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Abstract

For some two-player games (e.g. Go), no accurate and inex-
pensive heuristic is known for evaluating leaves of a search
tree. For other games (e.g. chess), a heuristic is known (sum
of piece values). For other games (e.g. Hex), only a local
heuristic — one that compares children reliably, but non-
siblings poorly — is known (cell voltage drop in the Shan-
non/Anshelevich electric circuit model). In this paper we in-
troduce a search algorithm for a two-player perfect informa-
tion game with a reasonable local heuristic.
Sibling Conspiracy Number Search (SCNS) is an anytime
best-first version of Conspiracy Number Search based not on
evaluation of leaf states of the search tree, but — for each
node — on relative evaluation scores of all children of that
node. SCNS refines CNS search value intervals, converging
to Proof Number Search. SCNS is a good framework for a
game player.
We tested SCNS in the domain of Hex, with promising re-
sults. We implemented an 11-by-11 SCNS Hex bot, Deep-
Hex. We competed DeepHex against current Hex bot cham-
pion MoHex, a Monte-Carlo Tree Search player, and previ-
ous Hex bot champion Wolve, an Alpha-Beta Search player.
DeepHex widely outperforms Wolve at all time levels, and
narrowly outperforms MoHex once time reaches 4min/move.

1 Introduction
Consider a 2-player perfect information game with no
known global heuristic, but with a reasonable local heuris-
tic evaluation (good at relative scoring of children of a node,
but bad at comparing non-sibling nodes). Suppose you want
to build a bot for this game. What algorithm would you use?

The usual algorithms have drawbacks for a game with
only a local heuristic. αβ Search (Knuth and Moore
1975) needs a globally reliable heuristic. Monte-Carlo Tree
Search1 (Coulom 2007; Browne 2012), which uses random
simulations, needs no heuristic but can be slow to converge.
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1MCTS is a non-uniform best-first search that uses random sim-
ulations to evaluate leaves. Strong moves are exploited; weak
moves are explored only if a visit threshold — based on an ex-
ploitation/exploration formula such as Upper Confidence Bound
(Kocsis and Szepesvári 2006) — is crossed.

Proof-Number Search2 (Allis, van der Meulen, and van den
Herik 1994) performs well as a solver, particularly on search
trees with non-uniform branching, but can be weak as a
player, especially early in games with search trees with al-
most uniform branching.

In this paper we introduce Sibling Conspiracy Number
Search, an algorithm for a two-player perfect information
game with a reasonable local heuristic. SCNS is based on
Conspiracy-Number Search (McAllester 1985; 1988), a gen-
eralization of PNS — where search tree has leaf scores only
±1 — obtained by allowing leaf scores to have multiple pos-
sible values, e.g. any floating point value in the range from
−1 to 1. For a node in a search tree and a target minimax
value, the conspiracy number is the minumum number of
leaves whose evaluations must change in order for the node’s
minimax score to reach the target. CNS expands leaves in an
order based on conspiracy numbers. SCNS combines fea-
tures of MCTS (anytime, best-first) and PNS (strong tacti-
cally, approaching perfect play near the end of a game).

Hex has a reliable local heuristic3, so we pick 11×11 Hex
as our test domain. We ran DeepHex, our SCNS Hex bot,
against an MCTS player (current champion MoHex) and
an αβ player (previous champion Wolve) (Arneson, Hay-
ward, and Henderson 2009; Hayward 2013). DeepHex out-
performs Wolve at all time levels, and outperforms MoHex
once time reaches 4min/move.

Note that many other games — e.g. Go — have evalua-
tion functions that are weighted combinations of a variety of
features, most of which are local. So SCNS might work in
those domains as well.

2 Conspiracy Number Search
In 2-player game search, CNS has shown promise in chess
(van der Meulen 1988; Schaeffer 1990; Klingbeil and Scha-

2PNS is used in and/or trees (i.e. each leaf has minimax value
±1) and is guided by proof and disproof numbers (for each node,
the smallest number of descendant leaves that need be 1, resp. −1,
for the node to have value 1, resp. -1).

3Shannon built an analogue circuit to play the connection game
Bridg-it, with moves scored by voltage drop (Gardner 1961).
Adding links between virtual connected cells (Anshelevich 2002)
improves the heuristic, which although erratic between non-sibling
states is reliable among siblings (Henderson 2010). So we use this
heuristic for our Hex SCNS bot.
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effer 1990; Lorenz et al. 1995; Lorenz 2002; McAllester and
Yuret 2002) and shogi (Iida, Sakuta, and Rollason 2002).
CNS can be viewed as a generalization of PNS, which is
how we will describe our implementation.

2.1 Proof Number Search
Definition 1. Each node n has a proof number (pn) pn and
disproof number (dn) dn. A node’s (dis)proof number is the
smallest number of descendant leaves that, if all true (false),
would make the node true (false).
Fact 1. If a node n is a leaf then

pn = 1 dn = 1 if n is non-terminal
pn = 0 dn = +∞ if n is true
pn = +∞ dn = 0 if n is false,

(1)

otherwise

pn = min
s∈child(n)

ps, dn =
∑

s∈child(n)

ds if n is or-node

pn =
∑

s∈child(n)

ps, dn = min
s∈child(n)

ds if n is and-node.

(2)
Definition 2. A most proving node (mpn) is a leaf whose
disproof reduces the root’s disproof number, and whose
proof reduces the the root’s proof number.

PNS iteratively selects a most-proving leaf and expands
it. See Algorithms 1 and 2.

Algorithm 1 Proof number search
1: function PNS(root)
2: while not root solved do
3: n← SELECTMPN(root)
4: Expand n and initiate new children by (1)
5: Update nodes along path to the root using (2)

Algorithm 2 Proof number search — Selection of mpn
1: function SELECTMPN(n)
2: if n is leaf then
3: return n
4: else if n is or-node then
5: return SELECTMPN( argmin

s∈children(n)
ps)

6: else . n is and-node
7: return SELECTMPN( argmin

s∈children(n)
ds)

2.2 Minimax value
PNS is used in two-player zero-sum games. One player is
us, the other is them or opponent. Value true (false) is a win
for us (them). We (they) move at an or-node (and-node).

PNS is hard to guide with an evaluation function, as leaves
have only two possible values (Allis 1994; Breuker 1998;
Nagai 2002; Winands 2004; Saito et al. 2007; Winands and

Schadd 2011; Kishimoto et al. 2012). One can extend PNS
by allowing a leaf to have any rational value, with +(−)∞
for win(loss). If a leaf is terminal, its value is the actual game
value; if not terminal, its value can be assigned heuristically.
Internal node values are computed by minimax. We (they)
want to maximize (minimize) value. A node from which we
(they) move is a max-node (min-node). Value is computed
in minimax fashion as follows, where EVAL(n) is given by a
heuristic (actual) value if n is non-terminal (terminal) (Korf
and Chickering 1996):

MINIMAX(n) =
EVAL(n) if n is leaf,

max
s∈children(n)

MINIMAX(s) if n is max-node

min
s∈children(n)

MINIMAX(s) if n is min-node.
(3)

2.3 Replacing numbers by functions
PNS is computed using the two final values (true/false) and a
temporary value (unknown) assigned to non-terminal leaves.
The (dis)proof number measures how difficult it is to change
from unknown to true (false). Rather than numbers, we in-
troduce functions to represent the extended set of values de-
noted by V = {−∞} ∪ R ∪ {+∞}. N is the non-negative
integers.
Definition 3. A proof function pn : V 7→ N and disproof
function dn : V 7→ N are functions such that, for v ∈ V,
• pn(v) is the minimum number of leaves in subtree at n

that must change value so that MINIMAX(n) ≥ v
• dn(v) is the minimum number of leaves in subtree at n

that must change value so that MINIMAX(n) ≤ v.
Rather than storing (dis)proof numbers at each node, we

store (dis)proof functions, computed recursively.
Fact 2. If n is a leaf and x = EVAL(n) then

pn(v) =


0 if v ≤ x
1 if v > x and n is non-terminal
+∞ if v > x and n is terminal,

dn(v) =


0 if v ≥ x
1 if v < x and n is non-terminal
+∞ if v < x and n is terminal,

(4)

otherwise, for every v ∈ V,

pn(v) = min
s∈children(n)

ps(v),

dn(v) =
∑

s∈children(n)

ds(v)

 if n is max-node

pn(v) =
∑

s∈children(n)

ps(v),

dn(v) = min
s∈children(n)

ds(v)

 if n is min-node.

(5)

Using Fact 2, (dis)proof functions can be propagated up
from leaves. The set of possible game values is usually fi-
nite, so a simple way to store function f is as an array of
possible results f(v) for each value v.
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2.4 Proof and disproof function properties
Fact 3. For each node n

(i) pn is a non-decreasing staircase function, and
dn is a non-increasing staircase function.

(ii) MINIMAX(n) is the meet point of pn and dn, i.e.:

pn(v) = 0, dn(v) > 0 for v < MINIMAX(n),

pn(v) = 0, dn(v) = 0 for v = MINIMAX(n),

pn(v) > 0, dn(v) = 0 for v > MINIMAX(n).

See Figure 1. Following McAllester, the conspiracy num-
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Figure 1: Each proof function pn (solid segments) and dis-
proof function dn (dashed segments) is monotonic staircase.
Each black dot belongs to its segment (i.e. closed endpoint),
each white dot does not (i.e. open endpoint). The intersec-
tion of pn and dn is the single point (MINIMAX(n), 0).

ber CNn(v) = pn(v) + dn(v) is the smallest number of
leaves (called conspirators) whose values must change for
the minimax value of n to reach v. CNn(v) = 0 iff
v = MINIMAX(n).

2.5 Node expansion
Our implementation of CNS follows the outline of PNS (Al-
gorithm 1): iteratively select and expand a mpn and then
update (dis)proof functions on the path to the root. So we
define a CNS mpn.

Let vroot = MINIMAX(root). Choose target values vmax

for Max (the max player) and vmin for Min so that vmin <
vroot < vmax. We call [vmin, vmax] the search value interval,
or search interval.4 We discuss ways to choose vmax and
vmin in §2.6. For fixed vmax and vmin, we say that Max
(Min) wins if value vmax (vmin) is reached. To find a mpn we
use SELECTMPN(root), with pn pn(vmax) and dn dn(vmin)
for every node n. Algorithm 3 is our implementation, which
differs from that of McAllester: we alter both sides of the
search interval at once.

2.6 Choosing the search interval
Let vroot = MINIMAX(root) denote the minimax value of the
root. A standard way to set the search interval is to set vmax

and vmin close enough to vroot so that the number of leaf

4This is the current likely range of final minimax value of the
root. This is analogous to the aspiration window of αβ search.

Algorithm 3 Conspiracy number search
1: function CNS(root)
2: while not reached time limit do
3: SETINTERVAL . Set vmax and vmin

4: n← SELECTMPN(root)
5: Expand n and initiate new children by (4)
6: Update nodes along path to the root using (5)
7: function SELECTMPN(n)
8: if n is leaf then
9: return n

10: else if n is max-node then
11: return SELECTMPN( argmin

s∈children(n)
ps(vmax))

12: else . n is min-node
13: return SELECTMPN( argmin

s∈children(n)
ds(vmin))

expansions required to reach vmax or vmin is within some
threshold, i.e.

vmax = max
v∈V
{v : proot(v) ≤ Pmax}

vmin = min
v∈V
{v : droot(v) ≤ Dmax},

(6)

where thresholds Pmax and Dmax are (possibly equal) con-
stants. Search proceeds until either vmax − vmin ≤ ∆,
where ∆ is an acceptable error tolerance (McAllester 1988;
Klingbeil and Schaeffer 1990), or a time limit is reached.

2.7 Choosing the best move
To use CNS as a player, we run the search until error toler-
ance is reached or time runs out and then pick the best move.
But which move is best? In MCTS, there are two usual can-
didates for move selection: 1) the move with the best win
rate, or 2) the move on which most time — leaf expansions
in its subtree — has been spent. Depending on the MCTS
domain, either criterion can be preferred. Here, we cannot
use 1), since there is no known good heuristic.5 So we have
2) or 3): some form of minimax search. We experimented
with forms of 3), including that of (Lorenz 2002), but all
performed much worse than 2).

One problem with 2) is when the effective search depth
is insufficient to reveal the strength of the best move. Here
CNS can choose a move before adequately exploring others.
We remedy this problem in SCNS (§3).

2.8 Efficient storage of proof function
If the granularity of an evaluation function is high then an
array indexed by all possible function values takes much
space. One fix is to bucket function values, but this worked
poorly for us. Instead, we exploit the staircase nature of the
(dis)proof functions, storing only the stair steps. Each step is
represented by a number pair: a rational — step width (min-
imax value range), and an integer — step height (conspiracy
number range). To store a leaf’s proof function leaf we need

5Experiments showed the circuit resistance heuristic to be
weak.
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only one pair. The size (in steps) of an internal node’s proof
function is at most the sum of the sizes of its children’s proof
functions. So proof functions for nodes near the tree bottom
are small, and total proof function storage is proportional to
tree size.

We implement CNS in depth-first fashion6 using recur-
sion and a transposition table, so over time unimportant
states are dropped from memory and most remaining nodes
have multi-step proof functions. So we need to further re-
duce proof function storage.

For proof function f with |f(v1)− f(v2)| small, merging
the steps for v1 and v2 has little impact on performance. So
we approximate step height:

Definition 4. The upper bound approximation f̂ of f with
parameter η ∈ (0, 1) is defined as

f̂(v) = max
v′∈V
{f(v′) : f(v)(1 + η) ≥ f(v′)}. (7)

f̂ approximates f via a sequence of steps, each differing
slightly from its successor. E.g. for η = 0.01, steps of height
100 and 101 are merged as a step of height 101. This intro-
duces little error, especially for games with transpositions:
in such games, the true game DAG is often approximated by
a game tree, so high proof numbers are already less accurate
than low ones. So it is often not necessary to distinguish
between large but close proof numbers.

Lemma 1. For two consecutive steps of f̂ with heights p1 <
p2, p1(1 + η) < p2.

Theorem 1. The number of steps of f̂ is at most O(log p),
where p is the maximum proof number, i.e. p = f(+∞).

Proof. For any base b, the number of steps is at most

log1+η p =
logb p

logb(1 + η)
≈ 1

η
logb p = O(log p).

This approximation works well with η as large as .25: e.g.,
if proof numbers oscillate around 1000, the number of steps
is then (at most) around 25.

3 Sibling CNS
Here we describe how we convert a local heuristic — one
that reliably scores relative strengths of siblings — into a
global heuristic useful for our CNS player.
Definition 5. Let n be a node. For every child s of n, let
E(n → s) be the score — positive and rational — of the
move from n to s. Let s0 be the best child score, i.e.

s0 = argmax
s∈children(n)

E(n→ s). (8)

Define the relative error e(n→ s) of s as

e(n→ s) = log
E(n→ s0)

E(n→ s)
. (9)

6Our CNS implementation is similar to that of DFPNS, a depth-
first version of PNS (Nagai 2002; Pawlewicz and Lew 2007).

So e(n→ s) = 0 if s is as strong as the best move, otherwise
e(n→ s) > 0. This relative error measures divergence from
optimal play. Now we have our evaluation function.
Definition 6. Let n be the game tree node found by descend-
ing from the root by the path

root = p0 → p1 → · · · → pk = n. (10)

Also, let

σ(pi) =

{
−1 if we are to move in pi
1 if the opponent is to move in pi.

(11)

Then the evaluation of a non-terminal node n is defined as

EVAL(n) =
k∑
i=1

σ(pi−1) · e(pi−1 → pi) (12)

We call this siblings comparison evaluation function
(SCEF).

Consider SCEF when applied to CNS with a small search
interval. Set Pmax = Dmax = 1 and use (6) to set the
search interval (vmin, vmax). Then CNS works as follows.
First, CNS follows the path, say π0, from root to a terminal
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Figure 2: The first few steps of SCNS.

state via moves with error zero (best possible). Along the
way, it expands all siblings of nodes on π0. Assume that
the terminal node, say α, wins for us. Then CNS searches
for a child c0 of an opponent node from π0 with smallest
possible error e0, and the search branches from c0. From
c0 it follows a path π1 using moves with error zero until it
reaches a terminal node; again siblings of all encountered
nodes are expanded. Now assume that this terminal node,
say β, is a loss for us. Then CNS tries to diverge from the
current terminal path, either before c0 on π0, or at or after
c0 on π1. CNS tries to find a child of one of our nodes with
the smallest error e1 or, if this is on π1, with smallest error
e1 − e0. See Figure 2.

Generally, CNS constructs paths to terminal nodes, and
then branches so that the player for whom the terminal node
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was losing tries to find another response in a subtree mini-
mizing the cumulative error. So, the player tries to fall back
on another most promising move of the entire tree.

This behaviour seems close to that of humans, who often
follow the best line until finding it bad for one player, at
which point they seek a deviation helping that player.

So CNS with SCEF is SCNS — Sibling Conspiracy Num-
ber Search. Experiments show that SCNS works well. It of-
ten explores deep lines of play, dealing well with long forc-
ing sequences (ladders), while still widening the game tree
by the most promising moves.

3.1 Example
Here we illustrate an example run of SCNS. We assume that
each terminal node evalutes either as −∞ (loss) or +∞
(win). Each non-terminal leaf is evaluated by SCEF. We
introduce a compact notation for (dis)proof functions.

Definition 7. Let n be a non-terminal node and let
k, l be non-negative integers. An increasing sequence
〈v−k · · · v−1 v0 v1 · · · vl〉, where element v0 is marked, rep-
resents a pair of functions pn and dn such that

dn(v) =

{
0 for v ∈ [v0,+∞),

i+ 1 for 0 ≤ i ≤ k + 1 and v ∈ [v−i−1, v−i),

pn(v) =

{
0 for v ∈ (−∞, v0],

i+ 1 for 0 ≤ i ≤ l + 1 and v ∈ (vi, vi+1],
(13)

where we assume that v−k−1 = −∞ and vl+1 = +∞. Thus
v0 = MINIMAX(n). If the desired minimax value we hope
to achieve by search is at most v0, we need expand no leaves;
if it is greater than v0 we must expand at least one leaf. Start-
ing from v1 we need to expand at least two leaves, and so
on. For the opponent we read the sequence similarly start-
ing from v0, but in the opposite direction.

For each tree leaf n, we have k = l = 0. E.g., if a leaf
n has value 5, then pn and dn are each represented by 〈5〉.
Terminal leaves can evaluate only to −∞ and +∞, so we
overload the meaning of 〈−∞〉 and 〈+∞〉:
Definition 8. By 〈−∞〉 (〈+∞〉) we denote a pair of func-
tions pn and dn for losing (winning) state n.

Now we can start our example.

Initialization. We expand the root node r, revealing chil-
dren a and b as in Figure 3. Edge labels denote relative move
error, so e(r → a) = 0 and e(r → b) = 1. (Dis)proof func-
tions are shown beside the corresponding node. A square
(circle) is a state where we (the opponent) are to move.

The SCEF evaluation of b is −1, since on the path from
the root SCEF alternately multiplies move errors by −1 and
1 depending on whether the error is ours or the opponent’s.

Iteration 1. We find the search interval by (6) with
Pmax = Dmax = 1: vmax = +∞, vmin = −1. We de-
scend from the root to a mpn. We compare values of proof
functions at vmax for all children of the root: pa(+∞) =

r

a

0

b

1
〈−1 0〉

〈0〉 〈−1〉

Figure 3: Initial tree.
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Figure 4: After iteration 1.

pb(+∞) = 1. These values are equal, so we can choose ei-
ther node. We select a, since it has the smaller relative move
error. Node a is a leaf so it is a mpn. The path from the root
to this leaf is marked by thick edges in Figure 3.

We expand a and update (dis)proof functions along the
path to the root, yielding the tree in Figure 4. Leaves d and
e each have positive SCEF score, as each is reached with no
player relative error plus positive opponent relative error.

Iteration 2. The search interval (vmin, vmax) is again
(−1,+∞). Now pa(+∞) = 3 > pb(+∞) = 1 so we
descend to b, and it is a mpn. We expand b and update
(dis)proof functions, yielding the tree in Figure 5.
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1
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〈0 3 4〉 〈−1 1〉

〈0〉 〈3〉 〈4〉 〈−1〉 〈1〉

Figure 5: After iteration 2.

r

a

c

h

0

i

3

0

d

3

e

4

0

b

f

0

g

2

1
〈−1 0 3〉

〈0 3 4〉 〈−1 1〉

〈−3 0〉
〈3〉 〈4〉 〈−1〉 〈1〉

〈0〉 〈−3〉

Figure 6: After iteration 3.

Iteration 3. Now (vmin, vmax) = (−1, 3), and pa(3) =
1 < pb(3) = 2, so we select a. For a’s children we apply
disproof functions at vmin: dc(−1) = dd(−1) = de(−1) =
1. We select c, the child with the smallest relative move er-
ror. We expand it and update (dis)proof functions, resulting
in the tree shown in Figure 6.

Iteration 4. The (dis)proof functions of r and a did not
change, so we have the same search interval as in iteration
3, and we first select a. For a’s children we again have
dc(−1) = dd(−1) = de(−1) = 1, so we select c, and from
c we select h and expand. Assume that h has only one child
j, and that j loses. This triggers updates of all functions
along path to the root, shown in Figure 7.

Iteration 5. Until now SCNS has explored the best line of
play, and also some siblings. But after reaching this losing
state SCNS must now diverge and find for us a best response.
The new search interval is (−3, 3). We still have pa(3) =
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Figure 7: After iteration 4.
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Figure 8: After iteration 5.

1 < pb(3) = 2, and dc(−3) = 1, so we select i and expand.
See Figure 8.

In the next iteration vmax = 1 and pa(1) = 2 > pb(1) =
1, so the search will switch to branch b and develop another
line of play. We could set Pmax and Dmax to values greater
than 1, which would broaden the search and develop further
lines of play, possibly strengthening performance.

3.2 SCEF and minimax
To better understand SCEF, consider how minimax search
would behave using SCEF to evaluate leaf nodes. Consider a
minimax search that fails to reach any terminal position, e.g.
any search early in the game. Consider the principle vari-
ation, i.e. the path that starts at the root and follows moves
with relative error 0. If one player deviates from the prin-
ciple variation by a move with positive relative error, then
from that point the opponent can always follow moves with
relative error 0, giving the player a negative score. So for
this search, the minimax value is 0 and a best move is any
root move with relative error 0.

So it might not be useful to use SCEF inside any variation
of minimax, e.g. αβ search, as this would result in simply
picking depth-0 best moves until perhaps the middle of the
game, by which point any reasonable opponent would pre-
sumably have a crushing advantage.

3.3 Avoiding unpromising sibling expansion
Although SCNS explores good lines of play, the version we
have described so far is wasteful, as it expands all siblings
whenever a new child is expanded. Let us explain why. In
Algorithm 3, when function SELECTMPN arrives at a max-
node n whose children are all leaves, then pn(vmax) = 1
and the same holds for all n’s children. This is because
leaf (dis)proof functions are initialized by (4). See Figure
9. Now SELECTMPN can call any child. The best option
is to call the child with smallest move error. Here s1 is best
if error e1 = 0. Now, even if s1 is expanded, pn(vmax)
will not change because of the other children, so remains
1. Thus the next leaf to be expanded will be one of n’s re-
maining children. Notice that at this moment SCNS does
not distinguish among children si, i = 1, 2, 3, even if their
evaluations EVAL(si) vary. This is a drawback of CNS in
general.

root

[vmin, vmax]

n pn(vmax) = 1

SELECTMPN

ps1(vmax) = 1 ps2(vmax) = 1 ps3(vmax) = 1
s1 s2 s3

e1 = 0
e2

e3

Figure 9: Illustration of the effect of siblings expansion.

To avoid this unnecessary expansion, especially for un-
promising children with relatively high move error, we en-
code extra information in the (dis)proof function when cre-
ating a leaf. If a move has high error compared to its best
sibling, then to increase the minimax value of this move by
this error will likely require many expansions. So, rather
than initializing (dis)proof functions in two steps (4), we
use a more complicated initialization process whose num-
ber of steps is logarithmic in the difference of a value from
the minimax value. Hence

pn(v) =

{
0 if v ≤ x
i if iδ < 2(v−x) ≤ (i+ 1)δ

dn(v) =

{
0 if v ≥ x
i if iδ < 2(x−v) ≤ (i+ 1)δ

(14)

where x = MINIMAX(v), i is a positive integer and δ a pos-
itive rational. See Figure 10. Using (14) to initialize non-
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Figure 10: Proof function pn for leaf.

terminal leafs, SCNS expands only siblings whose score di-
verges from that of the best sibling by at most δ. Depending
on how values shift during search, other (weaker) siblings
might be expanded if the minimax value changes by more
than δ. With this modification, SCNS’s search behaviour
is now closer to that of the human-like behaviour described
above.
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4 Experimental Results
Using SCNS with the Shannon/Anshelevich local heuristic
(energy drop at each cell) described in §1, we implemented
a Hex bot DeepHex on the open-source Benzene framework
(Arneson, Henderson, and Hayward 2009).

We used two bots as opponents: Wolve and MoHex, each
also implemented on Benzene. Wolve uses αβ Search, using
circuit resistance (with pruning to improve performance) as
evaluation function. MoHex — the strongest Hex bot since
2009 — uses MCTS with RAVE, patterns, prior knowledge
estimation, progressive bias, and CLOP tuning of parame-
ters (Huang et al. 2014). Both Wolve and MoHex also com-
pute virtual connections that prune moves and help solve po-
sitions long before the game ends.

To compare the strength of these three bots, we ran a
round-robin tournament. We used 36 relatively balanced 1-
move openings: a2 to k2, a10 to k10, b1 to j1, and b11 to
j11. For each bot, we ran 5 versions, one each with time
limit 30s, 1m, 2m, 4m, and 8m per move. Thus there were
15 bot competitors in the tournament. Each version played
each other version two times on each opening, once as black
(1st-player) and once as white (2nd-player). So each version
played 1008 of the 7560 tournament games. The results are
scored by BayesElo (Coulom 2010) in Figure 11.
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Figure 11: Tournament results. Each point has error within
14 Elo, with 80% confidence.

Overall, DeepHex is similar in strength to MoHex. With
short time per move, DeepHex is weaker. But this strength
gap decreases with time, with DeepHex 12 Elo ahead at
4m/move (although error is up to 14 Elo with 80% confi-
dence) and 20 Elo ahead at 8m/move. This perhaps shows
SCNS adapting more quickly than MCTS to new lines of
play. Also, MoHex use its knowledge computations (virtual
connections) to shape the growth of its tree, while SCNS
does not. Without this optimization MoHex’s strength de-
teriorates more quickly (Arneson, Hayward, and Henderson
2010).

Figure 12 shows an 8m/move win of DeepHex over Mo-

Hex. MoHex — with steady early play — reaches a winning
position. But DeepHex recognizes the situation before Mo-
Hex, and quickly takes advantage once MoHex blunders.
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Figure 12: An 8min/move DeepHex (Black) win over Mo-
Hex. With 26.i4 MoHex has winrate .51 and PV a10 g3 g4
f4 a8 c7 d5 d4 a6 a5 b5 c5 e4 f2 i3 i2 j3 a11 f5 h3 h4 h9 g9
d10 e9 e10. With 27.a10 DeepHex finds a loss – unproven
due to pruning – with PV f4 h4 h5 g4 f5 b8 d5 a6 a5 b5 a11
b10 b11 c10 c11 d10 c3 b4 b2 i3 j3 e4 e5 c2 b3. But MoHex
blunders with 28.g3: winrate is .52 but DeepHex sees a huge
advantage. With 33.c6 DeepHex finds a proven win, PV d1
d4 e3 d2 e10 b11 c2 d3 e1 e2 f1 f2 g1 g2 h1 h2 i1 b2 b3 a3
b4 a5 b6 b5 c5 c4 d5 f5. By 38.c11 MoHex finds a proven
loss.

5 Conclusions and further research
We introduce Sibling Conspiracy Number Search, a version
of Conspiracy Number Search designed to work with a local
heuristic (i.e. one that reliably estimates move strength when
compared to its siblings).

We implemented SCNS in Hex, creating the bot Deep-
Hex, which we compared to the champion bot MoHex, an
MCTS player, and previous champion Wolve, an αβ player.
DeepHex outperforms Wolve at all time levels, and outper-
forms MoHex once time reaches 4min/move.

Directions for future work include testing SCNS in other
domains. We suspect that SCNS would work well in any
domain with a reliable local heuristic.
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