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1 Introduction

Hex, the two-player board game invented independently by Piet Hein [8] and
John Nash [4, 11, 12] in the 1940s, is played on a four-sided grid of hexagonal
cells. In alternating turns, each player colors an uncolored, or empty, cell with
her color (or, if each player has a set of colored stones, by placing a stone of
her color on an empty cell). A player wins by connecting her two sides via a
set of cells that have her1 color, as shown in Fig. 1. For more on Hex, see Ryan
Hayward and Jack van Rijswijck’s paper, Thomas Maarup’s webpage, Jack van
Rijswijck’s webpage, or Cameron Browne’s book [3, 6, 10, 13].

Fig. 1. A Hex board state with a winning White connection.

Given a player P (in this paper, B for Black or W for White) and an empty
cell c of a board state S, S + P [c] denotes the board state obtained from S by
P -coloring c, namely, by coloring c with P ’s color. See Fig. 2. We denote the
opponent of P by P .

A game state P (S) specifies a board position S and the player to move P .
With respect to a player P and game states Q(S1) and Q(S2), where Q can be
P or P , we write Q(S1) ≥P Q(S2) if Q(S1) is at least as good for P as Q(S2)
in the following sense: P has a winning strategy for Q(S1) if P has a winning
strategy for Q(S2). In this case, we say that Q(S1) P -dominates Q(S2).

1 For brevity, we use ‘she’ and ‘her’ whenever ‘he or she’ or ‘her and his’ are meant.
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Fig. 2. State S (left), state T = S + W [b3], and state U = S + W [a5].
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Fig. 3. Two virtual connections (left). A Black edge bridge and 4-3-2 (right).

Consider for example states T and U in Fig. 2. As the reader can check, Black
has a winning move in T but no winning move in U , so B(T ) ≥B B(U). Draws
are not possible in Hex, so White has a second-player winning strategy for U

but not for T , so B(U) ≥W B(T ).
We extend this terminology as follows: with respect to a player P and board

states S1 and S2, we write S1 ≥P S2 if P (S1) ≥P P (S2) and P (S1) ≥P P (S2).
In this case, we say that S1 P -dominates S2.

With respect to a game state P (S), an empty cell c1 is P -inferior to an
empty cell c2 if c2 is a P -winning move or c1 is a P -losing move (equivalently,
P (S + P [c2]) ≥P P (S + P [c1])). In this case, we say that c2 P -dominates c1.
Note that domination of game states, board states, and cells is reflexive and
transitive.

For example, let S be as shown in Fig. 2 with White to move. In S, b3 loses for
White since Black has a winning move in T , and a5 wins for White since Black
has no winning move in U . Thus for S, b3 is White-inferior to a5 (equivalenty,
a5 White-dominates b3).

We write S ≡P T if S ≥P T and T ≥P S. Draws are not possible in Hex, so
S ≡P T if and only if S ≡

P
T , so we write ≡ in place of ≡P .

In the search for a winning move, an inferior cell can be pruned from consid-
eration as long as some cell that dominates it is considered. With respect to a
board state and a player P , a subset V of the set of empty cells U is P -inferior
if each cell in V is P -inferior to some cell of U − V .

With respect to a board state and a player P, a virtual connection is a
subgame in which P has a second-player strategy to connect a specified pair
of cell sets; thus P can connect the two sets even if P has the first move. We
say that the cell sets are virtually connected, and refer to the empty cells of the



231

virtual connection as its carrier. The left diagram in Fig. 3 shows two virtual
connections. The smaller virtual connection, with a two-cell carrier, is often called
a bridge.

A virtual connection between a set of P -colored cells and one of P ’s board
edges is an edge template for P . Two examples are the edge bridge and the edge
4-3-2, shown in Fig. 3. For more templates, see David King’s webpage [9].

Throughout this paper, we refer to an edge 4-3-2 simply as a 4-3-2, and we
refer to a 4-3-2’s eight carrier cells by the labels used in Fig. 3. Note that a 4-3-2
is indeed a virtual connection: if White plays at any of {2,5,6}, Black can reply
at 4; if White plays at any of {1,3,4,7,8}, Black can reply at 2. The reader can
check that a 4-3-2’s carrier is minimal: if any of the eight cells belongs to the
opponent, the player no longer has a virtual connection.

With respect to a particular virtual connection of a player, a probe is a move
by the opponent to a carrier cell; all other opponent moves are external. In this
paper, we explore this question: when are probes of a Black 4-3-2 inferior?

2 Dead, vulnerable, captured, and capture-dominated

For a board state and a player P , a set of empty cells C is a P -connector if
P -coloring its cells yields a winning connection; the set is minimal if no proper
subset is a P -connector. An empty cell is dead if it is not on any minimal P -
connector. See Fig. 4.

Note that each dead cell is Q-inferior to all other empty cells for both players
Q; also, coloring a dead cell an arbitrary color does not change a game state’s
win/loss value. An empty cell is P -vulnerable if some P -move makes it dead;
the cell of this move is a killer of the vulnerable cell. Thus, in the search for a
P -winning move, dead and P -vulnerable cells can be pruned from consideration.

A set of cells C is P -captured if P has a second-player strategy that makes
each cell in the set dead or P ’s color. Since the color of dead cells does not
matter, C can be P -colored without changing the value of the board position.
For example, the carrier of a Black edge bridge is Black-captured since, for each
of the two carrier cells, the cell can be killed by a Black reply at the other carrier
cell [5]. An empty cell is P -capture-dominated 2 by another empty cell if playing
the latter P -captures the former.

2 Previous papers on dead cell analysis refer to this simply as domination [2, 7]. In this
paper, we use the term domination in a more general sense.

Fig. 4. A Black-connector, a minimal Black-connector, and dead cells.
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Note that vulnerable, captured, and dominated are defined with respect to a
player; by contrast, dead is not. See Hex and Combinatorics [6] or Dead Cell
Analysis in Hex and the Shannon Game [2] for more on inferior cell analysis.

3 A conjecture

As noted previously, the carrier cells of a Black edge bridge are Black-captured,
and so White-inferior to all empty cells. For a 4-3-2, things are not so simple.

As shown in Fig. 5, probes 1,2,4 can each be the unique winning move. Also,
as shown in Fig. 6, probes 3,5 can win when probes 1,2,4 do not; however, in
the example shown there is also a winning external move, and probes 3,5 merely
delay an eventual external winning move. We know of no game state in which
one of the probes 3,5,6,7,8 is the unique winning move, nor of a game state in
which one of the probes 6,7,8 wins but probes 1,2,4 all lose. Probes 1,2,4 seem
generally to be stronger than the others, so we conjecture the following:

Conjecture 1. Probes 3,5,6,7,8 of a Black 4-3-2 are White-inferior.

Thus, for a player P and a particular P -4-3-2, we conjecture that if P has
a winning move, then there is some P -winning move that is not one of the five
probes 3,5,6,7,8. In the rest of this paper we find conditions under which the
conjecture holds.

1
2

4

Fig. 5. Only White winning moves: probe 1, probe 2, probe 4.

3

5

Fig. 6. Only White winning moves: probe 3, probe 5, or the dotted cell.

4 Black maintains the 4-3-2

In Hex, maintaining a particular 4-3-2 is often critical; in such cases, if the
opponent ever probes that 4-3-2, the player immediately replies by restoring the
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virtual connection. Under these conditions, described in the following theorem,
our conjecture holds (except possibly for probe 5, whose status we do not know).

Theorem 1. Consider a game state with a Black 4-3-2 and White to move.
Assume that Black responds to a White probe of this 4-3-2 by restoring the virtual
connection. Then each White probe in {3, 6, 7, 8} is White-inferior.

To prove the theorem, we will show that it is better for White to probe in {1, 2, 4}
than in {3, 6, 7, 8}. To begin, consider possible Black responses to White probes
1,2,4. Against White 1, every other carrier cell maintains the virtual connection;
however, Black 2 captures {3,5,6,7}, so {3,5,6,7} are Black-dominated by 2 and
need not be considered as Black responses; similarly, Black 4 captures {7,8}.
Thus, we may assume: after White 1, Black replies at one of {2,4}; after White
2, Black replies at one of {3,4}; after White 4, Black replies at 2.

We shall show that if White probes at any of {3,6,7,8}, then Black has a
response that maintains the 4-3-2 and results in a state where at least one of
the following holds: the state is Black-dominated by both states that result after
White probes at 1 and Black replies in {2,4}; the state is Black-dominated by
both states that result after White probes at 2 and Black replies in {3,4}; the
state is Black-dominated by the state that results after White probes at 4 and
Black replies at 2.

Our proof of Theorem 1 uses three kinds of arguments. The first two deal with
particular forms of domination, which we call path-domination and neighborhood-
domination. The third deals directly with strategies. Before presenting the proof,
we give some definitions and lemmas.

For a player P and a board state with empty cells c1 and c2, we say that c2

path-dominates c1 if every minimal P -connector that contains c1 also contains
c2. As the following lemma shows, path-domination implies domination.

Lemma 1. For a player P and empty cells c1, c2 of a board state S, assume that
c2 path-dominates c1. Then S + P [c2] ≥P S + P [c1].

Proof. A P -state is a state in which it is P ’s turn to move. We prove that
S + P [c2] is P -winning whenever S + P [c1] is P -winning. Thus, assume P has
a winning strategy tree T1 for S + P [c1]. By definition, T1 considers all possible
P -continuations for all P -states and specifies a unique P -winning response in
each P -state. Without loss of generality, assume that T1 continues play until
the board is completely filled, namely, it does not stop when a winning path is
formed. Thus, all leaves in T1 appear at the same depth and contain a P -winning
path.

Construct a strategy tree T2 by replacing each occurrence of c2 in T1 with
c1. We claim that T2 is a P -winning strategy tree for S + P [c2].

First, note that in T2 the board is played until filled, and that all legal moves
for P are considered at each stage. Furthermore, a unique P -response is given
in each P -state. Thus, T2 is a valid strategy tree. It remains only to show that
each leaf of T2 has a P -connector.

By contradiction, assume that some leaf L2 in T2 has no P -connector. Con-
sider the corresponding leaf L1 in T1, attained via the same sequence of moves
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Fig. 7. Killing Black-vulnerable cells without path-domination. The White-dotted cell
kills the Black-dotted cell because of White-captured cells that include the shaded cells.

with c1 replaced by c2. Since L1 has a P -connector, this connector must use cell
c1, as it is the only cell that can be claimed by P in L1 and not claimed by P

in L2. However, c1 is claimed by P in L2, so c2 is claimed by P in L1. This is a
contradiction, as our P -connector in L1 requires c2 as well as c1. Thus, each leaf
in T2 is P -winning. 2

If c2 P -path-dominates c1, then c1 is P -vulnerable to c2. As Fig. 7 shows,
the converse does not always hold; it may be that cells captured by the killer are
needed to block all minimal connectors.

Lemma 1 yields the following corollary:

Corollary 1. Let S be a Hex state with empty cells c1, c2 such that c2 P -path-
dominates c1, and c1 P -path-dominates c2. Then S + P [c1] ≡ S + P [c2].

Proof. By Lemma 1, S + P [c1] ≥P S + P [c2] and S + P [c2] ≥P S + P [c1]. 2

Using Lemma 1 and Corollary 1, as well as capturing cells near the edge, we
can determine many domination and equivalence relationships between states
obtained via the exchange of two moves within the 4-3-2 carrier. We summarize
these relationships in Fig. 8, and present two of their proofs as Lemmas 2 and
3. The omitted proofs are similar.

Black

White
1 3 5 6 7 82 4

2

3

4

Fig. 8. Some White-domination relations among exchange states. Each arc points from
a state to a White-dominating state. Bi-directional arcs indicate equivalent states. X
indicates an impossible exchange state. Arcs which follow by transitivity are not shown.
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Lemma 2. S + W [2] + B[3] ≡ S + W [5] + B[3].

Proof. B[3] forms an edge bridge, so cells 6 and 7 can be filled-in for Black
without changing the value of S + B[3]. It can then be seen that all minimal
White-connectors that use cell 2 require cell 5, and vice-versa. Thus the result
follows from Corollary 1. 2

Lemma 3. S + W [1] + B[4] ≥W S + W [3] + B[4].

Proof. B[4] forms an edge bridge, so cells 7 and 8 can be filled-in for Black
without changing the value of S + B[4]. It can then be seen that all minimal
White-connectors that use cell 3 require cell 1. Now use Lemma 1. 2

The P -neighborhood of a cell is the set of all neighbors that are empty
or P -colored. A cell c1 P -dominates a cell c2 when c1’s P -neighborhood con-
tains c2’s P -neighborhood; in this case, we say that c1 P -neighbor-dominates c2.
Neighbourhood-domination implies domination, so we have the following:

Lemma 4. S + W [4] + B[2] ≥W S + W [3] + B[2].

Proof. In state S + B[2], cells 5 and 6 are Black-captured, so cell 4 White-
neighbor-dominates cell 3. 2

Lemma 5. S + W [2] + B[4] ≥W S + W [6] + B[4].

Proof. In state S + B[4], cells 7 and 8 are Black-captured, so cell 2 White-
neighbor-dominates cell 6. 2

To prove our final lemma, we explicitly construct a second-player strategy
for Black on the 4-3-2 carrier.

Lemma 6. S + W [1] + B[2] ≥W S + W [6] + B[4].

Proof. In state S + W [6] + B[4], Black adopts the following pairing strategy: if
White ever occupies one of {2,5}, Black immediately takes the other; Black does
this also with {1,3}. Note that cells 7 and 8 are already filled-in for Black due to
the edge bridge from B[4]. We will show that this pairing strategy always results
in a position White-dominated by S + W [1] + B[2].

Note that this pairing strategy maintains the 4-3-2 virtual connection. Thus,
via the carrier, White cannot connect cell 1 to either cell 2 or cell 5. Since the
pairing strategy prevents White from claiming both cell 2 and cell 5, then the
outcome will be that neither is on any minimal White-connector. Thus cells 2 and
5 are captured by Black via this strategy, so White cannot benefit from claiming
cell 3, as it is not on any minimal connector. So, without loss of generality we
assume White claims cell 1 and Black claims cell 3. But then the outcome of
this strategy will be equivalent to S + W [1] + B[2] + B[3] + B[4] + B[5] + B[6] +
B[7] + B[8], which is White-dominated by S + W [1] + B[2]. Thus, regardless of
White’s strategy in state S + W [6] + B[4], Black can ensure an outcome that is
White-dominated by S + W [1] + B[2]. 2
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2
5

Fig. 9. S + W [2] + B[4] 6≥W S + W [5] + B[4].

We now prove Theorem 1.

Proof. As mentioned earlier, our assumptions imply that White 4 loses to Black
2. By Lemma 1 and neighbor-domination, S + W [4] + B[2] White-dominates
S + W [3] + B[2], S + W [7] + B[2], and S + W [8] + B[2]. Thus, White probes
3, 7, 8 also lose to Black 2.

Likewise, White 1 loses to Black 2 or Black 4. By Lemma 6, S + W [1] +
B[2] ≥W S + W [6] + B[4]; by Lemma 1, S + W [1] + B[4] ≥W S + W [6] + B[4].
Thus, regardless of which move defeats White 1, White 6 loses to Black 4. 2

Under the hypothesis of Theorem 1, we conjecture that probe 5 is also White-
inferior. Our arguments seem unlikely to resolve this, as it is not true for all states
S that S + W [2] + B[4] ≥W S + W [5] + B[4]. See Fig. 9.

Any state S in which probe 5 is not White-inferior must satisfy the following
conditions: S′ = S + W [6] +B[2] ≡ S + W [5] +B[2] (by Corollary 1), so S ′ wins
for White; also, S + W [2] + B[4] loses for White, while S + W [2] + B[3] wins for
White (by Lemma 2).

5 Unconditional Pruning of the 4-3-2

Other than not knowing the status of probing at 5, we have so far confirmed
our conjecture under the added assumption that Black maintains the 4-3-2. In
this section we establish two theorems that apply without making this added
assumption.

Theorem 2 applies to a 4-3-2 that lies in an acute corner of the Hex board.
Theorem 3 applies to a state which, if it loses for White, implies that seven of
the eight 4-3-2 probes also lose.

A Black 4-3-2 can be aligned into an acute corner of the Hex board in two
ways, as shown in Fig. 10. When probing such 4-3-2s, the bordering White edge
makes capturing easier, yielding the following results.

Lemma 7. For a Black 4-3-2 as shown in Fig. 10(left), the set of probes {2, 3, 5}
is White-inferior.

Proof. (sketch) Probes 2 and 5 are capture-dominated by probe 6. Probe 3 can
be pruned as follows. First show that S+W [4] ≥W S+W [4]+B[1] ≡ S+W [4]+
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Fig. 10. Acute corner 4-3-2s.
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Fig. 11. Dotted cells Black-dominate undotted shaded cells in the acute corner (left).
Labels used in the proof of Theorem 2 (right).

W [3] + B[1]. It can then be shown that the White probe at 3 is reversible3 to a
Black response at 1, namely that S ≥W S + W [3] + B[1]. From this the desired
conclusion follows. We omit the details. 2

Lemma 8. For a Black 4-3-2 as shown in Fig. 10(right), the set of probes {1,
3, 4, 5, 6, 7, 8} is White-inferior.

Proof. Given any White probe in {1,3,4,5,6,7,8}, Black can respond at cell 2 and
capture all cells in the 4-3-2 carrier by maintaining the 4-3-2. 2

Theorem 2. Let S be a Hex state with the nine cells of a potential acute corner
Black 4-3-2 all empty, as in Fig. 11. Then each of the seven undotted cells is
Black-dominated by at least one dotted cell.

Proof. (sketch) Let S be a board state in which the nine cells of an acute corner
Black 4-3-2, labelled r, . . . , z as in Fig. 11, are all empty. We want to show that
each cell in the carrier is Black-dominated by at least one of r, t.

Cell t Black-capture-dominates cells u, v, w, x, y, z. The argument that cell
r Black-dominates cell s is more complex, as follows. Let Sr = S + B[r] and
Ss = S + B[s]; we want to show that Sr Black-dominates Ss.

First assume that from Ss or Sr, Black is next to move into the carrier. In Sr,
a Black move to t Black-captures all other carrier cells, so Sr +B[t] ≥B Ss +B[β]
for every possible β in the carrier, so we are done in this case.

Next assume that from Sr or Ss, White is next to move into the carrier. By
Lemma 8, from Sr White can do no better than Sr + W [t], so we are done if

3 A P -move is reversible if P has a response that leaves P in at least as good a position
as before the P -move. See Winning Ways, Volume I [1].
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Fig. 12. State Ss + W [t] (left) White-dominates Sr + W [t] (right).

Fig. 13. A state S White-dominated by S + W [1] + W [2] + B[3].

White has some move from Ss that is at least as good, namely if, for some q in
the carrier, Ss + W [q] ≥W Sr + W [t]. We can show this for q = t; we omit the
details. See Fig. 12. 2

By Theorem 2, if Black is searching for a winning move and the shaded cells
of Fig. 11 are all empty, then Black can ignore the undotted shaded cells.

Next, we consider a result that can be useful when White suspects that
probing a particular Black 4-3-2 is futile. We show a state which, if it loses for
White, guarantees that seven of the eight probes also lose.

Theorem 3. Let S be a state with a Black 4-3-2. If W (S +W [1]+W [2]+B[3])
is a White loss, then in W (S) each White probe other than 4 loses.

Proof. S + W [1] + W [2] + B[3] White-dominates both S + W [1] + B[3] and
S+W [2]+B[3], so White probes 1, 2 can be pruned. By Lemma 2, S+W [2]+B[3]
is equivalent to S + W [5] + B[3], so White 5 can be pruned. Against White
probes 3 or 7, strategy decomposition shows that Black wins by replying at cell
4. By Lemma 1 and Corollary 1 respectively, S + W [3] + B[4] White-dominates
S + W [6] + B[4], and S + W [7] + B[4] is equivalent to S + W [8] + B[4]. 2

In terms of being able to prune probes of a 4-3-2, Theorem 3 is useful only
if S′ = S + W [1] + W [2] + B[3] loses. Not surprisingly, we gain less information
about the probes when S′ wins. For example, Fig. 13 shows a state S in which
White has a winning move from S ′ but no winning move from S.
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6 Conclusions

We have introduced path-domination and neighborhood-domination, two refine-
ments of domination in Hex, and used these notions to find conditions under
which probes of an opponent 4-3-2 edge template are inferior moves that can be
ignored in the search for a winning move.

In particular, three of the eight probes can be unique winning moves and so
cannot in general be discounted; we conjecture that the other five probes are all
inferior. Since 4-3-2s arise frequently in Hex, confirming this conjecture would
allow significant pruning in solving game states.

We have confirmed the conjecture in various situations. For example, if the
player knows that the opponent’s immediate reply to a probe will be to restore
the template connection, then four of these five remaining probes are inferior.

External conditions might suggest that all probes of a particular 4-3-2 are
losing. We have found a state whose loss implies that seven of the eight probes
are losing; establishing this result would allow the seven probes to be ignored.

Also, we have established some domination results that apply when the 4-3-2
lies in an acute corner.

It would be of interest to extend our results to consider the combined mainte-
nance of more than one critical connection, or to automate the inference process
so that similar results could be applied to a more general family of virtual con-
nections.
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