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1 IntrodutionHex is the lassi two-player board game invented by Piet Hein in 1942 and independentlyby John Nash around 1948 [11,12,20℄. The board onsists of a rhombus-shaped n�n arrayof hexagons, also alled ells. Eah player is assigned a set of stones and two opposing board? This is a revised and expanded version of [17℄. The support of NSERC is gratefully aknowledged.Preprint submitted to Elsevier Siene 25 April 2006



Fig. 1. An empty 7�7 board . . . and a �nished game; Blak wins.sides, all with the same olour; say Blak gets blak stones and sides, while White gets whitestones and sides. Players alternately plae a stone on an unoupied ell. The �rst player toform a path onneting his/her two sides with his/her stones wins the game. See Figure 1.For more on Hex, see the text by Browne [8℄ or the survey by Hayward and Van Rijswijk[14℄.In Hex, an unrestrited opening allows the �rst player to gain a onsiderable advantage. Inpartiular, it is known that there exists a winning strategy for the �rst player [12℄. While noexpliit strategy that holds for arbitrary sized boards is known, many players believe thatopening in the entermost ell in partiular is a winning move. In order to o�set this openingmove advantage, the game is often started aording to the following \swap rule": oloursare assigned to the four sides of the board, but not to the players; one player then plaes astone on any ell; the other player then hooses whih olour stones to play with. The seondmove is played by the player whose stones are the opposite olour of the �rst stone. Fromthen on, the game ontinues in normal fashion, namely with players alternating moves.The swap rule has a balaning e�et on the �rst move: if the �rst player makes an obviouslywinning move, the seond player an swap and easily win the game; if the �rst player makesan obviously losing move, the seond player an ontinue without swapping, and again winthe game. The �rst player is thus led to searh for an opening move that is neither toostrong nor too weak, namely a move whose outome is diÆult to disern. While the swaprule transforms Hex from a game with a �rst-player winning strategy to a game with aseond-player winning strategy, the seond player an exploit this property only by knowingthe theoretial outomes of all opening moves, and furthermore knowing how to play wellenough to win for eah opening.Thus the Hex swap rule raises two questions: (i) what is the theoretial outome for eahopening move, and (ii) among all opening moves, what are the omparative diÆulties ofplaying perfetly after the move? In this paper we present a omputer algorithm that we useto answer these questions for the game of Hex played on a 7�7 board. In order to desribeour algorithm and the ideas behind it, we �rst need to introdue some terminology.We begin with game-state notation. The terms we use in this paper are onsistent with thoseused in [14℄. With respet to Hex, a board-state B desribes a partiular plaement of somenumber of blak stones and some number of white stones, suh that eah ell has at mostone stone. We assume no onstraint on the relative number of stones of eah olour, as thegame may have started with a handiap advantage for one of the players; also, we introduea form of game-state analysis that oasionally requires the plaement of extra stones on theboard. The empty board-state has no stones on the board. A k-opening is a board-state with2



Fig. 2. Previously known 1-opening results. The stone on eah ell indiates the winner with perfetplay if White's �rst move is to that ell. For ells with no stone, the winner was not previouslyknown. The 6�6 results were reported by Enderton [9℄ and veri�ed by Van Rijswijk by omputer[24℄. The 7�7 results were obtained by Yang et al. by hand [27{29℄.exatly k stones on the board. A game-state, or simply a state, G = (B;P;Q) is de�ned byspeifying a board-state B, the player P with the next move, and the opponent Q of playerP . In the de�nition of game-state, notie that it would be suÆient to list only the playerwhose turn it is to play next; we list both players in the de�nition, sine the opponent of aplayer is often expliitly mentioned in our proofs and disussions.We say that a player wins a game-state if there exists a winning strategy for that player inthat game-state. Hex annot end in a draw, so for any game-state exatly one of the playerswins the game-state. The value of a game-state is the player who has a winning strategy;thus for any �xed board-state B the value of G = (B;P;Q) is either P or Q.A state is solved if its value is known, and expliitly solved if a winning strategy is known. Aswe have already remarked, for the empty board-state on arbitrarily large boards, Hex hasbeen solved but not expliitly solved.In this paper we present an algorithm that expliitly solves arbitrary Hex states. The worst-ase running time of our algorithm is exponential in the number of ells in the board, whihis not surprising given that solving arbitrary Hex states is PSPACE-omplete [21℄. Ouralgorithm is fast enough to solve 7�7 states in a reasonable amount of time, while solving8�8 states is urrently beyond reah. As a benhmark for the eÆieny of our algorithm, wesolve all 7�7 1-openings. Previously known 1-opening results are summarized in Figure 2.In solving these 1-openings our algorithm onstruts proof-trees whose terminal nodes or-respond to game-states in whih a winning virtual onnetion is deteted; sine suh virtualonnetions are typially deteted many moves before the atual end of the game, eah proof-tree found by our algorithm is a proper subset of the omplete game-tree, in whih eah leafnode orresponds to a game-state in whih one player has a omplete winning hain. Sinethe size of the proof-trees we �nd an be used as a measure of the diÆulty of playing theopening perfetly, the data we present an be used to answer the two questions raised earlier.Our results yield the �rst omputer solution of any Hex state on a 7�7 or larger board.Solving Hex states on 5�5 or smaller boards is omputationally routine; for larger boards, theproblem is more hallenging. Enderton reported the values of all 6�6 1-openings, although3



with no explanation of how he obtained his results [9℄. Van Rijswijk independently veri�edthese results by omputer, using an alpha-beta searh guided by a Hex-spei� evaluationfuntion. By providing useful move ordering, his heuristi funtion evaluation led to thedisovery of winning moves sooner than by using unguided searh; in this way, his algorithmsolved all 1-openings and many longer openings [24,23℄. As this method was not strongenough to solve 7�7 states, Van Rijswijk further desribed but did not implement analternative reursive algorithm [25℄. Reently Yang et al. solved by hand several 7�7 1-openings [27{29℄, one 8�8 1-opening [26℄ and one 9�9 1-opening [26℄.Our algorithm solves an arbitrary Hex state by omputing a winning virtual onnetionaording to dynami-state omposition rules. Following the reursive game-tree searh pro-posed by Van Rijswijk, our algorithm is enhaned by the omputation of �xed-state virtualonnetions; additionally, some new Hex move domination and �ll-in results allow signi�antpruning of the game-tree.Before presenting our algorithm in x4 and our 7�7 results in x5, we provide neessary bak-ground information on virtual onnetions in x2 and domination and �ll-in in x3.2 Virtual ConnetionsRoughly, a onnetion subgame in Hex is a subgame in whih one of the players an form aonnetion between two spei�ed sets of ells. If the player an onnet the two sets even ifthe opponent moves �rst, the onnetion subgame is alled a virtual onnetion; if the playermust have the �rst move in order to guarantee the onnetion, the onnetion subgame isalled a weak onnetion or a virtual semionnetion.We now de�ne these terms more formally. Our de�nitions are essentially those from [3℄,although our notation is slightly di�erent.We onsider eah of the four boundary sides of the board as an oupied set of ells. LetS;X; Y be pairwise non-interseting sets of ells suh that the ell set formingX is onneted(namely, for any two ells in X, there is a ell-to-ell path that stays in X), the ell setforming Y is onneted, and all ells in S are unoupied. A P -stone is a stone belonging toP . For a �xed board-state B and a player P , the subgame P (B:X,S,Y ) is the game of Hexrestrited to playing in S, where P wins by forming a hain of P -stones onneting X andY . P (B:X,S,Y ) is a weak onnetion for P if P has a winning strategy for this subgameassuming that P plays �rst, and a virtual onnetion for P if P has a winning strategy forthis subgame even if P 's opponent plays �rst. For a virtual onnetion or weak onnetionP (B:X,S,Y ), S and X; Y are usually referred to as the arrier and ends respetively.These notions are illustrated in Figure 3. For example, the leftmost diagram in this �gureshows a Blak weak onnetion between the blak stone and the bottom-right side: if eahof the dotted ells is unoupied and it is Blak's turn to move, then Blak an fore aonnetion by moving to the white-dotted ell. The next two diagrams in this �gure showtwo more Blak weak onnetions. Notie that the ommon intersetion of the ell sets thatform these three Blak weak onnetions is empty. This implies that the union of the three4



Fig. 3. Three weak onnetions and a virtual onnetion.ell sets, indiated in the rightmost diagram in the �gure, forms a Blak virtual onnetionfrom the blak stone to the bottom right side: if all the dotted ells in this diagram areunoupied and it is White's turn to move, then whatever White does will leave all the ellsof at least one of these weak onnetions unoupied with Blak to move; Blak an thenmove to the white-dotted ell of that weak onnetion and fore a onnetion.Although de�ned slightly di�erently by di�erent authors, virtual onnetions have long beenreognized as being entral to Hex strategy. Referenes to virtual onnetions permeatethe Hex literature, where they are also referred to as \onnetions" or \safe groups". Forexample, various forms of virtual onnetions are disussed by Berge [6,15℄ 1 , Shensted andTitus [22℄, Browne [8℄, and Anshelevih [3℄.Virtual-onnetions are useful in solving Hex states sine, when aompanied by an expliitstrategy, a virtual onnetion serves as a proof or erti�ate that a pair of ells an beonneted. The most important virtual onnetions and weak onnetions are those whihonnet a player's two sides, sine suh a onnetion ours by de�nition if and only ifthere is an assoiated winning strategy. We all suh subgames win-links and win-weaklinksrespetively. We use P (B:�; S;�) to denote suh a onnetion joining P 's two sides.Connetion subgames are partiularly useful in Hex end-game analysis. For example, Bergeobserved that a move to a ell that is not in the arrier of some opponent win-weaklink is alosing move, sine on the next move the opponent an turn the win-weaklink into a win-link.For a �xed game-state, we all the intersetion of the set of all unoupied board ellswith all known opponent win-weaklink arriers a player's must-play. For a player X and anunoupied ell  of a board-state B, we de�ne B + X as the state obtained from B byadding an X-stone at . Using this notation, Berge's remark an be restated as follows:Theorem 1 (Berge [6,15℄) If  is not in P 's must-play for (B;P;Q) then Q wins (B +P ; Q; P ).Proof. If  is not in P 's must-play for (B;P;Q) then there is a win-weaklink Q(B:�; S;�)suh that  is not in S. Sine Q(B:�; S;�) is a win-weaklink, there is some ell d in S suhthat Q(B + dQ:�; S � dQ;�) is a win-link. Sine  is not in S, Q(B + P + dQ:�; S � dQ;�)is also a win-link, so Q wins (B + P ; Q; P ). 2Notie that the omputation of a mustplay region is a form of null move analysis, as itinvolves the onsideration of what an our if a player skips a turn.A useful feature of virtual onnetions is that smaller ones an be ombined in various waysto form larger ones. The knowledge of this fat is as old as Hex itself; for example, it is1 A translated version of [6℄ appears in [15℄ 5



disussed in detail in [6℄. Reently, Anshelevih [1,3,2℄ used the following set of ombiningrules to ompute onnetion subgames in an indutive or \bottom-up" fashion.Theorem 2 (Anshelevih [1,3,2℄)� and-rule: Let P (B:X,S,Y ) and P (B:Y ,T ,Z) be virtual onnetions with X and S eahdisjoint from T and Z. Then (i) if eah ell of Y has a P -stone then P (B:X,S [ T [ Y ,Z)is a virtual onnetion (ii) if Y onsists of a single ell then P (B:X,S [ T ,Z) is a weakonnetion.� or-rule: Let P (B:X,Sj,Y ) be a weak onnetion for j = 1; : : : ; t suh that the intersetionof the sets Sj is empty. Then P (B:X,S,Y ) is a virtual onnetion, where S is the unionof the sets Sj. 2Notie that part (i) of the and-rule is essentially a restatement of the previous Berge ob-servation. Also notie that this set of rules is stati, in that it yields a lass of onnetionsubgames for a �xed state. Anshelevih pointed out that this set of rules is not suÆient toestablish all virtual onnetions of a state, and is thus not strong enough to solve all Hexstates; however, the rules do yield a suÆiently large lass of virtual onnetions to providean e�etive subroutine of a strong Hex-playing program [1,3,2℄.As Van Rijswijk observed, an alternative method of omputing onnetion subgames isto proeed through the game-tree dynamially. For a state G = (B;P;Q) and for eahunoupied ell x of B, de�ne G + xP as (B + xP ; Q; P ); when the player P is lear fromontext we shall sometimes write G+x in plae of G+xP . Van Rijswijk's disussion in [25℄suggests the following set of rules. The symbol � denotes the empty set. For a player P , aP -winning hain is a hain of P -stones that onnets P 's two sides.Theorem 3 (Van Rijswijk [25℄) Consider a board-state B and players P;Q. If B has a P -winning hain then P (B:�; �;�) is a win-link. If B has no P -winning or Q-winning hainthen P wins (B;P;Q) if and only if P wins (B + P ; Q; P ) for some unoupied ell  of B;in partiular� if P wins (B + P ; Q; P ) with a win-link P (B + P :�; S;�) then P (B:�; S + P ;�) is awin-weaklink,� if, for eah unoupied ell j, Q wins (B+jP ; Q; P ) with some win-linkQ(B + jP :�; Sj;�)then the intersetion of the sets Sj is empty,� if there is a set C of unoupied ells suh that, for eah j in C, Q wins (B + jP ; Q; P )with some win-link Q(B + jP :�; Sj;�) and the intersetion of the sets Sj is empty, thenQ(B:�; S;�) is a win-link, where S is the union of the sets Sj.Proof (sketh). The proof follows by elementary game-theory arguments from the fat that
Fig. 4. A white win-weaklink . . . and a orresponding win-link.6



SSS SSSSSGWhite to move loses, Blak win-link S = fS2 [ y2g [ fS3 [ y3gy1S1S1G+ x1Blak wins, win-weaklink S1 [ y1 y2S2S2G+ x2Blak wins, win-weaklink S2 [ y2 y3S3S3S3S3G+ x3Blak wins, win-weaklink S3 [ y3
S1S1G+ x1 + y1White loses, win-link S1 S2S2G+ x2 + y2White loses, win-link S2 S3S3S3S3G+ x3 + y3White loses, win-link S3Fig. 5. An example illustrating Theorem 3.any Hex state has exatly one winner. This fat in turn requires some are to prove; see forexample [4,10,14℄. 2Figure 5 illustrates Theorem 3. The root state G is a loss for White. Three of White's possiblemoves are explored. In eah state G+ xi, the move yi yields a blak win; the resulting stateG + xi + yi has a blak win-link arrier Si, so G + xi has a blak win-weaklink with arrierSi[yi; this win-weaklink implies that xi loses inG, and moreover that any white move outsideof Si [ yi loses. The intersetion of these three win-weaklink arriers is empty. Indeed, theintersetion of just the two win-weaklink arriers S2 [ y2 and S3 [ y3 is already empty, whihmeans that the union of these two win-weaklink arriers is a blak win-link in G. It alsomeans that the exploration of these two branhes of the game-tree is suÆient to determinethat White loses G; the onsideration of any other move is unneessary.Notie that these rules are by their de�nition omplete: they an be used to solve anyarbitrary Hex state.From a omputational point of view, the diÆulty with the two preeding sets of rules is thatthe number of possible onnetion subgames that an be omputed in this way is exponentialin the number of ells. For this reason, an exhaustive approah to omputing onnetion sub-games based on either rule set will be fored to limit the number of intermediate onnetionsubgames omputed.For both the stati and dynami omputational proesses, what is needed is some way ofdistinguishing those intermediate onnetion sets that are ritial to solving the partiularstate from those that are not. We lose this setion by giving evidene that this is likely to7



be a diÆult problem.Assume that at some point in a omputation involving the dynami rules it is disoveredthat player P has no winning move in a state G. It follows that P 's opponent Q has awin-weaklink Sx after eah possible move x by P and that the union of any olletion ofthese win-weaklinks whih have an empty intersetion establishes a win-link for Q. If G isan intermediate state in the proess of solving some earlier state, then P needs to omputesuh a win-link to pass bak to the state that gave rise to G. It is reasonable to expetthat a useful win-link to pass bak would be one that has the smallest number of ells,among all suh possible win-links. However, it is also reasonable to expet this problemto be omputationally diÆult, sine it seems to be intimately related to determining theoutome of a Hex game, whih we have already noted is PSPACE-omplete. Saks observedthat this problem is indeed omputationally diÆult, as we now explain.The Minimum-Union Empty Intersetion Problem (MUEIP) is the deision problem thattakes as input an integer k together with a set S = fS1; : : : ; Stg of subsets of a �nite setV and asks whether there is a subset T of S suh that the intersetion of the sets in T isempty and the union of the sets in T has size at most k. Minimum Cover is the deisionproblem that takes as input an integer k together with a set A = fA1; : : : ; Atg of subsets ofa �nite set V and asks whether there is a subset of at most k elements of A whose union isV . Minimum Cover, referred to as Problem [SP5℄ in the text by Garey and Johnson [13℄ andsometimes also known as Minimum Set Cover, was shown to be NP-omplete by Karp [18℄.Theorem 4 (Mihael Saks, private ommuniation) MUEIP is NP-omplete.Proof. Consider an instane of Minimum Cover, where k, A, and V are as de�ned above andn = jV j. This instane an be transformed in polynomial time into an instane of MUEIP,as follows.For eah index j, let Bj be the set omplement (with respet to V ) of Aj; also, let B =fB1; : : : ; Btg. Observe that the union of k elements of A is equal to V if and only if theintersetion of the orresponding k elements of B is empty. Let V 0 be the set obtained byadding t(n + 1) new elements to V . For eah index j, let B0j be the set obtained by addingn + 1 of the new elements to Bj in suh a way that eah Bj gets expanded by a set of newelements disjoint from all other new elements. Let B0 = fB01; : : : ; B0tg. Observe that a set ofk elements of B has empty intersetion if and only if the orresponding set of k element ofB0 has empty intersetion, and this ours if and only if the same set of k elements of B0 hasempty intersetion and union with size at most k(n + 1) + n.Sine MUEIP is learly in NP, the theorem follows from the preeding transformation andthe fat that Minimum Cover is NP-omplete [18℄. 2Kiefer reently showed that omputing virtual onnetions using only the stati ombiningrules desribed earlier is PSPACE-omplete [19℄. Theorem 4 suggests that omputing virtualonnetions using dynami ombining rules is also likely to be omputationally diÆult. Thusany algorithm that solves arbitrary Hex states by omputing virtual onnetions dynamiallyand/or statially will probably need to use some extra game knowledge in order to redue8



the omplexity of searhing through the game-tree. We disuss some suh redutions in thenext setion.3 Game-State Redution: Domination and Fill-inOne reason that Hex is a hallenge for omputers to play or solve is the high branhingfator; espeially in the early stages of the game, the number of possible moves is high. Inthis setion we desribe two kinds of game-state redutions. Eah redution strengthens thealgorithm impliitly desribed by the virtual onnetion omposition rules of the previoussetion by allowing the game-tree to be pruned. We refer to these redutions as dominationand �ll-in.Informally, one move dominates another if the former is at least as good as the latter. Sinewe are interested here only in determining the value of a game-state, one move is \at leastas good as" another if the former yields a win whenever the latter yields a win. Formally,for possible moves u; v from a state G = (B;P;Q), we say that u dominates v if P wins(B + uP ; Q; P ) whenever P wins (B + vP ; Q; P ).Domination results are useful for our purposes sine, in searhing the game-tree for a win-ning move, a dominated move at a partiular state an be ignored as long as at least onedominating move at that state is onsidered. Unfortunately, few Hex domination results areknown. One suh result is due to Bek, who proved that on an empty board size 2�2 orlarger, moving to an aute orner is a losing, and so dominated, move [4℄. The board elloordinate system we use in this paper is shown in Figure 6 and subsequent �gures. The twoaute orners of the boards of Figure 6 are A1 and G7.\Fill-in" refers to plaing stones on a board that do not alter the value of an assoiatedgame-state. Hayward reently established a domination and �ll-in result involving a ertainthree-ell on�guration [16℄; this is explained in Theorem 5.Our algorithm uses Theorem 5 in two ways. Firstly, for any state (B;P;Q) with an empty P -triangle, the two P -moves to the side of the triangle an be ignored sine they are dominatedby the P -move to the tip. Seondly, for any state (B;Q; P ) with a P -triangle with a P -stoneat the tip and the two side ells unoupied, eah ell of this side pair an be �lled witha P -stone without hanging the outome of the game. As an be seen from Figure 12, theseond result is partiularly useful when ombined with our virtual onnetion omputationapproah.The key idea in the proof of Theorem 5 is that if P ever plays at the tip of an empty P -sidetriangle, it is thereafter pointless for Q to play into either of the two adjaent side ells. Thereason for this is that P ould immediately reply into the other side ell and make the Q-stone \dead", in the sense that the Q-stone will not be in any minimal winning Q-hain. Thisidea has reently been developed to establish more general domination and �ll-in results; see[14,7℄ for more details.For a player P , a P -side ell is any ell that borders one of P 's two boundary sides, a P -9



side pair is a set fx; yg of two adjaent P -side ells, and a P -triangle is an ordered triple(x; y; t) where fx; yg is a P -side pair and t is the unique board ell adjaent to both x andy; t is alled the tip of the side triangle. A P -triangle is empty if eah ell of the triangle isunoupied. See Figure 7.Theorem 5 (Hayward [16℄) Let B be a board-state with an empty P -triangle (x; y; t). Thena player R in fP;Qg wins any one of the four states (B + tP ; Q; P ), (B + tP + xP ; Q; P ),(B + tP + yP ; Q; P ), (B + tP + xP + yP ; Q; P ) if and only if R wins all of them. Also, foreah ell z in fx; yg, P wins Gt = (B + tP ; Q; P ) if P wins Gz = (B + zP ; Q; P ).Proof. Hex is a so-alled \regular" game: altering a game-state by adding an extra stoneis never disadvantageous for the player whose stone was added [11℄. This property an bestated more formally as follows: for eah unoupied ell x of a board-state B and for eahplayer R in fP;Qg, R wins (B + xR; P; Q) if R wins (B;P;Q).The seond statement of the theorem follows from the �rst statement and the regularity ofHex, sine P wins (B+tP +xP +yP ; Q; P ) if P wins (B+zP ; Q; P ) and P wins (B+tP ; Q; P )if P wins (B + tP + xP + yP ; Q; P ).Consider then the �rst statement of the theorem. Sine Hex annot end in a draw [11℄, itsuÆes to prove this statement for one of the two players, say for R = P . Also, regularitysimpli�es the task of proving this statement, sine by regularity P wins (B+tP+xP+yP ; Q; P )if P wins (B + tP + yP ; Q; P ) or (B + tP + xP ; Q; P ), and P wins (B + tP + yP ; Q; P ) and(B + tP + xP ; Q; P ) if P wins (B + tP ). Thus to prove the �rst statement of the theorem itsuÆes to show thatP wins G0 = (B + tP ; Q; P ) if P wins G = (B + tP + xP + yP ; Q; P ). (�)We prove (�) by onstruting a strategy S 0 for P and G0 from a strategy S for P and G suhthat S 0 wins G0 if S wins G. S 0 is de�ned as follows:(i) in response to a Q-move to either ell of fx; yg, P plays into the other ell(ii) in response to a Q-move not to either ell of fx; yg, if there is a P -hain onneting theP -stone at ell t to P 's other side of the board then P plays into either ell of fx; yg towin the game; otherwise P plays as in the state of S obtained from the urrent state byhanging the status of ells x and y so that both are oupied by P -stones.Now suppose that S wins G for P and onsider a ontinuation of G0 in whih P playsaording to S 0. It is easy to show by indution on the number of unoupied board ellsof B0 that for eah state G0j = (B0j; P; Q) reahed in this ontinuation, the assoiated stateGj = (Bj; P; Q) reahed by following S has the property that Bj and B0j are equal exeptpossibly for the ontents of ells x and y; these two ells are both P -stones in Bj whereas inB0j they are either both unoupied or ontain at least one P -stone.We �nish the proof by ontradition: suppose that there is a winning Q-hain in B0j. Notiethat suh a hain ontains at most one ell of x or y, sine at least one ell of fx; yg isunoupied or has a P -stone. Suppose that the hain ontains one of these two ells, say y.Sine the six neighbours of y inlude x, t, and two ells from P 's boundary and sine noneof these four ells ontains a Q-stone, the two other neighbours of y are the neighbours of10



y on the Q-hain. Sine these two neighbours are themselves adjaent, removing y from theQ-hain leaves a shorter winning Q-hain. Thus the existene of a winning Q-hain in B0jimplies the existene of a winning Q-hain in B0j that does not inlude any ell from fx; yg.But S and S 0 are the same with respet to all ells exept x and y, so the existene of suh ahain implies the existene of a winning Q-hain in Bj, ontraditing our earlier assumptionthat S wins G for P . It follows that there is no winning Q-hain in B0j, so it follows byindution on the number of unoupied ells of B0 that S 0 wins G0 for P . 2
A1B2C3D4E5F6G7Fig. 6. Illustrating the �rst part of Theorem 5. Applying this result to the white side triangle withtip E2, it follows that a player has a winning strategy for one of these board-states if and only ifthat player has a winning strategy for all of these board-states.

4 The AlgorithmOur algorithm Solver ombines the approahes suggested by Theorems 1, 2, 3, and 5. Fora player P with opponent Q, the algorithm solves a state G = [P;B℄ as follows.Algorithm SolverInput: A Hex game-state G = (B;P;Q).Output: The value of G together with the arrier of a win-link for G.For eah side triangle for whih the �rst statement of Theorem 5 applies, add stones to theappropriate side ells; all the resulting board B�. Statially ompute virtual onnetions andweak onnetions. If a win-weaklink P (B:�; S;�) is deteted then return (P; S); if a win-linkQ(B:�; S;�) is deteted then, if the win-link uses the the tip of a triangle whose side was�lled in then add the side ells to S, and return (Q; S).Otherwise, let T be the set onsisting of all arriers of all Q-win-weaklinks found for G andlet R be the P -mustplay region de�ned with respet to T , namely the intersetion of the setof unoupied ells of B with eah of the elements of T . Remove from R any side-ells fromany empty P -triangle. While R is not empty, pik a ell x in R, and do the following:Let B�x be the state obtained from B� by adding a P -stone at x and, if x was the tip of an empty P -trianglebefore this move, �lling in the triangle. Reursively solveGx = (B�x; Q; P ). 11



If P wins Gx, say with win-link arrier X, then add toX the ell x as well as the two assoiated side-ells if xwas the tip of an empty P -triangle, and return (P;X).If Q wins Gx, say with win-weaklink X, then add X toT .If exeution reahes this point then the while loop terminated without disovering a win-weaklink for P , so the union U of elements of T is a arrier for a win-link for Q, so return(Q;U).A sample exeution of the algorithm is desribed in Figures 7 through 9. The orretness ofour algorithm follows diretly from the previous theorems.A1B2C3D4E5F6G7Fig. 7. Solver solves b6: initialization. After the initial move (left), the game-state is redued byapplying Theorem 5 and adding white stones to the two side-ells of the white side-triangle withtip b6. In the resulting state, White has two win-weaklinks (enter-left and enter-right) whoseresulting intersetion yields a 13-ell blak mustplay region (right). If Blak has a winning move,it has a winning move to one of these 13 ells.A1 B2 C3 D4 E5 F6 G
7

Fig. 8. Solver solves b6-4. As shown by the Solver b6 reursion tree in Figure 13, 4 isthe �rst blak response onsidered to the white b6 opening (left). Following the topmost pathb6-4-f2-d5-d4-5-e5-e4-g3-f3-g2-f4 in the reursion tree and applying Theorem 5 after f2 leads tothe �rst solved state (enter, with white win-weaklink); sine f4 is a leaf of the reursion tree, thewhite win-weaklink here was disovered statially. Solver ontinues solving the 4-subtree, even-tually determining that 4 is a blak loss (right, with white win-weaklink). This win-weaklink doesnot ontain 4 or b5, so, of the 13 possible b6-responses orresponding to the initial blak mustplayregion desribed in Figure 7, 11 moves remain to be heked.A1 B2 C3 D4 E5 F6 G
7

Fig. 9. Solver solves b6: onlusion. The move to f1 is the last blak reply onsidered in responseto the white b6 opening (left, with white win-weaklink), sine after the disovery of this last whitewin-weaklink, the set of suh win-weaklinks has empty intersetion. The union of these 11 whitewin-weaklinks gives the �nal win-link for White (right).12



5 SOLVER 7�7 1-Opening SolutionsAs mentioned earlier, Solver is strong enough to solve arbitrary 7�7 states. Figures 10 and11 summarize the results obtained by running Solver on all 49 7�7 1-openings. Figures 13and 14 show the Solver reursion trees from two of these exeutions, while Figure 15 showsa longest line of play from eah of the 49 solutions. Eah exeution was performed on a singleproesser mahine 2 ; in eah ase, the run time was roughly proportional to the number ofnodes in the Solver reursion tree, taking about one minute for the �ve 1-openings with thesmallest node-ounts, and about 110 hours for the 1-opening with the largest node-ount; thetotal run time for all 49 1-openings was about 615 hours. A listing of all 49 trees (inludinga tree viewer) is available at http://www.s.ualberta.a/~hayward/hex7trees.
A1 B2 C3 D4 E

5
F
6

G
7C4C4C4B6B6B6E3E3 C5D4 F2B6 D4E3 C5C5B6B6B6D3D3D3

Fig. 10. All 7�7 1-opening results, as found by Solver. The stone on eah ell indiates the winnerwith perfet play if White's �rst move is to that ell. The move indiated on eah losing ell is thewinning ountermove disovered.
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71405 61252 47688 164 136 89 502521

30421719110513912 2804 48876 90 1084920
16096652703 14623 1941 991 42387213929

2114653407737 7364 1225 5613 4051942564080
23579736165 1285 2459 15612 22481718714

1145199 197 118119 4502 12448200341389754
453194 1196 1162 1192 26759 46823 76212

Fig. 11. Number of nodes in the Solver 7�7 1-opening reursion trees.For any size Hex board, the set of winning open-move ell loations is symmetri with respetto reetion through the enter of the board. Notie that the Solver node-ounts do notshare this symmetry, as neither the order in whih Solver onsiders moves nor Solver's2 The program was ompiled with g 3.1.1 and run on an AMD Athlon 1800+ MHz proessorwith 512 MB memory running Slakware Linux.13



implementation of the stati omputation of virtual onnetions is designed to reet thissymmetry.Figure 12 demonstrates the relative strength of the three key parts of our algorithm, namelyvirtual onnetion omputation, side-triangle move domination, and side-triangle �ll-in, byshowing Solver node-ounts when various of these features are turned o�. In partiular, no-tie that adding side-triangle �ll-in to virtual onnetion omputation results in a substantialderease in the number of nodes onsidered, while further adding side-triangle dominationhas little e�et.As expeted, Solver with domination and �ll-in usually needs to explore fewer game-treenodes to solve a state than Solver-D, whih uses �ll-in but not domination; however, thereare a few exeptions. In partiular, for eah of the 6�6 openings d4, e5, f1, and f4 Solver-Dexplored slightly fewer nodes than Solver. One reason for this anomalous behaviour is that�ll-in an ause the arrier of the win-link returned by our algorithm to be unneessarilylarge.For example, if in a ertain state there is an empty side triangle for whih both the tip and aside ell are winning moves, then the arrier of the win-link disovered by making the moveto the tip will ontain both side ells and so be a proper superset of the arrier disoveredby making the move to the side ell; in this ase, if domination is not in e�et the smallerarrier will be disovered if move ordering happens to proess the side ell before the tip,and this smaller arrier may result in fewer reursive alls being made.
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8 229 1770 490 564 664

8 164 32 159 24 4
8 40 95 3 51 4

4 38 3 93 36 6
4 28 165 31 133 6

433 742 468 2270 176 68 229 1793 524 599 664
8 164 38 159 24 4

8 40 95 3 51 4
4 38 3 90 36 6

4 28 165 31 128 6
430 757 468 2267 176 68 503 48240 8132 8898 4123

8 242 40 24266 55 4
8 44 418 3 55 4

4 44 3 122 40 28
4 56 2441 130 115 28

5366 5943 34740 34084 644 28
Fig. 12. Number of nodes in the 6�6 1-opening reursion trees for Solver (top entry), Solver�D,namely Solver without side-ell domination (middle entry), and Solver�FD, namely Solverwith neither side-ell domination nor �ll-in (bottom entry). While orresponding data were obtainedfor some 7�7 1-openings, Solver�FD in partiular was too slow to exeute for all suh openings.For example, the b7 Solver�FD tree has 824796 nodes, ompared to only 1196 for Solver.In omparing the winning 7�7 opening moves (Figure 10) with winning opening moves onsmaller boards (Figure 2), some features ommon to eah of these n � n boards are worthnoting. For example, 14



� the n ells on the short diagonal (obtuse orner to obtuse orner) are all �rst-player winningopenings,� the n� 1 ells on eah of the �rst-player's sides (exept for the ell in the short diagonal)are all �rst-player losing openings.It would be of onsiderable interest to show whether these results hold in general, espeially ifthe proof is positive (as opposed to say a single ounterexample), sine to date, for arbitrarilylarge n� n boards,� no partiular move is known to be a �rst-player win,� the only moves that are known to be �rst-player losses are for n � 2, the two aute ornerells [4℄, and for n � 3, the two ells eah in the �rst-player's side and adjaent to theaute orner ell [5℄.6 Conlusions and Open ProblemsWe have shown how ombining stati and dynami virtual onnetion omputation methodswith some move domination results yields an algorithm strong enough to solve arbitrary7�7 Hex states. A next step is to design an algorithm strong enough to solve 8�8 states;preliminary results suggest that this is onsiderably more diÆult and that further tehniqueswill be required. Another diretion is to use Solver to gather 7�7 information that anbe used to �nd better move ordering heuristis for Hex game-tree searh on (muh) largerboards; for example, suh data would be useful in analyzing any loal on�guration withe�etive board size at most 7�7.AknowledgementsThe authors gratefully aknowledge the support of the Natural Sienes and EngineeringResearh Counil of Canada, the University of Alberta Researh Exellene Envelope, and theUniversity of Alberta GAMES Researh Group. Also, the fourth and �fth authors gratefullyaknowledge the support of an NSERC Summer Undergraduate Researh Award.We thank Mihael Buro, Maryia Kazekevih, Martin M�uller, and Jonathan Shae�er for theirassistane in sustaining the Mongoose Hex projet that was the starting point for this work.We also thank the referees for their detailed omments on earlier versions of this artile.Referenes[1℄ Vadim Anshelevih. The Game of Hex: An Automati Theorem Proving Approah to GameProgramming. Pro. 17th National Conf. on AI (AAAI-2000), pages 189{194, 2000.[2℄ Vadim Anshelevih. The Game of Hex: The Hierarhial Approah. In Rihard J. Nowakowski,editor,More Games of No Chane, volume 42 ofMSRI Publiations, pages 151{165. Cambridge15
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a4 b3 a2 a3 e4 f4f3 e3g2 f4g4 f3a3 b1 b2 1 e4 f4f3 e3g2 f4g4 f31 b2 e4 f4f3 e3g2 f4g4 f3e4 f4f3 e3g2 f4g4 f3e4 f4f3 e3g2 f4g4 f3b3 a4 e4 f4f3 e3g2 f4g4 f3e4 f4f3 e3g2 f4g4 f3e4 f4f3 e3g2 f4g4 f3f2 e3 d3 e2 d24 d3 e3 a5e1 2d1 f2 e3 f3d2 4e1 f2 e3 d4e2 e4 e3 b3f1 3 4 d3 d4 a5 a6 b5 b4 a4b5 a6 b4 a4b4 a4Fig. 13. The Solver reursion tree for the 7�7 opening White-b6 (with the ten nodes onneted bydotted edges added so that every path ends with a winning move). For eah node, the order of hildgeneration is top-to-bottom. Eah Solver reursion tree is a subtree of the omplete game-tree,as the only replies to a winning move whih appear in the reursion tree are those replies in thatstate's mustplay region. For example, onsider for the tree shown here the state G after White playsb6. As shown in the last diagram in Figure 8, White has a win-weaklink reated by playing at 4whih does not ontain b5; thus b5 is not in the Blak mustplay region for G, so Solver neverneeds to onsider the Blak move to b5, so b5 does not appear as a hild of b6 in this reursion tree.Notie from the tree shown here that in solving the b6 opening the seletion of d2 as the �rst moveonsidered at the b6-5-3-2 subtree was unfortunate, as d2 leads to a White loss whereas f2, theseond move onsidered, leads to a White win. If f2 had been onsidered �rst, the d2 subtree wouldnot have been explored, and the resulting reursion tree would have had only 97 nodes instead of197. 16
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f1 b6

d5 e6 f6 e4f5 e4g4 e4e4 e6 d6 d5 5 d36 d4f6 e5g4 e56 d3f5 d3 4 5f6 f5 d6 d5g4 f2e3 e5 d5 7 b7 6 d6 d76 b7 d6 d7d6 d76 d4 e4 d5 e5 f2 e3 e2e5 f2 4 d3e3 d3f4 d55 e5 d5 e4 e3 7f5 f2 e3 e4 f3 d3g3 f2f3 d3 e3 e6g2 e4 d5 e6g3 f2 e3 d3g4 f2 e3 e2Fig. 14. The Solver reursion tree for the 7�7 opening White-f1 (with the �ve nodes onnetedby dotted edges added so that every path ends with a winning move). For eah node, the orderof hild generation is top-to-bottom. Notie that the f1-b6 subtree, whih establishes that b6 is awinning ountermove to f1, is paradoxially smaller than the b6 subtree shown in Figure 13, inpart beause of the move ordering here is more fortunate than there. In this f1-tree, whenever it isWhite's turn to play, the �rst move onsidered turns out to be a winning move; this is not the asein the b6 tree shown in Figure 13.
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f2
e4 b6 d3 d4 e3 3 4 a5 a6 b5 b4 a4b5 a6 b4 a4b4 a45 b55 e5 e4 g3 f3 g2 f4 g4g2 f3 f4 g4f4 g4d5 b6 4 d4 5 e5 e4 g3 f3 g2 f4 g4g2 f3 f4 g4f4 g4d3 4 b5 55 b55 b5 3 4b7 d5 e4 f56 b6 5 b57 b6 5 b5d6 e4d7 b6 5 b5e3 e5 7 b6e4 b6 5 d5e6 b6 5 d5 6 4Fig. 16. A Solver proof tree for the 7�7 opening White-f2. The data for this tree was generatedby �rst running a modi�ed version of Solver in whih the �nal move onsidered from any positionis a winning move; this guarantees that every reursion tree path ends with a winning move. Theresulting reursion tree was then pruned, at all points in the tree, by removing any losing movesmade by the winning player before the winning move for that state was found.
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