
Feature Strength and Parallelization of Sibling
Conspiracy Number Search

Jakub Pawlewicz1 and Ryan B. Hayward2

1 Institute of Informatics, University of Warsaw,pan@mimuw.edu.pl
2 Computing Science, University of Alberta,hayward@ualberta.ca

Abstract. Recently we introduced Sibling Conspiracy Number Search — an al-
gorithm based not on evaluation of leaf states of the search tree but, for each node,
on relative evaluation scores of all children of that node — and implemented an
SCNS Hex bot. Here we show the strength of SCNS features: most criticalis to
initialize leaves via a multi-step process. Also, we show a simple parallel version
of SCNS: it scales well for 2 threads but less efficiently for 4 or 8 threads.

Advances in Computers and Games 2015, Plaat et al. (eds), Springer LNCS (to appear)

1 Introduction

Call a heuristic functionlocal if it accurately compares the strength of siblings (nodes
with the same parent) in the search tree. Recently we introduced Sibling Conspiracy
Number Search [19], an algorithm designed for such a heuristic3, and implemented
DeepHex, an SCNS Hex bot.

Our goal there was to introduce a new version of CNS and to implement a com-
petitive Hex bot, so that implementation includes enhancements over basic SCNS. Our
implementation, which was single-threaded, was competitive with MoHex.

In this paper we measure the relative contribution of the feature enhancements of
our SCNS Hex bot, and describe — and measure the performance of — a parallel
implementation.

2 Conspiracy Number Search

In 2-player game search, CNS has shown promise in chess [24,23,13,15,14,17] and
shogi [11]. CNS can be viewed as a generalization of PNS.

PNS is used in two-player zero-sum games. One player isus, the other isthem
or opponent. Value true (false) is a win for us (them). We (they) move at an or-node
(and-node). PNS is hard to guide with an evaluation function, as leaves have only two
possible game values (i.e. minimax outcomes) [1,4,18,25,22,26,12]. One can extend

3 Hex has a good local heuristic. Shannon built an analogue circuit to play the connection game
Bridg-it, with moves scored by voltage drop [7]. Adding links between virtual connected cells
[2] improves the heuristic, which is reliable among siblings [9].

PNS by allowing a leaf to have any rational value, with+(−)∞ for win(loss). If a leaf
is terminal, its value is the actual game value; if not terminal, its value can be assigned
heuristically. We (they) want to maximize (minimize) value. A node from which we
(they) move is amax-node(min-node). Internal node values are computed in minimax
fashion. MINIMAX (n) denotes the minimax value of noden.

PNS is computed using the two final values (true/false) and a temporary value (un-
known) assigned to non-terminal leaves. The (dis)proof number measures how difficult
it is to change from unknown to true (false). Rather than numbers, we use functions to
represent the extended set of values denoted byV = {−∞} ∪ R ∪ {+∞}.

Definition 1. The functionpn : V 7→ N0 = {0, 1, 2, . . .} is a proof functionif, for
all v ∈ V, pn(v) is the minimum number of leaves in the subtree rooted atn that must
change value so that MINIMAX (n) ≥ v. Similarly,dn : V 7→ N0 is adisproof function
if, for all v ∈ V, dn(v) is the minimum number of leaves in the subtree rooted atn that
must change value so that MINIMAX (n) ≤ v.

Rather than storing (dis)proof numbers at each node, we store (dis)proof functions,
computed recursively: Ifn is a leaf andx is its value (heuristic or actual) then

pn(v) =

0 if v ≤ x

1 if v > x andn is non-terminal

+∞ if v > x andn is terminal,

dn(v) =

0 if v ≥ x

1 if v < x andn is non-terminal

+∞ if v < x andn is terminal,

(1)

otherwise, for everyv ∈ V,

pn(v) = min
s∈children(n)

ps(v), dn(v) =
∑

s∈children(n)

ds(v) if n is or-node,

pn(v) =
∑

s∈children(n)

ps(v), dn(v) = min
s∈children(n)

ds(v) if n is and-node.
(2)

(Dis)Proof functions can be propagated up from leaves. One way to represent such a
functionf is as an array of all possible valuesf(v) for eachv. For each noden

(i) pn is a non-decreasing staircase function, and
dn is a non-increasing staircase function.

(ii) MINIMAX (n) is the meet point ofpn anddn, i.e.:

pn(v) = 0, dn(v) > 0 for v < M INIMAX (n),

pn(v) = 0, dn(v) = 0 for v = M INIMAX (n),

pn(v) > 0, dn(v) = 0 for v > M INIMAX (n).

See Figure 1. Following McAllester, theconspiracy numberCNn(v) = pn(v)+ dn(v)
is the smallest number of leaves (called conspirators) whose values must change for the
minimax value ofn to reachv. CNn(v) = 0 iff v = M INIMAX (n).

−∞ M INIMAX (n) +∞

0

1

2

3

4

5

v

p
n
(v
),
d
n
(v
)

pn

dn

Fig. 1. Each proof functionpn (solid segments) and disproof functiondn (dashed segments) is
monotonic staircase. Each black dot belongs to its segment (i.e. closed endpoint), each white dot
does not (i.e. open endpoint). The intersection ofpn anddn is the single point(M INIMAX (n), 0).

2.1 Node expansion

Our implementation of CNS follows PNS: iteratively select and expand a most proving
node (mpn) and then update (dis)proof functions on the path to the root. So we define a
CNS mpn.

Let vroot = M INIMAX (root). Choose target valuesvmax for Max (the max player)
andvmin for Min so thatvmin < vroot < vmax. We explain how to do this in§2.2. We
call [vmin, vmax] the search value intervalor search interval.4 For fixedvmax andvmin,
we say that Max (Min)wins if value vmax (vmin) is reached. To find a mpn we use
SELECTMPN(root), with pn pn(vmax) and dndn(vmin) for every noden. Our CNS
implementation — Algorithm 1 — differs from that of McAllester, as we alter both
sides of the search interval at once.

Algorithm 1 Conspiracy number search
1: function CNS(root)
2: while not reached time limitdo
3: SETINTERVAL ⊲ Setvmax andvmin

4: n← SELECTMPN(root)
5: Expandn and initiate new children by (1)
6: Update nodes along path to the root using (2)

7: function SELECTMPN(n)
8: if n is leafthen
9: return n

10: else ifn is max-nodethen
11: return SELECTMPN(argmin

s∈children(n)

ps(vmax))

12: else ⊲ n is min-node
13: return SELECTMPN(argmin

s∈children(n)

ds(vmin))

4 This is the current likely range of the final root minimax value. It is analogous to the aspiration
window ofαβ search.

2.2 Choosing the search interval

One way to pick the search interval is to setvmax andvmin a fixed difference from
MINIMAX (root), denotedvroot,

vmax = vroot + δp,

vmin = vroot − δd,
(3)

whereδp andδd are possibly equal constants. But it can help to modify the interval
during search, e.g. by adjusting according to the root (dis)proof value,

vmax = max
v∈V

{v : proot(v) ≤ Pmax},

vmin = min
v∈V

{v : droot(v) ≤ Dmax},
(4)

wherePmax andDmax are possibly equal constants. This approach was used in the
original CNS algorithm [16,13]. Search proceeds until the interval is sufficiently small,
i.e.vmax − vmin ≤ ∆, where∆ is a constant indicating an acceptable error tolerance.

This method does not always converge, e.g. when the search isclose to solving a
position, or — if thresholds are too small — when the search stumbles into a stable
position; in such cases it is better to increase thresholds and resume the search. Our
approach below mixes (3) and (4). Notice that (5) generalizes (4).

vmax = max
v∈V

{v : proot(v) ≤ max(proot(vroot + δp), Pmax)},

vmin = min
v∈V

{v : droot(v) ≤ max(droot(vroot − δd), Dmax)}.
(5)

To use CNS as a bot, we search until error tolerance is reachedor time runs out
and then pick the best move. Experiments show the best criterion for best move is the
branch on which most time (leaf expansions in the subtree) isspent.

3 Sibling CNS

We convert a local heuristic — one that reliably scores relative strengths of siblings —
into a global heuristic useful for our CNS player by adding relative errors, as follows.
The evaluation of non-terminal game tree noden is given by

EVAL (n) =

k
∑

i=1

σ(pi−1) · e(pi−1 → pi), (6)

wherep0 → p1 → · · · → pk = n is the path from rootp0 to n, σ(pj) = 1(−1) if we

(the opponent) are to move atpj , and, for any childs of n, e(n → s) = log E(n→s0)
E(n→s) is

the relative error atn with respect tos, wheres0 is a child ofn with best score. We call
thissiblings comparison evaluation function(scef).

Generally, CNS constructs paths to terminal nodes, and thenbranches so that the
player for whom the terminal node was losing tries to find another response in a sub-
tree minimizing the cumulative error. So, the player tries to fall back on another most
promising move of the entire tree.

Although SCNS — CNS with scef — explores good lines of play, the version we
have described so far is wasteful, as CNS tends to expand all siblings whenever a new
child is expanded. To avoid this, especially for unpromising children, we encode extra
information in the (dis)proof function when creating a leaf. If a move has high error
compared to its best sibling, then to increase the minimax value of this move by this
error will likely require many expansions. So, rather than initializing (dis)proof func-
tions via a two-step staircase function (1), we use a multi-step staircase function, with
the number of steps logarithmic in the difference between current and minimax values.
Hence

pn(v) =

{

0 if v ≤ x

i if iδ < 2(v−x) ≤ (i+ 1)δ
dn(v) =

{

0 if v ≥ x

i if iδ < 2(x−v) ≤ (i+ 1)δ

(7)
x = M INIMAX (n), i is a positive integer andδ a positive rational. Using (7) to ini-
tialize non-terminal leafs, SCNS expands only siblings whose score diverges from that
of the best sibling by at mostδ. Depending on how values shift during search, other
(weaker) siblings might be expanded if the minimax value changes by more thanδ.
With this modification, SCNS’s search behaviour is now closer to that of the human-
like behaviour described above.

3.1 Gradual forgetting of an error

While cell energy is effective in scef as a move’s error estimate, it can assign a falsely
high error to a good move. If SCNS spends much work5 at such a move the initial error
estimate should be corrected. We gradually decrease error as follows,

e′(n → s) = e(n → s) ·max
(

1−
ws

Wmax
, 0
)

, (8)

wherews is work done ats, Wmax is a constant parameter measuring the amount of
work after which error should be zero, ande′(n → s) is the adjusted error estimate.

3.2 Adding RAVE statistics

One strength of MCTS Hex bots is their enhancement of move strength by the Rapid
Action Value Estimate, an all-moves-as-first statistic [8]. So we added RAVE to SCNS.
With each node we store a map from possible moves (cells) to the RAVE statistic,
which consists of two integers: RAVE wins and losses. Statistics are updated whenever
a terminal node is created by leaf expansion: for each node onthe path from root to the
node, we update RAVE values for each move played on the rest ofthe path.

Assume for the moven → s we have the RAVE win-loss statistic (wR, lR) of the
player to move. Denote the number of RAVE games asgR = wR + lR. We modify
move error:

e′(n → s) = (1− α) · e(n → s) + α ·Rimpacte
R(n → s), (9)

5 We measure work done at a node as the number of node expansions in the subtree rooted at
that node.

whereα indicates how quickly we shift into RAVE error

α =

√

gR(n → s)

3Rshift + gR(n → s)
, (10)

eR(n → s) is a move error computed by RAVE

eR(n → s) = erf−1

(

lR(n → s)− wR(n → s)

gR(n → s) + 1

)

, (11)

erf−1 is inverse error function, andRshift andRimpact are constant parameters which
indicate how quickly we shift to RAVE error and the impact of RAVE error respectively.

RAVE encourages (discourages) moves that are more often involved in winning
(losing) lines and gradually diminishes information from cell energy. SCNS often reaches
terminal nodes, so RAVE values accumulate quickly. RAVE canbe combined with grad-
ual error forgetting by applying (8) on top of (9).

3.3 Transposition table and depth-first implementation

PNS assumes (often incorrectly) that the complete tree can be stored in memory. The
DFPNS algorithm overcomes this restriction via a depth-first implementation and trans-
position table [18]. A DFPNS enhancement — the1+ε method — reduces the tendency
of the search to jump around the tree [21]. The resulting algorithm is stronger than PNS
and returns to the root only rarely [18,21].

We apply these three enhancements to CNS. Again, search rarely returns to the root,
so updates to the search interval[vmin, vmax] are infrequent. It may even happen that
search stays too long in one subtree, in which case we want to force the search back to
the root after a few expansions (so, small amount of work) in order to refine the interval.
A parameter for this is set according to the time-per-move setting.

3.4 Parallel SCNS

Our approach6 is to mimic the parallelization of DFPN [20]: use a quick thread assign-
ment that follows the natural CNS order, and halt thread execution once its task is redun-
dant. This is achieved by using virtual wins and losses, and temporarily halting thread
execution — returning the uncompleted portion of thread’s task to the thread pool —
once the thread has made MaxWorkPerJob recursive calls. So our parallel SCNS works
as follows. See [20] for more details.

1. Replace (dis)proof numbers by (dis)proof functions: each operation — leaf initial-
ization, node update, . . . — is now done via (dis)proof functions.

2. Whenever search visits the root, setvmax andvmin.
3. Navigate the search tree as in DFPNS, but with (dis)proof numberspn(vmax) and

dn(vmin) until search returns to the root.
4. Give each thread its own search interval, based on virtual(dis)proof functions.
6 Another approach is to dynamically partition the CNS tree and evaluate subproblems in paral-

lel. Lorenz achieved this for the restriction of CNS to 2 conpirators, i.e. effectively bounding
proof function numbers at 2 [14].

4 Experimental Results

Using parallel SCNS, we implemented the Hex bot DeepHex on the Benzene frame-
work [3]. Benzene includes virtual connection and cell energy computations, so as local
SCNS heuristic we used the energy drop at each cell as described in§1.

We used two bots as opponents: Wolve and MoHex, each also implemented on
Benzene. Wolve usesαβ Search with max-width pruning, with circuit resistance for
heuristic. MoHex — the strongest Hex bot since 2009 — uses MCTS with RAVE,
patterns, prior knowledge estimation, progressive bias, and CLOP tuning of parameters
[10]. Wolve and MoHex both compute virtual connections thatprune moves and solve
positions long before the game ends.

For openings, we used 36 relatively balanced single stone openings: a2 to k2, a10
to k10, b1 to j1, and b11 to j11.

We optimized parameters using CLOP (§4.1). Then we ran a knockout experiment
to show feature importance (§4.2). Next we ran a tournament to show how strength
increases with number of threads (§4.3). Finally, we ran a DeepHex vs. MoHex tourna-
ment at competition settings (§4.4).

4.1 Parameter optimization by CLOP

We optimized parameters using CLOP [6]. In the tuning process we played 30s games,
used MoHex as the reference opponent, and set the root-interlude (maximum number
of node expansions before search must return to the root) to 20. The final parameter
settings are based on30 000 games; CLOP already found good settings after20 000
games. DeepHex won 45% of these CLOP-tuning games. Final settings are shown in
Table 1.

parametervaluedescription
ε 0.41 ε tolerance
η 0.30 allowed relative error of numbers in proof function
δ 103 the end of the first step in leaf initialization

Pmax 3 proof threshold when settingvmax

Dmax 4 disproof threshold when settingvmin

δp 8 extending the search interval on max side
δd 7 extending the search interval on min side

Rshift 211 RAVE error shift factor
Rimpact 782 impact of RAVE error
Wmax 1824 error forgetting threshold

Table 1.Parameters tuned by CLOP for DeepHex.

The CLOP-tuned values hint at the effect of various parameters. δ measures the
urgency of sibling expansion;103 seems small, as moves become easily distinguish-
able with δ about300. Pmax andDmax are also small, so DeepHex prefers explor-
ing promising lines deeply before diverging; a hand-tuned version of DeepHex with

Pmax = Dmax = 1 was strong, so we expected that the CLOP-tuned values to be close
to 1; CLOP values 3,4 suggest that for DeepHex the best CNS behaviour is not far from
that of PNS. CLOP values show optional extension of the search interval byδp, δd is
practically useless, as values 8,7 have negligible effect on performance. Surprisingly,
RAVE impact is small. We guessed it would be important to incorporate the outcome
of terminal nodes quickly, but values 211,782 show this is better done slowly. A similar
conlusion holds for gradual error forgetting.

4.2 Knockout experiment

Here we measure feature importance and accuracy of CLOP tuning. We tested many
versions of DeepHex, each with either a feature off or a parameter slightly changed.
For each version we played 720 matches against MoHex (10 times for each opening) at
30s/move and then — to measure scaling — at 60s/move. See Table 2.

id version 30s 60s
(base)CLOP tuned 60.0 52.6

(a) 2-step (dis)proof function in leafs 20.3 23.1
(b) no1 + ε method (ε = 0) 57.5 50.6
(c) exact proof functions (η = 0) 56.1 48.9
(d) no gradual error forgetting 56.7 51.9
(e) no rave 51.9 57.5
(f) pure scef 52.4 55.6
(g) Pmax = Dmax = 1 52.1 52.5
(h) Pmax = Dmax = 1 andδp = δd = 50 59.4 51.5
(i) Pmax = Dmax = 5 56.0 53.9

Table 2.Knockout experiment results showing win percentage over MoHex by differ settings in
DeepHex. The DeepHex versions are: (base) all features, all parameters with CLOP settings, (a)
basic leaf initialization, (b)1 + ε method off, (c) exact proof functions (approximation off), (d)
gradual error forgetting off, (e) RAVE off, (f) gradual error forgetting and RAVE both off, (g)
smallest possible thresholds inducing smaller search interval, (h) as in (g) but extending search
interval to at least 100 on each side, (i) larger thresholds for setting the search interval.

As expected, at 30s/move the CLOP-tuned version is strongest. The most critical
feature is better leaf initialization via the multi-step proof function. RAVE is beneficial
at 30s/move but less so at 60s/move.

Our goal here was to use CLOP to find — within a relatively shortperiod of time
— a reasonable tuning for 30s/move. Given more time, to find a tuning that works well
over wide range of time settings, it would have been better touse randomly selected
time settings for CLOP instances. It would also be better to use more than one opponent
during CLOP tuning, but we are not aware of any other non-deterministic Hex bots that
are comparable in strength to MoHex.

4.3 Multi-threaded tournament

Here we show how program strength scales with number of threads. 13 bots competed:
1,2,4,8-thread DeepHex; 1,2,4,8-thread MoHex; 1,3,7-thread MoHex plus 1 thread for
solver; 1-thread Wolve; 1-thread Wolve plus 1 thread for solver. In each game each
bot had 30s/move. Each bot played each other bot two times on each opening, once as
black (1st-player) and once as white (2nd-player). So each bot played 864 of the 5616
tournament games.

1 2 4 8

100

150

200

250

300

148

276
284

105

161

224

262

168

188 189

number of threads

E
lo

MoHex+solver
MoHex

DeepHex

Fig. 2. Tournament results. Each point has error within 14 Elo, with 80% confidence. Reference
player is 1-thread Wolve, BayesElo score 0.

Figure 2 shows tournament results. Scores are BayesElo [5] with respect to refer-
ence player Wolve (win rate .31, score 0); Wolve and Wolve+solver (score 23) are not
shown. MoHex scales well up to the maximum 8 threads; this is perhaps not surprising,
as MCTS strength typically increases uniformly with numberof simulations and paral-
lelizes relatively easily. MoHex+solver scales well up to 4 threads, but is only slightly
stronger at 8 threads. The latter is perhaps because, with solver effectively taking over
end games, the difference in opening play between 3-thread MoHex and 7-thread Mo-
Hex is not enough to change many outcomes. DeepHex scales as well as MoHex up to 2
threads, but then more poorly. This drop in scaling efficiency is more pronounced than
a similar drop in scaling efficiency of parallel DFPN [20], perhaps due to overfitting
(i.e. with training settings only single-threaded, only 30s/move and training opponent
only MoHex), and perhaps because the parallelization method — prevent search tree
thread convergence via virtual wins and losses — works better in PNS than in CNS.
More work is needed to explore this behaviour.

4.4 DeepHex versus MoHex

Here we simulated a competition tournament on a 12-thread machine. MoHex used its
strongest settings: 1 thread for its DFPNS solver and 11 for MCTS. DeepHex does not
yet have game-length time control; in almost all games, eachbot knows the winner
before its 20th move, so we allowed DeepHex (30/20) m/move= 90 s/move.

We played a first tournament using DeepHex settings found by CLOP tuning. How-
ever,§4.2 results suggest that — as thinking time increases —Pmax andDmax should
increase and RAVE weight should decrease. So, we played a second tournament with
parameters as in Table 3.

parametervalue
Pmax 6
Dmax 8
δp 50
δd 50

Rshift 500
Rimpact 500

Table 3.Hand selected parameters for the second tournament.

Each tournament had 9 rounds. In each round, each bot played 72 games, i.e. 2
games per opening — once as black (1st-player), once as white(2nd-player) — for a
total of 648 games. DeepHex had a .448 (.457) win rate in the first (second) tournament.
So perhaps CLOP tuning is most effective with shorter time limits or as a starting point;
for longer time limits or more than one thread hand tuning, especially for parameters
such as search interval or RAVE weight, might be more effective.

Under tournament conditions MoHex seems stronger in early play but DeepHex
sees further in complicated positions. Figure 4.4 shows a typical game, where MoHex
pushes DeepHex into a losing position before DeepHex escapes.

In the first tournament the average game length for a MoHex (DeepHex) win is 48.6
(61.2) moves, while in the second it is slightly longer 49.6 (62.1). MoHex wins almost
all short games, DeepHex wins almost all long ones. See Table4. MoHex seems strate-
gically stronger, often — perhaps because it is ahead — making simplifying moves.
DeepHex seems tactically further-sighted, often — perhapsbecause it is behind —
making complicated moves. A research challenge is to mix these two behaviours.

length26-4041-5051-6061-7071-8081-95
1st tournament win rate.04 .20 .52 .73 .83 1.00

2nd tournament win rate.03 .21 .46 .75 .89 .89

Table 4.DeepHex win rate by game length.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1

2

3

4

5

6

7

89

10

11

12

1314 15

16

17

18

19

20

21

22 23

24

25

26

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

2728

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50 51

5253

5455

56 57

58

59

60

61

62

63 64

65

66

67

68

69

70 71

Fig. 3. DeepHex (Black) escapes against MoHex. After 26.j5 DeepHex seesits loss with PV i6
h6 i5 i10 i9 h10 h9 g10 g9 f10 g8 h2 k1 e9 c9 d8 a8 d7 d9 e8 c7 d6 a7 b5. ButMoHex sees
neither this nor its win after 28.h6 and blunders with 30.h11 instead of i10. After 60s of search
DeepHex sees a win 31.h10 with PV g11 g10 f11 f10 e11 e10 d11 d10 c11b10 c10 c7 d9 b7 f8
b6 d3 d4 d1 b9 f2 f3 g2 g3 c8 b8 h2 b2 b3 a3 b5 c4 b4 c3. With 34.f11 the MoHex search threads
score .62 before the solver thread finds the loss.

5 Conclusions and further research

We showed the strength of Sibling Conspiracy Number Search features by competing
our SCNS Hex bot with MCTS bot MoHex andαβ bot Wolve. By far the most critical
feature is to initialize leaf (dis)proof functions via a multi-step — rather than 2-step—
staircase function. Also, we showed a parallel version of SCNS. Our parallel SCNS Hex
bot scales well — as well as MoHex — with 2 threads, but less efficiently with 4 or 8
threads. An open problem is to parallelize SCNS more effectively.

Acknowledgements

We thank the referees for their helpful comments, includingthe suggestion of a second
tournament with hand-tuned parameters.

References

1. L. Victor Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
University of Limburg, Maastricht, Netherlands, 1994.

2. Vadim V. Anshelevich. A hierarchical approach to computer Hex.Artificial Intelligence,
134(1–2):101–120, 2002.

3. Broderick Arneson, Philip Henderson, and Ryan B. Hayward. Benzene, 2009.http://
benzene.sourceforge.net/ .

4. Dennis M. Breuker.Memory versus Search in Games. PhD thesis, Maastricht University,
Maastricht, Netherlands, 1998.

5. Rémi Coulom. Bayesian elo rating, 2010.http://remi.coulom.free.fr/
Bayesian-Elo .

6. Rémi Coulom. CLOP: Confident local optimization for noisy black-box parameter tuning.
In Advances in Computer Games, Springer LNCS 7168, pages 146–157, 2011.

http://benzene.sourceforge.net/
http://benzene.sourceforge.net/
http://remi.coulom.free.fr/Bayesian-Elo
http://remi.coulom.free.fr/Bayesian-Elo

7. Martin Gardner.The 2nd Scientific American Book of Mathematical Puzzles and Diversions,
chapter 7, pages 78–88. Simon and Schuster, New York, 1961.

8. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In 24th
ACM ICML, pages 273–280, 2007.

9. Philip Henderson. Playing and solving Hex. PhD thesis, UAlberta, 2010.http://
webdocs.cs.ualberta.ca/ ˜ hayward/theses/ph.pdf .

10. Shih-Chieh Huang, Broderick Arneson, Ryan B. Hayward, MartinMüller, and Jakub
Pawlewicz. Mohex 2.0: A pattern-based mcts hex player. InComputers and Games, Springer
LNCS 8427, pages 60–71. 2014.

11. Hiroyuki Iida, Makoto Sakuta, and Jeff Rollason. Computer shogi.Artif. Intell., 134(1-
2):121–144, 2002.

12. Akihiro Kishimoto, Mark Winands, Martin M̈uller, and Jahn-Takeshi Saito. Game-tree
searching with proof numbers: the first twenty years.ICGA Journal, 35(3):131–156, Sept
2012.

13. Norbert Klingbeil and Jonathan Schaeffer. Empirical results with conspiracy numbers.Com-
putational Intelligence, 6:1–11, 1990.

14. Ulf Lorenz. Parallel controlled conspiracy number search. InEuro-Par 2002, Springer LNCS
2400, pages 420–430. 2002.

15. Ulf Lorenz, Valentin Rottmann, Rainer Feldman, and Peter Mysliwietz. Controlled conspir-
acy number search.ICCA Journal, 18(3):135–147, 1995.

16. David McAllester. Conspiracy numbers for min-max search.Artif. Intell., 35(3):287–310,
1988.

17. David McAllester and Denize Yuret. Alpha-beta conspiracy search.ICGA, 25(1):16–35,
2002.

18. A. Nagai.Df-pn Algorithm for Searching AND/OR Trees and Its Applications. Ph.d. thesis,
Dept. Info. Science, University Tokyo, Tokyo, Japan, 2002.

19. Jakub Pawlewicz and Ryan Hayward. Sibling conspiracy number search. InSoCS 2015: The
8th Annual Symposium on Combinatorial Search, 2015.

20. Jakub Pawlewicz and Ryan B. Hayward. Scalable parallel dfpn search. In Computer and
Games, Springer LNCS 8427, pages 138–150, 2013.

21. Jakub Pawlewicz and Lukasz Lew. Improving depth-first pn-search: 1+ε trick. In Computers
and Games 2006, Springer LNCS 4630, pages 160–170. 2007.

22. Jahn-Takeshi Saito, Guillaume Chaslot, JosW.H.M. Uiterwijk, and H.Jaap van den Herik.
Monte-carlo proof-number search for computer go. InComputers and Games, Springer
LNCS 4630, pages 50–61. 2007.

23. Jonathan Schaeffer. Conspiracy numbers.Artificial Intelligence, 43(1):67–84, 1990.
24. Maaretn van der Meulen. Parallel conspiracy-number search. Master’s thesis, Vrije Univer-

siteit Amsterdam, the Netherlands, 1988.
25. Mark Winands.Informed Search in Complex Games. PhD thesis, Universiteit Maastricht,

Maastricht, Netherlands, 2004.
26. Mark Winands and Maarten Schadd. Evaluation-function based proof-number search. In

Computers and Games 2010, Springer LNCS 6515, pages 23–35. 2011.

http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
http://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf

	Feature Strength and Parallelization of Sibling Conspiracy Number Search

