shows the move number of that column.
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6. Conclusions and Open Problems

We have shown how combining static and dynamic virtual cotioe com-
putation methods with some move domination results yielddgorithm strong
enough to solve arbitraryx/7 Hex states. A next step is to design an algorithm
strong enough to solvex@ states; preliminary results suggest that this is con-
siderably more difficult and that further techniques willrequired. Another
direction is to USESOLVER to gather %7 information which can be used to
find better move ordering heuristics for Hex game-tree $eangmuch) larger
boards; for example, such data would be useful in analyziyda@cal config-
uration with effective board size at mosk7.
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