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Abstract. We present Solrex, an automated solver for the game of Reverse Hex. Reverse
Hex, also known as Rex, or Misère Hex, is the variant of the game of Hex in which the
player who joins her two sides loses the game. Solrex performs a mini-max search of the
state space using Scalable Parallel Depth First Proof Number Search, enhanced by the
pruning of inferior moves and the early detection of certain winning strategies.
Solrex is implemented on the same code base as the Hex program Solver, and can solve
arbitrary positions on board sizes up to 6×6, with the hardest position taking less than
four hours on four threads.
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1 Introduction

In 1942 Piet Hein invented the two-player board game now called Hex [10]. The
board is covered with a four-sided array of hexagonal cells. Each player is assigned
two opposite sides of the board. Players move in alternating turns. For each turn,
a player places one of their stones on an empty cell. Whoever connects their two
sides with a path of their stones is the winner.

In his 1957 Scientific American Mathematical Games column, Concerning the
game of Hex, which may be played on the tiles of the bathroom floor, Martin
Gardner mentions the misère version of Hex known as Reverse Hex, or Rex, or
Misére Hex: whoever joins their two sides loses [5]. See Figure 1.
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Fig. 1. Left: the end of a Rex game. White has joined both White sides, so loses. Right: a Rex puzzle
by Ronald J. Evans. White to play and win.[7]

So, for positive integers n, who wins Rex on n×n boards? Using a strategy-
stealing argument, Robert O. Winder showed that the first (resp. second) wins
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when n is even (odd) [5]. Lagarias and Sleator further showed that, for all n, each
player has a strategy that can avoid defeat until the board is completely covered
[13].

Which opening (i.e. first) moves wins? Ronald J. Evans showed that for n

even, opening in an acute corner wins [4]. Hayward et al. further showed that, for
n even and at least 4, opening in a cell that touches an acute corner cell and one’s
own side also wins [9].

The results mentioned so far prove the existence of winning strategies. But
how hard is it to find such strategies? In his 1988 book Gardner commented that
“4×4 [Rex] is so complex that a winning line of play for the first player remains
unknown. [7, 8]. In 2012, based on easily detected pairing strategies, Hayward et
al. explained how to find winning strategies for all but one (up to symmetry)
opening move on the 4×4 board [9].

In this paper, we present Solrex, an automated Rex solver that solves arbitrary
Rex positions on boards up to 6×6. With four threads, solving the hardest 6×6
opening takes under 4 hours; solving all 18 (up to symmetry) 6×6 openings takes
about 7 hours.

The design of Solrex is similar to the design of the Hex program Solver. So, Sol-
rex searches the minimax space of gamestates using Scalable Parallel Depth-First
Proof Number Search, the enhanced parallel version by Pawlewicz and Hayward
[14] of Focussed Depth-First Proof Number Search of Arneson, Hayward, and
Henderson [2]. Like Solver, Solrex enhances the search by inferior move pruning
and early win detection. The inferior move pruning is based on Rex-specific the-
orems. The win detection is based on Rex-specific virtual connections based on
pairing strategies.

In the next sections we explain pairing strategies, inferior cell analysis, win
detection, the details of Solrex, and then present experimental results.

2 Death, pairing, capture, joining

Roughly, a dead cell is a cell that is useless to both players, as it cannot contribute
to joining either player’s two sides. Dead cells can be pruned from the Rex search
tree. Related to dead cells are captured cells, roughly cells that are useless to just
one player and so can be colored for the other player. In Hex, each player wants
to capture cells; in Rex, each player wants to force the opponent to capture cells.
In Rex, such opponent-forced capture can be brought about by pairing strategies.
As we will see in a later section, pairing strategies can also be used to force the
opponent to join their two sides.

Before elaborating on these ideas, we give some basic terminology. Let X

denote the opponent of player X.



Fig. 2. Shaded cells are dead. All other uncolored cells are live.

For a given position, player X colors cell c means that player X moves to cell
c, i.e. places a stone of her color on cell c. A cell is uncolored if it is unoccupied.
To X-fill a set of cells is to X-color each cell in the set; to fill a set is either to
X-fill or X-fill the set.

A state S = P X is a position P together with the specified player X to move
next. The winner of S is whoever has a winning strategy from S.

For a position P and a player X, a X-joinset is a minimal set of uncolored
cells which when X-colored joins X’s two sides; a joinset is an X-joinset or an X-
joinset; an uncolored cell is live if it is in a joinset, otherwise it is dead; a colored
cell is dead if uncoloring it would make it dead.

For an even size subset C of uncolored cells of a position or associated state,
a pairing Π is a partition of C into pairs, i.e. subsets of size two. For a cell c in
a pair {c, d}, cell d is c’s mate. For a state S, a player Y , and a pairing Π, a
pairing strategy is a strategy for Y that guarantees that, in each terminal position
reachable from S, at most one cell of each pair of Π will be Y -colored.

For a state S = P X , Last is that player who plays last if the game ends with
all cells colored, and Notlast is the other player, i.e. she who plays second-last if
the game ends with all cells uncolored. So, Last (Notlast) is whoever plays next if
and only if the number of uncolored cells is odd (even). For example, for S = P X

with P the empty 6×6 board, Last is X and Notlast is X, since X plays next and
P has 36 uncolored cells.

Theorem 1. For state S and pairing Π, each player has a pairing strategy for
S.

Proof. It suffices to follow these rules. Proving that this is always possible is left
to the reader.

First assume Y is Last. In response to Y coloring a cell in Π, Y colors the
mate. Otherwise, Y colors some uncolored cell not in Π. Next assume Y is Notlast.
In response to Y coloring a cell in Π with uncolored mate, Y colors the mate;
otherwise, Y colors a cell not in Π; otherwise (all uncolored cells are in Π, and



each pair of Π has both or neither cell colored), Y colors any uncolored cell of
Π. ⊓⊔

For a player X and a pairing Π with cell set C of a position P or associated
state S = P Y , we say Π X-captures C if X-coloring at least one cell of each pair
of Π leaves the remaining uncolored cells of C dead; and we say Π X-joins P if
X-coloring at least one cell of each pair of Π joins X’s two sides.

Notice that every captured set (as defined here, i.e. for Rex) comes from a
pairing and so has an even number of cells, as does every X-join set.

Fig. 3. Left: dots show a White-captured set (the top two cells form one pair, the bottom two form the
other). Middle: Each player has colored one cell from each pair, and the two Black cells are dead. Right:
original position after filling White-captured cells.

3 Inferior cell pruning and early win detection

We now present the Rex theorems that allow our solver to prune inferior moves
and detect wins early.

For a position P , a player X, and a set of cells C, P + CX is the position
obtained from P by X-coloring all cells of C, and P −C is the position obtained
from P by uncoloring all colored cells of C. For clarity, we may also write P −CX

in this case where X is the player who originally controlled all the cells of C.
Similarly, for a state S = P Y , where Y = X or X, S +CX is the state (P +CX)Y .
Also, in this context, when C has only one cell c, we will sometimes write cX

instead of {c}X .
For states S and T and player X, we write S ≥X T if X wins T whenever X

wins S, and we write S ≡ T if the winner of S is the winner of T , i.e. if S ≥X T

and T ≥X S for either player X.
An X-strategy is a strategy for player X.

Theorem 2. For an even size set C of uncolored cells of a state S, S ≥X S+CX .

Proof. Assume π+ is a winning X-strategy for S+ = S + CX . Let π be the X-
strategy for S obtained from π+ by moving anywhere in C whenever X moves in



C. For any terminal position reachable from S, the set of cells occupied by X will
be a superset of the cells occupied by X in the corresponding position reachable
from S+, so X wins S. ⊓⊔

Theorem 3. For a position P with uncolored cell c, (P + c
X

)Y ≥X P Y .

Proof. First assume Y = X. Assume X wins S = P X . Then, for every possible
move from S by X, X can win. In particular, X can win after X colors c. So X

wins (P + c
X

)X .
Next assume Y = X. Assume X wins S = P X . We want to show X wins

S ′ = (P + c
X

)X . Let c′ a cell to which X moves from S ′, let C = {c, c′}, and let
S ′′ be the resulting state (P +C

X
)X . X wins S so, by Theorem 2, X wins S ′′. So,

for every possible move from S ′, X wins. So X wins S ′. ⊓⊔

Theorem 4. For an X-captured set C of a state S, S + CX ≥X S.

Proof. Assume X wins S+ = S + CX with strategy π+. We want to show that X

wins S. Let Π be an X-capture pairing for C, and modify π+ by adding to it the
Π pairing strategy for X.

Let Z be a terminal state reachable from S by following π. Assume by way of
contradiction that Z has an X-colored set of cells joining X’s two sides. If such a
set Q∗ exists, then such a set Q exists in which no cell is in C. (On C X follows a
Π pairing, so in Z at most one cell of each pair of Π is X-colored. Now X-color
any uncolored cells of C. Now at least one cell of each pair is X-colored, and C is
X-captured, so each X-colored cell of C is dead, and these cells can be removed
one at a time from Q∗ while still leaving a set of cells that joins X’s two sides.
Thus we have our set Q.) But then the corresponding state Z+ reachable from S+

by following π+ has the same set Q, contradicting the fact that X wins S+. ⊓⊔

Corollary 1. For an X-captured set C of a state S, S ≡ S + CX .

Proof. By Theorem 4 and Theorem 2. ⊓⊔

Theorem 5. For a player X and a position P with uncolored dead cell d, (P +

dX)X ≥X P X . A move to a dead cell is at least as good as any other move.

Proof. Coloring a dead cell is equivalent to opponent-coloring the cell. So this
theorem follows by Theorem 3. ⊓⊔

Theorem 6. For a position P with uncolored cells c, k with c dead in P + kX ,
(P + cX)X ≥X (P + kX)X . Prefer victim to killer.

Proof. (P + kX)X ≡ (P + kX + cX)X ≥X (P + cX)X . ⊓⊔



Theorem 7. For a position P with uncolored cells c, k with c dead in P + k
X
,

(P + cX)X ≥X (P + kX)X . Prefer vulnerable to opponent killer.

Proof. Assume k is a winning move for X from P X , i.e. assume X wins S =
(P + kX)X . Consider any such winning strategy π. We want to show c is also a

winning move for X from P X , i.e. that X wins S ′ = (P + cX)X .
To obtain a winning X-strategy π′ for S ′, modify π by replacing c with k:

whenever X (resp. X) colors c in π, X (X) colors k in π′. In P , X-coloring k

kills c: so in P , if some X-joinset J contains c, then J must also contain k. But
a continuation of π′ has both k and c X-colored if and only if the corresponding
continuation of π has them both X-colored. So, since X wins S following π, X

wins S ′ following π′. ⊓⊔

Theorem 8. For a position P with uncolored cell d and set C that is X-captured
in (P + dx)

X , for all c ∈ C, (P + cx)
X ≥X (P + dx)

X . Prefer capturee to capturer.

Proof. (P + cX)X ≥X (P + CX + dX)X ≡ (P + dX)X . ⊓⊔

Our next results concern mutual fillin, namely when there are two cells a,b
such that X-coloring a X-captures b and X-coloring b X-captures a.

Theorem 9. Let P be a position with sets A, B containing cells a, b respectively,
such that A is X-captured in (P + b

X
), and B is X-captured in (P + aX). Then

P ≡ P + aX + b
X
.

Proof. By if necessary relabelling {X, a, A} and {X, b, B}, we can assume X plays
next. We claim that a X-dominates each cell in A + B. Before proving the claim,
observe that it implies the theorem, since after X colors a, all of B is Y -captured,
so Y can then color any cell of B, in particular, b.

To prove the claim, consider a strategy that X-captures A in P + b
X

. Now,
for all α in A + B,

(P + αX)X ≤X (P + b
X

)X (Theorem 3 twice: remove αX , add b
X

)

≡ (P + AX + b
X

)X (capture)

≤X (P + aX + B
X

)X (Theorem 3, repeatedly for X and then X)

≤X (P + aX)X (capture)

So the claim holds, and so the theorem. ⊓⊔

Theorem 10. Let c be any X-colored cell in a position P as described in Theo-
rem 9. Then (P − c + aX)X̄ ≥X P X̄ . Prefer filled to mutual fillin creator.



Proof. Define b′ to be the mate of b in the X-capture strategy for B in (P + aX).

P X̄ ≡ (P + aX + bX̄)X̄ (Theorem 9)

≡ (P + aX + BX − b′
X̄

)X̄ (filling captured cells, now b′ dead)

≡ (P + aX + BX)X (coloring b′)

≡ (P + aX)X (capture)

≤X (P − c + aX)X̄ (Theorem 3)

⊓⊔

Fig. 4. Mutual fillin. If B colors left cell, the other two cells are W-captured. If W colors right cell, the
other two cells are B-captured. So we can replace first position with this.

Fig. 5. Mutual fillin domination. Off-board stone shows B to play. Black move would create mutual
fillin pattern. So, for these three states, Black prefers large dot to small.

Finally, we mention join pairing strategies.

Theorem 11. For a state S = P X with an X-join pairing Π, X wins P X .

Proof. It suffices for X to follow the Π strategy. In each terminal state Z player
X will have colored at most one cell of Π. From Z obtain Z ′ by X-coloring any
uncolored cells: this will not change the winner. But in Z ′ at least one cell of each
pair of Π is X-colored, and Π is an X-join pairing. So in Z ′ X’s two sides are
joined, so in Z X’s two sides are joined. So X wins. ⊓⊔

4 Early win detection

For a position P , a X-join-pairing strategy is a pairing strategy that joins X’s two
sides, and an X-pre-join-pairing strategy is an uncolored cell k together with an



X-join-pairing strategy of P +kX ; here k is the key of this strategy. The key to our
algorithm is to find opponent (pre)-join-pairing strategies. When it is clear from
context that the strategies join a player’s sides, we call these simply (pre)-pairing
strategies.

Theorem 12. Let P be a position with an X-join-pairing strategy. Then X wins
P X and also P X .

Proof. This follows from Theorem 7 in [9]: X can force X to follow the X-join-
pairing strategy.

Theorem 13. Let P be a position with an X-pre-join-pairing strategy and with
X = Last. Then X wins P X and also P X .

Proof. This follows from Theorem 6 in [9]. X can avoid playing the key of the
pre-pairing strategy, forcing X to eventually play it.

5 Solrex

Solrex is based on Solhex, the Hex solver of the Benzene code repository [3]. The
challenge in developing Solrex was to identify and remove any Hex-specific, or
Rex-unnecessary, aspects of Solhex — e.g. permanently inferior cells apply to Hex
but not Rex — and then add any Rex-necessary pieces. E.g., it was necessary to
replace the methods for finding Hex virtual connections with methods that find
Rex (pre-) pairing strategies.

Search follows the Scalable Parallel Depth First variant of Proof Number
Search, with the search focusing only on a limited number of children (as ranked
by the usual electric resistance model) at one time [14].

Fig. 6. Inferior cells of a Rex position. Each arrow end is inferior to its arrowhead.

When reaching a leaf node, using a database of fillin and inferior cell patterns,
we apply the theorems of §3. We find dead cells by applying local patterns and



by searching for any empty cells whose neighbourhood of empty cells, after stone
groups have been removed and neighbouring empty cells contracted, is a clique.
We iteratively fillin captured cells and even numbers of dead cells until no more
fillin patterns are found. We also apply any inferior cell domination that comes
from virtual connection decompositions [2, 11].

We then look into the transposition table to see if the resulting state win/loss
value is known, either because we previously solved, or because of color symmetry
(a state which looks the same for each player is a win for Notlast). Then inferior
cells are pruned. Then, using H-search [1] in which the or-rule is limited to com-
bining only 2 semi-connections, we find (pre)-join-pairing strategies. Then, for X

the player to move, we prune each key of every X-pre-join-strategy.
H-search is augmented by observing that semi-connections that overlap on

a captured set of endpoints do not conflict and so can be combined into a full
connection [2, 11]. Notice that augmented H-search is not complete: some pairing
strategies (e.g. the mirror pairing strategy for the n×(n− 1) board [6]) cannot be
found in this way.

Figure 7 shows the start of Solrex’s solution of 1.Bd1, the only unsolved 4×4
opening from [9]. First, inferior cells are found: White b1 captures a1,a2; a2 kills
a1; b2 captures a2,a3; c2 leaves c1 dominated by b2; d2 captures d3,d4; etc. See
Figure 6. Only 5 White moves remain: a1,c1,a4,b4,d4. After trying 2.Wa4, a White
pre-join-pairing strategy is found, so this loses. Similarly, 2.Wb4 and 2.Wd4 also
lose. Now 2 White moves remain: a1,a3. From 2.Wa1, search eventually reveals
that 3.Bc1 wins (a2 also wins). From 2.Wc1, search reveals that 3.Ba1 wins (b2
and d4 also win). The deepest line in solving this position is 1.Bd1 2.Wc1 3.Bd4
4.Wc4 5.Bb2 6.Wa3 7.Ba4 8.Wb4.
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Fig. 7. Solving 1.Bd1. Left: White inferior cells after 1.Bd1. Then White pre-join-pair strategies after
2.Wa4, 2.Wb4, 2.Wd4. Search reveals that 2.Wa1 loses. Search reveals that 2.Wc1 loses. So 1.Bd1 wins.
The last diagram shows the deepest line of search and the final pre-join-pair strategy: the shaded cells
are Black-captured.

6 Experiments

We ran our experiments on Torrington, a quad-core i7-860 2.8GHz CPU with
hyper-threading, so 8 pseudo-cores. For 5×5 Rex, our test suite is all 24 replies



to opening in the acute corner:1 this takes Solrex 13.2s. For 6×6 Rex, our test
suite is all 18 (up to symmetry) 1-move opening states: this takes Solrex 25900s.
To measure speedup, we also ran the 18 1-move 6×6 openings on a single thread,
taking 134635s.

To show the impact of Solrex’s various features, we ran a features knockout
test on the 5×5 test suite. For features which showed negligible or negative contri-
bution, we ran a further knockout test on the hardest 6×6 position, 1.White[d2],
color-symmetric to 1.Black[e3]. The principle variation for this hardest opening is
shown in Figure 8. The results are shown below. Figure 9 shows all losing moves
after the best opening move on 5×5 (all opening 5×5 moves lose), and all losing
opening moves on 6×6.

Figure 10 shows three new Rex puzzles we discovered by using Solrex. The
middle puzzle was the only previously unsolved 4×4 position. The other two were
found by using Solrex to search for positions with few winning moves.

5×5 knockout tests

version time ratio
all features on 1.0 (13.9s)

no dead clique cutset .97
unaugmented H-search .99

no mutual fillin 1.00
no color symmetry pruning 1.01

no VC decomp 1.06
no dead fillin 1.07

no resistance move ordering 1.62
no capture fillin 2.02

no inferior pruning 2.30
no H-search 89.83

6×6 knockout test

version time ratio
all features on 1.0 (13646 s)

unaugmented H-search 1.10
no color symmetry pruning 1.13

no dead clique cutset 1.37
no mutual fillin 1.44
no VC decomp 1.95

1 All opening 5×5 Rex moves lose, so we picked all possible replies to the presumably strongest opening
move.
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Fig. 8. Principle variation of 1.Black[e3], hardest 6×6 opening. From here Black forces White to connect
with pairs {C4,C5} {D6,E5}{F4,F5} and last cell D5.
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Fig. 9. Left: all losing replies. Right: all losing openings.

7 Conclusions

All features listed in the knockout tests contributed significantly to shortening
search time: the four features that contributed no improvement on 5×5 boards
all contributed significantly on 6×6 boards. The effectiveness of these pruning
methods – which exploit pruning via local patterns in a search space that grows
exponentially with board size — explained by Henderson for Hex, is clearly also
valid for Rex [11]:

In almost all cases, we see that feature contributions improved with board
size. We believe this is partly because the computational complexity of most
of our algorithmic improvements is polynomial in the board size, while the
corresponding increase in search space pruning grows exponentially. Fur-
thermore, as the average game length increases, more weak moves are no
longer immediately losing nor easily detectable via previous methods, and
so these features become more likely to save significant search time.

Of these features, by far the most critical was H-search, which yielded a time
ratio of about 90 on 5×5 Rex when omitted. The enormous time savings resulting
from H-search is presumably because our general search method does not learn
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Fig. 10. Three new Rex puzzles. Left: White to play: find the only winning move. Middle: White to
play: find White’s best move, and Black’s best reply. Right: White to play: find the only winning move.

to recognize the redundant transpositions that correspond to the discovery of a
(pre-) pairing strategy. So H-search avoids some combinatorial explosion.

Solrex takes about 7 hours to solve all 18 (up to symmetry) 6×6 boardstates;
by contrast, Solhex takes only 301 hours to solve all 32 (up to symmetry) 8×8
boardstates [12]. So why is Solhex faster than Solrex?

One reason is because Hex games tend to be shorter than Rex games: in a
balanced Rex game, the loser can often force the winner to play until the board is
nearly full. Another reason is there are Hex-specific pruning features that do not
apply to Rex: for example, the only easily-found virtual connections for Rex that
we know of are pairing strategies, and there seem to be far fewer of these than
there are easily-found virtual connections in Hex. Also, in Hex, if the opponent
can on the next move create more than one winning virtual connection, then the
player must make a move which interferes with each such connection or lose the
game; we know of no analogous property for Rex.

The general approach of Solhex worked well for Solrex, so this approach might
work for other games, for example connection games such as Havannah or Twixt.

Solutions to puzzles. Evans’ puzzle: b1 (unique). Three new puzzles: Left: a2
(unique). Middle: Black wins; best move for White is a1, which leaves Black with
only 2 winning replies (a2, c1); all other White moves leave Black with at least 3
winning replies (e.g. c1 leaves a1, b2, d4). Right: e3 (unique).
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