
Solving 8×8 Hex∗

Philip Henderson

Dept. of Computing Science

University of Alberta

ph@cs.ualberta.ca

Broderick Arneson

Dept. of Computing Science

University of Alberta

broderic@cs.ualberta.ca

Ryan B. Hayward

Dept. of Computing Science

University of Alberta

hayward@cs.ualberta.ca

Abstract

Using efficient methods that reduce the search
space, we design an algorithm strong enough to
solve all 8×8 Hex openings.

1 Introduction

We design an algorithm strong enough to solve all 8×8 Hex
openings. Our algorithm builds on that of Hayward et al.
[2005], which uses depth first search with a virtual connec-
tion engine (VCE) and some inferior cell analysis. Our new
contributions are graph theoretic inferior cell methods, com-
binatorial decompositions, proof set shrinking, and transpo-
sition deductions. Our improvements to Hayward et al.’s al-
gorithm include an inferior cell engine (ICE) with over 250
inferior cell patterns, and the use of precomputed connections
in H-search.

1×1 2×2 3×3 4×4 5×5 6×6 7×7 8×8

1 9 554 7.6e5 4.0e9 4.0e14 1.5e20 1.0e27

Figure 1: Number of at most half full n×n Hex states.

1.1 Previous work

Hex is the classic two-player board game invented by Piet
Hein [1942] and John Nash [1952]. The board is an n×n
rhombus of hexagonal cells. Players alternately place a stone
of their color on any empty cell. To win, a player connects her
two opposing sides with her stones. Draws are not possible.

Nash proved the existence of a first-player-win strategy
[1952] for zero-stone n×n Hex states (positions), but no ex-
plicit strategy that holds for all n is known. Indeed, solving
arbitrary states is PSPACE-complete [Reisch, 1981].

For even relatively small boards, solving Hex states by
brute force search is infeasible. The number of internal nodes
in the search tree is at most the number of distinct board states

∗We thank the Natural Sciences and Engineering Research Coun-
cil of Canada, the Alberta Informatics Circle of Research Excel-
lence, the Alberta Ingenuity Fund, Martin Müller, Jonathan Scha-
effer, and Lorna Stewart for research funding, and members of the
GAMES group and the referees for helpful comments on earlier ver-
sions of this paper.

corresponding to legal move sequences. A conservative es-
timate of the latter number is the number of distinct board
states in which the board is at most half full. This estimate
includes some invalid states: those in which one player al-
ready has a winning path. However, it omits (probably more)
valid states in which the board is more than half full. See
Fig. 1 and the formula by John Tromp on page 6 of Browne’s
book [2000].

Hayward et al. [2005] gave an algorithm strong enough to
solve any 7×7 state; they solved all 49 7×7 openings (one-
stone states) with search trees totalling 14.2 million nodes.
Rasmussen et al. [2007; 2008] verified these results more ef-
ficiently, requiring fewer than 0.5 million nodes, but were un-
able to solve any 8×8 states; Rasmussen estimates his algo-
rithm would take 9 years to solve all 8×8 openings. By hand,
Yang [2002] and Noshita [2005] solved one 8×8 opening,
Mishima et al. [2006] solved a second opening, and Yang
[2003] solved the center 9×9 opening. See Fig. 2.

Figure 2: Previously solved opening moves. Color shows
winner if Black opens there. 8×8 results were found by hand.

Fig. 1 suggests that solving 8×8 states is orders of mag-
nitude harder than solving 7×7 states. Van den Herik et
al. observed [2002], “Solving the 8×8 game is entirely in-
tractable without fundamental breakthroughs.” We describe
such breakthroughs, yielding an algorithm strong enough to
solve all 8×8 openings in a total runtime of less than two
weeks.

2 Connections and mustplay

In this section we describe the connection concepts underly-
ing Hex solvers. Like many connection games, Hex has the

505

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)



“sudden death” property. In a typical Hex state, a player’s
opponent has one or more immediate winning threats. The
player must play at a cell that interferes with each of these
threats to avoid an immediate loss. Consider Fig. 3. In the
top two diagrams, the shaded cells indicate immediate Black
winning threats. Thus, as indicated in the bottom diagram,
White must play in the intersection of these two threats.

Formally, with respect to a Hex state, a player P, and a
pair of destinations, a virtual connection (resp. semi connec-
tion) is a second-player (resp. first-player) inter-destination
connection strategy for P . The set of empty cells used by
a connection is its carrier. A connection strategy is win-
ning if it connects its player’s two sides. With respect to a
set of opponent winning semi connections, a player’s must-
play is the intersection of the carriers of these connections.
The top diagrams of Fig. 3 show the carriers of a Black win-
ning semi connection; the right diagram shows the associated
White mustplay.

Figure 3: White to play. Each marked cell shows a Black win-
ning threat that uses only the shaded cells. White must play
at one of the cells (bottom) that interferes with each threat.

To solve Hex states, it is critical to compute mustplays
efficiently, as the discovery of a winning virtual connec-
tion allows the declaration of the winner long before either
player has an absolute connection. One such algorithm is
Anshelevich’s H-search [Anshelevich, 2000; Melis, 2003],
which builds up connections by repeatedly applying combin-
ing rules. Following Hayward et al. [2005], we incrementally
update connection lists using H-search augmented with a pre-
computed list of connections to the sides [King, 2001]. Also,
during our search for a winning connection, we use discov-
ered carriers of child state connections to refine the mustplay
[van Rijswijck, 2003]. If at some point we discover that P’s
opponent Q has a set of winning semi connections whose as-
sociated P-mustplay is empty, then our search is over: Q has
a winning virtual connection whose carrier is the union of the
carriers semi connections.

In our solver, when no opponent winning semi connections
are known, we order moves with an electric circuit model
evaluation function [Anshelevich, 2000; Melis, 2003]. Once
a nontrivial mustplay is detected, we order moves by must-
play size, breaking ties with the circuit function.

3 Cell properties

Mustplay computation allows us to prune moves based on
global information, namely a set of threatening opponent
strategies. Another form of pruning follows by observing that
moves into certain local board patterns are provably inferior.

The value of a move is the win/loss value of the resulting
game state. A cell of a Hex state is inferior if there is some
other cell whose value is at least as good. Inferior cells can
often be pruned from the list of moves to consider. For exam-
ple, a cell (empty or occupied) is dead if it is not on any min-
imal winning path. A cell is dead for one player if and only
if it is dead for the other, so adding a stone (of either color)
to a dead cell does not change a state’s value. A set of cells is
P-captured if P has a second player strategy that leaves every
cell dead or with a P-stone. Filling in a P-captured set with
P-stones does not change a state’s value. An empty cell is
P-vulnerable if some Q-reply makes it dead; it is P-capture-
dominated if a P-move to some other cell P-captures it. Any
P-move to a cell that is dead, captured, P-vulnerable, or P-
dominated is inferior [Björnsson et al., 2007]. See Fig. 4.

Figure 4: In the top five patterns, the empty cell is dead. In
the remaining patterns, the empty cell set is Black-captured.

In solving 7×7 Hex, Hayward et al. [2005] pruned infe-
rior cells using only one captured pattern. By contrast, our
ICE matches 273 patterns computed as by Björnsson et al.
[2007], including 5 dead, 12 captured, 34 vulnerable, and 219
capture-dominated. See Fig. 4. ICE also matches 3 induced-
path-domination patterns in the acute corner, as defined by
Henderson et al. [2008]. ICE iteratively fills in dead and cap-
tured cells until no further fill-in can be deduced, and then
computes vulnerable and dominated cells for the player to
move. See Fig. 5.

Figure 5: A state with initial dead cells (top left), captured
cells (top right), iteratively-computed dead and captured cells
(middle), and subsequent Black-vulnerable/dominated (bot-
tom left) and White-vulnerable/dominated cells (btm. right).

In addition to pattern matching, ICE computes dead cells

506



using graph-theoretic properties of the Hex state. For a Hex
state and a player P , consider the cell adjacency graph, in
which vertices are adjacent if the corresponding empty cells
touch or are connected by a path of P-stones. In this graph,
the set of empty cells neighboring a (connected) group of P-
stones forms a clique. Furthermore, any cell cut from either
P-side by a P-clique is dead, since it cannot be on any min-
imal winning path. ICE efficiently checks for dead regions
by determining whether the empty neighbors of each group
isolate any cells. See Fig. 6.

ICE also deduces inferior cell information during the 1-
ply search that is performed at each node for the purpose of
move ordering the children. For example, any cell of a child
state that becomes dead after fill-in is vulnerable in the par-
ent state. In this manner ICE prunes many vulnerable and
capture-dominated cells.

Figure 6: These regions are dead due to clique cutsets.

4 Combinatorial decompositions

In games such as Hex, Go, and Amazons, groups eventu-
ally divide the board so that the search space decomposes
combinatorially. An example in Hex is when a group of P-
stones touches both of Q’s sides. This particular decompo-
sition is rare. We have identified a more general form of
Hex decomposition based on the graph theoretic properties of
an opposite-color bridge, namely a bridge between opposite-
color stones. See Fig. 7.

Lemma 1. For a Hex state with an opposite-color bridge,
deleting the direct adjacency between the two empty cells
does not change the game theoretic value of the state.

Proof. Deleting an adjacency can destroy (but not create) a
winning path. This does not change the game’s outcome: if
player P has a winning path that uses the deleted edge, the
path can be rerouted through the bridge’s P -colored endpoint,
since it is a common neighbor to both cells.

Two opposite-color stones crowd if they touch or form a
bridge; a P-group crowds a Q-group if some P-stone in the
former crowds some Q-stone in the latter. See Fig. 8.

Figure 7: A bridge between opposite-color stones.

Theorem 1. Assume a Hex state has a P-group G that crowds
both Q sides. Then P wins if and only if P wins the two sub-
games obtained by splitting the board along G and any asso-
ciated opposite-color bridges.

Proof. (sketch) Apply Lemma 1: for each opposite-color
bridge from G to either of Q’s sides, delete the adjacency.
Now G separates these two halves of the board, so any win-
ning path for P goes through G.

Figure 8: The Black group crowds both White sides (middle),
so by Thm. 1 Black wins this game if and only if Black wins
both subgames (bottom).

In Hex, it can be advantageous to probe a virtual connec-
tion, even if the connection is maintained. As noted in The-
orem 1, a probe into one subgame of a decomposition has no
effect on the other subgame; it matters only whether there is
a strategy to connect the region’s boundaries. This theorem
can be extended as follows:

Theorem 2. Assume a Hex state has a 4-cycle of alternating
P- and Q-groups, such that consecutive groups crowd and
that there is a virtual connection between the two P-groups
whose carrier is a subset of the 4-cycle’s interior region.
Then the winner of the state is unchanged by filling the in-
terior region with P-stones.

Cells that are captured by such 4-cycle decompositions are
filled in, and thus pruned from consideration. See Fig. 9.

Figure 9: A 4-cycle of alternating consecutively crowding
groups with an interior Black virtual connection (left). By
Thm. 2, Black captures the region (right).

5 Proof sets

In Hex, one can often use a discovered winning strategy
against multiple opponent moves. A proof set is the set of
empty cells used in a state’s winning strategy; such sets can
be efficiently computed recursively. Proof set pruning is the
pruning of any opponent moves that do not intersect the dis-
covered proof set. This is just the special case of mustplay
pruning once a winning strategy has been found.

Since smaller proof sets yield more pruning, we devel-
oped an efficient algorithm to deduce the existence of smaller
proof sets (corresponding to winning strategies that use fewer
cells). This proof set reduction algorithm is as follows: given
a proof set S for a player P, assign all empty cells outside
S to Q, and then use inferior cell analysis to compute dead

507



and Q-captured cells; assign the remaining empty cells to the
reduced proof set S′. See Fig. 10.

Figure 10: A White proof set (left) and its proof set reduction.

Theorem 3. The proof set reduction algorithm produces a
valid proof set.

Proof. (sketch) Assigning empty cells outside proof set S to
Q does not affect P’s winning strategy on S, so the first step
does not change the state’s game theoretic value. Also, in-
ferior cell theory guarantees that filling-in dead and captured
cells does not change the value. Thus P still has a winning
strategy on the reduced proof set S′ ⊆ S.

6 Transposition deductions

To avoid re-solving equivalent states, it is common practice to
store solved state values. We extend this practice by storing
not only the current state, but also any additional states whose
value can be deduced from its result. We perform these de-
ductions only for states with at most k stones; these values are
permanently stored in a database. For states with more than k
stones, we store values in a separate transposition table with
2
20 entries; hash collisions overwrite older entries.
In addition to 180 degree board rotation, two new types

of transposition deduction are used in our solver: proof set
transpositions and player exchange transpositions. Proof set
transpositions use the fact that any cells outside the proof set
can be assigned to the losing player without affecting the re-
sult, as mentioned in §5. Thus, if a proof set omits i empty
cells in a state with j stones for the losing player, then we can

identify
(
i+j
j

)
states with the same game theoretic value, and

record all of them in the database. Note that proof set reduc-
tion also increases the number of proof set transpositions.

Player exchange transpositions are more complex, and in-
volve transforming a state by exchanging the roles of players
P and Q. If stone positions are mirrored (in either diagonal),
and stone colors and the player to move are changed, then the
new state’s winner is the opponent of the original state’s win-
ner. However, the method as currently described is useless,
since it produces only unreachable states due to constraints
on the player to move and/or the number of stones present for
each player. In order to produce reachable transposition de-
ductions, after transforming the board we must either add a
single first player stone or else remove a single second player
stone. So as not to change the state’s value, we can only add
winner stones, remove loser stones, or add loser stones out-
side the winner’s proof set. See Fig. 11.

These deductions often compute thousands of database en-
tries from one solved state, but the extra computation time
prevents this method from being feasible at all stages of

solver’s search. Thus we limit the deductions to states with at
most k stones, using k=4 for 7×7 and k=5 for 8×8.

Figure 11: Upon discovering a White win (top), we switch
colors and sides, deduce an unreachable Black win (left), then
remove a White stone to deduce a reachable Black win (right).

7 Solving algorithm

Our solving algorithm combines the aforementioned methods
as follows. Explore the Hex game tree in depth first order. If
a state’s value is in the database/transposition table, return
the value. Otherwise, use ICE fill-in and 4-cycle decomposi-
tions to compute an equivalent board state, and then use VCE
to compute virtual/semi connections on this new state. If ICE
(with a winning path) or VCE (with a winning virtual connec-
tion) solves the new state, then reduce the proof set, store the
value (and any deduced values) in the database/transposition
table, and return to the parent state. Otherwise, order all
moves to consider – empty non-inferior cells in the mustplay
– by mustplay size and electric circuit model evaluation. If
the board decomposes into two independent parts, then split
the search. If a child state’s value resolves that of its parent,
then store the value and return; otherwise use the proof set to
prune additional moves and proceed to the next child.

8 Solving 8x8

We ran our algorithm on an Intel Core 2 Quad Q9559
LGA775 (2.66GHz/1333FSB/12MB) desktop with 2GB
RAM. Solving all 8×8 states took 106,448,370 interior nodes
and just under 301 hours. See Fig. 12.

In order to exploit the database, openings were solved in
the hand-picked order e4,d4,c5,f3, e3,d3,c4,c3, g2,f2,e2,d2,
c2,b3,b4,b5, b6,h1,a3,a4, a5,a6,a7, followed by the remain-
ing capture-dominated and rotated openings. Fig. 13 shows
the number of interior nodes in the search trees. Zero entries
indicate instant solution by database lookup.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 12: 8×8 opening moves solved by our algorithm.

508



a b c d e f g h

1 0 0 0 0 0 0 0 6.8e6

2 0 0 2.4e5 1.7e5 1.5e5 1.6e5 6.5e3 0

3 1.3e7 3.1e5 5.9e5 4.0e5 2.8e5 2.7e5 0 0

4 1.0e7 2.4e6 1.9e5 8.7e4 4.2e4 0 0 0

5 3.3e7 6.5e5 7.9e4 0 0 0 0 0

6 4.9e5 1.8e6 0 0 0 0 0 0

7 3.5e7 0 0 0 0 0 0 0

Figure 13: Interior nodes in 8×8 solving trees.

For openings not solved instantly, the quickest (g2) took 96
seconds and the slowest (a7) took 95.6 hours. Solving time
was roughly proportional to the number of interior nodes. For
later openings, search space and times were often reduced due
to database lookups, so g2 may not be the easiest 8×8 Hex
opening to solve.

9 Feature contributions

To measure the contributions of the various features of our
solver, we solved all 7×7 openings repeatedly, each time with
a different feature turned off/on. The base run with all fea-
tures on took just over 10 minutes with a search tree contain-
ing 8.3e4 internal nodes; the base run with all features off
took just over 15 hours with a search tree containing 5.5e7
internal nodes. Fig. 14 summarizes the effects on both solv-
ing time and the number of internal nodes in the search tree,
showing the ratio of each adjusted run with one feature off/on
versus the base run with all features on/off.

feature f
only f off only f on

time nodes time nodes

mustplay move ordering 6.56 25.50 0.06 0.02

rotation/transposition deduction 2.17 2.22 0.43 0.43

decompositions 1.29 1.51 0.68 0.61

transposition table 1.28 1.40 0.27 0.25

induced-path domination 1.15 1.12 0.78 0.76

ICE patterns, deductions 1.12 1.13 1.33 1.13

precomputed connections 1.11 1.26 1.07 0.91

proof set reduction 0.98 1.01 1.03 0.87

Figure 14: Feature contributions when solving 7×7 Hex.

For most of our features, computation time is polynomial
in the board size, whereas search reduction seems exponen-
tial. The only exceptions are virtual connections (which are
central to our algorithm and so never turned off) and trans-
position deductions, which take exponential time. For both
these features we limit the computation process, in the for-
mer case by restricting the generality of the combining rules,
and in the latter case by applying the feature only at shal-
low tree depth. We suspect that this polynomial computabil-
ity is the key to our success in solving 8×8 states. By con-
trast, the template-matching techniques of Rasmussen et al.
[2007] apparently require exponential time; this may be why
their solver, which performs comparably to our solver on 7×7
states, cannot solve any 8×8 opening states.

In terms of both time and search space savings, our most
important feature is mustplay move ordering. However, the

large gap between the improvement ratios for time and space
indicates the significant time cost of this feature. The close-
ness of the time and space ratios for transposition deduction
suggests that our selected maximum application depth was
shallow enough to avoid a combinatorial explosion in the
number of deduced entries. While proof set reduction had
a slightly negative effect, we suspect that the scalabity of this
method (computational effort versus potential savings) makes
it useful for larger board sizes or deeper database depths; we
have not yet run tests to confirm this.

a3 e4 h2 c5 f6 h1 g2 f5 a7 b7 h4 h3 b6 d6 c6 a8 f4 g1 e5 d5 f2 e6 g4 g5 h5

a4 d5 h2 f6 c5 c6 h3 e6 a7 b6 a6 a8 b7 b8 c7 c8 d7 d8 e7 e8 f7 f8 h7 g7 h6

a5 b5 d4 d5 c5 c6 e4 e5 f5 e6 f4 f6 h5 g7 a7 a8 b7 b8 c7 c8 d7 f2 b6 d8 f7

a6 b7 e6 e4 c6 c5 f4 f3 a4 a5 h2 h1 g2 g1 f2 f1 e2 e1 d2 d1 c2 c1 a2 b2 a3

a7 e6 c6 a8 d6 d3 c4 c3 e3 c8 b8 d5 d4 c5 e5 e4 b5 b6 f4 f3 h2 g3 h3 g4 h4

b3 e4 c6 e1 b2 c5 b6 b5 f4 e8 e5 c8 d7 f3 h2 h1 g2 g3 h3 g4 d5 f1 d4 c3 d2

b4 e3 c5 c6 e5 d5 f3 g1 f2 f1 e2 e6 f6 f5 d6 e1 f4 c3 d2 d1 b2 c2 h1 g2 h2

b5 b3 c6 c5 e3 d5 e5 e4 f4 e8 d6 f3 h2 g3 h3 g4 b6 c4 c3 d3 b4 d1 d2 e1 e2

b6 b7 d5 e3 c4 c3 f3 e4 f4 e5 f5 f6 e6 g1 f2 f1 h1 g2 h2 g3 h3 g4 h4 g5 h5

c2 d5 g3 g2 f3 f2 e3 e2 d3 f6 c6 d6 c5 b8 c7 c8 d7 d8 e7 e8 a8 b7 a7 b6 f7

c3 d2 d4 d5 c5 c6 e4 e5 f5 e6 f4 f6 a7 a8 b7 b8 c7 c8 d7 b6 a6 d8 e7 g1 b5

c4 e2 d5 c6 d6 d4 d3 c5 f4 f3 h2 h1 g2 g1 e3 e4 f2 e5 f5 e6 f6 g3 h3 g4 h4

c5 d5 d4

d2 e6 d5 c7 b7 c6 f6 f5 h4 g5 h5 g6 h6 g8 g7 f8 f7 e8 e7 d8 b6 c5 a5 b3 b4

d3 b8 a8 d5 b6 c4 a5 b3 c3 b4 d4 b7 a7 c5 f4 e6 f6 f5 h4 g5 h5 g4 h3 g6 h6

d4 d5 c5 e3 b7 d3 c3 c4 e4 f3 a5 b6 b5 e6 f5 e5 c6 b4 a4 b3 a3 b1 b2 c1 c2

e2 e6 d5 c7 b7 c6 f6 f5 h4 g5 h5 g6 h6 g8 g7 f8 f7 e8 e7 d8 d7 c8 b6 c5 a5

e3 c6 d5

e4 f3 d6 d5 e3 e5 f4 e2 f5 e6 d3 f6 c5 c6 h5 g7 a7 b6 a6 b5 a5 b4 a4 a8 b7

f2 d5 f5 f3 h2 g4 f4 g3 d4 e6 c5 c6 a7 b6 a6 b5 a5 b3 b4 e3 d3 d2 e2 a8 b7

f3 e5 d4 c6 f5 f4 d6 d5 h3 e6 f6 g4 h4 g5 h5 g6 h6 g8 g7 f8 f7 e8 e7 d8 d7

g2 d5 f4

h1 f2 d6 e4 c5 d3 c3 c4 f4 e5 f3 c6 f5 e6 f6 g2 h2 g3 h3 g4 h4 g5 h5 g6 h6

Figure 15: Abbreviated principal variations for 8×8 open-
ings. Each winning move is first found; each losing move is
best reply (maximum depth to solve).

The benefits of many features are interdependent: the
time/space ratios when a single feature is off are not equal
to the inverse of the time/space ratios when a single feature
is on. An example of this is the improved ICE, which wors-
ens performance when used alone, but improves performance
when combined with the other features.

10 Verification

We have no independent method to verify the correctness of
our algorithm; however, we have executed our algorithm in
different environments without detecting any errors. Our al-
gorithm correctly solves all openings for all regular and irreg-
ular (e.g. 7×8) boards smaller than 8×8, and confirms prin-
cipal variations for the two Mishima et al. [2006] 8×8 solu-
tions. We embedded our solver in automated Hex players, and
observed that an augmented player always weakly-dominates
its unaugmented version. We also used our solver for post-
game analysis and endgame problem generation. Over the

509



course of several months and several hundred games, no er-
ror has been detected in any of these uses.

Fig. 15 shows the (abbreviated) principal variation for each
opening move’s search, namely the first win found where the
losing player prolongs as much as possible. The short princi-
pal variations for openings c5,e3,g2 are due to database hits.
The 8×8 database, which stores all solved states with at most
five stones, is available for download.

11 Conclusion

We have developed several efficient features that preserve the
theoretical value of a Hex state while reducing the search
space. In the future we hope to solve some 9×9 openings,
thereby surpassing human-designed solving efforts (which
work particularly well on near-centre openings). Solving 8×8
Hex openings took about 1300 times as many nodes as solv-
ing 7×7 Hex openings, even though (as suggested by Fig. 1)
the 8×8 search space is about a million times as big as the
7×7 search space. After two weeks of computation time, our
solver made no significant progress on either of e5 or h2, the
two presumably easiest 9×9 openings.

References

[Anshelevich, 2000] Vadim Anshelevich. A hierarchical ap-
proach to computer Hex. Artificial Intelligence, 134:101–
120, 2000.

[Björnsson et al., 2007] Yngvi Björnsson, Ryan Hayward,
Michael Johanson, and Jack van Rijswijck. Dead Cell
Analysis in Hex and the Shannon Game. In Adrian Bondy,
Jean Fonlupt, Jean-Luc Fouquet, Jean-Claude Fournier,
and Jorge L.R̃amirez Alfonsin, editors, Graph Theory in
Paris: Proceedings of a Conference in Memory of Claude
Berge (GT04 Paris), pages 45–60. Birkhäuser, 2007.

[Browne, 2000] Cameron Browne. Hex Strategy: Mak-
ing the Right Connections. A. K. Peters, Natick, Mas-
sachusetts, 2000.

[Hayward et al., 2005] Ryan B. Hayward, Yngvi Björnsson,
Michael Johanson, Morgan Kan, Nathan Po, and Jack van
Rijswijck. Solving 7 × 7 Hex with domination, fill-in,
and virtual connections. Theoretical Computer Science,
349:123–139, 2005.

[Hein, 1942] Piet Hein. Vil de laere Polygon? Article in
Politiken newspaper, 26 December 1942.

[Henderson and Hayward, 2008] Philip Henderson and
Ryan B. Hayward. Probing the 4-3-2 edge template in
Hex. In H. Jaap van den Herik, Xinhe Xu, Zongmin
Ma, and Mark H. M. Winands, editors, Computers and
Games (6th International Conference, CG 2008, Beijing,
China, September 29 - October 1, 2008. Proceedings),
volume 5131 of Lecture Notes in Computer Science, pages
229–240. Springer, 2008.

[King, 2001] David King. The game of Hex: templates.
www.drking.plus.com/hexagons/hex/templates.html,
2001.

[Melis, 2003] Gábor Melis. Six webpage, 2003. six.retes.hu.

[Mishima et al., 2006] Ken Mishima, Hidetoshi Sakurai, and
Kohei Noshita. New proof techniques and their applica-
tions to winning strategies in Hex. Proceedings of 11th
Game Programming Workshop in Japan, pages 136–142,
2006.

[Nash, 1952] John Nash. Some Games and Machines for
Playing Them. Technical Report D-1164, Rand Corp.,
1952.

[Noshita, 2005] Kohei Noshita. Union-Connections and
Straightforward Winning Strategies in Hex. International
Computer Games Association Journal, 28(1):3–12, March
2005.

[Rasmussen et al., 2007] Rune K. Rasmussen, Frederic D.
Maire, and Ross F. Hayward. A template matching ta-
ble for speeding-up game-tree searches for Hex. In
AI 2007: Advances in Artificial Intelligence, Lecture
Notes in Computer Science, pages 283–292. Springer,
Berlin/Heidelberg, 2007.

[Rasmussen, 2008] Rune Rasmussen. Algorithmic Ap-
proaches for Playing and Solving Shannon Games. PhD
thesis, Queensland University of Technology, Brisbane,
Australia, 2008.

[Reisch, 1981] Stefan Reisch. Hex ist PSPACE-vollständig.
Acta Informatica, 15:167–191, 1981.

[van den Herik et al., 2002] H.J. van den Herik, J.W.H.J.
Uiterwijk, and J. van Rijswijck. Games solved: Now and
in the future. Artificial Intelligence, 134(1-2):277–311,
2002.

[van Rijswijck, 2003] Jack van Rijswijck. Search and eval-
uation in Hex. Technical report, University of Alberta,
2003. www.javhar.net/javharpublications.

[Yang, 2002] Jing Yang. Hex 8x8 solution, 2002.
www.ee.umanitoba.ca/˜jingyang/hex88-1.html.

[Yang, 2003] Jing Yang. Hex 9x9 solution, 2003.
www.ee.umanitoba.ca/˜jingyang.

510




