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1 Introdu
tionHex is the 
lassi
 two-player board game invented by Piet Hein in 1942 and independentlyby John Nash around 1948 [11,12,20℄. The board 
onsists of a rhombus-shaped n�n arrayof hexagons, also 
alled 
ells. Ea
h player is assigned a set of stones and two opposing board? This is a revised and expanded version of [17℄. The support of NSERC is gratefully a
knowledged.Preprint submitted to Elsevier S
ien
e 25 April 2006



Fig. 1. An empty 7�7 board . . . and a �nished game; Bla
k wins.sides, all with the same 
olour; say Bla
k gets bla
k stones and sides, while White gets whitestones and sides. Players alternately pla
e a stone on an uno

upied 
ell. The �rst player toform a path 
onne
ting his/her two sides with his/her stones wins the game. See Figure 1.For more on Hex, see the text by Browne [8℄ or the survey by Hayward and Van Rijswij
k[14℄.In Hex, an unrestri
ted opening allows the �rst player to gain a 
onsiderable advantage. Inparti
ular, it is known that there exists a winning strategy for the �rst player [12℄. While noexpli
it strategy that holds for arbitrary sized boards is known, many players believe thatopening in the 
entermost 
ell in parti
ular is a winning move. In order to o�set this openingmove advantage, the game is often started a

ording to the following \swap rule": 
oloursare assigned to the four sides of the board, but not to the players; one player then pla
es astone on any 
ell; the other player then 
hooses whi
h 
olour stones to play with. The se
ondmove is played by the player whose stones are the opposite 
olour of the �rst stone. Fromthen on, the game 
ontinues in normal fashion, namely with players alternating moves.The swap rule has a balan
ing e�e
t on the �rst move: if the �rst player makes an obviouslywinning move, the se
ond player 
an swap and easily win the game; if the �rst player makesan obviously losing move, the se
ond player 
an 
ontinue without swapping, and again winthe game. The �rst player is thus led to sear
h for an opening move that is neither toostrong nor too weak, namely a move whose out
ome is diÆ
ult to dis
ern. While the swaprule transforms Hex from a game with a �rst-player winning strategy to a game with ase
ond-player winning strategy, the se
ond player 
an exploit this property only by knowingthe theoreti
al out
omes of all opening moves, and furthermore knowing how to play wellenough to win for ea
h opening.Thus the Hex swap rule raises two questions: (i) what is the theoreti
al out
ome for ea
hopening move, and (ii) among all opening moves, what are the 
omparative diÆ
ulties ofplaying perfe
tly after the move? In this paper we present a 
omputer algorithm that we useto answer these questions for the game of Hex played on a 7�7 board. In order to des
ribeour algorithm and the ideas behind it, we �rst need to introdu
e some terminology.We begin with game-state notation. The terms we use in this paper are 
onsistent with thoseused in [14℄. With respe
t to Hex, a board-state B des
ribes a parti
ular pla
ement of somenumber of bla
k stones and some number of white stones, su
h that ea
h 
ell has at mostone stone. We assume no 
onstraint on the relative number of stones of ea
h 
olour, as thegame may have started with a handi
ap advantage for one of the players; also, we introdu
ea form of game-state analysis that o

asionally requires the pla
ement of extra stones on theboard. The empty board-state has no stones on the board. A k-opening is a board-state with2



Fig. 2. Previously known 1-opening results. The stone on ea
h 
ell indi
ates the winner with perfe
tplay if White's �rst move is to that 
ell. For 
ells with no stone, the winner was not previouslyknown. The 6�6 results were reported by Enderton [9℄ and veri�ed by Van Rijswij
k by 
omputer[24℄. The 7�7 results were obtained by Yang et al. by hand [27{29℄.exa
tly k stones on the board. A game-state, or simply a state, G = (B;P;Q) is de�ned byspe
ifying a board-state B, the player P with the next move, and the opponent Q of playerP . In the de�nition of game-state, noti
e that it would be suÆ
ient to list only the playerwhose turn it is to play next; we list both players in the de�nition, sin
e the opponent of aplayer is often expli
itly mentioned in our proofs and dis
ussions.We say that a player wins a game-state if there exists a winning strategy for that player inthat game-state. Hex 
annot end in a draw, so for any game-state exa
tly one of the playerswins the game-state. The value of a game-state is the player who has a winning strategy;thus for any �xed board-state B the value of G = (B;P;Q) is either P or Q.A state is solved if its value is known, and expli
itly solved if a winning strategy is known. Aswe have already remarked, for the empty board-state on arbitrarily large boards, Hex hasbeen solved but not expli
itly solved.In this paper we present an algorithm that expli
itly solves arbitrary Hex states. The worst-
ase running time of our algorithm is exponential in the number of 
ells in the board, whi
his not surprising given that solving arbitrary Hex states is PSPACE-
omplete [21℄. Ouralgorithm is fast enough to solve 7�7 states in a reasonable amount of time, while solving8�8 states is 
urrently beyond rea
h. As a ben
hmark for the eÆ
ien
y of our algorithm, wesolve all 7�7 1-openings. Previously known 1-opening results are summarized in Figure 2.In solving these 1-openings our algorithm 
onstru
ts proof-trees whose terminal nodes 
or-respond to game-states in whi
h a winning virtual 
onne
tion is dete
ted; sin
e su
h virtual
onne
tions are typi
ally dete
ted many moves before the a
tual end of the game, ea
h proof-tree found by our algorithm is a proper subset of the 
omplete game-tree, in whi
h ea
h leafnode 
orresponds to a game-state in whi
h one player has a 
omplete winning 
hain. Sin
ethe size of the proof-trees we �nd 
an be used as a measure of the diÆ
ulty of playing theopening perfe
tly, the data we present 
an be used to answer the two questions raised earlier.Our results yield the �rst 
omputer solution of any Hex state on a 7�7 or larger board.Solving Hex states on 5�5 or smaller boards is 
omputationally routine; for larger boards, theproblem is more 
hallenging. Enderton reported the values of all 6�6 1-openings, although3



with no explanation of how he obtained his results [9℄. Van Rijswij
k independently veri�edthese results by 
omputer, using an alpha-beta sear
h guided by a Hex-spe
i�
 evaluationfun
tion. By providing useful move ordering, his heuristi
 fun
tion evaluation led to thedis
overy of winning moves sooner than by using unguided sear
h; in this way, his algorithmsolved all 1-openings and many longer openings [24,23℄. As this method was not strongenough to solve 7�7 states, Van Rijswij
k further des
ribed but did not implement analternative re
ursive algorithm [25℄. Re
ently Yang et al. solved by hand several 7�7 1-openings [27{29℄, one 8�8 1-opening [26℄ and one 9�9 1-opening [26℄.Our algorithm solves an arbitrary Hex state by 
omputing a winning virtual 
onne
tiona

ording to dynami
-state 
omposition rules. Following the re
ursive game-tree sear
h pro-posed by Van Rijswij
k, our algorithm is enhan
ed by the 
omputation of �xed-state virtual
onne
tions; additionally, some new Hex move domination and �ll-in results allow signi�
antpruning of the game-tree.Before presenting our algorithm in x4 and our 7�7 results in x5, we provide ne
essary ba
k-ground information on virtual 
onne
tions in x2 and domination and �ll-in in x3.2 Virtual Conne
tionsRoughly, a 
onne
tion subgame in Hex is a subgame in whi
h one of the players 
an form a
onne
tion between two spe
i�ed sets of 
ells. If the player 
an 
onne
t the two sets even ifthe opponent moves �rst, the 
onne
tion subgame is 
alled a virtual 
onne
tion; if the playermust have the �rst move in order to guarantee the 
onne
tion, the 
onne
tion subgame is
alled a weak 
onne
tion or a virtual semi
onne
tion.We now de�ne these terms more formally. Our de�nitions are essentially those from [3℄,although our notation is slightly di�erent.We 
onsider ea
h of the four boundary sides of the board as an o

upied set of 
ells. LetS;X; Y be pairwise non-interse
ting sets of 
ells su
h that the 
ell set formingX is 
onne
ted(namely, for any two 
ells in X, there is a 
ell-to-
ell path that stays in X), the 
ell setforming Y is 
onne
ted, and all 
ells in S are uno

upied. A P -stone is a stone belonging toP . For a �xed board-state B and a player P , the subgame P (B:X,S,Y ) is the game of Hexrestri
ted to playing in S, where P wins by forming a 
hain of P -stones 
onne
ting X andY . P (B:X,S,Y ) is a weak 
onne
tion for P if P has a winning strategy for this subgameassuming that P plays �rst, and a virtual 
onne
tion for P if P has a winning strategy forthis subgame even if P 's opponent plays �rst. For a virtual 
onne
tion or weak 
onne
tionP (B:X,S,Y ), S and X; Y are usually referred to as the 
arrier and ends respe
tively.These notions are illustrated in Figure 3. For example, the leftmost diagram in this �gureshows a Bla
k weak 
onne
tion between the bla
k stone and the bottom-right side: if ea
hof the dotted 
ells is uno

upied and it is Bla
k's turn to move, then Bla
k 
an for
e a
onne
tion by moving to the white-dotted 
ell. The next two diagrams in this �gure showtwo more Bla
k weak 
onne
tions. Noti
e that the 
ommon interse
tion of the 
ell sets thatform these three Bla
k weak 
onne
tions is empty. This implies that the union of the three4



Fig. 3. Three weak 
onne
tions and a virtual 
onne
tion.
ell sets, indi
ated in the rightmost diagram in the �gure, forms a Bla
k virtual 
onne
tionfrom the bla
k stone to the bottom right side: if all the dotted 
ells in this diagram areuno

upied and it is White's turn to move, then whatever White does will leave all the 
ellsof at least one of these weak 
onne
tions uno

upied with Bla
k to move; Bla
k 
an thenmove to the white-dotted 
ell of that weak 
onne
tion and for
e a 
onne
tion.Although de�ned slightly di�erently by di�erent authors, virtual 
onne
tions have long beenre
ognized as being 
entral to Hex strategy. Referen
es to virtual 
onne
tions permeatethe Hex literature, where they are also referred to as \
onne
tions" or \safe groups". Forexample, various forms of virtual 
onne
tions are dis
ussed by Berge [6,15℄ 1 , S
hensted andTitus [22℄, Browne [8℄, and Anshelevi
h [3℄.Virtual-
onne
tions are useful in solving Hex states sin
e, when a

ompanied by an expli
itstrategy, a virtual 
onne
tion serves as a proof or 
erti�
ate that a pair of 
ells 
an be
onne
ted. The most important virtual 
onne
tions and weak 
onne
tions are those whi
h
onne
t a player's two sides, sin
e su
h a 
onne
tion o

urs by de�nition if and only ifthere is an asso
iated winning strategy. We 
all su
h subgames win-links and win-weaklinksrespe
tively. We use P (B:�; S;�) to denote su
h a 
onne
tion joining P 's two sides.Conne
tion subgames are parti
ularly useful in Hex end-game analysis. For example, Bergeobserved that a move to a 
ell that is not in the 
arrier of some opponent win-weaklink is alosing move, sin
e on the next move the opponent 
an turn the win-weaklink into a win-link.For a �xed game-state, we 
all the interse
tion of the set of all uno

upied board 
ellswith all known opponent win-weaklink 
arriers a player's must-play. For a player X and anuno

upied 
ell 
 of a board-state B, we de�ne B + 
X as the state obtained from B byadding an X-stone at 
. Using this notation, Berge's remark 
an be restated as follows:Theorem 1 (Berge [6,15℄) If 
 is not in P 's must-play for (B;P;Q) then Q wins (B +
P ; Q; P ).Proof. If 
 is not in P 's must-play for (B;P;Q) then there is a win-weaklink Q(B:�; S;�)su
h that 
 is not in S. Sin
e Q(B:�; S;�) is a win-weaklink, there is some 
ell d in S su
hthat Q(B + dQ:�; S � dQ;�) is a win-link. Sin
e 
 is not in S, Q(B + 
P + dQ:�; S � dQ;�)is also a win-link, so Q wins (B + 
P ; Q; P ). 2Noti
e that the 
omputation of a mustplay region is a form of null move analysis, as itinvolves the 
onsideration of what 
an o

ur if a player skips a turn.A useful feature of virtual 
onne
tions is that smaller ones 
an be 
ombined in various waysto form larger ones. The knowledge of this fa
t is as old as Hex itself; for example, it is1 A translated version of [6℄ appears in [15℄ 5



dis
ussed in detail in [6℄. Re
ently, Anshelevi
h [1,3,2℄ used the following set of 
ombiningrules to 
ompute 
onne
tion subgames in an indu
tive or \bottom-up" fashion.Theorem 2 (Anshelevi
h [1,3,2℄)� and-rule: Let P (B:X,S,Y ) and P (B:Y ,T ,Z) be virtual 
onne
tions with X and S ea
hdisjoint from T and Z. Then (i) if ea
h 
ell of Y has a P -stone then P (B:X,S [ T [ Y ,Z)is a virtual 
onne
tion (ii) if Y 
onsists of a single 
ell then P (B:X,S [ T ,Z) is a weak
onne
tion.� or-rule: Let P (B:X,Sj,Y ) be a weak 
onne
tion for j = 1; : : : ; t su
h that the interse
tionof the sets Sj is empty. Then P (B:X,S,Y ) is a virtual 
onne
tion, where S is the unionof the sets Sj. 2Noti
e that part (i) of the and-rule is essentially a restatement of the previous Berge ob-servation. Also noti
e that this set of rules is stati
, in that it yields a 
lass of 
onne
tionsubgames for a �xed state. Anshelevi
h pointed out that this set of rules is not suÆ
ient toestablish all virtual 
onne
tions of a state, and is thus not strong enough to solve all Hexstates; however, the rules do yield a suÆ
iently large 
lass of virtual 
onne
tions to providean e�e
tive subroutine of a strong Hex-playing program [1,3,2℄.As Van Rijswij
k observed, an alternative method of 
omputing 
onne
tion subgames isto pro
eed through the game-tree dynami
ally. For a state G = (B;P;Q) and for ea
huno

upied 
ell x of B, de�ne G + xP as (B + xP ; Q; P ); when the player P is 
lear from
ontext we shall sometimes write G+x in pla
e of G+xP . Van Rijswij
k's dis
ussion in [25℄suggests the following set of rules. The symbol � denotes the empty set. For a player P , aP -winning 
hain is a 
hain of P -stones that 
onne
ts P 's two sides.Theorem 3 (Van Rijswij
k [25℄) Consider a board-state B and players P;Q. If B has a P -winning 
hain then P (B:�; �;�) is a win-link. If B has no P -winning or Q-winning 
hainthen P wins (B;P;Q) if and only if P wins (B + 
P ; Q; P ) for some uno

upied 
ell 
 of B;in parti
ular� if P wins (B + 
P ; Q; P ) with a win-link P (B + 
P :�; S;�) then P (B:�; S + 
P ;�) is awin-weaklink,� if, for ea
h uno

upied 
ell 
j, Q wins (B+
jP ; Q; P ) with some win-linkQ(B + 
jP :�; Sj;�)then the interse
tion of the sets Sj is empty,� if there is a set C of uno

upied 
ells su
h that, for ea
h 
j in C, Q wins (B + 
jP ; Q; P )with some win-link Q(B + 
jP :�; Sj;�) and the interse
tion of the sets Sj is empty, thenQ(B:�; S;�) is a win-link, where S is the union of the sets Sj.Proof (sket
h). The proof follows by elementary game-theory arguments from the fa
t that
Fig. 4. A white win-weaklink . . . and a 
orresponding win-link.6



SSS SSSSSGWhite to move loses, Bla
k win-link S = fS2 [ y2g [ fS3 [ y3gy1S1S1G+ x1Bla
k wins, win-weaklink S1 [ y1 y2S2S2G+ x2Bla
k wins, win-weaklink S2 [ y2 y3S3S3S3S3G+ x3Bla
k wins, win-weaklink S3 [ y3
S1S1G+ x1 + y1White loses, win-link S1 S2S2G+ x2 + y2White loses, win-link S2 S3S3S3S3G+ x3 + y3White loses, win-link S3Fig. 5. An example illustrating Theorem 3.any Hex state has exa
tly one winner. This fa
t in turn requires some 
are to prove; see forexample [4,10,14℄. 2Figure 5 illustrates Theorem 3. The root state G is a loss for White. Three of White's possiblemoves are explored. In ea
h state G+ xi, the move yi yields a bla
k win; the resulting stateG + xi + yi has a bla
k win-link 
arrier Si, so G + xi has a bla
k win-weaklink with 
arrierSi[yi; this win-weaklink implies that xi loses inG, and moreover that any white move outsideof Si [ yi loses. The interse
tion of these three win-weaklink 
arriers is empty. Indeed, theinterse
tion of just the two win-weaklink 
arriers S2 [ y2 and S3 [ y3 is already empty, whi
hmeans that the union of these two win-weaklink 
arriers is a bla
k win-link in G. It alsomeans that the exploration of these two bran
hes of the game-tree is suÆ
ient to determinethat White loses G; the 
onsideration of any other move is unne
essary.Noti
e that these rules are by their de�nition 
omplete: they 
an be used to solve anyarbitrary Hex state.From a 
omputational point of view, the diÆ
ulty with the two pre
eding sets of rules is thatthe number of possible 
onne
tion subgames that 
an be 
omputed in this way is exponentialin the number of 
ells. For this reason, an exhaustive approa
h to 
omputing 
onne
tion sub-games based on either rule set will be for
ed to limit the number of intermediate 
onne
tionsubgames 
omputed.For both the stati
 and dynami
 
omputational pro
esses, what is needed is some way ofdistinguishing those intermediate 
onne
tion sets that are 
riti
al to solving the parti
ularstate from those that are not. We 
lose this se
tion by giving eviden
e that this is likely to7



be a diÆ
ult problem.Assume that at some point in a 
omputation involving the dynami
 rules it is dis
overedthat player P has no winning move in a state G. It follows that P 's opponent Q has awin-weaklink Sx after ea
h possible move x by P and that the union of any 
olle
tion ofthese win-weaklinks whi
h have an empty interse
tion establishes a win-link for Q. If G isan intermediate state in the pro
ess of solving some earlier state, then P needs to 
omputesu
h a win-link to pass ba
k to the state that gave rise to G. It is reasonable to expe
tthat a useful win-link to pass ba
k would be one that has the smallest number of 
ells,among all su
h possible win-links. However, it is also reasonable to expe
t this problemto be 
omputationally diÆ
ult, sin
e it seems to be intimately related to determining theout
ome of a Hex game, whi
h we have already noted is PSPACE-
omplete. Saks observedthat this problem is indeed 
omputationally diÆ
ult, as we now explain.The Minimum-Union Empty Interse
tion Problem (MUEIP) is the de
ision problem thattakes as input an integer k together with a set S = fS1; : : : ; Stg of subsets of a �nite setV and asks whether there is a subset T of S su
h that the interse
tion of the sets in T isempty and the union of the sets in T has size at most k. Minimum Cover is the de
isionproblem that takes as input an integer k together with a set A = fA1; : : : ; Atg of subsets ofa �nite set V and asks whether there is a subset of at most k elements of A whose union isV . Minimum Cover, referred to as Problem [SP5℄ in the text by Garey and Johnson [13℄ andsometimes also known as Minimum Set Cover, was shown to be NP-
omplete by Karp [18℄.Theorem 4 (Mi
hael Saks, private 
ommuni
ation) MUEIP is NP-
omplete.Proof. Consider an instan
e of Minimum Cover, where k, A, and V are as de�ned above andn = jV j. This instan
e 
an be transformed in polynomial time into an instan
e of MUEIP,as follows.For ea
h index j, let Bj be the set 
omplement (with respe
t to V ) of Aj; also, let B =fB1; : : : ; Btg. Observe that the union of k elements of A is equal to V if and only if theinterse
tion of the 
orresponding k elements of B is empty. Let V 0 be the set obtained byadding t(n + 1) new elements to V . For ea
h index j, let B0j be the set obtained by addingn + 1 of the new elements to Bj in su
h a way that ea
h Bj gets expanded by a set of newelements disjoint from all other new elements. Let B0 = fB01; : : : ; B0tg. Observe that a set ofk elements of B has empty interse
tion if and only if the 
orresponding set of k element ofB0 has empty interse
tion, and this o

urs if and only if the same set of k elements of B0 hasempty interse
tion and union with size at most k(n + 1) + n.Sin
e MUEIP is 
learly in NP, the theorem follows from the pre
eding transformation andthe fa
t that Minimum Cover is NP-
omplete [18℄. 2Kiefer re
ently showed that 
omputing virtual 
onne
tions using only the stati
 
ombiningrules des
ribed earlier is PSPACE-
omplete [19℄. Theorem 4 suggests that 
omputing virtual
onne
tions using dynami
 
ombining rules is also likely to be 
omputationally diÆ
ult. Thusany algorithm that solves arbitrary Hex states by 
omputing virtual 
onne
tions dynami
allyand/or stati
ally will probably need to use some extra game knowledge in order to redu
e8



the 
omplexity of sear
hing through the game-tree. We dis
uss some su
h redu
tions in thenext se
tion.3 Game-State Redu
tion: Domination and Fill-inOne reason that Hex is a 
hallenge for 
omputers to play or solve is the high bran
hingfa
tor; espe
ially in the early stages of the game, the number of possible moves is high. Inthis se
tion we des
ribe two kinds of game-state redu
tions. Ea
h redu
tion strengthens thealgorithm impli
itly des
ribed by the virtual 
onne
tion 
omposition rules of the previousse
tion by allowing the game-tree to be pruned. We refer to these redu
tions as dominationand �ll-in.Informally, one move dominates another if the former is at least as good as the latter. Sin
ewe are interested here only in determining the value of a game-state, one move is \at leastas good as" another if the former yields a win whenever the latter yields a win. Formally,for possible moves u; v from a state G = (B;P;Q), we say that u dominates v if P wins(B + uP ; Q; P ) whenever P wins (B + vP ; Q; P ).Domination results are useful for our purposes sin
e, in sear
hing the game-tree for a win-ning move, a dominated move at a parti
ular state 
an be ignored as long as at least onedominating move at that state is 
onsidered. Unfortunately, few Hex domination results areknown. One su
h result is due to Be
k, who proved that on an empty board size 2�2 orlarger, moving to an a
ute 
orner is a losing, and so dominated, move [4℄. The board 
ell
oordinate system we use in this paper is shown in Figure 6 and subsequent �gures. The twoa
ute 
orners of the boards of Figure 6 are A1 and G7.\Fill-in" refers to pla
ing stones on a board that do not alter the value of an asso
iatedgame-state. Hayward re
ently established a domination and �ll-in result involving a 
ertainthree-
ell 
on�guration [16℄; this is explained in Theorem 5.Our algorithm uses Theorem 5 in two ways. Firstly, for any state (B;P;Q) with an empty P -triangle, the two P -moves to the side of the triangle 
an be ignored sin
e they are dominatedby the P -move to the tip. Se
ondly, for any state (B;Q; P ) with a P -triangle with a P -stoneat the tip and the two side 
ells uno

upied, ea
h 
ell of this side pair 
an be �lled witha P -stone without 
hanging the out
ome of the game. As 
an be seen from Figure 12, these
ond result is parti
ularly useful when 
ombined with our virtual 
onne
tion 
omputationapproa
h.The key idea in the proof of Theorem 5 is that if P ever plays at the tip of an empty P -sidetriangle, it is thereafter pointless for Q to play into either of the two adja
ent side 
ells. Thereason for this is that P 
ould immediately reply into the other side 
ell and make the Q-stone \dead", in the sense that the Q-stone will not be in any minimal winning Q-
hain. Thisidea has re
ently been developed to establish more general domination and �ll-in results; see[14,7℄ for more details.For a player P , a P -side 
ell is any 
ell that borders one of P 's two boundary sides, a P -9



side pair is a set fx; yg of two adja
ent P -side 
ells, and a P -triangle is an ordered triple(x; y; t) where fx; yg is a P -side pair and t is the unique board 
ell adja
ent to both x andy; t is 
alled the tip of the side triangle. A P -triangle is empty if ea
h 
ell of the triangle isuno

upied. See Figure 7.Theorem 5 (Hayward [16℄) Let B be a board-state with an empty P -triangle (x; y; t). Thena player R in fP;Qg wins any one of the four states (B + tP ; Q; P ), (B + tP + xP ; Q; P ),(B + tP + yP ; Q; P ), (B + tP + xP + yP ; Q; P ) if and only if R wins all of them. Also, forea
h 
ell z in fx; yg, P wins Gt = (B + tP ; Q; P ) if P wins Gz = (B + zP ; Q; P ).Proof. Hex is a so-
alled \regular" game: altering a game-state by adding an extra stoneis never disadvantageous for the player whose stone was added [11℄. This property 
an bestated more formally as follows: for ea
h uno

upied 
ell x of a board-state B and for ea
hplayer R in fP;Qg, R wins (B + xR; P; Q) if R wins (B;P;Q).The se
ond statement of the theorem follows from the �rst statement and the regularity ofHex, sin
e P wins (B+tP +xP +yP ; Q; P ) if P wins (B+zP ; Q; P ) and P wins (B+tP ; Q; P )if P wins (B + tP + xP + yP ; Q; P ).Consider then the �rst statement of the theorem. Sin
e Hex 
annot end in a draw [11℄, itsuÆ
es to prove this statement for one of the two players, say for R = P . Also, regularitysimpli�es the task of proving this statement, sin
e by regularity P wins (B+tP+xP+yP ; Q; P )if P wins (B + tP + yP ; Q; P ) or (B + tP + xP ; Q; P ), and P wins (B + tP + yP ; Q; P ) and(B + tP + xP ; Q; P ) if P wins (B + tP ). Thus to prove the �rst statement of the theorem itsuÆ
es to show thatP wins G0 = (B + tP ; Q; P ) if P wins G = (B + tP + xP + yP ; Q; P ). (�)We prove (�) by 
onstru
ting a strategy S 0 for P and G0 from a strategy S for P and G su
hthat S 0 wins G0 if S wins G. S 0 is de�ned as follows:(i) in response to a Q-move to either 
ell of fx; yg, P plays into the other 
ell(ii) in response to a Q-move not to either 
ell of fx; yg, if there is a P -
hain 
onne
ting theP -stone at 
ell t to P 's other side of the board then P plays into either 
ell of fx; yg towin the game; otherwise P plays as in the state of S obtained from the 
urrent state by
hanging the status of 
ells x and y so that both are o

upied by P -stones.Now suppose that S wins G for P and 
onsider a 
ontinuation of G0 in whi
h P playsa

ording to S 0. It is easy to show by indu
tion on the number of uno

upied board 
ellsof B0 that for ea
h state G0j = (B0j; P; Q) rea
hed in this 
ontinuation, the asso
iated stateGj = (Bj; P; Q) rea
hed by following S has the property that Bj and B0j are equal ex
eptpossibly for the 
ontents of 
ells x and y; these two 
ells are both P -stones in Bj whereas inB0j they are either both uno

upied or 
ontain at least one P -stone.We �nish the proof by 
ontradi
tion: suppose that there is a winning Q-
hain in B0j. Noti
ethat su
h a 
hain 
ontains at most one 
ell of x or y, sin
e at least one 
ell of fx; yg isuno

upied or has a P -stone. Suppose that the 
hain 
ontains one of these two 
ells, say y.Sin
e the six neighbours of y in
lude x, t, and two 
ells from P 's boundary and sin
e noneof these four 
ells 
ontains a Q-stone, the two other neighbours of y are the neighbours of10



y on the Q-
hain. Sin
e these two neighbours are themselves adja
ent, removing y from theQ-
hain leaves a shorter winning Q-
hain. Thus the existen
e of a winning Q-
hain in B0jimplies the existen
e of a winning Q-
hain in B0j that does not in
lude any 
ell from fx; yg.But S and S 0 are the same with respe
t to all 
ells ex
ept x and y, so the existen
e of su
h a
hain implies the existen
e of a winning Q-
hain in Bj, 
ontradi
ting our earlier assumptionthat S wins G for P . It follows that there is no winning Q-
hain in B0j, so it follows byindu
tion on the number of uno

upied 
ells of B0 that S 0 wins G0 for P . 2
A1B2C3D4E5F6G7Fig. 6. Illustrating the �rst part of Theorem 5. Applying this result to the white side triangle withtip E2, it follows that a player has a winning strategy for one of these board-states if and only ifthat player has a winning strategy for all of these board-states.

4 The AlgorithmOur algorithm Solver 
ombines the approa
hes suggested by Theorems 1, 2, 3, and 5. Fora player P with opponent Q, the algorithm solves a state G = [P;B℄ as follows.Algorithm SolverInput: A Hex game-state G = (B;P;Q).Output: The value of G together with the 
arrier of a win-link for G.For ea
h side triangle for whi
h the �rst statement of Theorem 5 applies, add stones to theappropriate side 
ells; 
all the resulting board B�. Stati
ally 
ompute virtual 
onne
tions andweak 
onne
tions. If a win-weaklink P (B:�; S;�) is dete
ted then return (P; S); if a win-linkQ(B:�; S;�) is dete
ted then, if the win-link uses the the tip of a triangle whose side was�lled in then add the side 
ells to S, and return (Q; S).Otherwise, let T be the set 
onsisting of all 
arriers of all Q-win-weaklinks found for G andlet R be the P -mustplay region de�ned with respe
t to T , namely the interse
tion of the setof uno

upied 
ells of B with ea
h of the elements of T . Remove from R any side-
ells fromany empty P -triangle. While R is not empty, pi
k a 
ell x in R, and do the following:Let B�x be the state obtained from B� by adding a P -stone at x and, if x was the tip of an empty P -trianglebefore this move, �lling in the triangle. Re
ursively solveGx = (B�x; Q; P ). 11



If P wins Gx, say with win-link 
arrier X, then add toX the 
ell x as well as the two asso
iated side-
ells if xwas the tip of an empty P -triangle, and return (P;X).If Q wins Gx, say with win-weaklink X, then add X toT .If exe
ution rea
hes this point then the while loop terminated without dis
overing a win-weaklink for P , so the union U of elements of T is a 
arrier for a win-link for Q, so return(Q;U).A sample exe
ution of the algorithm is des
ribed in Figures 7 through 9. The 
orre
tness ofour algorithm follows dire
tly from the previous theorems.A1B2C3D4E5F6G7Fig. 7. Solver solves b6: initialization. After the initial move (left), the game-state is redu
ed byapplying Theorem 5 and adding white stones to the two side-
ells of the white side-triangle withtip b6. In the resulting state, White has two win-weaklinks (
enter-left and 
enter-right) whoseresulting interse
tion yields a 13-
ell bla
k mustplay region (right). If Bla
k has a winning move,it has a winning move to one of these 13 
ells.A1 B2 C3 D4 E5 F6 G
7

Fig. 8. Solver solves b6-
4. As shown by the Solver b6 re
ursion tree in Figure 13, 
4 isthe �rst bla
k response 
onsidered to the white b6 opening (left). Following the topmost pathb6-
4-f2-d5-d4-
5-e5-e4-g3-f3-g2-f4 in the re
ursion tree and applying Theorem 5 after f2 leads tothe �rst solved state (
enter, with white win-weaklink); sin
e f4 is a leaf of the re
ursion tree, thewhite win-weaklink here was dis
overed stati
ally. Solver 
ontinues solving the 
4-subtree, even-tually determining that 
4 is a bla
k loss (right, with white win-weaklink). This win-weaklink doesnot 
ontain 
4 or b5, so, of the 13 possible b6-responses 
orresponding to the initial bla
k mustplayregion des
ribed in Figure 7, 11 moves remain to be 
he
ked.A1 B2 C3 D4 E5 F6 G
7

Fig. 9. Solver solves b6: 
on
lusion. The move to f1 is the last bla
k reply 
onsidered in responseto the white b6 opening (left, with white win-weaklink), sin
e after the dis
overy of this last whitewin-weaklink, the set of su
h win-weaklinks has empty interse
tion. The union of these 11 whitewin-weaklinks gives the �nal win-link for White (right).12



5 SOLVER 7�7 1-Opening SolutionsAs mentioned earlier, Solver is strong enough to solve arbitrary 7�7 states. Figures 10 and11 summarize the results obtained by running Solver on all 49 7�7 1-openings. Figures 13and 14 show the Solver re
ursion trees from two of these exe
utions, while Figure 15 showsa longest line of play from ea
h of the 49 solutions. Ea
h exe
ution was performed on a singlepro
esser ma
hine 2 ; in ea
h 
ase, the run time was roughly proportional to the number ofnodes in the Solver re
ursion tree, taking about one minute for the �ve 1-openings with thesmallest node-
ounts, and about 110 hours for the 1-opening with the largest node-
ount; thetotal run time for all 49 1-openings was about 615 hours. A listing of all 49 trees (in
ludinga tree viewer) is available at http://www.
s.ualberta.
a/~hayward/hex7trees.
A1 B2 C3 D4 E

5
F
6

G
7C4C4C4B6B6B6E3E3 C5D4 F2B6 D4E3 C5C5B6B6B6D3D3D3

Fig. 10. All 7�7 1-opening results, as found by Solver. The stone on ea
h 
ell indi
ates the winnerwith perfe
t play if White's �rst move is to that 
ell. The move indi
ated on ea
h losing 
ell is thewinning 
ountermove dis
overed.
A1 B2 C

3
D
4

E
5

F

6

G

7
71405 61252 47688 164 136 89 502521

30421719110513912 2804 48876 90 1084920
16096652703 14623 1941 991 42387213929

2114653407737 7364 1225 5613 4051942564080
23579736165 1285 2459 15612 22481718714

1145199 197 118119 4502 12448200341389754
453194 1196 1162 1192 26759 46823 76212

Fig. 11. Number of nodes in the Solver 7�7 1-opening re
ursion trees.For any size Hex board, the set of winning open-move 
ell lo
ations is symmetri
 with respe
tto re
e
tion through the 
enter of the board. Noti
e that the Solver node-
ounts do notshare this symmetry, as neither the order in whi
h Solver 
onsiders moves nor Solver's2 The program was 
ompiled with g

 3.1.1 and run on an AMD Athlon 1800+ MHz pro
essorwith 512 MB memory running Sla
kware Linux.13



implementation of the stati
 
omputation of virtual 
onne
tions is designed to re
e
t thissymmetry.Figure 12 demonstrates the relative strength of the three key parts of our algorithm, namelyvirtual 
onne
tion 
omputation, side-triangle move domination, and side-triangle �ll-in, byshowing Solver node-
ounts when various of these features are turned o�. In parti
ular, no-ti
e that adding side-triangle �ll-in to virtual 
onne
tion 
omputation results in a substantialde
rease in the number of nodes 
onsidered, while further adding side-triangle dominationhas little e�e
t.As expe
ted, Solver with domination and �ll-in usually needs to explore fewer game-treenodes to solve a state than Solver-D, whi
h uses �ll-in but not domination; however, thereare a few ex
eptions. In parti
ular, for ea
h of the 6�6 openings d4, e5, f1, and f4 Solver-Dexplored slightly fewer nodes than Solver. One reason for this anomalous behaviour is that�ll-in 
an 
ause the 
arrier of the win-link returned by our algorithm to be unne
essarilylarge.For example, if in a 
ertain state there is an empty side triangle for whi
h both the tip and aside 
ell are winning moves, then the 
arrier of the win-link dis
overed by making the moveto the tip will 
ontain both side 
ells and so be a proper superset of the 
arrier dis
overedby making the move to the side 
ell; in this 
ase, if domination is not in e�e
t the smaller
arrier will be dis
overed if move ordering happens to pro
ess the side 
ell before the tip,and this smaller 
arrier may result in fewer re
ursive 
alls being made.
A1 B

2
C
3

D
4

E

5

F

6
8 229 1770 490 564 664

8 164 32 159 24 4
8 40 95 3 51 4

4 38 3 93 36 6
4 28 165 31 133 6

433 742 468 2270 176 68 229 1793 524 599 664
8 164 38 159 24 4

8 40 95 3 51 4
4 38 3 90 36 6

4 28 165 31 128 6
430 757 468 2267 176 68 503 48240 8132 8898 4123

8 242 40 24266 55 4
8 44 418 3 55 4

4 44 3 122 40 28
4 56 2441 130 115 28

5366 5943 34740 34084 644 28
Fig. 12. Number of nodes in the 6�6 1-opening re
ursion trees for Solver (top entry), Solver�D,namely Solver without side-
ell domination (middle entry), and Solver�FD, namely Solverwith neither side-
ell domination nor �ll-in (bottom entry). While 
orresponding data were obtainedfor some 7�7 1-openings, Solver�FD in parti
ular was too slow to exe
ute for all su
h openings.For example, the b7 Solver�FD tree has 824796 nodes, 
ompared to only 1196 for Solver.In 
omparing the winning 7�7 opening moves (Figure 10) with winning opening moves onsmaller boards (Figure 2), some features 
ommon to ea
h of these n � n boards are worthnoting. For example, 14



� the n 
ells on the short diagonal (obtuse 
orner to obtuse 
orner) are all �rst-player winningopenings,� the n� 1 
ells on ea
h of the �rst-player's sides (ex
ept for the 
ell in the short diagonal)are all �rst-player losing openings.It would be of 
onsiderable interest to show whether these results hold in general, espe
ially ifthe proof is positive (as opposed to say a single 
ounterexample), sin
e to date, for arbitrarilylarge n� n boards,� no parti
ular move is known to be a �rst-player win,� the only moves that are known to be �rst-player losses are for n � 2, the two a
ute 
orner
ells [4℄, and for n � 3, the two 
ells ea
h in the �rst-player's side and adja
ent to thea
ute 
orner 
ell [5℄.6 Con
lusions and Open ProblemsWe have shown how 
ombining stati
 and dynami
 virtual 
onne
tion 
omputation methodswith some move domination results yields an algorithm strong enough to solve arbitrary7�7 Hex states. A next step is to design an algorithm strong enough to solve 8�8 states;preliminary results suggest that this is 
onsiderably more diÆ
ult and that further te
hniqueswill be required. Another dire
tion is to use Solver to gather 7�7 information that 
anbe used to �nd better move ordering heuristi
s for Hex game-tree sear
h on (mu
h) largerboards; for example, su
h data would be useful in analyzing any lo
al 
on�guration withe�e
tive board size at most 7�7.A
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f1 b6

d5 e6 f6 e4f5 e4g4 e4e4 e6 d6 d5 
5 d3
6 d4f6 e5g4 e5
6 d3f5 d3 
4 
5f6 f5 d6 d5g4 f2e3 e5 d5 
7 b7 
6 d6 d7
6 b7 d6 d7d6 d7
6 d4 e4 d5 e5 f2 e3 e2e5 f2 
4 d3e3 d3f4 d5
5 e5 d5 e4 e3 
7f5 f2 e3 e4 f3 d3g3 f2f3 d3 e3 e6g2 e4 d5 e6g3 f2 e3 d3g4 f2 e3 e2Fig. 14. The Solver re
ursion tree for the 7�7 opening White-f1 (with the �ve nodes 
onne
tedby dotted edges added so that every path ends with a winning move). For ea
h node, the orderof 
hild generation is top-to-bottom. Noti
e that the f1-b6 subtree, whi
h establishes that b6 is awinning 
ountermove to f1, is paradoxi
ally smaller than the b6 subtree shown in Figure 13, inpart be
ause of the move ordering here is more fortunate than there. In this f1-tree, whenever it isWhite's turn to play, the �rst move 
onsidered turns out to be a winning move; this is not the 
asein the b6 tree shown in Figure 13.
19



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19a1 
4 a6 f2 d3 b6 e4 d4 e3 e5 d5 e1 e2 f1 a3 b2 
2 
3 a4 d2 b5 a2 b3 a5 b4 a7 
5 
7 b7 
6 d6 d7a2 e3 f4 d5 
5 d3 g2 e6 e5 
7 d6 d7 g5 f7 e7 f6 b6 d2 
6 g1 f2 f1 e1 e2 a4 b3a3 d4 
5 b4 
4 d2 
3 
2 b3 b1 b2 
1 e4 f2 e2 d5 d3 b7 a7 b6 a6 b5 e3 e5 
6 
7 d6 d7a4 b3 d3 d5 
5 d2 
2 b7 a7 b6 a6 b5 e5 
3 a5 b1 a3 b2 e4 f1 e2 e1 g1 f2 g2 f3 g3 f4 g4 f5 g5 f7 f6 e7 e6 d7 
4a5 b6 
5 e3 f4 d5 
6 
3 d3 e1 e2 f1 g1 f2 d2 d1 g2 f3 g3 e6 d6 e5 g5 f7 e7 f6 d4 e4a6 f1 
3 b5 
6 d4 
4 
5 a5 b4 a4 b3 a3 a7 b6 b1 b2 
1 
2 d1 e1 d2 e2 d3 e4 d5 e5 e3 g2 f2 g1 f3 g3 f4 g4a7 d5 
3 d2 
2 
4 a5 b4 a4 a6 e4 d4 e5 e3 b5 b3 a3 b1 b2 b6 
6 
5 g2 f3 g3 g1 f2 f1 e2 d3 e1 f4 g4b1 
4 a6 f2 d3 b6 e4 d4 e3 e5 d5 e1 e2 f1 a3 b2 
2 
3 a4 d2 b5 a2 b3 a5 b4 a7 
5 
7 b7 
6 d6 d7b2 e3 g2 g1 a6 b3 
3 d2 f2 f1 e1 e2 
2 b5 d4 
4 d3 d5 
5 b7 a7 b6 a5 b4 e4 e5 
6 
7 d6 d7b3 b1 
4 
3 b6 f1 b4 
2 b2 
1 d2 d3 e3 d4 e4 e2 g1 d5 e5 f2 g2 f3 g3 f4 g4b4 f1 
2 b7 a7 
3 b3 b5 
4 
5 e4 d4 e3 e5 d5 
7 b6 
6 d6 d7 e6 e7 g6 f6 g5 f5 g4 f4 g3b5 f1 
3 b6 
6 d2 
5 
1 a2 b4 
4 b2 a3 b3 
2 d1 e2 d3 e3 d4 e4 e1 g1 d5 e5 f2 g2 f3 g3 f4 g4b6 
4 f2 d5 d4 
5 e5 e4 g3 f3 g2 f4 g4b7 b6 e4 d5 e5 e3 g2 f3 g3 e6 f5 f6 
6 
5 d6 f4 d4 d3 g4 g1 
4 
3 f2 f1 e2 e1 d2 d1
1 
4 a6 f2 d3 b6 e4 d4 e3 e5 d5 e1 d2 
2 a3 d1 b4 a4 b3 b1 e2 b2 f1 
7 b7 
6 a7 b5 a5 
3 d6 d7
2 d5 
5 b7 a7 b6 a6 b5 a5 b3 
4 f1 b4 
3 e2 d3 e3 d4 e5 e4 g3 f3 g2 g1 f2 d2 e1 f4 g4
3 d4 b6 b5 
5 
1 
4 d2 a2 b2 a3 b3 a4 b4 
2 d1 e2 d3 e4 d5 e5 e3 g2 f2 g1 f3 g3 f4 g4
4 
3 b6 d3 e3 f1 d2 e2 b3 b5 b4 
5 d4 d5 e5 e4 g3 f3 g2 g1 f2 b2 
2 f4 g4
5 d5 
2 b7 a7 b6 a6 b5 a5 b3 
4 f1 b4 
3 e2 d3 e3 d4 e5 e4 g3 f3 g2 g1 f2 d2 e1 f4 g4
6 d3 
3 
4 e3 d5 
5 d4 e5 e4 a5 b4 a4 b3 a3 b1 b2 b5 a6 a7 b6 
1 
2 d1 d2 e1 e2 f1 g1 f2 g2 f3 g3 f4 g4
7 b6 e4 d5 e5 e3 g2 f3 g3 e6 f5 f6 
6 
5 d6 f4 d4 d3 g4 g1 
4 
3 f2 f1 e2 e1 d2 d1d1 b6 
6 d4 e4 d5 e5 f2 e3 e2d2 
5 e4 d3 f2 e5 d5 f3 e3 
7 b6 
6 b5 
3 
4 d4 a4 b2 b3 
2 d6 d7d3 d4 b6 
4 a5 a6 b5 b3 
3 b4 e4 d5 e5 e3 g2 f3 g3 g1 f2 f1 e2 e1 
2 f4 g4d4 d3 
4 
3 e3 f1 
2 d2 e1 e2 g1 f2 f3 g2 a4 b3 a3 b1 b2 b4 a5d5 d4 f2 e4 g3 f3 g2 f5 e5 f4 
4 
5 a6 a7 b6 b7 
6 d3 
3 b5 a5 
7 e6 b4 a4d6 e3 
4 d5 b6 
3 d3 b5 
5 e1 f2 e2 f3 e5 d4 e4 g4 f6 e6 f5 d2 d1d7 b6 e4 d5 e5 e3 g2 f3 g3 e6 f5 f6 
6 
5 d6 f4 d4 d3 g4 g1 
4 
3 f2 f1 e2 e1 d2 d1e1 b6 
6 d4 e4 d5 e5 f2 e3 e2e2 d5 e5 e4 
5 d3 e3 d4 
3 
4 g3 f4 g4 f3 g2 f2 g1 f5 g5 f7 f6 e7 e6 d7 
6 d6 a5 b5 a6 a7 b6 b4 a4e3 d5 b6 
4 
5 d4 b3 b4 e5 e4 g3 f2 f3 e2 d3 d2 
3 
1 a2 a3 b2 f4 g4e4 e3 d4 d3 b3 b4 
3 
4 g2 g1 f2 f1 e2 e1 d2 b2 
2 d7 
6 f3 g3 f4 g4e5 d5 e4 e3 d4 d3 b3 
2 b2 
4 a5 a4 b4 b6 
5 b5 g2 g1 f2 f1 e2 e1 d2 
3 d1 f3 g3e6 f2 e3 d4 e2 e4 f3 f4 
4 
5 a6 a7 b6 b7 
6 d3 
3 b5 a5 
7 d6 b4 a4e7 d3 a5 b3 e3 d4 e4 f1 e2 e1 d2 d1 
2 
1 a2 b2 g1 f2 g2 f3 g3 f4 g4 f6 f5 e6 e5 d6 
5 b4f1 b6 e3 e5 d5 
7 b7 
6 d6 d7f2 e4 b6 d3 d4 e3 
3 
4 a5 a6 b5 b4 a4f3 d4 e5 f4 e4 f2 e2 e3 
4 
5 a6 a7 b6 b7 
6 d3 
3 b5 a5 
7 e6 d5 d6 b4 a4f4 
5 f5 d3 e3 f1 g1 f3 d4 e4 
4 d5 a6 a7 b6 b5 a5 b7 
6 
7 d6 d7 f6 e5 e6 b4 a4f5 d4 f2 f3 e3 e4 
4 
5 a6 a7 b6 b7 
6 d3 
3 b5 a5 
7 d6 d7 f6 e5 e6 b4 a4f6 
5 a6 a7 g2 f5 e5 d6 b6 b7 
6 d5 
4 
7 e6 f3 e4 e3 d4 
3 d3 e1 e2 f1 g1 f2 f4 g3 d2 d1f7 d3 a5 b3 e3 d4 e4 f1 e2 e1 d2 d1 
2 
1 a2 b2 g1 f2 g2 f3 g3 f4 g4 f6 f5 e6 e5 d6 
5 b4g1 b7 e5 e4 f3 d6 g4 f2 e3 f4 g3 e7 g6 g5 f5 f6 d7 e6 
6 d5 
5 
7 a7 g2 e2 d4 
4 b6 a6 d3 
3 b5 a5 b4 a4g2 b7 e5 f3 e2 d3 e3 e4 d4 d5 a7 
5 g3 f4 g4 f2 g1 f5 g5 f7 f6 e7 e6 d7 d6 
7 b6 
6 a5 b4 a4 b5 a6g3 f2 e3 
5 d4 
2 a2 b3 e2 d5 e5 e4 f3 f4 g4 f5 g5 f7 f6 e7 e6 d7 d6 
7g4 e7 
5 d3 
3 b6 
4 
7 
6 
1 b7 d2 a2 b2 a3 b3 a4 b4 a5 b5 
2 d1 e3 d4 e4 d5 e5 f1 e1 e2 g1 f2 g2 f3 g3 d6 e6g5 d4 
4 d3 e3 e4 
3 
5 a6 b3 b5 a7 b6 b7 
6 
7 d6 d7 e6 e7 g6 f5 f6 d1 
2 
1 a2 b2 d2 e1g6 
5 g2 f5 
4 
3 e5 f3 f4 g3 b4 d3 a3 d4 a6 a5 b5 a7 b6 b1 b2 a4 b3 b7 
6 
1 
2 d1g7 d3 
3 
5 
4 e4 d5 d4 a6 a7 b6 b5 a5 b3 b4 b7 
6 
7 d6 d7 e6 e7 f6 f7 g6 d1 
2 
1 a2 b2 d2 e1Fig. 15. Longest 7�7 Solver lines of play. For ea
h of the 49 7�7 1-openings, the 
orrespondingline shows a longest line of play from the the asso
iated Solver solution. The top row shows themove number of that 
olumn.
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f2
e4 b6 d3 d4 e3 
3 
4 a5 a6 b5 b4 a4b5 a6 b4 a4b4 a4
5 b5
5 e5 e4 g3 f3 g2 f4 g4g2 f3 f4 g4f4 g4d5 b6 
4 d4 
5 e5 e4 g3 f3 g2 f4 g4g2 f3 f4 g4f4 g4d3 
4 b5 
5
5 b5
5 b5 
3 
4b7 d5 e4 f5
6 b6 
5 b5
7 b6 
5 b5d6 e4d7 b6 
5 b5e3 e5 
7 b6e4 b6 
5 d5e6 b6 
5 d5 
6 
4Fig. 16. A Solver proof tree for the 7�7 opening White-f2. The data for this tree was generatedby �rst running a modi�ed version of Solver in whi
h the �nal move 
onsidered from any positionis a winning move; this guarantees that every re
ursion tree path ends with a winning move. Theresulting re
ursion tree was then pruned, at all points in the tree, by removing any losing movesmade by the winning player before the winning move for that state was found.
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