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Abstract

We present an algorithm that determines the outcome of an arbitrary Hex game-
state by finding a winning virtual connection for the winning player. Our algorithm
recursively searches the game-tree, combining fixed and dynamic game-state virtual
connection composition rules to find a winning virtual connection for one of the
two players. The search is enhanced by pruning the game-tree according to two
new Hex game-state reduction results: under certain conditions, (i) some moves
dominate others, and (ii) some board-cells can be “filled-in” without changing the
game’s outcome.

The algorithm is powerful enough to solve arbitrary 7x7 game-states. In partic-
ular, we use it to determine the outcome of a 7x7 Hex game after each of the 49
possible opening moves, in each case finding an explicit proof-tree for the winning
player.

Key words: Hex, virtual connection, pattern set, move ordering,
move domination, game-state reduction, fill-in

1 Introduction

Hex is the classic two-player board game invented by Piet Hein in 1942 and independently
by John Nash around 1948 [11,12,20]. The board consists of a rhombus-shaped nxn array
of hexagons, also called cells. Each player is assigned a set of stones and two opposing board

* This is a revised and expanded version of [17]. The support of NSERC is gratefully acknowledged.

Preprint submitted to Elsevier Science 25 April 2006



. o le o e @ o
2020 COa®—Or
s telelele ale-sJe%

0202002020, {0~ ~@=O=@a( )
020202020020 SRO2®=O = ==

g 0g8a8a0aE, RS T~0~05

0g g 8aE, S e
= 0@
O ) ) O <) )
Fig. 1. An empty 7x7 board ...and a finished game; Black wins.

sides, all with the same colour; say Black gets black stones and sides, while White gets white
stones and sides. Players alternately place a stone on an unoccupied cell. The first player to
form a path connecting his/her two sides with his/her stones wins the game. See Figure 1.
For more on Hex, see the text by Browne [8] or the survey by Hayward and Van Rijswijck
[14].

In Hex, an unrestricted opening allows the first player to gain a considerable advantage. In
particular, it is known that there exists a winning strategy for the first player [12]. While no
explicit strategy that holds for arbitrary sized boards is known, many players believe that
opening in the centermost cell in particular is a winning move. In order to offset this opening
move advantage, the game is often started according to the following “swap rule”: colours
are assigned to the four sides of the board, but not to the players; one player then places a
stone on any cell; the other player then chooses which colour stones to play with. The second
move is played by the player whose stones are the opposite colour of the first stone. From
then on, the game continues in normal fashion, namely with players alternating moves.

The swap rule has a balancing effect on the first move: if the first player makes an obviously
winning move, the second player can swap and easily win the game; if the first player makes
an obviously losing move, the second player can continue without swapping, and again win
the game. The first player is thus led to search for an opening move that is neither too
strong nor too weak, namely a move whose outcome is difficult to discern. While the swap
rule transforms Hex from a game with a first-player winning strategy to a game with a
second-player winning strategy, the second player can exploit this property only by knowing
the theoretical outcomes of all opening moves, and furthermore knowing how to play well
enough to win for each opening.

Thus the Hex swap rule raises two questions: (i) what is the theoretical outcome for each
opening move, and (ii) among all opening moves, what are the comparative difficulties of
playing perfectly after the move? In this paper we present a computer algorithm that we use
to answer these questions for the game of Hex played on a 7x7 board. In order to describe
our algorithm and the ideas behind it, we first need to introduce some terminology.

We begin with game-state notation. The terms we use in this paper are consistent with those
used in [14]. With respect to Hex, a board-state B describes a particular placement of some
number of black stones and some number of white stones, such that each cell has at most
one stone. We assume no constraint on the relative number of stones of each colour, as the
game may have started with a handicap advantage for one of the players; also, we introduce
a form of game-state analysis that occasionally requires the placement of extra stones on the
board. The empty board-state has no stones on the board. A k-opening is a board-state with



Fig. 2. Previously known 1-opening results. The stone on each cell indicates the winner with perfect
play if White’s first move is to that cell. For cells with no stone, the winner was not previously
known. The 6x6 results were reported by Enderton [9] and verified by Van Rijswijck by computer
[24]. The 77 results were obtained by Yang et al. by hand [27-29].

exactly k stones on the board. A game-state, or simply a state, G = (B, P, Q) is defined by
specifying a board-state B, the player P with the next move, and the opponent ) of player
P. In the definition of game-state, notice that it would be sufficient to list only the player
whose turn it is to play next; we list both players in the definition, since the opponent of a
player is often explicitly mentioned in our proofs and discussions.

We say that a player wins a game-state if there exists a winning strategy for that player in
that game-state. Hex cannot end in a draw, so for any game-state exactly one of the players

wins the game-state. The value of a game-state is the player who has a winning strategy;
thus for any fixed board-state B the value of G = (B, P, Q) is either P or Q.

A state is solved if its value is known, and explicitly solved if a winning strategy is known. As
we have already remarked, for the empty board-state on arbitrarily large boards, Hex has
been solved but not explicitly solved.

In this paper we present an algorithm that explicitly solves arbitrary Hex states. The worst-
case running time of our algorithm is exponential in the number of cells in the board, which
is not surprising given that solving arbitrary Hex states is PSPACE-complete [21]. Our
algorithm is fast enough to solve 7x7 states in a reasonable amount of time, while solving
8% 8 states is currently beyond reach. As a benchmark for the efficiency of our algorithm, we
solve all 7x7 1-openings. Previously known 1-opening results are summarized in Figure 2.

In solving these 1-openings our algorithm constructs proof-trees whose terminal nodes cor-
respond to game-states in which a winning virtual connection is detected; since such virtual
connections are typically detected many moves before the actual end of the game, each proof-
tree found by our algorithm is a proper subset of the complete game-tree, in which each leaf
node corresponds to a game-state in which one player has a complete winning chain. Since
the size of the proof-trees we find can be used as a measure of the difficulty of playing the
opening perfectly, the data we present can be used to answer the two questions raised earlier.

Our results yield the first computer solution of any Hex state on a 7x7 or larger board.
Solving Hex states on 5x5 or smaller boards is computationally routine; for larger boards, the
problem is more challenging. Enderton reported the values of all 6x6 1-openings, although



with no explanation of how he obtained his results [9]. Van Rijswijck independently verified
these results by computer, using an alpha-beta search guided by a Hex-specific evaluation
function. By providing useful move ordering, his heuristic function evaluation led to the
discovery of winning moves sooner than by using unguided search; in this way, his algorithm
solved all 1-openings and many longer openings [24,23]. As this method was not strong
enough to solve 7x7 states, Van Rijswijck further described but did not implement an
alternative recursive algorithm [25]. Recently Yang et al. solved by hand several 7x7 1-
openings [27-29], one 8x8 1-opening [26] and one 9x9 1-opening [26].

Our algorithm solves an arbitrary Hex state by computing a winning virtual connection
according to dynamic-state composition rules. Following the recursive game-tree search pro-
posed by Van Rijswijck, our algorithm is enhanced by the computation of fixed-state virtual
connections; additionally, some new Hex move domination and fill-in results allow significant
pruning of the game-tree.

Before presenting our algorithm in §4 and our 7x7 results in §5, we provide necessary back-
ground information on virtual connections in §2 and domination and fill-in in §3.

2 Virtual Connections

Roughly, a connection subgame in Hex is a subgame in which one of the players can form a
connection between two specified sets of cells. If the player can connect the two sets even if
the opponent moves first, the connection subgame is called a virtual connection; if the player
must have the first move in order to guarantee the connection, the connection subgame is
called a weak connection or a virtual semiconnection.

We now define these terms more formally. Our definitions are essentially those from [3],
although our notation is slightly different.

We consider each of the four boundary sides of the board as an occupied set of cells. Let
S, X, Y be pairwise non-intersecting sets of cells such that the cell set forming X is connected
(namely, for any two cells in X, there is a cell-to-cell path that stays in X), the cell set
forming Y is connected, and all cells in S are unoccupied. A P-stone is a stone belonging to
P. For a fixed board-state B and a player P, the subgame P(B:X,S,Y) is the game of Hex
restricted to playing in S, where P wins by forming a chain of P-stones connecting X and
Y. P(B:X,S,Y) is a weak connection for P if P has a winning strategy for this subgame
assuming that P plays first, and a virtual connection for P if P has a winning strategy for
this subgame even if P’s opponent plays first. For a virtual connection or weak connection
P(B:X,SY), S and X,Y are usually referred to as the carrier and ends respectively.

These notions are illustrated in Figure 3. For example, the leftmost diagram in this figure
shows a Black weak connection between the black stone and the bottom-right side: if each
of the dotted cells is unoccupied and it is Black’s turn to move, then Black can force a
connection by moving to the white-dotted cell. The next two diagrams in this figure show
two more Black weak connections. Notice that the common intersection of the cell sets that
form these three Black weak connections is empty. This implies that the union of the three



Fig. 3. Three weak connections and a virtual connection.

cell sets, indicated in the rightmost diagram in the figure, forms a Black virtual connection
from the black stone to the bottom right side: if all the dotted cells in this diagram are
unoccupied and it is White’s turn to move, then whatever White does will leave all the cells
of at least one of these weak connections unoccupied with Black to move; Black can then
move to the white-dotted cell of that weak connection and force a connection.

Although defined slightly differently by different authors, virtual connections have long been
recognized as being central to Hex strategy. References to virtual connections permeate
the Hex literature, where they are also referred to as “connections” or “safe groups”. For
example, various forms of virtual connections are discussed by Berge [6,15]!, Schensted and
Titus [22], Browne [8], and Anshelevich [3].

Virtual-connections are useful in solving Hex states since, when accompanied by an explicit
strategy, a virtual connection serves as a proof or certificate that a pair of cells can be
connected. The most important virtual connections and weak connections are those which
connect a player’s two sides, since such a connection occurs by definition if and only if
there is an associated winning strategy. We call such subgames win-links and win-weaklinks
respectively. We use P(B:—, S, —) to denote such a connection joining P’s two sides.

Connection subgames are particularly useful in Hex end-game analysis. For example, Berge
observed that a move to a cell that is not in the carrier of some opponent win-weaklink is a
losing move, since on the next move the opponent can turn the win-weaklink into a win-link.

For a fixed game-state, we call the intersection of the set of all unoccupied board cells
with all known opponent win-weaklink carriers a player’s must-play. For a player X and an
unoccupied cell ¢ of a board-state B, we define B + cy as the state obtained from B by
adding an X-stone at c¢. Using this notation, Berge’s remark can be restated as follows:

Theorem 1 (Berge [6,15]) If ¢ is not in P’s must-play for (B, P,Q) then @ wins (B +
Ccp, Q, P)

Proof. If ¢ is not in P’s must-play for (B, P, () then there is a win-weaklink Q(B:—, S, —)
such that ¢ is not in S. Since Q(B:—, S, —) is a win-weaklink, there is some cell d in S such
that Q(B + dg:—, S — dg, —) is a win-link. Since ¢isnot in S, Q(B + ¢p +dg:—, S — dg, —)
is also a win-link, so @ wins (B + ¢p, Q, P). O

Notice that the computation of a mustplay region is a form of null move analysis, as it
involves the consideration of what can occur if a player skips a turn.

A useful feature of virtual connections is that smaller ones can be combined in various ways
to form larger ones. The knowledge of this fact is as old as Hex itself; for example, it is

LA translated version of [6] appears in [15]



discussed in detail in [6]. Recently, Anshelevich [1,3,2] used the following set of combining
rules to compute connection subgames in an inductive or “bottom-up” fashion.

Theorem 2 (Anshelevich [1,3,2])

e AND-rule: Let P(B:X,S,Y ) and P(B:Y,T,Z) be virtual connections with X and S each
disjoint from T and Z. Then (i) if each cell of Y has a P-stone then P(B:X,SUT UY,Z)
is a virtual connection (i) if Y consists of a single cell then P(B:X,SUT,Z) is a weak
connection.

e OR-rule: Let P(B:X,S;,Y ) be a weak connection for j = 1,...,t such that the intersection
of the sets S; is empty. Then P(B:X,S,Y ) is a virtual connection, where S is the union
of the sets S;. a

Notice that part (i) of the AND-rule is essentially a restatement of the previous Berge ob-
servation. Also notice that this set of rules is static, in that it yields a class of connection
subgames for a fixed state. Anshelevich pointed out that this set of rules is not sufficient to
establish all virtual connections of a state, and is thus not strong enough to solve all Hex
states; however, the rules do yield a sufficiently large class of virtual connections to provide
an effective subroutine of a strong Hex-playing program [1,3,2].

As Van Rijswijck observed, an alternative method of computing connection subgames is
to proceed through the game-tree dynamically. For a state G = (B, P,Q) and for each
unoccupied cell z of B, define G + xp as (B + xp,Q, P); when the player P is clear from
context we shall sometimes write G + x in place of G + zp. Van Rijswijck’s discussion in [25]
suggests the following set of rules. The symbol ¢ denotes the empty set. For a player P, a
P-winning chain is a chain of P-stones that connects P’s two sides.

Theorem 3 (Van Rijswijck [25]) Consider a board-state B and players P, Q. If B has a P-
winning chain then P(B:—, ¢, —) is a win-link. If B has no P-winning or Q-winning chain
then P wins (B, P,Q) if and only if P wins (B + cp, Q, P) for some unoccupied cell ¢ of B;
i particular

e if P wins (B + cp,Q, P) with a win-link P(B + cp:—,S,—) then P(B:—,S+cp,—) is a
win-weaklink, ‘ ‘

e if, for each unoccupied cell ¢, Q wins (B+ch, Q, P) with some win-link Q (B + ¢p:—, 57, —)
then the intersection of the sets S7 is empty,

o if there is a set C' of unoccupied cells such that, for each ¢ in C, Q wins (B + czj, Q,P)
with some win-link Q (B + (:33:—, S9,— ) and the intersection of the sets S? is empty, then
Q(B:—, S, —) is a win-link, where S is the union of the sets S7.

Proof (sketch). The proof follows by elementary game-theory arguments from the fact that
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Fig. 4. A white win-weaklink ...and a corresponding win-link.
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G+ G+ xo G+ z3

G+x1+yn G+ 2 + Yo G+ w3+ ys
‘White loses, win-link S; ‘White loses, win-link Sy ‘White loses, win-link S3

Fig. 5. An example illustrating Theorem 3.

any Hex state has exactly one winner. This fact in turn requires some care to prove; see for
example [4,10,14]. O

Figure 5 illustrates Theorem 3. The root state GG is a loss for White. Three of White’s possible
moves are explored. In each state G + z;, the move y; yields a black win; the resulting state
G + x; + y; has a black win-link carrier S;, so G + x; has a black win-weaklink with carrier
S;Uy;; this win-weaklink implies that x; loses in (G, and moreover that any white move outside
of S; Uy, loses. The intersection of these three win-weaklink carriers is empty. Indeed, the
intersection of just the two win-weaklink carriers Sy Uy, and S3Uys is already empty, which
means that the union of these two win-weaklink carriers is a black win-link in G. It also
means that the exploration of these two branches of the game-tree is sufficient to determine
that White loses (G; the consideration of any other move is unnecessary.

Notice that these rules are by their definition complete: they can be used to solve any
arbitrary Hex state.

From a computational point of view, the difficulty with the two preceding sets of rules is that
the number of possible connection subgames that can be computed in this way is exponential
in the number of cells. For this reason, an exhaustive approach to computing connection sub-
games based on either rule set will be forced to limit the number of intermediate connection
subgames computed.

For both the static and dynamic computational processes, what is needed is some way of
distinguishing those intermediate connection sets that are critical to solving the particular
state from those that are not. We close this section by giving evidence that this is likely to



be a difficult problem.

Assume that at some point in a computation involving the dynamic rules it is discovered
that player P has no winning move in a state G. It follows that P’s opponent () has a
win-weaklink S, after each possible move z by P and that the union of any collection of
these win-weaklinks which have an empty intersection establishes a win-link for Q. If G is
an intermediate state in the process of solving some earlier state, then P needs to compute
such a win-link to pass back to the state that gave rise to (G. It is reasonable to expect
that a useful win-link to pass back would be one that has the smallest number of cells,
among all such possible win-links. However, it is also reasonable to expect this problem
to be computationally difficult, since it seems to be intimately related to determining the
outcome of a Hex game, which we have already noted is PSPACE-complete. Saks observed
that this problem is indeed computationally difficult, as we now explain.

The Minimum-Union Empty Intersection Problem (MUEIP) is the decision problem that
takes as input an integer k together with a set S = {S,...,S5;} of subsets of a finite set
V' and asks whether there is a subset T" of S such that the intersection of the sets in T is
empty and the union of the sets in 7" has size at most k. Minimum Cover is the decision
problem that takes as input an integer k together with a set A = {A;,..., A;} of subsets of
a finite set V' and asks whether there is a subset of at most k elements of A whose union is
V. Minimum Cover, referred to as Problem [SP5] in the text by Garey and Johnson [13] and
sometimes also known as Minimum Set Cover, was shown to be NP-complete by Karp [18].

Theorem 4 (Michael Saks, private communication) MUEIP is NP-complete.

Proof. Consider an instance of Minimum Cover, where k, A, and V are as defined above and
n = |V|. This instance can be transformed in polynomial time into an instance of MUEIP,
as follows.

For each index j, let B; be the set complement (with respect to V') of Aj; also, let B =
{Bs,...,B;}. Observe that the union of k£ elements of A is equal to V if and only if the
intersection of the corresponding k elements of B is empty. Let V' be the set obtained by
adding t(n + 1) new elements to V. For each index j, let Bj be the set obtained by adding
n + 1 of the new elements to B; in such a way that each B; gets expanded by a set of new
elements disjoint from all other new elements. Let B’ = {Bj,..., B;}. Observe that a set of
k elements of B has empty intersection if and only if the corresponding set of k£ element of
B’ has empty intersection, and this occurs if and only if the same set of k£ elements of B’ has
empty intersection and union with size at most k(n + 1) + n.

Since MUEIP is clearly in NP, the theorem follows from the preceding transformation and
the fact that Minimum Cover is NP-complete [18]. O

Kiefer recently showed that computing virtual connections using only the static combining
rules described earlier is PSPACE-complete [19]. Theorem 4 suggests that computing virtual
connections using dynamic combining rules is also likely to be computationally difficult. Thus
any algorithm that solves arbitrary Hex states by computing virtual connections dynamically
and/or statically will probably need to use some extra game knowledge in order to reduce



the complexity of searching through the game-tree. We discuss some such reductions in the
next section.

3 Game-State Reduction: Domination and Fill-in

One reason that Hex is a challenge for computers to play or solve is the high branching
factor; especially in the early stages of the game, the number of possible moves is high. In
this section we describe two kinds of game-state reductions. Each reduction strengthens the
algorithm implicitly described by the virtual connection composition rules of the previous
section by allowing the game-tree to be pruned. We refer to these reductions as domination
and fill-in.

Informally, one move dominates another if the former is at least as good as the latter. Since
we are interested here only in determining the value of a game-state, one move is “at least
as good as” another if the former yields a win whenever the latter yields a win. Formally,
for possible moves u,v from a state G = (B, P,(Q), we say that u dominates v if P wins
(B + up, @, P) whenever P wins (B + vp,Q, P).

Domination results are useful for our purposes since, in searching the game-tree for a win-
ning move, a dominated move at a particular state can be ignored as long as at least one
dominating move at that state is considered. Unfortunately, few Hex domination results are
known. One such result is due to Beck, who proved that on an empty board size 2x2 or
larger, moving to an acute corner is a losing, and so dominated, move [4]. The board cell
coordinate system we use in this paper is shown in Figure 6 and subsequent figures. The two
acute corners of the boards of Figure 6 are A1 and G7.

“Fill-in” refers to placing stones on a board that do not alter the value of an associated
game-state. Hayward recently established a domination and fill-in result involving a certain
three-cell configuration [16]; this is explained in Theorem 5.

Our algorithm uses Theorem 5 in two ways. Firstly, for any state (B, P, ()) with an empty P-
triangle, the two P-moves to the side of the triangle can be ignored since they are dominated
by the P-move to the tip. Secondly, for any state (B, @), P) with a P-triangle with a P-stone
at the tip and the two side cells unoccupied, each cell of this side pair can be filled with
a P-stone without changing the outcome of the game. As can be seen from Figure 12, the
second result is particularly useful when combined with our virtual connection computation
approach.

The key idea in the proof of Theorem 5 is that if P ever plays at the tip of an empty P-side
triangle, it is thereafter pointless for ) to play into either of the two adjacent side cells. The
reason for this is that P could immediately reply into the other side cell and make the )-
stone “dead”, in the sense that the ()-stone will not be in any minimal winning )-chain. This
idea has recently been developed to establish more general domination and fill-in results; see
[14,7] for more details.

For a player P, a P-side cell is any cell that borders one of P’s two boundary sides, a P-



side pair is a set {z,y} of two adjacent P-side cells, and a P-triangle is an ordered triple
(x,y,t) where {z,y} is a P-side pair and t is the unique board cell adjacent to both x and
y; t is called the tip of the side triangle. A P-triangle is empty if each cell of the triangle is
unoccupied. See Figure 7.

Theorem 5 (Hayward [16]) Let B be a board-state with an empty P-triangle (z,y,t). Then
a player R in {P,Q} wins any one of the four states (B +tp,Q, P), (B +tp + xp,Q, P),
(B+tp+yp,Q,P), (B+tp+zp+yp,Q,P)if and only if R wins all of them. Also, for
each cell z in {x,y}, P wins Gy = (B + tp,Q, P) if P wins G, = (B + zp, Q, P).

Proof. Hex is a so-called “regular” game: altering a game-state by adding an extra stone
is never disadvantageous for the player whose stone was added [11]. This property can be
stated more formally as follows: for each unoccupied cell x of a board-state B and for each
player R in {P,Q}, R wins (B + zg, P,Q) if R wins (B, P, Q).

The second statement of the theorem follows from the first statement and the regularity of
Hex, since P wins (B+tp+xp+yp, Q, P) if P wins (B+2zp, @, P) and P wins (B+tp,Q, P)
if P wins (B+tp+l‘p+yP,Q,P).

Consider then the first statement of the theorem. Since Hex cannot end in a draw [11], it
suffices to prove this statement for one of the two players, say for R = P. Also, regularity
simplifies the task of proving this statement, since by regularity P wins (B+tp+zp+yp, Q, P)
if P wins (B+tp+yp,Q,P) or (B+tp+xzp,Q,P), and P wins (B +tp + yp,Q, P) and
(B+tp+xp,Q,P)if P wins (B +tp). Thus to prove the first statement of the theorem it
suffices to show that

P wins G' = (B +1p,Q, P) if P wins G = (B+tp+xp+yp,Q,P). (%)

We prove (k) by constructing a strategy S’ for P and G’ from a strategy S for P and G such
that S’ wins G’ if S wins GG. S’ is defined as follows:

(i) in response to a -move to either cell of {x,y}, P plays into the other cell

(ii) in response to a Q-move not to either cell of {z,y}, if there is a P-chain connecting the
P-stone at cell ¢ to P’s other side of the board then P plays into either cell of {z,y} to
win the game; otherwise P plays as in the state of S obtained from the current state by
changing the status of cells z and y so that both are occupied by P-stones.

Now suppose that S wins G for P and consider a continuation of G’ in which P plays
according to S'. It is easy to show by induction on the number of unoccupied board cells
of B' that for each state G; = (Bj, P, Q) reached in this continuation, the associated state
G = (B}, P,Q) reached by following S has the property that B; and Bj are equal except
possibly for the contents of cells x and y; these two cells are both P-stones in B; whereas in
B they are either both unoccupied or contain at least one P-stone.

We finish the proof by contradiction: suppose that there is a winning @Q-chain in B’. Notice
that such a chain contains at most one cell of z or y, since at least one cell of {z,y} is
unoccupied or has a P-stone. Suppose that the chain contains one of these two cells, say y.
Since the six neighbours of y include z, ¢, and two cells from P’s boundary and since none
of these four cells contains a (J-stone, the two other neighbours of y are the neighbours of
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y on the @)-chain. Since these two neighbours are themselves adjacent, removing y from the
Q-chain leaves a shorter winning Q-chain. Thus the existence of a winning @-chain in 5]
implies the existence of a winning )-chain in B} that does not include any cell from {z,y}.
But S and S’ are the same with respect to all cells except x and y, so the existence of such a
chain implies the existence of a winning ()-chain in B;, contradicting our earlier assumption
that S wins G for P. It follows that there is no winning ()-chain in B;-, so it follows by
induction on the number of unoccupied cells of B’ that S’ wins G’ for P. O

Fig. 6. Illustrating the first part of Theorem 5. Applying this result to the white side triangle with
tip E2, it follows that a player has a winning strategy for one of these board-states if and only if
that player has a winning strategy for all of these board-states.

4 The Algorithm

Our algorithm SOLVER combines the approaches suggested by Theorems 1, 2, 3, and 5. For
a player P with opponent @), the algorithm solves a state G = [P, B] as follows.

ALGORITHM SOLVER
Input: A Hex game-state G = (B, P, Q).
Output: The value of GG together with the carrier of a win-link for G.

For each side triangle for which the first statement of Theorem 5 applies, add stones to the
appropriate side cells; call the resulting board B*. Statically compute virtual connections and
weak connections. If a win-weaklink P (B:—, S, —) is detected then return (P, S); if a win-link
Q(B:—,S,—) is detected then, if the win-link uses the the tip of a triangle whose side was
filled in then add the side cells to S, and return (@, S).

Otherunse, let 'T' be the set consisting of all carriers of all Q-win-weaklinks found for G and
let R be the P-mustplay region defined with respect to T, namely the intersection of the set
of unoccupied cells of B with each of the elements of T. Remove from R any side-cells from
any empty P-triangle. While R is not empty, pick a cell x in R, and do the following:

Let B; be the state obtained from B* by adding a P-
stone at x and, if x was the tip of an empty P-triangle
before this move, filling in the triangle. Recursively solve

G, = (B, Q,P).
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If P wins G, say with win-link carrier X, then add to

X the cell x as well as the two associated side-cells if x

was the tip of an empty P-triangle, and return (P, X).

If Q wins G, say with win-weaklink X, then add X to

T.
If execution reaches this point then the while loop terminated without discovering a win-
weaklink for P, so the union U of elements of T is a carrier for a win-link for @), so return

(@, U).

A sample execution of the algorithm is described in Figures 7 through 9. The correctness of
our algorithm follows directly from the previous theorems.

Fig. 7. SOLVER solves b6: initialization. After the initial move (left), the game-state is reduced by
applying Theorem 5 and adding white stones to the two side-cells of the white side-triangle with
tip b6. In the resulting state, White has two win-weaklinks (center-left and center-right) whose
resulting intersection yields a 13-cell black mustplay region (right). If Black has a winning move,
it has a winning move to one of these 13 cells.

Fig. 8. SOLVER solves b6-c4. As shown by the SOLVER b6 recursion tree in Figure 13, c4 is
the first black response considered to the white b6 opening (left). Following the topmost path
b6-c4-12-d5-d4-c5-eb-ed-g3-f3-g2-f4 in the recursion tree and applying Theorem 5 after f2 leads to
the first solved state (center, with white win-weaklink); since 4 is a leaf of the recursion tree, the
white win-weaklink here was discovered statically. SOLVER continues solving the c4-subtree, even-
tually determining that c4 is a black loss (right, with white win-weaklink). This win-weaklink does
not contain c4 or bj, so, of the 13 possible b6-responses corresponding to the initial black mustplay
region described in Figure 7, 11 moves remain to be checked.

Fig. 9. SOLVER solves b6: conclusion. The move to f1 is the last black reply considered in response
to the white b6 opening (left, with white win-weaklink), since after the discovery of this last white
win-weaklink, the set of such win-weaklinks has empty intersection. The union of these 11 white
win-weaklinks gives the final win-link for White (right).
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5 SOLVER 7x7 1-Opening Solutions

As mentioned earlier, SOLVER is strong enough to solve arbitrary 7x7 states. Figures 10 and
11 summarize the results obtained by running SOLVER on all 49 7x7 1-openings. Figures 13
and 14 show the SOLVER recursion trees from two of these executions, while Figure 15 shows
a longest line of play from each of the 49 solutions. Each execution was performed on a single
processer machine?; in each case, the run time was roughly proportional to the number of
nodes in the SOLVER recursion tree, taking about one minute for the five 1-openings with the
smallest node-counts, and about 110 hours for the 1-opening with the largest node-count; the
total run time for all 49 1-openings was about 615 hours. A listing of all 49 trees (including
a tree viewer) is available at http://www.cs.ualberta.ca/ hayward/hex7trees.

©088800 ; 0@0:?%
Heg0g e, 6 - NERICcE@O8S8E8 < s
@@= < U~ 0e® O~ = )= I3
O e e ®® St (0

@)
Fig. 10. All 7x7 1-opening results, as found by SOLVER. The stone on each cell indicates the winner

with perfect play if White’s first move is to that cell. The move indicated on each losing cell is the
winning countermove discovered.

3

244682

B 47688
C 887 6408

Fig. 11. Number of nodes in the SOLVER 7x7 1-opening recursion trees.

For any size Hex board, the set of winning open-move cell locations is symmetric with respect
to reflection through the center of the board. Notice that the SOLVER node-counts do not
share this symmetry, as neither the order in which SOLVER considers moves nor SOLVER’s

2 The program was compiled with gee 3.1.1 and run on an AMD Athlon 1800+ MHz processor
with 512 MB memory running Slackware Linux.
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implementation of the static computation of virtual connections is designed to reflect this
symmetry.

Figure 12 demonstrates the relative strength of the three key parts of our algorithm, namely
virtual connection computation, side-triangle move domination, and side-triangle fill-in, by
showing SOLVER node-counts when various of these features are turned off. In particular, no-
tice that adding side-triangle fill-in to virtual connection computation results in a substantial
decrease in the number of nodes considered, while further adding side-triangle domination
has little effect.

As expected, SOLVER with domination and fill-in usually needs to explore fewer game-tree
nodes to solve a state than SOLVER-D, which uses fill-in but not domination; however, there
are a few exceptions. In particular, for each of the 6x6 openings d4, e5, f1, and f4 SOLVER-D
explored slightly fewer nodes than SOLVER. One reason for this anomalous behaviour is that
fill-in can cause the carrier of the win-link returned by our algorithm to be unnecessarily
large.

For example, if in a certain state there is an empty side triangle for which both the tip and a
side cell are winning moves, then the carrier of the win-link discovered by making the move
to the tip will contain both side cells and so be a proper superset of the carrier discovered
by making the move to the side cell; in this case, if domination is not in effect the smaller
carrier will be discovered if move ordering happens to process the side cell before the tip,
and this smaller carrier may result in fewer recursive calls being made.

Fig. 12. Number of nodes in the 6 x6 1-opening recursion trees for SOLVER (top entry), SOLVER—D),
namely SOLVER without side-cell domination (middle entry), and SOLVER—FD, namely SOLVER
with neither side-cell domination nor fill-in (bottom entry). While corresponding data were obtained
for some 7x7 1-openings, SOLVER—FD in particular was too slow to execute for all such openings.
For example, the b7 SOLVER—FD tree has 824796 nodes, compared to only 1196 for SOLVER.

In comparing the winning 7x7 opening moves (Figure 10) with winning opening moves on

smaller boards (Figure 2), some features common to each of these n x n boards are worth
noting. For example,
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e the n cells on the short diagonal (obtuse corner to obtuse corner) are all first-player winning
openings,

e the n — 1 cells on each of the first-player’s sides (except for the cell in the short diagonal)
are all first-player losing openings.

It would be of considerable interest to show whether these results hold in general, especially if
the proof is positive (as opposed to say a single counterexample), since to date, for arbitrarily
large n x n boards,

e no particular move is known to be a first-player win,

e the only moves that are known to be first-player losses are for n > 2, the two acute corner
cells [4], and for n > 3, the two cells each in the first-player’s side and adjacent to the
acute corner cell [5].

6 Conclusions and Open Problems

We have shown how combining static and dynamic virtual connection computation methods
with some move domination results yields an algorithm strong enough to solve arbitrary
7x7 Hex states. A next step is to design an algorithm strong enough to solve 8x8 states;
preliminary results suggest that this is considerably more difficult and that further techniques
will be required. Another direction is to use SOLVER to gather 7x7 information that can
be used to find better move ordering heuristics for Hex game-tree search on (much) larger
boards; for example, such data would be useful in analyzing any local configuration with
effective board size at most 7x7.
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Fig. 14. The SOLVER recursion tree for the 7x7 opening White-f1 (with the five nodes connected
by dotted edges added so that every path ends with a winning move). For each node, the order
of child generation is top-to-bottom. Notice that the fl-b6 subtree, which establishes that b6 is a
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part because of the move ordering here is more fortunate than there. In this fl-tree, whenever it is
White’s turn to play, the first move considered turns out to be a winning move; this is not the case

in the b6 tree shown in Figure 13.
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Fig. 15. Longest 7x7 SOLVER lines of play. For each of the 49 7x7 1-openings, the corresponding
line shows a longest line of play from the the associated SOLVER solution. The top row shows the
move number of that column.
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Fig. 16. A SOLVER proof tree for the 7x7 opening White-f2. The data for this tree was generated
by first running a modified version of SOLVER in which the final move considered from any position
is a winning move; this guarantees that every recursion tree path ends with a winning move. The
resulting recursion tree was then pruned, at all points in the tree, by removing any losing moves
made by the winning player before the winning move for that state was found.
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