
Scalable Parallel DFPN Search

Jakub Pawlewicz1 and Ryan B. Hayward2

1 Institute of Informatics, University of Warsaw,pan@mimuw.edu.pl
2 Computing Science, University of Alberta,hayward@ualberta.ca

H.J. van den Herik et al. (Eds.): CG 2013, LNCS 8427, pp. 138-150, 2014.
DOI:10.1007/978-3-319-09165-5_12, c© Springer International Publishing Switzerland 2014

Abstract. We present Scalable Parallel Depth-First Proof Number Search, a new
shared-memory parallel version of depth-first proof number search. Based on the
serial DFPN 1+ε method of Pawlewicz and Lew, SPDFPN searches effectively
even as the transposition table becomes almost full, and so can solve largeprob-
lems. To assign jobs to threads, SPDFPN uses proof and disproof numbers and
two parameters. SPDFPN uses no domain-specific knowledge or heuristics, so it
can be used in any domain. Our experiments show that SPDFPN scales well and
performs well on hard problems.
We tested SPDFPN on problems from the game of Hex. On a 24-core machine
and a 4.2-hour single-thread task, parallel efficiency ranges from 0.8 on 4 threads
to 0.74 on 16 threads. SPDFPN solved all previously intractable 9×9 Hex open-
ing moves; the hardest opening took 111 days. Also, in 63 days, it solved one
10×10 Hex opening move. This is the first time a computer or human has solved
a 10×10 Hex opening move.

1 Introduction

Depth-First Proof-Number search is effective for solving problems — e.g. two-player
games — that can be modelled with an and-or tree. It is especially effective on trees
with non-uniform branching, and has been successful in checkers [23], shogi [9], tsume-
shogi [12], Go [13, 14, 25], and Hex [8, 1].

DFPN search often jumps around the tree. An effective parallel DFPN variant thus
needs a sharedtransposition table(tt). The starting point for Scalable Parallel DFPN
search, our shared-memory DFPN variant, is the serial 1+ε-method [19], which is ef-
fective when search space exceeds memory.

Other parallel variants based on proof numbers have been proposed. Nagai intro-
duced proof-disproof search [16] and Kishimoto gave a parallel version [11]. Saffi-
dine et al. proposed a job-level PN2 [21] which is effective when search space exceeds
memory, although nodes can be recomputed many times. Kanekoachieves a parallel ef-
ficiency of 0.5 with 8 threads in tsume-shogi [9], whereas SPDFPN achieves 0.7 in Hex.
Hex solvers tend to obtain better speedups than tsume-shogisolvers, perhaps because
Hex has a larger branching factor and so smaller node expansion rate.

Saito et al. introduced randomized parallel PNS [22]. Wu et al. [24] use PNS with
virtual proof and disproof numbers and a time-intensive leaf initiation in a tree that is
small enough to stay in memory. SPDFPN is inspired by these virtual numbers, but is



based on DFPN rather than PNS. It distributes work among threads using only proof
and disproof numbers and thus needs no game-specific heuristic.

We tested SPDFPN on two sets of Hex problems, including all thirteen previously
intractable 9×9 opening moves. See Figure 1. Experiments show that our algorithm
scales well up to at least 16 threads.

2 DFPN

2.1 PN Search

Proof number search maintains a tree in which each node — corresponding to a game
position — has aproof number(pn) anddisproof number(dn). A node’s (dis)proof
number is the smallest number of leaves that, if all true (false), would make the node
true (false). Thus for an or-nodep = minj pj and d =

∑
j dj , wherep (d) is the

node’s (dis)proof number, andpj (dj) the j’th child’s (dis)proof number. PN search
relies on the existence of a most-proving node (mpn): this node’s (dis)proof reduces
either the proof or disproof number. PN search iteratively selects a most-proving leaf
and expands it. PN search needs the whole search tree to be in memory. This restriction
can be mitigated by taking a depth-first search approach and using a tt.

2.2 Depth-first PN Search

In computing (dis)proof numbers, only descendant (dis)proof values are needed. DFPN
search exploits this property by postponing ancestor updates until the most-proving
node is no longer in the current node’s subtree. For each node, thresholdsP andD are
defined so thatp < P andd < D if and only if there exists a most-proving node in the
node’s subtree. These thresholds are computed recursivelyusing the following formula
for an or-node. Children are indexed in non-decreasing proof number, e.g.p1(d1) are
the (dis)proof numbers of a child with smallest proof number. See [18] or [19] or the
recent survey on game tree search using pns [10].

P1 = min(P, 1 + p2), (1)

D1 = D − (d− d1). (2)

3 Transposition table and DAGs

To this point we have described the process for computing (dis)proof numbers in trees.
Many games allow transpositions, and so are modelled bydirected acyclic graphs
(dags) rather than trees. While more complicated variants ofDFPN are available for
dags [12], we find that in Hex, good results are obtained by treating the dag as a tree, as
long as a tt is used.



3.1 Problems, memory and the1 + ε method

Even with a tt, DFPN search behaves differently from the usual depth-first search, as the
continued selection of the next mpn causes frequent switching among child branches.
To force DFPN to switch branches less often, one can use the1+ ε method [19], which
simply enlarges the pn threshold in (1):

P1 = min(P, ⌈(1 + ε)p2⌉).

Another problem arises in (d)pn calculations when dags are treated as trees: due
to transpositions, (d)pns can be (exponentially) overcounted. Miscounting can lead to
the mistaken selection of a node which is not most-proving. Techniques address this
issue in games, such as tsume-shogi, with many transpositions [12]. We chose rather to
address these issues by starting with the1+ ε method, which reduces branch switching
even if search space is large. For our Hex experiments, possibly miscounting (dis)proof
numbers did not cause difficulties. After trial and error, wesetε to 0.25.

4 Parallelization

The version of PN search we have described to this point behaves like a usual depth-first
algorithm, spending significant periods of time in deep recursive calls. This allows for
parallelization if these criteria, which motivate the design of SPDFPN, can be met:

(i) Different threads should call DFPN searches for different states.
(ii) A thread should not duplicate the work of another. (The threads share a tt, and

different threads might explore different strategies for the same state.)
(iii) Assignment of states to threads should follow the natural order of PN search.

(Assume that stateA is assigned to threadα. If stateB is likely to be the next
state considered, we can assignB to another thread beforeα finishes.)

(iv) The assignment of states to threads should take little time.
(v) A thread should exit its search once other thread resultsrender it unnecessary.

4.1 Measuring work

We now show how we realize our criteria. Because of (v) we wantto allow individual
threads to halt and perhaps later resume. A straightforwardattempt to parallelize DFPN
that assigns a node to a processor, and has the processor return only when the subtree is
solved, would not permit this.

To realize (v), we set a work threshold for a single DFPN call.The threshold (Max-
WorkPerJob) must be small enough to allow even distribution among threads, but not
so small that we lose (iv). If it is large enough we satisfy (iv) and can use more sophis-
ticated methods for state assignment among threads. We needsuch a threshold, since
(d)pns in a DFPN search can remain low and not reach any (d)pn thresholds for long
periods of time, especially in sudden-death games.



Implementation So how do we alter DFPN to incorporate the work threshold? In
addition to the DFPN threshold parametersP andD, we introduce a new threshold pa-
rameterW , the maximum work that a thread should perform before halting. We define
work as the number of calls to the DFPN function.

The 1+ε method works best with advanced tt collision resolution. Weuse a method
from computer chess (e.g. [15, 20]) withk = 4: upon collision, search the next at
mostk cells for an empty location; if none is found, overwrite the location whose job
has performed the smallest amount of work. See [3, 17, 18] forother replacement or
collection techniques.

SPDFPN pseudocode in Algorithms 1 and 2 uses these variables: c — array of child
nodes;P,D — proof and disproof number thresholds;W — work threshold;n —
node. A node has fields.p, .d (proof and disproof numbers),.w (work), .j (index of last
selected child). TTWRITE(n) writes results for noden in the tt. TTREAD(n, j) tries to
read thejth child of noden; if this fails, it creates a child node with (d)pns each set to
1 and work set to 0.

Algorithm 1. DFPN Search

1: function DFPN(n, P,D,W )
2: wlocal← 1, n.w ← n.w + 1
3: for eachchild j of n do
4: c[j]← TTREAD(n, j)

5: loop
6: PNUPDATE(n, c)
7: TTWRITE(n)
8: if n.p ≥ P ∨ n.d ≥ D then

9: return wlocal

10: if wlocal ≥W then
11: return wlocal

12: j, Pj , Dj ← SELECT(n, c, P,D)
13: wchild←
14: DFPN(c[j], Pj , Dj ,W − wlocal)
15: wlocal← wlocal + wchild

16: n.w ← n.w + wchild

DFPN returns the amount of work done locally, i.e. in this call and all recursive
calls. SELECT returns a child together with thresholds for recursive call. In the single-
threaded version of the1 + ε method, processing remains at a noden1 until its pn
p1 exceeds the second-smallest pnp2 (among siblings) by a ratio of 1+ε. Since we
allow processes to be interrupted, it can be that upon resumption p1 is larger thanp2
but smaller thanp2(1 + ε). In this case, processing should resume atn1 rather than its
sibling. This requires adding to function SELECT the if-statement in lines 6–11.

5 Work assignment

What are a thread’s candidates for state assignment? PN-Search descends through a path
from root to a most-proving node. In DFPN this path is createdby successive recursive
calls and so is stored on a stack. However, DFPN search can remain deep in the search
tree for long periods. Thus for a node whose path is close to the most-proving node,
DFPN can stay in a subtree of that node for some time. Such a node is a good candidate
for a thread state assignment. But how deep on the subtree path should the assigned
state be? It should be deep enough that DFPN will stay in subtree of the node, not too



shallow because of (v) and not too deep because of (iv). A goodcandidate is a node that
is closest to the root and with past work performed belowMaxWorkPerJob, because we
expect that total DFPN work for this node will be proportional to the total DFPN past
work.

Once we assign a stateA to a threadα, how should we assign a stateB to another
thread? If we follow the same procedure we would arrive at thesame state. Instead,
following Rémi Coulom (see [4, p. 64]), we temporarily assign a virtual win or loss
to A until α finishes its search. This idea is also used by Job Level PN search, which
achieves superlinear scalability, and fulfils (i), (ii) and(iii). See [24].

Algorithm 2. DFPN Search — utility functions for OR node

1: procedure PNUPDATE(n, c)
2: n.p← min

child j of n
c[j].p

3: n.d←
∑

child j of n

c[j].d

4: function SELECT(n, c, P,D)
5: j1 ← child with the smallest pn
6: if n.j is set andn.j 6= j1 then
7: ⊲ Try continue with the same child
8: Pn.j , Dn.j ←
9: THRESHOLDS(n, c, P,D, n.j, j1)

10: if c[n.j].p < Pn.j then
11: return n.j, Pn.j , Dn.j

12: n.j ← j1
13: j2 ← child with the second smallest pn
14: Pj1 , Dj1 ←
15: THRESHOLDS(n, c, P,D, j1, j2)
16: return j1, Pj1 , Dj1

17: function THRESHOLDS(n, c, P,D, j1, j2)
18: Pj1 ← min(P, ⌈(1 + ε) · c[j2].p⌉),
19: Dj1 ← D − (n.d− c[j1].d)
20: return Pj1 , Dj1

5.1 Virtual proof and disproof numbers

As we set the value of nodeA to virtual win or loss depending on its (d)pn, we must
update other (d)pns along the path to the root. If we modify existing (d)pns, then other
threads can reach a state with incorrect (d)pns via transposition. So the use of virtual
win/loss requires the use of virtual (d)pns.

An inaccurate assignment of a virtual win or loss will cause SPDFPN search to di-
verge from DFPN search, violating condition (iii). Our initial assignments of these vir-
tual win/loss values are often accurate, as they are often made at nodes that have already
been partly searched. The amount of previous search is determined by the threshold pa-
rameterMaxWorkPerJob.

Virtual (d)pns can be stored efficiently (see below). In descending from the root
towards a most-proving node in order to find a state assignment for a thread, we use
virtual (d)pns if available, otherwise true (d)pns. After assigning a stateA to a threadα,
we update virtual (d)pns along the path to the root. Solving work then starts by calling
DFPN on stateA. This call uses true (d)pns. When the call returns, we reset the virtual
win/loss back to a true (d)pn and update virtual (d)pns alongthe path to root. This
completes an iteration of a thread loop, i.e. the thread now seeks its state assignment.



The entire phase of candidate-finding is guarded by a lock, soonly a single thread
can operate on virtual (d)pns at a time. A lock is released only when DFPN is called
and solving work resumes.

Virtual (d)pns are kept in a virtual tt, which stores a node’svirtual (d)pns and the
number of threads assigned on the path to the root that contain that node. A node is
added to the virtual tt at most as many times as the number of threads. This tt is easy to
implement for dags. Each level (move) of the game corresponds to an array whose size
is at most the number of threads. Virtual tt operations are asfollows:

– VTTA DD(n): if the entry already exists, increment the counter.
– VTTREMOVE(n): decrement the counter; if 0, remove the entry, otherwise restore

n’s previous virtual (d)pdn.
– VTTREAD(n, j, nj): return entry forn’s jth child; if no such entry then initialize

v(d)pns by returning the defaultnj , which contains true (d)pns.

5.2 Finding a state candidate for a thread

Finding a candidate for state assignment can fail, as follows. Suppose we are at node
n. We have read its (d)pns from the tt. We must select a child to descend to, so we also
read all of its children’s (d)pns from the tt. Normally, the recursive formulas should
give the (d)pns ofn from those of its children. A child’s (d)pns can be lost due tott
overwrites, but this is not a problem, as the (d)pns are recalculated when we descend to
such child. The problem is thatc was reached via transposition and work was done atc
after the last update ofn. Thus (d)pns can be stale, and an update can reveal that (d)pn
thresholds were reached or even thatn has been solved.

So descending to a mpn via the usual rules is not sufficient. Instead, we recursively
search as in DFPN, using virtual (d)pns whenever they exist,and stopping the search as
soon as we find a state with whose previous work performed is below a fixed threshold
(MaxWorkPerJob). This search is performed by TRYRUNJOB, explained in§5.4.

5.3 Sharing transposition table

Threads share the tts, so we use multiple-reader/single-writer locks. Following [9], if
a worker thread discovers immediately before writing that the node has (during the
worker’s processing) been solved by another thread, we do not overwrite the tt.

5.4 Implementation

Algorithm 3 shows the main scheme of SPDFPN, our parallel DFPN search. In the
loop, each thread calls TRYRUNJOB, tries to find a candidate for state assignment, and
if successful then runs a job by calling DFPN on the assigned state. But first we need
to update all virtual (d)pns, accessing them in nodes on the node-to-root path. We also
need virtual (d)pns of children of each such node. So, we introduce a listv directed
towards the root. Each list entry contains this data for the associated node:v.n — a
node with virtual (d)pns,v.c — array of the node’s children with (d)pns,v.parent —
refer to corresponding parent’sv.



Algorithm 3. Parallel DFPN

1: procedure PARALLEL DFPN(root)
2: for i = 1, . . . ,# of threadsdo
3: spawn thread with call RUN(root)

4: procedure RUN(n)
5: while n is not solveddo
6: LOCK(job lock)
7: v.n← n, v.parent← null

8: job done← false
9: TRYRUNJOB(n, v,∞,∞)

10: UNLOCK(job lock)
11: if job donethen
12: notify waiting threads
13: else
14: wait

TRYRUNJOB is shown in Algorithm 4. It works as DFPN, but additionally calcu-
lates virtual (d)pns and stores them in listv. Once it finds a candidate — the condition
in line 5 is true — virtual (d)pns are propagated upwards to the root and an actual job
is run. Once this job is done the entire recursion ends, i.e. no more search is performed
and virtual (d)pns are updated by VTTREMOVE calls.

5.5 Comparison to Kaneko’s algorithm

Kaneko parallelizes DFPN like this [9]: in an OR node’s tt access, a child’s pn is in-
creased by the number of threads searching that child. Kaneko calls this augmented
value a virtual pn3, discouraging — but not preventing — the search from repeatedly
selecting the same child. In our experiments we observe that, near tree-top, sibling pns
vary, whereas near tree-bottom, they are all small and so similar. In the former case,
Kaneko’s algorithm is likely to always select the same childfor search.

By contrast, in our approach, by setting the value ofMaxWorkPerJob, we implicitly
control how deep in the tree the diversion of thread selections should occur. Moreover,
our threads always work on different subtrees.

6 Experiments

We implemented SPDFPN for Hex on the open-source Hex repository Benzene [2],
which in turn is built on the open-source game-independent framework Fuego [5]. Ben-
zene uses Focussed DFPN search [1, 7], which employs an evaluation function to sort a
node’s children, and then focusses the search on a fraction of the most-promising chil-
dren. The size of the search window is given by⌈b + f × #active children⌉, so new
children can enter the window as siblings are proved to be a loss. We useb = 0 and
f = 0.25. FDFPN search maintains the usual correctness properties of PN search. We
used FDFPN because it is embedded in Benzene’s DFPN; our use of this DFPN variant
does not diminish the generality of SPDFPN.

Before starting our experiments, we improved Benzene’s virtual connection engine
and solver. The resulting implementation performs typically 2 to 10 times faster than
the previous version on similar hardware [8].

3 Do not confuse Kaneko’s augmented proof/disproof values with our definition of virtual pn.



We tested SPDFPN on two sets of Hex problems: Suite 1, the thirteen previously in-
tractable 9×9 opening moves plus the (previously intractable) centremost 10×10 open-
ing move; and Suite 2, the eight hardest 8×8 opening moves plus eight positions from
the 2011 Olympiad Hex competition [6].

Algorithm 4. Try find a candidate and run a job

1: function TRYRUNJOB(n, v, P,D)
2: if v.n.p ≥ P ∨ v.n.d ≥ D then
3: return 0
4: wlocal← 0
5: if n.w < MaxWorkPerJobthen
6: if n.p ≤ n.d then

⊲ Virtual win
7: v.n.p← 0, v.n.d←∞
8: else

⊲ Virtual loss
9: v.n.p←∞, v.n.d← 0

10: UPDATEV IRTUALS(v)
11: UNLOCK(job lock)

⊲ Candidate is found
⊲ Actual job is run here

12: wlocal←
13: DFPN(n, P,D,MaxWorkPerJob)
14: LOCK(job lock)
15: job done← true
16: v.n.p← n.p, v.n.d← n.d

17: VTTREMOVE(v.n)
18: return wlocal

19: for eachchild j of n do
20: c[j]← TTREAD(n, j)

21: v.c[j]← VTTREAD(n, j, c[j])

22: loop
23: PNUPDATE(n, c)
24: PNUPDATE(v.n, v.c)
25: TTWRITE(n)
26: if job donethen
27: VTTREMOVE(v.n)
28: return wlocal

29: if v.n.p ≥ P ∨ v.n.d ≥ D then
30: return wlocal

31: j, Pj , Dj ←
32: SELECT(v.n, v.c, P,D)
33: vchild.n← v.c[j], vchild.parent← v

34: wchild←
35: TRYRUNJOB(c[j], vchild, Pj , Dj)
36: wlocal← wlocal + wchild

37: n.w ← n.w + wchild

38: procedure UPDATEV IRTUALS(v)
39: VTTADD(v.n)
40: while v.parentis not nulldo
41: v ← v.parent
42: PNUPDATE(v.n, v.c)
43: VTTADD(v.n)

6.1 Previously intractable 9×9 and 10×10 Hex openings

Suite 1 tests the limits of SPDFPN on 24 threads of a hyperthreaded 12-core Intel Xeon
2.93 GHz with 48 Gbyte RAM and 8 threads of an 8-core Intel Xeon2.8 GHz with
32 Gbyte RAM. We used a tt with sizes varying from227 to 228 entries depending on
machine and stage of a search. Here, in TRYRUNJOB, in addition to a tt we used a
database storage capable of handling simple board isomorphism (180 degree rotation).
For more difficult openings we gradually raised the value ofε from 0.25 up to0.5 in
order to reduce the number of tt lookup failures.

Table 1 shows machine used and approximate running times. Due to occasional
machine shutdown, e.g. power failure, some runs were restarted several times from
database and tt backups; for these runs the running times arecumulative estimates based



a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

Fig. 1. Newly solved 9×9 opening values
(dots), winner if black opens there.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1

2 3

45

67

8

9

10

11

1213

14 15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Fig. 2.PV of a6 , the hardest 9×9 opening.

on logs. As an indication of achieved speedup on this problemsuite, the previous al-
gorithm with 8 threads failed to solve any of these openings after 480 hours4, whereas
SPDFPN with 24 threads solvesc2 in under 33 hours. On the 9×9 boarda6 was the
hardest opening. The behaviour of SPDFPN on this problem wasdifferent than on all
others: the main lines of play were extremely balanced, and the winner unclear, un-
til deep into the search. See Figure 2. Although the search space was around 100,000
times larger than the size of tt, SPDFPN showed continuous progress. In the previously
strongest Hex solver the search often gets stuck whenever search space is this much
larger than the tt [2, 1].

6.2 8×8 and Olympiad Hex problems

Suite 2 measures the parallel efficiency of our algorithm. Ona 24-core Intel Xeon 2.4
GHz with 64 Gbyte RAM, we used 16 threads (the others were in use). We used a tt with
224 entries, which was more than sufficient. We picked moderate problems: challenging
but still tractable for a single thread. This suite consistsof eight (hardest) 8×8 openings

4 Private communication with Broderick Arneson.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

1617

1819

20

21

22 23

24

25

26 27

28 29

30

31

Fig. 3.Principle variation off5 , the first-ever solved 10×10 opening. Black wins.



opening#threads time winner
a2 8/24 68d09:40:18 black
a3 8 80d08:37:34 white
a4 8 33d14:06:03 black
a5 8 65d04:14:52 black
a6 24 110d14:35:06 black
a7 24 4d08:56:03 white
a8 24 6d14:21:30 black

opening #threads time winner
b2 8 53d15:18:21 black
b4 8 29d23:53:14 black
b6 8 1d21:52:28 black
b7 8 4d17:19:13 black
c2 24 1d08:42:57 black
i1 24 6d00:51:25 black

10x10:f5 24 63d20:44:30 black

Table 1. Times (days:hrs:mins:secs) and threads for newly solved 9×9 and 10×10
openings.

and eight 11×11 positions from the 2011 ICGA Olympiad found by starting with the
final position and proceeding backwards to a moderate position. See Figures 4 and 5.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

Fig. 4. The hardest 8×8 openings (dots),
winner if black opens there.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1

2 3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20 21

22 23

24 25

26

27

28

29

30

31

32

33

34

Fig. 5. The hardest suite 2 position, from
game 7 of the 2011 Olympiad.

6.3 Scalability

In this experiment we measured scalability, or parallel efficiency, — the average5 speedup
ratio over serial version — for positions from suite 2. We ranour algorithm over
all instances two times. For run 1, on board size 8×8 (11×11), the default value of
MaxWorkPerJobwas 100 (20). For run 2,MaxWorkPerJobwas 500 (100). In many do-
mains, small values such as these can yield lower scalability due to thread management
overhead. However, our Hex solver spends a large fraction ofthe time on VC engine
computations, so for this solver these small values ofMaxWorkPerJobare suitable.

Our algorithm scales well on up to 16 threads. Figure 6 shows the scalability from
run 1 (9.4 with 16 threads, or .59), and from the six hardest problems — three each
from 8×8 and 11×11 — from run 2 (e.g.11.8 with 16 threads, or .74). Table 2 shows
how time is lost due to parallelization. For each runi = 1, 2, f i

t denotes the average

5 As usual when measuring a ratio (here, speedup), we use geometric mean for averaging.



fraction of time lost due to multi-threading overhead (shared tt access, hardware over-
head) andf i

s denotes the average fraction of time lost due to extra leaf expands (extra
states searched).

run 1 run 2
n f1

t f1

s e1 f2

t f2

s e2

1 1.000 1.000 1.0001.000 1.000 1.000
2 0.981 1.051 1.9401.033 1.095 1.768
4 1.071 1.094 3.4141.041 1.158 3.318
8 1.111 1.124 6.4051.072 1.268 5.885
12 1.098 1.398 7.8161.008 1.319 9.028
16 1.219 1.401 9.3681.091 1.245 11.780

Table 2.Scalability.

number of threadsn

sc
al

ab
ili

ty
e
i

1 2 4 8 12 16

2

4

6

8

10

12
y = x

run 1
run 2

Fig. 6.Scalability.

These values are computed as follows. Lets1 andsn be the number of leaf expands
(number of states for which the VC engine was used) for the serial andn-thread runs
respectively. Thenf i

s = sn/s1. Let t1 andtn be the actual running times for the serial
andn-thread runs. If there is no multi-threading overhead then the expected time of
then threads run isEt = t1sn/s1/n, so f i

t = tn/Et. Thustn = ftfst1/n, so the
scalabilityei is n/(f i

tf
i
s).

7 Conclusions

We have introduced SPDFPN, a parallel version of depth-firstproof number search that
scales well. We tested our algorithm on two suites of Hex problems, in the process
solving all thirteen previously intractable 9×9 openings and the first-ever solution to a
10×10 opening. Our experiments showed a speedup of .74, namely 11.8 on 16 threads.
Our algorithm is general and game-independent, and so should be equally effective on
any problem that can be modelled by and-or trees. It would be of interest to see whether
the SPDFPN speedups we achieved in Hex can be achieved in other domains, and to
compare and contrast SPDFPN to Kaneko’s parallel DFPN.

8 Acknowledgements

We thank Broderick Arneson, Yngvi Björnsson, Phil Henderson, Aja Huang, Timo
Ewalds, Martin M̈uller, and the referees for their feedback. We thank Martin for gener-
ously loaning the use of his computing cluster for our experiments.



References

1. Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Solving Hex: Beyond humans.
In H. Jaap van den Herik, Hiroyuki Iida, and Aske Plaat, editors,Computers and Games
2010, volume 6515 ofLNCS, pages 1–10. Springer, 2011.

2. Broderick Arneson, Philip Henderson, and Ryan B. Hayward. Benzene, 2009-2012.http:
//benzene.sourceforge.net/ .

3. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J.van den Herik. Replacement schemes and two-
level tables.ICGA, 19(3):175–180, 1996.

4. Guillaume Chaslot, Mark H.M. Winands, and H. Jaap van den Herik. Parallel monte-carlo
tree search. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H.M. Winands,
editors,Computers and Games 2008, volume 5131 ofLNCS, pages 60–71. Springer, 2008.

5. Markus Enzenberger, Martin M̈uller, Broderick Arneson, Rich Segal, Fan Xie, and Aja
Huang. Fuego, 2007-2012.http://fuego.sourceforge.net/ .

6. Ryan B. Hayward. 2011 ICGA Computer Games Olympiad Hex Competition Report, 2011.
http://webdocs.cs.ualberta.ca/ ˜ hayward/papers/rptTilburg.pdf .

7. Philip Henderson.Playing and solving Hex. PhD thesis, University of Alberta, 2010.http:
//webdocs.cs.ualberta.ca/ ˜ hayward/theses/ph.pdf .

8. Philip Henderson, Broderick Arneson, and Ryan Hayward. Solving8×8 Hex. In Proc.
IJCAI-09, pages 505–510, 2009.

9. Tomayuki Kaneko. Parallel depth first proof number search. InProc. AAAI-10, pages 95–
100, 2010.

10. A. Kishimoto, M.H.M. Winands, M. M̈uller, and J-T. Saito. Game-tree search using proof
numbers: The first twenty years.ICGA, 35(3):131–156, 2012.

11. Akihiro Kishimoto. Parallel AND/OR tree search based on proof and disproof numbers. In
5th Games Programming Workshop, volume 99 ofIPSJ Symposium Series, pages 24–30,
1999.

12. Akihiro Kishimoto. Dealing with infinite loops, underestimation, and overestimation of
depth-first proof-number search. InProc. AAAI-10, pages 108–113, 2010.

13. Akihiro Kishimoto and Martin M̈uller. A solution to the ghi problem for depth-first proof-
number search.Information Sciences, 175(4):296–314, 2005.

14. Akihiro Kishimoto and Martin M̈uller. About the completeness of depth-first proof-number
search. In H. Jaap van den Herik, X. Xu, Z. Ma, and Mark H.M. Winands, editors,Computers
and Games, volume 5131 ofLNCS, pages 146–156. Springer, 2008.

15. Fabien Letouzey. Fruit, 2004-2013.http://www.fruitchess.com/ .
16. Ayumu Nagai. A new AND/OR tree search algorithm using proof number and disproof

number. InProceeding of Complex Games Lab Workshop, pages 40–45, Tsukuba, November
1998. ETL.

17. Ayumu Nagai. A new depth-first-search algorithm for and/or tree. Master’s thesis, University
of Tokyo, Japan, 1999.

18. Ayumu Nagai.Df–pn Algorithm for Searching AND/OR Trees and its Applications. PhD
thesis, University of Tokyo, Japan, 2002.

19. Jakub Pawlewicz and Lukasz Lew. Improving depth-first pn-search: 1+ε trick. In H.J̃aap
van den Herik, P. Ciancarini, and H.H.L.M(J.) Donkers, editors,Computers and Games 2006,
volume 4630 ofLNCS, pages 160–170. Springer, 2007.

20. Tord Romstad. Stockfish, 2008-2013.http://stockfishchess.org/ .
21. Abdallah Saffidine, Nicolas Jouandeau, and Tristan Cazenave. Solving breakthrough with

race patterns and job-level proof number search. In H. Jaap van den Herik and Aske Plaat,
editors,Advances in Computers and Games 2011, volume 7168 ofLNCS, pages 196–207.
Springer, 2012.



22. Jahn-Takeshi Saito, Mark H.M. Winands, and H. Jaap van den Herik. Randomized paral-
lel proof-number search. In H. Jaap van den Herik and Pieter Spronck, editors,Advances
in Computer Games, volume 6048 ofLecture Notes in Computer Science, pages 75–87.
Springer Berlin Heidelberg, 2010.

23. Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin M̈uller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved.Science, 317:1518–1522, 2007.

24. I-Chen Wu, Hung-Hsuan Lin, Ping-Hung Lin, Der-Johng Sun, Yi-Chih Chan, and Bo-Ting
Chen. Job-level proof-number search for connect6. In H. Jaap van den Herik, Hiroyuki Iida,
and Aske Plaat, editors,Computers and Games 2010, volume 6515 ofLNCS, pages 11–22.
Springer, 2011.

25. Kazuki Yoshizoe, Akihiro Kishimoto, and Martin M̈uller. Lambda depth-first proof number
search and its appplication to go. InProc. IJCAI-07, pages 2404–2409, 2007.


