H.J. van den Herik et al. (Eds.): CG 2013, LNCS 8427, pp. 138-2604.
DOI:10.1007/978-3-319-09165-82, (© Springer International Publishing Switzerland 2014

Scalable Parallel DFPN Search

Jakub Pawlewiczand Ryan B. Hayward

! Institute of Informatics, University of Warsawan@mimuw.edu.pl
2 Computing Science, University of Albertaayward@ualberta.ca

Abstract. We present Scalable Parallel Depth-First Proof Number Searciy a ne
shared-memory parallel version of depth-first proof numbercke®&ased on the
serial DFPN % method of Pawlewicz and Lew, SPDFPN searches effectively
even as the transposition table becomes almost full, and so can solveiabge
lems. To assign jobs to threads, SPDFPN uses proof and disproofensiizud
two parameters. SPDFPN uses no domain-specific knowledge orties)ige it

can be used in any domain. Our experiments show that SPDFPN scélesdve
performs well on hard problems.

We tested SPDFPN on problems from the game of Hex. On a 24-corémeach
and a 4.2-hour single-thread task, parallel efficiency ranges ft8rar04 threads

to 0.74 on 16 threads. SPDFPN solved all previously intractaki [9ex open-

ing moves; the hardest opening took 111 days. Also, in 63 days, itdsolve
10x 10 Hex opening move. This is the first time a computer or human has solved
a 10x 10 Hex opening move.

1 Introduction

Depth-First Proof-Number search is effective for solvimghgems — e.g. two-player
games — that can be modelled with an and-or tree. It is edpeeifective on trees
with non-uniform branching, and has been successful inkgreg23], shogi [9], tsume-
shogi [12], Go [13, 14, 25], and Hex [8, 1].

DFPN search often jumps around the tree. An effective pr@lFPN variant thus
needs a sharetlansposition tablgtt). The starting point for Scalable Parallel DFPN
search, our shared-memory DFPN variant, is the sesiatthethod [19], which is ef-
fective when search space exceeds memory.

Other parallel variants based on proof humbers have begroged. Nagai intro-
duced proof-disproof search [16] and Kishimoto gave a parakrsion [11]. Saffi-
dine et al. proposed a job-level PIRR1] which is effective when search space exceeds
memory, although nodes can be recomputed many times. Kablkeves a parallel ef-
ficiency of 0.5 with 8 threads in tsume-shogi [9], whereas EPR achieves 0.7 in Hex.
Hex solvers tend to obtain better speedups than tsume-sbb@irs, perhaps because
Hex has a larger branching factor and so smaller node exgarate.

Saito et al. introduced randomized parallel PNS [22]. Wul.gR4] use PNS with
virtual proof and disproof numbers and a time-intensivé ileiiation in a tree that is
small enough to stay in memory. SPDFPN is inspired by thesealinumbers, but is

based on DFPN rather than PNS. It distributes work amongdsr@sing only proof
and disproof numbers and thus needs no game-specific heurist

We tested SPDFPN on two sets of Hex problems, including ate#im previously
intractable %9 opening moves. See Figure 1. Experiments show that ourithigo
scales well up to at least 16 threads.

2 DFPN

2.1 PN Search

Proof number search maintains a tree in which each node —esmrnding to a game
position — has groof number(pn) anddisproof number(dn). A node’s (dis)proof
number is the smallest number of leaves that, if all trues@glwould make the node
true (false). Thus for an or-node = min; p; andd = Zj d;, wherep (d) is the
node’s (dis)proof number, ang; (d;) the j'th child’s (dis)proof number. PN search
relies on the existence of a most-proving node (mpn): thdefso(dis)proof reduces
either the proof or disproof number. PN search iterativelgsts a most-proving leaf
and expands it. PN search needs the whole search tree to legrinmn This restriction
can be mitigated by taking a depth-first search approach sind a tt.

2.2 Depth-first PN Search

In computing (dis)proof numbers, only descendant (dig)pvalues are needed. DFPN
search exploits this property by postponing ancestor @sdantil the most-proving
node is no longer in the current node’s subtree. For each, tlodsholds? and D are
defined so thap < P andd < D if and only if there exists a most-proving node in the
node’s subtree. These thresholds are computed recursisigly the following formula
for an or-node. Children are indexed in non-decreasingfpromber, e.gp;(d,) are
the (dis)proof numbers of a child with smallest proof numisse [18] or [19] or the
recent survey on game tree search using pns [10].

P; = min(P, 1+ p9), 1)
Dy =D —(d—dy). 2

3 Transposition table and DAGs

To this point we have described the process for computirg)fchof numbers in trees.
Many games allow transpositions, and so are modelledlitacted acyclic graphs
(dags) rather than trees. While more complicated varianf3F#N are available for
dags [12], we find that in Hex, good results are obtained katitrg the dag as a tree, as
long as a ttis used.

3.1 Problems, memory and thel + ¢ method

Even with a tt, DFPN search behaves differently from the udejath-first search, as the
continued selection of the next mpn causes frequent swichimong child branches.
To force DFPN to switch branches less often, one can uske-themethod [19], which
simply enlarges the pn threshold in (1):

P, =min(P, [(1 4 ¢)p2]).

Another problem arises in (d)pn calculations when dags reisgtdd as trees: due
to transpositions, (d)pns can be (exponentially) overtedinMiscounting can lead to
the mistaken selection of a node which is not most-provireghfiques address this
issue in games, such as tsume-shogi, with many transpws[ti@]. We chose rather to
address these issues by starting withithes method, which reduces branch switching
even if search space is large. For our Hex experiments,ggssiscounting (dis)proof
numbers did not cause difficulties. After trial and error, se¢= to 0.25.

4 Parallelization

The version of PN search we have described to this point lesHike a usual depth-first
algorithm, spending significant periods of time in deep reive calls. This allows for
parallelization if these criteria, which motivate the dgsof SPDFPN, can be met:

(i) Differentthreads should call DFPN searches for difféistates.

(ii) A thread should not duplicate the work of another. (Theetids share a tt, and
different threads might explore different strategies Far $ame state.)

(i) Assignment of states to threads should follow the nalfwrder of PN search.
(Assume that statel is assigned to thread. If state B is likely to be the next
state considered, we can assigrio another thread beforefinishes.)

(iv) The assignment of states to threads should take littie.t

(v) Athread should exit its search once other thread reseitider it unnecessary.

4.1 Measuring work

We now show how we realize our criteria. Because of (v) we waualow individual
threads to halt and perhaps later resume. A straightforatéedhpt to parallelize DFPN
that assigns a node to a processor, and has the processoraryuwhen the subtree is
solved, would not permit this.

To realize (v), we set a work threshold for a single DFPN daie thresholdNlax-
WorkPerJob must be small enough to allow even distribution among tgebut not
so small that we lose (iv). If it is large enough we satisfy émd can use more sophis-
ticated methods for state assignment among threads. Wesnebda threshold, since
(d)pns in a DFPN search can remain low and not reach any (tiyesholds for long
periods of time, especially in sudden-death games.

Implementation So how do we alter DFPN to incorporate the work threshold? In
addition to the DFPN threshold parameté&snd D, we introduce a new threshold pa-
rameterlV, the maximum work that a thread should perform before haltible define
work as the number of calls to the DFPN function.

The 1+¢ method works best with advanced tt collision resolution.usle a method
from computer chess (e.g. [15, 20]) with = 4: upon collision, search the next at
mostk cells for an empty location; if none is found, overwrite tbedtion whose job
has performed the smallest amount of work. See [3, 17, 18btioer replacement or
collection techniques.

SPDFPN pseudocode in Algorithms 1 and 2 uses these variablesrray of child
nodes; P, D — proof and disproof number thresholdd; — work threshold;n —
node. A node has fieldg, .d (proof and disproof numbers)y (work), .; (index of last
selected child). TTWITE(n) writes results for node in the tt. TTREAD(n, j) tries to
read thejth child of noden; if this falils, it creates a child node with (d)pns each set to
1 and work set to 0.

Algorithm 1. DFPN Search

1: function DFPN(, P, D, W) 9: return wigcal

2 Wiocal <— 1, n.w <+ n.w + 1 10: if wiocal > W then

3 for eachchild 5 of n. do 11: return wiocal

4 clj] < TTREAD(n, j) 12: j, Pj, Dy + SELECT(n, ¢, P, D)
5: loop 13: Wehild <—

6 PNUPDATE(n, c) 14: DFPNCc[j], Pj, Dj, W — wiocal)
7 TTWRITE(n) 15: Wiocal <~ Wiocal + Wehild

8 if n.p > PV n.d> D then 16: n.w < n.W + Wehild

DFPN returns the amount of work done locally, i.e. in thid eald all recursive
calls. EFLECT returns a child together with thresholds for recursive.dalthe single-
threaded version of thé + ¢ method, processing remains at a nodeuntil its pn
p1 exceeds the second-smallestpn(among siblings) by a ratio ofdz. Since we
allow processes to be interrupted, it can be that upon resomyp, is larger thamp,
but smaller tham (1 + ¢). In this case, processing should resume-atather than its
sibling. This requires adding to functioreBecT the if-statement in lines 6-11.

5 Work assignment

What are a thread’s candidates for state assignment? PNFtsscends through a path
from root to a most-proving node. In DFPN this path is credgduccessive recursive
calls and so is stored on a stack. However, DFPN search cairrel®ep in the search
tree for long periods. Thus for a node whose path is closedartbst-proving node,
DFPN can stay in a subtree of that node for some time. Suchais@dgood candidate
for a thread state assignment. But how deep on the subtreespatild the assigned
state be? It should be deep enough that DFPN will stay in seluf the node, not too

shallow because of (v) and not too deep because of (iv). A gandidate is a node that
is closest to the root and with past work performed beltéax\WorkPerJobbecause we
expect that total DFPN work for this node will be proportibt@the total DFPN past
work.

Once we assign a statketo a thready, how should we assign a staleto another
thread? If we follow the same procedure we would arrive atsdime state. Instead,
following Rémi Coulom (see [4, p. 64]), we temporarily assign a virtual or loss
to A until « finishes its search. This idea is also used by Job Level PNiseahich
achieves superlinear scalability, and fulfils (i), (i) afiid). See [24].

Algorithm 2. DFPN Search — utility functions for OR node

1: procedure PNUPDATE(n, c) 10: if ¢[n.j].p < P,.; then
2. n.p< h_lrglinf cljlp 11: return n.j, Ppn.j, Dn.;
child 3 of n.

_ . 12: nj+ h
3 nde Z cil-d 13: j2 «+ child with the second smallest pn
child j of n
. i 14: le s Djl <
 function ShE,I'aEC,T%n’hC’ P, D?I 15: THRESHOLDYn, ¢, P, D, j1, j2)
71 < child with the smallest pn 16: return ji, P;,, D;,

4
5

6: if n.jissetandch.j # 71 then) . .
7 > Try continue with the same chilg 7 function THRESHOLDSn, ¢, P, DD, ju, jz)
8 18: P;, + min(P, [(1+ 5? - c[j2]-p]),

9 19: Dy, « D — (n.d — clji].d)

20: return P;,,Dj,

P’VL.j7 Dn.j <~
THRESHOLDSn, ¢, P, D, n.j, j1)

5.1 Virtual proof and disproof numbers

As we set the value of nodé to virtual win or loss depending on its (d)pn, we must
update other (d)pns along the path to the root. If we modifgtarg (d)pns, then other
threads can reach a state with incorrect (d)pns via traitggosSo the use of virtual
win/loss requires the use of virtual (d)pns.

An inaccurate assignment of a virtual win or loss will cauB®OEPN search to di-
verge from DFPN search, violating condition (iii). Our iaitassignments of these vir-
tual win/loss values are often accurate, as they are oftele mienodes that have already
been partly searched. The amount of previous search iswiett by the threshold pa-
rameteMaxWorkPerJob

Virtual (d)pns can be stored efficiently (see below). In éesiing from the root
towards a most-proving node in order to find a state assighfoera thread, we use
virtual (d)pns if available, otherwise true (d)pns. Aftesmning a statel to a thready,
we update virtual (d)pns along the path to the root. Solviogkwhen starts by calling
DFPN on stated. This call uses true (d)pns. When the call returns, we resstittual
win/loss back to a true (d)pn and update virtual (d)pns alttregpath to root. This
completes an iteration of a thread loop, i.e. the thread re@ksits state assignment.

The entire phase of candidate-finding is guarded by a lockngoa single thread
can operate on virtual (d)pns at a time. A lock is releaseg ahien DFPN is called
and solving work resumes.

Virtual (d)pns are kept in a virtual tt, which stores a nodaisual (d)pns and the
number of threads assigned on the path to the root that cotiitat node. A node is
added to the virtual tt at most as many times as the numberexdds. This tt is easy to
implement for dags. Each level (move) of the game corresptmen array whose size
is at most the number of threads. Virtual tt operations arfelésvs:

— VTTADD(n): if the entry already exists, increment the counter.

— VTTREMOVE(n): decrement the counter; if 0, remove the entry, otherwéseéore
n's previous virtual (d)pdn.

— VTTREAD(n, j, n;): return entry forn’s jth child; if no such entry then initialize
v(d)pns by returning the defauit;, which contains true (d)pns.

5.2 Finding a state candidate for a thread

Finding a candidate for state assignment can fail, as fall®uppose we are at node
n. We have read its (d)pns from the tt. We must select a chiléeszeind to, so we also
read all of its children’s (d)pns from the tt. Normally, thecursive formulas should
give the (d)pns of from those of its children. A child’s (d)pns can be lost dudtto
overwrites, but this is not a problem, as the (d)pns are catated when we descend to
such child. The problem is thatwas reached via transposition and work was done at
after the last update of. Thus (d)pns can be stale, and an update can reveal that (d)pn
thresholds were reached or even thétas been solved.

So descending to a mpn via the usual rules is not sufficiestedal, we recursively
search as in DFPN, using virtual (d)pns whenever they exist stopping the search as
soon as we find a state with whose previous work performeddsve fixed threshold
(MaxWorkPerJoh This search is performed byrR¥RUNJOB, explained ir5.4.

5.3 Sharing transposition table

Threads share the tts, so we use multiple-reader/singterocks. Following [9], if
a worker thread discovers immediately before writing theg bode has (during the
worker’s processing) been solved by another thread, we tloveowrite the tt.

5.4 Implementation

Algorithm 3 shows the main scheme of SPDFPN, our parallelBBarch. In the
loop, each thread callsR¥RUNJOB, tries to find a candidate for state assignment, and
if successful then runs a job by calling DFPN on the assigtese sBut first we need

to update all virtual (d)pns, accessing them in nodes on dlde-o-root path. We also
need virtual (d)pns of children of each such node. So, wedkite a listv directed
towards the root. Each list entry contains this data for $epeiated noden.n — a
node with virtual (d)pnsy.c — array of the node’s children with (d)pns,parent —
refer to corresponding parents

Algorithm 3. Parallel DFPN

1: procedure PARALLEL DFPN(oot) 8: job_done<« false

2 fori=1,...,+# of thread=do 9: TRYRUNJOB(n, v, 0o, 00)
3 spawn thread with call &(root) 10: UNLOCK(job_lock)

4: procedure RUN(n) 11: if job_donethen

5. while n is not solveddo 12: notify waiting threads
6 Lock(job_locK) 13 else

7 v.n < n, v.parent« null 14: wait

TRYRUNJOB is shown in Algorithm 4. It works as DFPN, but additionallyaa
lates virtual (d)pns and stores them in listOnce it finds a candidate — the condition
in line 5 is true — virtual (d)pns are propagated upwards &rtiot and an actual job
is run. Once this job is done the entire recursion ends, @enore search is performed
and virtual (d)pns are updated by VTEROVE calls.

5.5 Comparison to Kaneko’s algorithm

Kaneko parallelizes DFPN like this [9]: in an OR node’s ttees, a child’s pn is in-
creased by the number of threads searching that child. Kaoeks this augmented
value a virtual pA, discouraging — but not preventing — the search from repthate
selecting the same child. In our experiments we observerat tree-top, sibling pns
vary, whereas near tree-bottom, they are all small and sibasirin the former case,
Kaneko's algorithm is likely to always select the same cfoldsearch.
By contrast, in our approach, by setting the valudaikWorkPerJobwe implicitly

control how deep in the tree the diversion of thread selesti&hould occur. Moreover,
our threads always work on different subtrees.

6 Experiments

We implemented SPDFPN for Hex on the open-source Hex reppdienzene [2],
which in turn is built on the open-source game-independaméwork Fuego [5]. Ben-
zene uses Focussed DFPN search [1, 7], which employs araéealfunction to sort a
node’s children, and then focusses the search on a fradtidwe enost-promising chil-
dren. The size of the search window is given [by+ f x #active childreh, so new
children can enter the window as siblings are proved to bess M/e usé = 0 and
f = 0.25. FDFPN search maintains the usual correctness propeftfe search. We
used FDFPN because it is embedded in Benzene’s DFPN; ouf tiie BFPN variant
does not diminish the generality of SPDFPN.

Before starting our experiments, we improved Benzenets&iiconnection engine
and solver. The resulting implementation performs tygycalto 10 times faster than
the previous version on similar hardware [8].

% Do not confuse Kaneko’s augmented proof/disproof values with efinition of virtual pn.

We tested SPDFPN on two sets of Hex problems: Suite 1, thedmipreviously in-
tractable %9 opening moves plus the (previously intractable) cents#rhi@< 10 open-
ing move; and Suite 2, the eight hardest8opening moves plus eight positions from
the 2011 Olympiad Hex competition [6].

Algorithm 4. Try find a candidate and run a job

1: function TRYRUNJOB(n, v, P, D) 21: v.c[j] < VTTREAD(n, j, c[j])
2 if von.p > PVwv.n.d> Dthen 22: loop
3 return O 23: PNUPDATE(n, c)
4: Wiocal < 0 24:; PNUPDATE(v.1, v.c)
5. if n.w < MaxWorkPerJotthen 25: TTWRITE(n)
6 if n.p < n.d then 26 if job_donethen

> Virtual win - 27; VTTREMOVE(v.n)
7: vn.p < 0,v.n.d < © 28: return wiocal
8: else 29: if v.n.p > PVwv.n.d> Dthen

> Virtual loss 3. return wiocal
9: v.n.p < 00,v.n.d < 0 31: §, P, D; +
10: UPDATEV IRTUALS(v) 32 S]ELEZZT(U.n, v.c, P, D)
11 UNLOCK(job_lock) 33: Uchild-1 4— v.c[]], venild.parent<— v

> Candidate is found 34: Wehild —
> Actual job is run here 35: TRYRUNJOB(c[5], venia, Pj, D;)

12: Wiocal $— 36: Wiocal $— Wiocal + Wehild
13: DFPNn, P, D, MaxWorkPerJop 37 n.w 4 1.w + Wehild
14 Lock(job-locK) 38: procedure UPDATEV IRTUALS(v)
15: job_done« true 39: VTTADD(v.n)
16: v.n.p < n.p,v.n.d < nd 40: while v.parentis not nulldo
17: VTTREMOVE(v.n) 41 v + v.parent
18: return wiocal 42: PNUPDATE(v.1, v.€)
19: for eachchild j of n do 43: VTTADD(v.n)
20: clj] + TTREAD(n, j)

6.1 Previously intractable 99 and 10x 10 Hex openings

Suite 1 tests the limits of SPDFPN on 24 threads of a hypeatia@ 12-core Intel Xeon
2.93 GHz with 48 Gbyte RAM and 8 threads of an 8-core Intel X2dhGHz with
32 Gbyte RAM. We used a tt with sizes varying fr@¥ to 228 entries depending on
machine and stage of a search. Here, kvlRUNJOB, in addition to a tt we used a
database storage capable of handling simple board isomsorh80 degree rotation).
For more difficult openings we gradually raised the value ffom 0.25 up t0 0.5 in
order to reduce the number of tt lookup failures.

Table 1 shows machine used and approximate running times.t@wccasional
machine shutdown, e.g. power failure, some runs were tedtaeveral times from
database and tt backups; for these runs the running timesiamgative estimates based

a b c d e f g h i a b c d e f g h i

Fig. 1. Newly solved %9 opening values Fig. 2.PV of a6, the hardest 29 opening.
(dots), winner if black opens there.

on logs. As an indication of achieved speedup on this prolsdeite, the previous al-
gorithm with 8 threads failed to solve any of these openirfges 480 hour, whereas
SPDFPN with 24 threads solveg in under 33 hours. On the® boarda6 was the
hardest opening. The behaviour of SPDFPN on this problemdifigsent than on all
others: the main lines of play were extremely balanced, Aedatinner unclear, un-
til deep into the search. See Figure 2. Although the searabeswas around 100,000
times larger than the size of tt, SPDFPN showed continucagress. In the previously
strongest Hex solver the search often gets stuck whenesaectsepace is this much
larger than the tt [2, 1].

6.2 8x8 and Olympiad Hex problems

Suite 2 measures the parallel efficiency of our algorithma@4-core Intel Xeon 2.4
GHz with 64 Gbyte RAM, we used 16 threads (the others wereah Mige used a tt with
224 entries, which was more than sufficient. We picked modenatielems: challenging
but still tractable for a single thread. This suite considtsight (hardest) 88 openings

4 Private communication with Broderick Arneson.

@@@g@o
B

o
o

o
2

o 0%
4® e
0%
o

f

Fig. 3. Principle variation of5 , the first-ever solve

&

10 opening. Black wins.

opening#threads time winner opening |#threads time winner
a2 8/24 68d09:40:18 black b2 8 53d15:18:21 black
a3 8 80d08:37:34 white b4 8 29d23:53:14 black
a4 8 33d14:06:03 black b6 8 1d21:52:28 black
ab 8 65d04:14:52 black b7 8 4d17:19:13 black
ab 24 110d14:35:06 black c2 24 1d08:42:57 black
a7 24 4d08:56:03 white i1 24 6d00:51:25 black
a8 24 6d14:21:30 black 10x10:f5 24 63d20:44:30 black

Table 1. Times (days:hrs:mins:secs) and threads for newly solvefl &nd 10<10
openings.

and eight 1k 11 positions from the 2011 ICGA Olympiad found by startinghathe
final position and proceeding backwards to a moderate posiiee Figures 4 and 5.

a b 9 d e f g h Bl 40 400 20 i a0 g g K

Fig. 4. The hardest 88 openings (dots), Fig. 5. The hardest suite 2 position, from
winner if black opens there. game 7 of the 2011 Olympiad.
6.3 Scalability

In this experiment we measured scalability, or parallet&fficy, — the averadespeedup
ratio over serial version — for positions from suite 2. We @ algorithm over
all instances two times. For run 1, on board size8811x11), the default value of
MaxWorkPerJolwas 100 (20). For run 2flaxWorkPerJolwas 500 (100). In many do-
mains, small values such as these can yield lower scajabbilg to thread management
overhead. However, our Hex solver spends a large fractigheofime on VC engine
computations, so for this solver these small valuelslakWorkPerJolare suitable.

Our algorithm scales well on up to 16 threads. Figure 6 shbesctalability from
run 1 0.4 with 16 threads, or .59), and from the six hardest problemshreet each
from 8x8 and 11x11 — from run 2 (e.g11.8 with 16 threads, or .74). Table 2 shows
how time is lost due to parallelization. For each rus 1,2, f; denotes the average

5 As usual when measuring a ratio (here, speedup), we use geomesitfor averaging.

fraction of time lost due to multi-threading overhead (gloktt access, hardware over-
head) andf! denotes the average fraction of time lost due to extra |lepéas (extra
states searched).

y=uz
- 2Tl o un1 e
run 1 run 2 S 10 |-—e--run2 S
T T] pi h= P ST

n ft fs €1 ft fs €2 3 8 + ///. o’

1(1.000 1.000 1.00@.000 1.000 1.000 ng 6+ .87

2]0.981 1.051 1.940.033 1.095 1.768 9 44 & gl

411.071 1.094 3.41/4.041 1.158 3.318 9L &

8(1.111 1.124 6.408.072 1.268 5.885 I % % %

12/1.098 1.398 7.816.008 1.319 9.028 12 4 8 12 16

16/1.219 1.401 9.368.091 1.245 11.780 number of threads
Table 2. Scalability. Fig. 6. Scalability.

These values are computed as follows. ,e&nds,, be the number of leaf expands
(number of states for which the VC engine was used) for thialsendn-thread runs
respectively. Therf! = s,,/s;. Lett; andt,, be the actual running times for the serial
andn-thread runs. If there is no multi-threading overhead thenexpected time of
then threads run isE;, = tys,/s1/n, so f{ = t,/E;. Thust, = fifst1/n, so the
scalabilitye; isn/(f{ f1).

7 Conclusions

We have introduced SPDFPN, a parallel version of depthgistf number search that
scales well. We tested our algorithm on two suites of Hex lgrak, in the process
solving all thirteen previously intractablex® openings and the first-ever solution to a
10x 10 opening. Our experiments showed a speedup of .74, narhéyh 16 threads.
Our algorithm is general and game-independent, and sodheutqually effective on
any problem that can be modelled by and-or trees. It would beerest to see whether
the SPDFPN speedups we achieved in Hex can be achieved indatimains, and to
compare and contrast SPDFPN to Kaneko’s parallel DFPN.

8 Acknowledgements

We thank Broderick Arneson, Yngvi Binsson, Phil Henderson, Aja Huang, Timo
Ewalds, Martin Miller, and the referees for their feedback. We thank Madirgkener-
ously loaning the use of his computing cluster for our experits.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Broderick Arneson, Ryan B. Hayward, and Philip Henderson.iSghiex: Beyond humans.
In H. Jaap van den Herik, Hiroyuki lida, and Aske Plaat, edit@smputers and Games
2010 volume 6515 ot NCS pages 1-10. Springer, 2011.

. Broderick Arneson, Philip Henderson, and Ryan B. Hayward zBea, 2009-201Attp:

/Ibenzene.sourceforge.net/

. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J.van den Herik. Repl@ment schemes and two-

level tablesICGA, 19(3):175-180, 1996.

. Guillaume Chaslot, Mark H.M. Winands, and H. Jaap van den HerikallBbmonte-carlo

tree search. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, andkMa¥l. Winands,
editors,Computers and Games 200®Ilume 5131 of. NCS pages 60—71. Springer, 2008.

. Markus Enzenberger, Martin iler, Broderick Arneson, Rich Segal, Fan Xie, and Aja

Huang. Fuego, 2007-2018ttp://fuego.sourceforge.net/

. Ryan B. Hayward. 2011 ICGA Computer Games Olympiad Hex Commaﬁteport 2011.

http://webdocs.cs.ualberta.ca/ ~hayward/papers/rptTilburg.pdf

. Philip HendersorPlaying and solving HexPhD thesis, University of Alberta, 201B6ttp:

/lwebdocs.cs.ualberta.ca/ ~hayward/theses/ph.pdf

. Philip Henderson, Broderick Arneson, and Ryan Hayward. Sol8in§ Hex. InProc.

IJCAI-09, pages 505-510, 2009.

. Tomayuki Kaneko. Parallel depth first proof number searctPrérc. AAAI-10 pages 95—

100, 2010.

A. Kishimoto, M.H.M. Winands, M. Nlller, and J-T. Saito. Game-tree search using proof
numbers: The first twenty yearkCGA, 35(3):131-156, 2012.

Akihiro Kishimoto. Parallel AND/OR tree search based on proof asprdof numbers. In
5th Games Programming Workshomlume 99 oflPSJ Symposium Seriggages 24-30,
1999.

Akihiro Kishimoto. Dealing with infinite loops, underestimation, and osgmeation of
depth-first proof-number search. Bmoc. AAAI-10Q pages 108-113, 2010.

Akihiro Kishimoto and Martin Miller. A solution to the ghi problem for depth-first proof-
number searchinformation Scienced75(4):296-314, 2005.

Akihiro Kishimoto and Martin Niller. About the completeness of depth-first proof-number
search. In H. Jaap van den Herik, X. Xu, Z. Ma, and Mark H.M. WiawrditorsComputers
and Gamesvolume 5131 of NCS pages 146-156. Springer, 2008.

Fabien Letouzey. Fruit, 2004-2011&tp://www.fruitchess.com/

Ayumu Nagai. A new AND/OR tree search algorithm using proof numimel disproof
number. InProceeding of Complex Games Lab Workstpames 40-45, Tsukuba, November
1998. ETL.

Ayumu Nagai. A new depth-first-search algorithm for and/or tregstlt’s thesis, University
of Tokyo, Japan, 1999.

Ayumu Nagai. Df—pn Algorithm for Searching AND/OR Trees and its ApplicatioR&D
thesis, University of Tokyo, Japan, 2002.

Jakub Pawlewicz and Lukasz Lew. Improving depth-first pneed-+e trick. In H.Jaap
van den Herik, P. Ciancarini, and H.H.L.M(J.) Donkers, editG@nputers and Games 2006
volume 4630 oLNCS pages 160-170. Springer, 2007.

Tord Romstad. Stockfish, 2008-2018tp://stockfishchess.org/

Abdallah Saffidine, Nicolas Jouandeau, and Tristan Cazena\}mn@breakthrough with
race patterns and job-level proof number search. In H. Jaap vaRlelek and Aske Plaat,
editors,Advances in Computers and Games 204dume 7168 olLNCS pages 196-207.
Springer, 2012.

22.

23.

24.

25.

Jahn-Takeshi Saito, Mark H.M. Winands, and H. Jaap van dek.HRandomized paral-
lel proof-number search. In H. Jaap van den Herik and Pieter Skreditors,Advances
in Computer Gamesvolume 6048 ofLecture Notes in Computer Sciengeages 75-87.
Springer Berlin Heidelberg, 2010.

Jonathan Schaeffer, Neil Burch, YngvbBjsson, Akihiro Kishimoto, Martin Mller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is sol8etknce317:1518-1522, 2007.
I-Chen Wu, Hung-Hsuan Lin, Ping-Hung Lin, Der-Johng SunCHih Chan, and Bo-Ting
Chen. Job-level proof-number search for connect6. In H. Jaaglen Herik, Hiroyuki lida,
and Aske Plaat, editor§omputers and Games 2Q0Mlume 6515 oLLNCS pages 11-22.
Springer, 2011.

Kazuki Yoshizoe, Akihiro Kishimoto, and Martin dller. Lambda depth-first proof number
search and its appplication to go. Pmoc. IJCAI-07 pages 2404—-2409, 2007.

