Advances in Computers and Games 2015, Plaat et al. (edshg@pt NCS (to appear)

Feature Strength and Parallelization of Sibling
Conspiracy Number Search

Jakub Pawlewiczand Ryan B. Hayward

1 Institute of Informatics, University of Warsawan@mimuw.edu.pl
2 Computing Science, University of Albertaayward@ualberta.ca

Abstract. Recently we introduced Sibling Conspiracy Number Search — an al-
gorithm based not on evaluation of leaf states of the search tree buactonede,

on relative evaluation scores of all children of that node — and implerderte
SCNS Hex bot. Here we show the strength of SCNS features: most cistital
initialize leaves via a multi-step process. Also, we show a simple parallébwers
of SCNS: it scales well for 2 threads but less efficiently for 4 or 8 thsead

1 Introduction

Call a heuristic functiotocal if it accurately compares the strength of siblings (nodes
with the same parent) in the search tree. Recently we intexl$ibling Conspiracy
Number Search [19], an algorithm designed for such a hédffistnd implemented
DeepHex, an SCNS Hex bot.

Our goal there was to introduce a new version of CNS and toémpht a com-
petitive Hex bot, so that implementation includes enharesgmover basic SCNS. Our
implementation, which was single-threaded, was competitith MoHex.

In this paper we measure the relative contribution of théufeaenhancements of
our SCNS Hex bot, and describe — and measure the performdnee @ parallel
implementation.

2 Conspiracy Number Search

In 2-player game search, CNS has shown promise in che$s3[24.2%,14,17] and
shogi [11]. CNS can be viewed as a generalization of PNS.

PNS is used in two-player zero-sum games. One playesishe other isthem
or opponent Value true (falsg is a win for us (them). We (they) move at an or-node
(and-node). PNS is hard to guide with an evaluation fun¢teneaves have only two
possible game values (i.e. minimax outcoméd)|[1/4,182286212]. One can extend

3 Hex has a good local heuristic. Shannon built an analogue circuit to pagotimection game
Bridg-it, with moves scored by voltage drag [7]. Adding links between wgiraonnected cells
[2] improves the heuristic, which is reliable among siblirids [9].

PNS by allowing a leaf to have any rational value, with—)oo for win(loss). If a leaf
is terminal, its value is the actual game value; if not temmhiits value can be assigned
heuristically. We (they) want to maximize (minimize) value node from which we
(they) move is anax-nodgmin-nodé¢. Internal node values are computed in minimax
fashion. MNIMAX (n) denotes the minimax value of node

PNS is computed using the two final values (true/false) amdrgorary value (un-
known) assigned to non-terminal leaves. The (dis)prooflmemmeasures how difficult
it is to change from unknown to true (false). Rather than nensibwe use functions to
represent the extended set of values denoted by{—oco} UR U {+o00}.

Definition 1. The functionp,, : V — Ny = {0,1,2,...} is aproof functionif, for

allv € V, p,(v) is the minimum number of leaves in the subtree rooted thiat must
change value so thatMIMAX (n) > v. Similarly,d,, : V — Ny is adisproof function
if, for all v € V, d,,(v) is the minimum number of leaves in the subtree rootedthat
must change value so thatiMmMAX (n) < v.

Rather than storing (dis)proof numbers at each node, we $tiis)proof functions,
computed recursively: I, is a leaf and is its value (heuristic or actual) then

0 if o<z

pn(v) =41 if v > x andn is non-terminal
400 if v > z andn is terminal,)
0 ifv>x

dp(v) =41 if v < z andn is non-terminal
400 if v < z andn is terminal,

otherwise, for every € V,
n(V) = i s(v), dn(v) = ds if n is or-node,
pu(v) = _min p(v), dn(v) ec%m | (v) ifn
2

n (V) = s(v), dp(v)= min ds(v) if nisand-node.
Pa(v) Sech%%r(n)p (v)) sechildren(n) (v)

(Dis)Proof functions can be propagated up from leaves. Oaetev represent such a
function f is as an array of all possible valugév) for eachv. For each node

() p. is anon-decreasing staircase function, and
d, is a non-increasing staircase function.
(i) MINIMAX (n) is the meet point op,, andd,,, i.e.:

pn(v) =0, dp(v) >0 for v < MINIMAX (n),
pn(v) =0, dnp(v) =0 for v = MINIMAX (n),
pn(v) >0, dn(v) =0 for v > MINIMAX (n).

See Figuréll. Following McAllester, tlnspiracy numbe€' N, (v) = p,(v) + dp (v)
is the smallest number of leaves (called conspirators) ekakies must change for the
minimax value ofn to reachw. CN,,(v) = 0 iff v = MINIMAX (n).

Pn(v), dn(v)
!

—00 MINIMAX (n) +oo
v

Fig. 1. Each proof functiorp,, (solid segments) and disproof functidn (dashed segments) is
monotonic staircase. Each black dot belongs to its segment (i.e. clodpdist), each white dot
does not (i.e. open endpoint). The intersectiop,péindd,, is the single poinfMINIMAX (n), 0).

2.1 Node expansion

Our implementation of CNS follows PNS: iteratively selegti@xpand a most proving
node (mpn) and then update (dis)proof functions on the ettt root. So we define a
CNS mpn.

Let vot = MINIMAX (root). Choose target values, ., for Max (the max player)
andwv,,;, for Min so thatv,,in < Vot < Umax. We explain how to do this if2.2. We
call [vmin, Vmax] the search value intervalr search intervdll.For fixedvmax aNdvmin,
we say that Max (Minwins if value vyax (vmin) iS reached. To find a mpn we use
SELECTMPN(root), with pn p,, (vmax) and dnd,, (vmin) for every noden. Our CNS
implementation — Algorithni]1l — differs from that of McAllest as we alter both
sides of the search interval at once.

Algorithm 1 Conspiracy number search

1: function CNS(oot)
2: while not reached time limitio

3 SETINTERVAL > SetUmax aNAdVmin
4: n < SELECTMPN(root)
5: Expandr and initiate new children by11)
6 Update nodes along path to the root usidg (2)
7: function SELECTMPN(n)
8 if nis leafthen
9: return n
10: else ifn is max-nodehen
11: return SELECTMPN(argmin ps(vmax))
sechildren(n)
12: else > n is min-node
13: return SELECTMPN(argmin ds(vmin))
sechildrenn)

4 This is the current likely range of the final root minimax value. It is anaiecto the aspiration
window of a3 search.

2.2 Choosing the search interval

One way to pick the search interval is to sgt.. andwv,,;, a fixed difference from
MINIMAX (root), denotedot,

Umax i Vroot 1 5[)’ (3)
Umin = Vroot — Od,

whered,, anddy are possibly equal constants. But it can help to modify therval

during search, e.g. by adjusting according to the root fdig)f value,

VUmax = max{v : proot(U) < Pmax}a
veV

(4)

Umin = min{v : droot('U) < Dmax}7
veV

where P, and D,,,,, are possibly equal constants. This approach was used in the

original CNS algorithm([115,13]. Search proceeds until titerival is sufficiently small,

i.€. vmax — Ymin < A, WhereA is a constant indicating an acceptable error tolerance.
This method does not always converge, e.g. when the seaobbsis to solving a

position, or — if thresholds are too small — when the seardmbtes into a stable

position; in such cases it is better to increase threshatdsrasume the search. Our

approach below mixeg](3) arld (4). Notice that (5) genersli@e

Umax = %1&);{” : proot(U) S maX(proot(Uroot + 6;0)7 Pmax)}v

()

Umin = E)nel{/l{l} . droot('U) < maX(droot(vroot - 5d)a Dmax)}-

To use CNS as a bot, we search until error tolerance is reamhtohe runs out
and then pick the best move. Experiments show the bestioritésr best move is the
branch on which most time (leaf expansions in the subtreg)esit.

3 Sibling CNS

We convert a local heuristic — one that reliably scores radatrengths of siblings —
into a global heuristic useful for our CNS player by addinktige errors, as follows.
The evaluation of non-terminal game tree nads given by

EVAL (n) = o(pi-1) - e(pi—1 — pi), (6)

=1
wherepy — p1 — -+ — pr = n is the path from roop, to n, o(p;) = 1(—1) if we
(the opponent) are to move @, and, for any childs of n, e(n — s) = log %((’::f;)) is

the relative error at with respect tes, wheres is a child ofn with best score. We call
this siblings comparison evaluation functigscef).

Generally, CNS constructs paths to terminal nodes, andtiremches so that the
player for whom the terminal node was losing tries to find heotesponse in a sub-
tree minimizing the cumulative error. So, the player trieal back on another most
promising move of the entire tree.

Although SCNS — CNS with scef — explores good lines of plag Yersion we
have described so far is wasteful, as CNS tends to expanithlatigs whenever a new
child is expanded. To avoid this, especially for unprongsthildren, we encode extra
information in the (dis)proof function when creating a lelifa move has high error
compared to its best sibling, then to increase the minimaxevaf this move by this
error will likely require many expansions. So, rather thaitializing (dis)proof func-
tions via a two-step staircase functidn (1), we use a mtéfi-staircase function, with
the number of steps logarithmic in the difference betweereat and minimax values.
Hence

0 ifo<zx 0 ifo>x
pn(v) = { o dn(v) = { B

i if i < 20077 < (64 1)0 i if i < 2@V < (64 1)0

(7)
x = MINIMAX (n), 4 is a positive integer and a positive rational. Usind{7) to ini-
tialize non-terminal leafs, SCNS expands only siblings sehscore diverges from that
of the best sibling by at most Depending on how values shift during search, other
(weaker) siblings might be expanded if the minimax valuengjes by more thaa.
With this modification, SCNS's search behaviour is now dldeethat of the human-
like behaviour described above.

3.1 Gradual forgetting of an error

While cell energy is effective in scef as a move’s error estimia can assign a falsely
high error to a good move. If SCNS spends much Wartiksuch a move the initial error
estimate should be corrected. We gradually decrease exfolaws,

e’(n—)s)ze(n—)s)-max(l— Ws 70), (8)
WIII‘(IX

wherew, is work done ats, W, IS a constant parameter measuring the amount of

work after which error should be zero, a#ldn — s) is the adjusted error estimate.

3.2 Adding RAVE statistics

One strength of MCTS Hex bots is their enhancement of moength by the Rapid
Action Value Estimate, an all-moves-as-first statistic {8) we added RAVE to SCNS.
With each node we store a map from possible moves (cells)dedRWVE statistic,
which consists of two integers: RAVE wins and losses. Stesisre updated whenever
a terminal node is created by leaf expansion: for each nodleeopath from root to the
node, we update RAVE values for each move played on the réisegfath.

Assume for the move — s we have the RAVE win-loss statistia(?, 17) of the
player to move. Denote the number of RAVE gamegfs= w? + [*. We modify
move error:

e'(n—s)=(1—-a) e(n—s)+a- Rmpace(n — s), 9)

5 We measure work done at a node as the number of node expansioessinbtinee rooted at
that node.

whereq indicates how quickly we shift into RAVE error

o \/ gt (n — s) (10)

3Rshift + gR(n — s) ’

ef'(n — s) is a move error computed by RAVE

1B(n —s) —wl(n — s))

gin—s)+1 (11)

eB(n = s) =ef™? (

erf ! is inverse error function, an®spix and Rimpact are constant parameters which
indicate how quickly we shift to RAVE error and the impact d\FE error respectively.

RAVE encourages (discourages) moves that are more oftaivet in winning
(losing) lines and gradually diminishes information froetlenergy. SCNS often reaches
terminal nodes, so RAVE values accumulate quickly. RAVElm@anombined with grad-
ual error forgetting by applyind18) on top &fl (9).

3.3 Transposition table and depth-first implementation

PNS assumes (often incorrectly) that the complete tree eatdryed in memory. The
DFPNS algorithm overcomes this restriction via a depth-finplementation and trans-
position table[[1B]. A DFPNS enhancement — thes method — reduces the tendency
of the search to jump around the treel[21]. The resultingréatya is stronger than PNS
and returns to the root only rarely [L8]21].

We apply these three enhancements to CNS. Again, searthnetens to the root,
so updates to the search interVal.i,, vmax] are infrequent. It may even happen that
search stays too long in one subtree, in which case we waatde the search back to
the root after a few expansions (so, small amount of workjydepto refine the interval.
A parameter for this is set according to the time-per-movénge

3.4 Parallel SCNS

Our approadﬁns to mimic the parallelization of DFPN [20]: use a quick thdeassign-

ment that follows the natural CNS order, and halt thread#i@e once its task is redun-
dant. This is achieved by using virtual wins and losses, antpbrarily halting thread
execution — returning the uncompleted portion of thread&ktto the thread pool —
once the thread has made MaxWorkPerJob recursive callsirSmaoallel SCNS works
as follows. See [20] for more details.

1. Replace (dis)proof numbers by (dis)proof functionsheggeration — leaf initial-
ization, node update, ...— is now done via (dis)proof fusrsi

2. Whenever search visits the root, sgtx andvy,iy,.

3. Navigate the search tree as in DFPNS, but with (dis)praaflrersp,, (vmax) and
dn, (vmin) UNtil search returns to the root.

4. Give each thread its own search interval, based on viftlig)proof functions.

5 Another approach is to dynamically partition the CNS tree and evaluatechlbprs in paral-
lel. Lorenz achieved this for the restriction of CNS to 2 conpirators, ifecévely bounding
proof function numbers at 2 [14].

4 Experimental Results

Using parallel SCNS, we implemented the Hex bot DeepHex erBénzene frame-
work [3]. Benzene includes virtual connection and cell gg@omputations, so as local
SCNS heuristic we used the energy drop at each cell as dedadrihl.

We used two bots as opponents: Wolve and MoHex, each alseingpited on
Benzene. Wolve usess Search with max-width pruning, with circuit resistance for
heuristic. MoHex — the strongest Hex bot since 2009 — uses BI@Tth RAVE,
patterns, prior knowledge estimation, progressive biad,GLOP tuning of parameters
[10]. Wolve and MoHex both compute virtual connections fraine moves and solve
positions long before the game ends.

For openings, we used 36 relatively balanced single storaings: a2 to k2, a10
to k10, b1 to 1, and b11tojl11.

We optimized parameters using CLOF{). Then we ran a knockout experiment
to show feature importancé4.2). Next we ran a tournament to show how strength
increases with number of thread(3). Finally, we ran a DeepHex vs. MoHex tourna-
ment at competition setting§4.4).

4.1 Parameter optimization by CLOP

We optimized parameters using CLOP [6]. In the tuning preees played 30s games,
used MoHex as the reference opponent, and set the roolithéefmaximum number
of node expansions before search must return to the root).td 2 final parameter
settings are based di® 000 games; CLOP already found good settings a2@600
games. DeepHex won 45% of these CLOP-tuning games. Firtaiggeire shown in
Table[d.

parameteralugdescription

€ 0.41 |e tolerance
n 0.30 |allowed relative error of numbers in proof function
) 103 |the end of the first step in leaf initialization

Prax 3 |proof threshold when setting, ax
Dimax 4 |disproof threshold when setting,in
Op 8 |extending the search interval on max side
04 7 |extending the search interval on min side
Rshit | 211 |RAVE error shift factor
Rimpact | 782 |impact of RAVE error
Whax |1824lerror forgetting threshold

Table 1. Parameters tuned by CLOP for DeepHex.

The CLOP-tuned values hint at the effect of various pararaefemeasures the
urgency of sibling expansior;03 seems small, as moves become easily distinguish-
able with§ about300. P, and D,,,, are also small, so DeepHex prefers explor-
ing promising lines deeply before diverging; a hand-tunetsion of DeepHex with

Puax = Dmax = 1 was strong, so we expected that the CLOP-tuned values tmbe cl
to 1; CLOP values 3,4 suggest that for DeepHex the best CN&/bmlr is not far from
that of PNS. CLOP values show optional extension of the seiaterval byé,, d, is
practically useless, as values 8,7 have negligible effagberformance. Surprisingly,
RAVE impact is small. We guessed it would be important to ipooate the outcome
of terminal nodes quickly, but values 211,782 show this ttebelone slowly. A similar
conlusion holds for gradual error forgetting.

4.2 Knockout experiment

Here we measure feature importance and accuracy of CLORguWWe tested many
versions of DeepHex, each with either a feature off or a patanslightly changed.
For each version we played 720 matches against MoHex (16 fion@ach opening) at
30s/move and then — to measure scaling — at 60s/move. SeelZabl

id |version 30s| 60s
(base)CLOP tuned 60.0(52.6
(a) |2-step (dis)proof function in leafs [20.3]23.1
(b) [nol+ e method € = 0) 57.5|50.6
(c) |exact proof functionsi(= 0) 56.1(48.9
(d) |no gradual error forgetting 56.7(51.9
(e) |norave 51.9(57.5
() |pure scef 52.4(55.6
(@) |Pmax = Dmax =1 52.1|52.5
(h) |Pmax = Dmax = 1 andd, = d; = 50|59.4|51.5
(i) |Pmax = Dmax =5 56.0(53.9

Table 2. Knockout experiment results showing win percentage over MoHexffar dettings in
DeepHex. The DeepHex versions are: (base) all features, alhpsees with CLOP settings, (a)
basic leaf initialization, (b)Y + ¢ method off, (c) exact proof functions (approximation off), (d)
gradual error forgetting off, (e) RAVE off, (f) gradual errorrfetting and RAVE both off, (g)
smallest possible thresholds inducing smaller search interval, (h) a} lfg@xtending search
interval to at least 100 on each side, (i) larger thresholds for settingthretsinterval.

As expected, at 30s/move the CLOP-tuned version is stronglhe most critical
feature is better leaf initialization via the multi-stepf function. RAVE is beneficial
at 30s/move but less so at 60s/move.

Our goal here was to use CLOP to find — within a relatively siperiod of time
— areasonable tuning for 30s/move. Given more time, to finchang that works well
over wide range of time settings, it would have been betters® randomly selected
time settings for CLOP instances. It would also be bettestormore than one opponent
during CLOP tuning, but we are not aware of any other nontdeteéstic Hex bots that
are comparable in strength to MoHex.

4.3 Multi-threaded tournament

Here we show how program strength scales with number ofdisrdds8 bots competed:
1,2,4,8-thread DeepHex; 1,2,4,8-thread MoHex; 1,3,&atilvioHex plus 1 thread for
solver; 1-thread Wolve; 1-thread Wolve plus 1 thread foveolin each game each
bot had 30s/move. Each bot played each other bot two timeadna@pening, once as
black (1st-player) and once as white (2nd-player). So eatlplayed 864 of the 5616
tournament games.

T T T

300 || 4 MoHex+solver .
284

“a- MoHex %

—e— DeepHex a =
250 - N

o

L 200 - N
150 - N
1007 | | L

number of threads

Fig. 2. Tournament results. Each point has error within 14 Elo, with 80% camdieleReference
player is 1-thread Wolve, BayesElo score 0.

Figure[2 shows tournament results. Scores are BayesEloifbJrespect to refer-
ence player Wolve (win rate .31, score 0); Wolve and Welselver (score 23) are not
shown. MoHex scales well up to the maximum 8 threads; thigikaps not surprising,
as MCTS strength typically increases uniformly with numbgsimulations and paral-
lelizes relatively easily. MoHexsolver scales well up to 4 threads, but is only slightly
stronger at 8 threads. The latter is perhaps because, viitér sdfectively taking over
end games, the difference in opening play between 3-threztdeM and 7-thread Mo-
Hex is not enough to change many outcomes. DeepHex scaledlaswloHex up to 2
threads, but then more poorly. This drop in scaling efficjggisanore pronounced than
a similar drop in scaling efficiency of parallel DFPN_[20],rbaps due to overfitting
(i.e. with training settings only single-threaded, onlys80ove and training opponent
only MoHex), and perhaps because the parallelization ndethgorevent search tree
thread convergence via virtual wins and losses — works bettENS than in CNS.
More work is needed to explore this behaviour.

4.4 DeepHex versus MoHex

Here we simulated a competition tournament on a 12-threathime. MoHex used its
strongest settings: 1 thread for its DFPNS solver and 11 {68 DeepHex does not
yet have game-length time control; in almost all games, dsttknows the winner

before its 20th move, so we allowed DeepHex (30/20) m/mo8d s/move.

We played a first tournament using DeepHex settings foundUyRCtuning. How-
ever,§4.2 results suggest that — as thinking time increaseB,gz and D, should
increase and RAVE weight should decrease. So, we playedoagégurnament with

parameters as in Tatll¢ 3.

parametewralue
Pax 6
Drmax 8
Op 50
04 50
Rshif[500
Rimpact 500

Table 3.Hand selected parameters for the second tournament.

Each tournament had 9 rounds. In each round, each bot pl&/e@mes, i.e. 2
games per opening — once as black (1st-player), once as (@niteplayer) — for a
total of 648 games. DeepHex had a .448 (.457) win rate in thig(fiecond) tournament.
So perhaps CLOP tuning is most effective with shorter tinmét§i or as a starting point;
for longer time limits or more than one thread hand tuningeeglly for parameters
such as search interval or RAVE weight, might be more effecti

Under tournament conditions MoHex seems stronger in edaly put DeepHex
sees further in complicated positions. Figurd 4.4 showp@&ay game, where MoHex
pushes DeepHex into a losing position before DeepHex escape

In the first tournament the average game length for a MoHerjBlex) win is 48.6
(61.2) moves, while in the second it is slightly longer 4%8.(). MoHex wins almost
all short games, DeepHex wins almost all long ones. See FabloHex seems strate-
gically stronger, often — perhaps because it is ahead — rgadimplifying moves.
DeepHex seems tactically further-sighted, often — perHaxsuse it is behind —
making complicated moves. A research challenge is to misettwo behaviours.

length26-4041-5051-6061-7071-8481-95
1st tournament win rate.04 | .20 | .52 | .73 | .83 | 1.00
2nd tournamentwinrate.03 | .21 | .46 | .75 | .89 | .89

Table 4. DeepHex win rate by game length.

S

@
=

S
'S
S
o8
S
)

@
()
()
(0
()
)
<
©,
@

@
()
¢)
©
©)

€
©
©)
©)
<)
)
@
)
@)

@
(®)
@
®)
O
%
o

e
S
e
o
O
826

©,
©
©)

Fig. 3. DeepHex (Black) escapes against MoHex. After 26.j5 DeepHexitelss with PV i6
h6 i5i10 i9 h10 h9 g10 g9 f10 g8 h2 k1 €9 c9 d8 a8 d7 d9 e8 c7 d6 a7 bavIBHiex sees
neither this nor its win after 28.h6 and blunders with 30.h11 instead of iftér 80s of search
DeepHex sees a win 31.h10 with PV g11 g10 f11 f10 e11 €10 d11 d1bX1&10 c7 d9 b7 f8
b6 d3 d4 d1 b9 213 g2 g3 c8 b8 h2 b2 b3 a3 b5 c4 b4 c3. With 34.f11 thdedsearch threads
score .62 before the solver thread finds the loss.

®
@)
®

5 Conclusions and further research

We showed the strength of Sibling Conspiracy Number Searatufes by competing
our SCNS Hex bot with MCTS bot MoHex anrds bot Wolve. By far the most critical
feature is to initialize leaf (dis)proof functions via a ritdtep — rather than 2-step—
staircase function. Also, we showed a parallel version diSQOur parallel SCNS Hex
bot scales well — as well as MoHex — with 2 threads, but lessiefitly with 4 or 8
threads. An open problem is to parallelize SCNS more effelsti

Acknowledgements

We thank the referees for their helpful comments, includiregsuggestion of a second
tournament with hand-tuned parameters.

References

1. L. Victor Allis. Searching for Solutions in Games and Artificial IntelligendhD thesis,
University of Limburg, Maastricht, Netherlands, 1994.

2. Vadim V. Anshelevich. A hierarchical approach to computer HAxtificial Intelligence
134(1-2):101-120, 2002.

3. Broderick Arneson, Philip Henderson, and Ryan B. Hayward.zBee, 2009.http://
benzene.sourceforge.net/

4. Dennis M. Breuker.Memory versus Search in GameBhD thesis, Maastricht University,
Maastricht, Netherlands, 1998.

5. Remi Coulom. Bayesian elo rating, 2010.http://remi.coulom.free.fr/
Bayesian-Elo

6. Rémi Coulom. CLOP: Confident local optimization for noisy black-boxapagter tuning.
In Advances in Computer Game&pringer LNCS 7168, pages 146-157, 2011.

http://benzene.sourceforge.net/
http://benzene.sourceforge.net/
http://remi.coulom.free.fr/Bayesian-Elo
http://remi.coulom.free.fr/Bayesian-Elo

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Martin GardnerThe 2nd Scientific American Book of Mathematical Puzzles and Diversions

chapter 7, pages 78-88. Simon and Schuster, New York, 1961.

. Sylvain Gelly and David Silver. Combining online and offline knowledge @iTU In 24th

ACM ICML, pages 273-280, 2007.

. Philip Henderson. Playing and solving Hex PhD thesis, UAlberta, 2010.http://

webdocs.cs.ualberta.ca/ ~ hayward/theses/ph.pdf

Shih-Chieh Huang, Broderick Arneson, Ryan B. Hayward, Makiialler, and Jakub
Pawlewicz. Mohex 2.0: A pattern-based mcts hex playe€dmputers and GamgSpringer
LNCS 8427, pages 60-71. 2014.

Hiroyuki lida, Makoto Sakuta, and Jeff Rollason. Computer shayiif. Intell., 134(1-
2):121-144, 2002.

Akihiro Kishimoto, Mark Winands, Martin Mler, and Jahn-Takeshi Saito. Game-tree
searching with proof numbers: the first twenty yeal@GA Journa) 35(3):131-156, Sept
2012.

Norbert Klingbeil and Jonathan Schaeffer. Empirical results waittspiracy numbersCom-
putational Intelligence6:1-11, 1990.

Ulf Lorenz. Parallel controlled conspiracy number searcEuito-Par 2002 Springer LNCS
2400, pages 420-430. 2002.

UIf Lorenz, Valentin Rottmann, Rainer Feldman, and Peter Mysliwietnti©@lled conspir-
acy number searchCCA Journal 18(3):135-147, 1995.

David McAllester. Conspiracy numbers for min-max seawktif. Intell., 35(3):287-310,
1988.

David McAllester and Denize Yuret. Alpha-beta conspiracy seal€iGA, 25(1):16-35,
2002.

A. Nagai.Df-pn Algorithm for Searching AND/OR Trees and Its ApplicatioRk.d. thesis,
Dept. Info. Science, University Tokyo, Tokyo, Japan, 2002.

Jakub Pawlewicz and Ryan Hayward. Sibling conspiracy numbestselnSoCS 2015: The
8th Annual Symposium on Combinatorial Seabi5.

Jakub Pawlewicz and Ryan B. Hayward. Scalable parallel dfpclsedn Computer and
GamesSpringer LNCS 8427, pages 138-150, 2013.

Jakub Pawlewicz and Lukasz Lew. Improving depth-first pmebed+-c trick. In Computers
and Games 20Q6springer LNCS 4630, pages 160-170. 2007.

Jahn-Takeshi Saito, Guillaume Chaslot, JosW.H.M. Uiterwijk, ardhéh van den Herik.
Monte-carlo proof-number search for computer go. Computers and GameSpringer
LNCS 4630, pages 50-61. 2007.

Jonathan Schaeffer. Conspiracy numbarsficial Intelligence 43(1):67-84, 1990.
Maaretn van der Meulen. Parallel conspiracy-number searabteyk thesis, Vrije Univer-
siteit Amsterdam, the Netherlands, 1988.

Mark Winands.Informed Search in Complex GameBhD thesis, Universiteit Maastricht,
Maastricht, Netherlands, 2004.

Mark Winands and Maarten Schadd. Evaluation-function basexf-pumber search. In
Computers and Games 2Q1%pringer LNCS 6515, pages 23-35. 2011.

http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf

	Feature Strength and Parallelization of Sibling Conspiracy Number Search

