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Abstract

By applying the combinatorial game theory notions of dominated move and re-
versible move, and by exploiting graph-theoretic properties of Hex board decompo-
sitions, we identify two new types of inferior Hex move.

1. Introduction

Hex is the classic two-person alternate-turn board game invented by Piet Hein [10]

and John Nash [14, 15, 16].

The players are Left and Right. The board is an m×n array of hexagonal cells;

usually m = n, in which case the board has the shape of a rhombus. The color

black and two opposite sides of the board are assigned to Left; the color white and

the other two sides of the board are assigned to Right. A move consists of coloring

an uncolored cell. The game ends when a player completes a path of their color

joining their two sides; this player is the winner.

Figure 1: A game won by Right (white).

Hex has several elegant properties:
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• Hex is monotonic, or regular [20]: it is never disadvantageous to move,

• Hex never ends in a draw [5],

• Hex on an n×n board is a first-player win [2, 16],

• solving Hex — determing the winner of an abitrary position — is PSPACE-

complete[17].

The last result hints that there might be no efficient algorithm to find a winning

move whenever one exists. However, there are efficient methods that can identify

some kinds of inferior move, and pruning such moves often improves the efficiency

of finding a winning move [2, 4, 8, 9, 18].

Hex is not a combinatorial game in the strictest sense, since a Hex game ends

when a player connects their two sides, whereas a combinatorial game ends when a

player has no legal moves. But many combinatorial game theory (CGT) concepts

— e.g., dominated and reversible moves — can be applied to Hex. Indeed, Hex is

often included when CGT is discussed in a broad context, for example in Albert,

Nowakowski and Wolfe’s Lessons in Play [1].

In this paper3, we consider inferior Hex moves in the context of CGT outcome

classes. In the process, we identify two new kinds of inferior Hex cell that allow

efficient pruning of the corresponding move.

In the rest of this section we present our notation. In §2 we reformulate previous

Hex inferior cell analysis in terms of CGT. In §3 we identify a new class of Hex

reversible moves. In §4 we identify a new class of Hex dominated moves.

1.1. Notation

Definition 1.1. A (Hex) position is defined by specifying the color status — un-

colored, black, or white — of each board cell.

Definition 1.2. A (Hex) state is defined by a position and the player to move next.

Given a position H and player to move next X, we denote the associated state as

H[X].

In CGT, the outcome (class) of a combinatorial game G is the result that can

be achieved with perfect play. A game G is positive if Left wins regardless of who

moves next; negative if Right wins regardless of who moves next; fuzzy if the first

player wins; zero if the second player wins. In these four cases, we write G > 0,

G < 0, G || 0, G = 0 respectively. A state is Left-win if Left wins and Right-win if

Right wins.

Hex has no draws, so:

3See [19] for further discussion on modelling Hex with CGT.
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Observation 1.3. A Hex state is Left-win or Right-win.

Hex is monotonic, so a position cannot have outcome zero, so:

Observation 1.4. A Hex position is positive, negative, or fuzzy.

Figure 2: Three Hex positions: positive, negative, fuzzy.

In this paper, we consider (in)equality among states and positions not with re-

spect to general CGT game values but only with respect to CGT outcome classes.

Following CGT convention, we compare outcome classes of different states or posi-

tions from the perspective of Left.

Definition 1.5. For Hex states S1, S2, we write S1 ≥ S2 if S1 is at least as good

for Left as S2, namely if Left wins S1 whenever Left wins S2. Similarly, for Hex

positions H1,H2, we write H1 ≥ H2 if H1[L] ≥ H2[L] and H1[R] ≥ H2[R].

Corollary 1.6. For Hex states S and S′, S ≥ S′ if and only if S is Left-win and/or

S′ is Right-win. For positions H and H ′, H ≥ H ′ if and only if at least one of

these conditions holds: H > 0, H ′ < 0, or H || 0 and H ′ || 0.

Definition 1.7. Hex positions (or states) A and B are equal if the associated sets

of uncolored/black/white color assignments are equal (and the player to move is

equal), in which case we write A = B. Hex positions (or states) A and B are

equivalent if they have the same outcomes, in which case we write A ≡ B.

Definition 1.8. An L-move is a move by the Hex player Left, and an L(c)-move

is an L-move to an uncolored cell c. For a position H with an uncolored cell c, a

set of uncolored cells C, and a set of colored cells D:

• H + L(c) is the position obtained from H by coloring c black,

• H + L(C) is the position obtained from H by coloring all cells in C black,

• H−D is the position obtained from H by uncoloring all cells in D.

These terms are defined similarly for Right and white.

Caveat: in CGT, “+” usually indicates the sum of games; in this paper, “+” is

used only as defined above.
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Definition 1.9. For a Hex position H, χU (H), χL(H), χR(H) denote the sets of

all cells of H that are respectively uncolored, black, or white. For a set D of cells

of a Hex position H, χU (H,D), χL(H,D), χR(H,D) denote the sets of all cells of

D that are respectively uncolored, black, or white.

Definition 1.10. For Hex positions H1 and H2, H2 is a continuation of H1 if

χL(H1) ⊆ χL(H2) and χR(H1) ⊆ χR(H2). A continuation with no uncolored cells

is a completion.

In CGT a move dominates another if it is at least as good as the other, while

a move reverses a previous move if it renders the previous move useless. In Hex,

we define these notions in terms of the associated uncolored cells and restrict them

according to outcome class.

Definition 1.11. For a Hex position H with uncolored cells c1 and c2,

• c1 Left-dominates c2 if H + L(c1) ≥ H + L(c2),

• c1 is Left-reversible if H ≥ H + L(c1) + R(c2), in which case c2 is a Right-

reverser of c1.

As explained in Winning Ways for your Mathematical Plays by Berlekamp, Con-

way, and Guy, when determining a game’s value, dominated moves can be pruned

(as long as one dominating move remains) and reversible moves can be bypassed,

and — in its simplest form — a combinatorial game has no dominated or reversible

moves [3].

The same result holds for outcome classes: when determining a game’s outcome

class, dominated moves can be pruned (as long as one dominating move remains)

and reversible moves can be bypassed; this follows by simple case analysis from the

minimax calculation of outcome classes.

We are interested in simplifying Hex positions. In the next section we rephrase

some previous Hex results in terms of dominated and reversible moves.

2. Previously Known Inferior Cell Analysis

Following observations by Beck et al. [2] and Schensted and Titus [18], Hayward

and van Rijswijck defined a class of provably useless Hex cells, called dead cells:

Definition 2.1. ([9]) For a Hex position H, an uncolored cell c is live if H has a

completion H ′ in which changing c’s color changes the winner of H ′; otherwise, c

is dead.

Observation 2.2. ([4]) For a position H, a cell c is live if and only if c is in a set

S of uncolored cells of H such that some coloring of S yields the winning condition,

but no coloring of a proper subset of S yields the winning condition.
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Thus determining whether a cell is live reduces to determining in a graph whether

a given vertex is on a minimal path joining two other given vertices. This problem

is NP-complete for general graphs, although its complexity on graphs that arise

from Hex positions is unknown [4].

Observation 2.3. ([9]) Coloring a dead cell does not change a position’s outcome.

Observation 2.4. A dead cell remains dead in all continuations in which it is

uncolored.

Some dead cells can be recognized by matching patterns of neighboring cells. For

example, for each pattern in Figure 3, the uncolored cell is dead [8].

Figure 3: Some dead patterns. For any containing position, the uncolored cell is
dead: coloring the cell cannot change the position’s outcome.

In CGT terms, Hex is a hot game — for any position H with uncolored cell c,

H + L(c) ≥ H — so it is never disadvantageous to have the next move. However,

a move to a dead cell is equivalent to a pass move, so:

Observation 2.5. ([9]) A Hex player with a winning strategy has a winning strategy

with no move to a dead cell.

Definition 2.6. ([13]) For a Hex position and a player, a move to a cell c is

vulnerable if the opponent has a move to a cell k that makes that cell dead; k is a

killer of c.

E.g., in a position H, an uncolored cell c is Left-vulnerable if there is an uncolored

cell k such that c is dead in H + R(k).

Figure 4: Some Left-dead-reversible patterns. For any containing position, the
empty cell is killed by white-coloring the dotted cell.

We now redefine vulnerability in CGT terms:

Definition 2.7. For a Hex position and a player, a move to a cell c is dead-

reversible if it is vulnerable.
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Our first result is that dead-reversible cells are reversible:

Lemma 2.8. Let H be a Hex position with a cell c that is Left-dead-reversible to

killer k. Then c is Left-reversible in H, with Right-reverser k.

Proof. H ≥ H + R(k) by monotonicity. H + R(k) ≡ H + L(c) + R(k) by Observa-

tion 2.3. Thus H ≥ H + L(c) + R(k).

Recall Observation 2.4: in a continuation, a dead cell remains dead for as long as

it is uncolored. By contrast, a dead-reversible cell need not remain dead-reversible:

Observation 2.9. Let H1 be a Hex position with a Left-dead-reversible cell c and

Right-reverser k, and let H2 be a continuation of H1 obtained by Right-coloring

some cell(s) other than c. Then in H2, c is either dead or Left-dead-reversible with

Right-reverser k.

The following rephrases a result of Hayward and van Rijswijck.

Theorem 2.10. ([9]) A Hex player with a winning strategy has a winning strategy

with no move to a dead or dead-reversible cell.

Thus, dead-reversible Hex moves can be pruned. This is stronger than what is

guaranteed by CGT, namely that reversible moves can be bypassed.

As noted in Observation 2.3, dead cells can be assigned to either player without

changing a position’s outcome. We now identify a class of cells that can be assigned

to one particular player without changing a position’s outcome.

Definition 2.11. For a position H, a set U of uncolored cells is Left-captured if

Left has a second-player strategy on U such that, for each leaf position F in the

strategy tree, each cell in χR(F,U) is dead in position F −χR(F,U). In H, any cell

in such a set U is Left-captured.

Notice that, for each leaf position F in Definition 2.11, it follows by Observa-

tion 2.3 that

F ≡ F − χR(F,U) ≡ (F − χR(F,U)) + L(χR(F,U)).

In other words, if Right ever plays in a Left-captured set, then Left has a replying

strategy that guarantees no possible benefit to Right.

Consider any pattern in Figure 5. Left has a second-player strategy on the

uncolored cell pair — if Right colors one, Left colors the other — that kills the cell

just colored by Right. Thus the uncolored cell pair is Left-captured.

Observation 2.12. Let H be a position with a Left-captured set S. Then S remains

Left-captured in any continuation of H in which S remains uncolored.
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Figure 5: Some Left-captured patterns. For any containing position, black-coloring
the pattern’s uncolored cells cannot alter the position’s outcome.

The observation holds because the uncolored cells outside S neither affect the

capturing strategy nor revive any cell that is dead in a leaf position. Thus if H is a

Hex position with a Left-captured set S, then H ≡ H +L(S). Moreover, combining

a captured set strategy for S with a winning strategy on the reduced board H+L(S)

yields a winning strategy in the original position [7].

Our second result shows that playing in one’s own captured set is equivalent to

a pass move:

Lemma 2.13. Let H be a position with a cell c that is both Left-captured in H and

a winning move in H[L]. Then H > 0.

Proof. Let c be in a set F of Left-captured cells of H. Then H ≡ H + L(F ), and

H + L(F ) ≥ H + L(c) ≥ H by monotonicity, so H ≡ H + L(c). But c is a winning

move in H[L], so (H + L(c))[R] is Left-win, so H + L(c) ≡ H > 0.

Definition 2.14. An uncolored cell set F of a position H is Left-fillin if F partitions

into cell sets F1, . . . , Ft such that, for 1 ≤ j ≤ t, each Fj is dead or Left-captured

in position H + L(F1) + . . . + L(Fj−1).

This follows by induction on the fillin partition:

Observation 2.15. For a position H with Left-fillin F , H ≡ H + L(F ).

Definition 2.16. For uncolored cells c and f of a position H, c Left-fillin-dominates

f if f is in some Left-fillin set F of H + L(c).

This follows by monotonicity [6]:

Observation 2.17. For a position H with uncolored cell c such that H + L(c) has

Left-fillin F , the cell c Left-dominates all cells f in F ; namely,

H + L(c) ≡ H + L(c) + L(F ) ≥ H + L(f).

In Hex, another form of domination arises when a cell is on all induced winning

paths of another cell [11, 13]. When we wish to distinguish between these two

forms of domination, we call the former fillin domination and the latter induced

path domination. In this paper we use only fillin domination.
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Figure 6: Some Left-domination patterns. For any containing position, black-
coloring a dotted cell fillin-dominates black-coloring either of the other two un-
colored cells.

Thus far we have discussed inferior cells that can be pruned. Now we examine

certain decompositions of Hex positions.

Definition 2.18. A chain is a maximal set of connected same-colored cells. A Left

chain is a maximal set of connected black cells.

Definition 2.19. Two opposite-colored chains C1, C2 touch if there are cells c1, c2

in C1, C2 respectively such that c1 and c2 are adjacent or form an opposite-colored

bridge pattern as shown in Figure 7.

During a Hex game, chains can form that decompose the board.

Figure 7: A bridge and a half-bridge between opposite-coloured cells. In the former,
regarding the empty cells as non-adjacent enables decompositions.

Lemma 2.20. Let H be a Hex position with an opposite-colored half-bridge com-

posed of cells c1, c2, c3 that are respectively black, white, uncolored, and let C1, C2

be the chains containing c1, c2 respectively. Then C1 and C2 touch in H.

Proof. Let c4 be the unique cell in H adjacent to c1, c2, and c3. If c4 is black then

it is in C1, and c4 in C1 is adjacent to c2 in C2. Similarly, the conclusion holds if c4

is white. Lastly, if c4 is uncolored, then C1 and C2 touch via the opposite-colored

bridge {c1 . . . c4}.

Definition 2.21. A Left-splitting decomposition is a Left chain that touches both

of Right’s sides.

In a position with such a decomposition, if Left has a winning strategy, then

Left has a connection strategy for each of the two subgames (connect the chain to

one Left side; connect the chain to the other Left side), and combining these two

strategies yields a winning Left strategy for the whole board [12].



INTEGERS: 13 (2013) 9

Definition 2.22. A four-sided decomposition is a 4-cycle of consecutively touching

chains. The carrier of this decomposition is the set of uncolored cells bounded by

the four chains and their touching points.

If Left has a second-player strategy within the carrier of a four-sided decompo-

sition that guarantees connection of the decomposition’s two bounding Left chains,

then the decomposition carrier is Left-captured [12].

Figure 8: A Left-split decomposition, a four-sided decomposition, and the same
four-sided decomposition using half-bridges. Dotted cells show opposite-coloured
bridges of the decomposition. In the rightmost figure, all empty cells are black-
captured.

3. Captured-Reversible Moves

Just as ‘dead’ leads to ‘dead-reversible’, so ‘captured’ leads to ‘captured-reversible’.

The following definition may seem counter-intuitive, since the opponent’s move —

not the player’s — yields the player’s fillin.

Definition 3.1. A cell c in position H is Left-captured-reversible if there is a cell

r such that H + R(r) has Left-fillin F containing c.

Lemma 3.2. Let cell c be Left-captured-reversible in Hex position H. Then cell c

is Left-reversible in H.

Proof. By Definition 3.1, some Right-move r in H yields Left-fillin F containing

c. By monotonicity, H + L(F ) + R(r) ≥ H + L(c) + R(r) ≥ H + R(r). By

Observation 2.15, H + R(r) ≡ H + L(F ) + R(r), so H + R(r) ≡ H + L(c) + R(r).

By monotonicity, H ≥ H + R(r), so H ≥ H + R(r) ≡ H + L(c) + R(r), satisfying

the definition of Left-reversible.

Captured-reversible cells are reversible, so they can be bypassed. However, we

would like to prune them from consideration completely, as is done with dead-

reversible cells. It is an open question whether all capture-reversible cells can be
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pruned while preserving a position’s outcome. However, we now show sufficient

conditions for such pruning.

Definition 3.3. For a Left-captured-reversible move m with Right-reverser r and

Left-fillin F , we call F a Left-captured-reversible carrier of m. With respect to

carriers F1, F2 and Right-reversers r1, r2 of Left-captured-reversible moves m1,m2,

we say that m1 and m2 interfere if r1 is in F2 or r2 is in F1. The Left-captured-

reversible graph Gγ(H,L) of position H is defined as follows:

• for each Left-captured-reversible move mj in H, select a Right-reverser rj and

carrier Fj,

• vertices of Gγ(H,L) correspond to the moves mj ,

• vertices are adjacent if and only if their corresponding moves interfere.

An independent vertex set in Gγ(H,L) is called an independent Left-captured-reversible

set in position H.

Lemma 3.4. Let H1 be a position with an uncolored cell c and an independent

Left-captured-reversible set I1 = {m1, . . . ,mn}, where each captured-reversible cell

mj has selected Right-reverser rj and carrier Fj. Then in position H2 = H1 + R(c)

the set I2 = {mj ∈ I1 : c 6∈ {rj} ∪ Fj} is an independent Left-captured-reversible

set.

Proof. Each mj in I2 is Left-captured-reversible in H2 since rj remains a legal move

for Right, and Fj remains fillin for any continuation of H1 +R(rj) in which all cells

in Fj are uncolored. In defining the Left-captured-reversible graph Gγ(H2,L), we can

select the same reversers and carriers for all cells in I2 to guarantee independence.

Theorem 3.5. Let H be a Hex position with a set of dead cells D, a set of Left-

dead-reversible cells V , and an independent Left-captured-reversible set I. If Left

wins H[L], then either Left has a winning move not in D or V or I, or Left wins

H[R].

Proof. Proof by contradiction. Let H be a counterexample with the smallest num-

ber of uncolored cells. Thus, Left has a winning move in H[L], but each such move

is in D or V or I, and Right wins H[R]. For H[L], let W = {m1, . . . ,mn} be the

set of Left-winning moves not in D or V . Pruning dead and dead-reversible moves

cannot eliminate all winning moves (Theorem 2.10), so W is a nonempty subset of

I.

For some mj ∈ W , let Tj = H + R(rj), where rj is the Right-reverser of

mj . By the definition of captured-reversible, it follows that Tj ≡ H + L(mj) +
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R(rj): see the proof of Lemma 3.2. Left wins (H + L(mj))[R], so Left wins

(H + L(mj) + R(rj))[L] ≡ Tj [L]. By monotonicity H ≥ Tj , so Right wins Tj [R].

Tj has fewer uncolored cells than H and so is not a counterexample to this

theorem. Thus in position Tj , for any dead cell set Dj , Left-dead-reversible cell set

Vj , and independent Left-captured-reversible set Ij , Left has a winning move not

in Dj or Vj or Ij .

Dead cells are dead in all continuations (Observation 2.4), and Left-dead-reversible

cells are dead or Left-dead-reversible in all continuations in which only Right-

colored cells are added (Observation 2.9). Thus we can select Dj , Vj such that

Dj ∪ Vj ⊇ (D ∪ V ) \ {rj}. Also, we can select Ij to be the set of cells in I

whose Right-reverser is not rj . By Lemma 3.4, Ij is an independent Left-captured-

reversible set in Tj . Thus some winning Left-move m of Tj [L] is not in Dj or Vj or

Ij .

Since Tj = H +R(rj), m is also winning in H[L]. Thus, by our assumption, m is

in (D∪V ∪I)\(Dj∪Vj∪Ij ∪{rj}) ⊆ I \Ij . Thus m is Left-captured-reversible with

Right-reverser rj in H, meaning that m is Left-captured in Tj . By Lemma 2.13,

Tj > 0, contradicting the fact that R wins Tj [R].

If Left wins H[R], then any legal move in state H[L] is Left-winning. Thus we

can apply Theorem 3.5 as follows: given a Hex position in which we are trying to

find a Left-winning move, we can identify dead cells, Left-dead-reversible cells, and

an independent Left-captured-reversible set, and prune all these inferior cells from

consideration with the caveat that we consider at least one legal move.

Using known captured patterns allows us to identify captured-reversible patterns.

Figure 9: Some Left-captured-reversible patterns. For any containing position,
white-coloring the dotted cell black-captures the other two uncolored cells.

4. Star Decomposition Domination

As mentioned in §2, the carrier C of a four-sided decomposition is Left-captured if

Left has a second-player connection strategy joining the two bounding Left-chains

within C. Thus if a Left-move m creates such a four-sided decomposition, then m

fillin-dominates all moves in C.
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Since Hex has no draws, it follows that every four-sided decomposition falls into

one of three cases: the carrier is Left-captured, the carrier is Right-captured, or

each player has a first-player strategy to connect their bounding chains within the

carrier. In this last case, each player has a move available that captures the carrier

for themselves and — by fillin domination — no other move in the carrier need be

considered. Due to the strategic resemblance to the nimber ∗ = {0|0}, we call such

four-sided decompositions star decompositions.

Definition 4.1. A four-sided decomposition is a star decomposition if each player

has a first-player connection strategy to join their two bounding chains within the

carrier.

Unlike the situation with captured-carrier decompositions, a move that creates

a star decomposition need not dominate all cells inside the carrier. However, some

domination can be deduced by determining if coloring cells inside the carrier does

not alter the decomposition’s outcome.

Theorem 4.2. Let H be a position such that a Left-move m yields a star decompo-

sition with carrier C. Let D ⊆ C be a set of cells on which Right has a first-player

strategy to connect his two bounding chains. Then in H, m Left-dominates every

cell in C \ D.

Proof. If we can show that H + L(m) ≡ H + L(m) + L(C \ D), then the result

follows immediately by monotonicity. Since the cells in C \ D are within the star

decomposition, they can only affect Right’s strategy within the decomposition.

If Left is the first to play inside the star decomposition carrier, then C becomes

Left-captured, so the Left-coloring of cells C\D does not alter the position’s outcome

as they would be assigned to Left in either case.

If Right is the first to play inside the star decomposition carrier, then D becomes

Right-captured since Left’s additional cells do not obstruct Right’s connection strat-

egy on D. Let X be a continuation of H + L(m) such that χU (X) ⊇ C. In the

position X+R(D), the cells C \D are dead. So X+L(C \D)+R(D) ≡ X+R(D) ≡

X + R(C) since dead cells can be assigned any color without altering a position’s

outcome. Thus once again the Left-coloring of cells C \ D does not alter the posi-

tion’s outcome.

In other words, Right’s star decomposition strategy is not adversely affected by

Left-coloring C \ D.

Corollary 4.3. Let H be a Hex position such that a Left-move m creates a star

decomposition with carrier C. Let I ⊆ C be the set of cells intersecting all of Right’s

first-player strategies to connect his two bounding chains within C. Then in H, m

Left-dominates every cell in C \ I.
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Proof. Repeatedly apply Theorem 4.2 to every such Right first-player strategy.

Star decompositions often allow the pruning of moves that cannot be pruned by

the other techniques mentioned in this paper.

Figure 10: Star decomposition domination. For any containing position, black-
coloring a pattern’s shaded cell forms a star decomposition and dominates black-
coloring any of the pattern’s dotted cells.

5. Conclusions

By examining previous inferior cell analysis in terms of CGT, we have identified

two new classes of inferior cells for the game of Hex. It remains an open question

whether captured-reversible cells can be unconditionally pruned. Also, it would be

interesting to know whether decomposition domination exists in other combinatorial

games.
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