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Abstract

A P4 is an induced path with four vertices. A bichromatic P4 composition scheme is as follows:
(1) start with two graphs with vertex sets of di1erent colour, say black • and white ◦, (2) select
a set of allowable four-vertex bichromatic sequences, for example {• • ••; ◦ ◦ ◦◦; • ◦ ◦•; ◦ • •◦},
(3) add edges between the graphs so that in the composed graph each P4 is coloured with an
allowable sequence. Answering a question of Chv5atal, we determine all such schemes which
preserve perfect orderability.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Given that determining the chromatic number of a graph is computationally infea-
sible [11], restricted approaches are often considered for vertex colouring. One such
approach is due to Chv5atal [1], who conceived of a class of graphs for which a cer-
tain e=cient algorithm always yields an optimal colouring. Precisely, he de>ned as
perfectly orderable those graphs for which there exists a perfect order, namely, an or-
dering of the vertices and an ordering of colours such that for every (vertex induced)
subgraph, the so-called “greedy” or “sequential” colouring algorithm (proceed through
the vertices in vertex order, assigning to each vertex the >rst colour in colour order
which has not been assigned to any neighbour) yields an optimal colouring. Although
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it is well motivated, the de>nition of perfect order is unwieldy, referring to a graph
property which must hold for all induced subgraphs. A more useful property, veri>able
in polynomial time, is the following characterization, also established by Chv5atal [1]:

a linear order ¡ of the vertices of a graph is a perfect order if and only if there
is no induced path (abcd) with a¡b and d¡c.

Since vertex colouring is easy for perfectly orderable graphs once a perfect order is
found, it is of interest to answer the question “which graphs are perfectly orderable?”.
Middendorf and Pfei1er [12] showed that there is probably no good (namely, poly-
nomial time) answer to this question by showing that recognizing perfectly orderable
graphs is NP-complete. However, many partial answers have been established by re-
searchers who have shown that various classes of graphs are perfectly orderable. Some
such classes are discussed in the chapter on perfectly orderable graphs by HoIang in
[13] ; see for example [5–7,10]. In this paper, we give a partial answer of a di1er-
ent form, namely by considering certain composition schemes which preserve perfect
orderability.

The composition schemes we consider are: start with two graphs, and add edges
between the graphs to form a new graph. We are interested in imposing conditions
which preserve perfect orderability: the composed graph should be perfectly orderable
if the starting graphs are. A P4 in a graph is an induced four-vertex path. 2 In light
of Chv5atal’s characterization, it is reasonable to consider composition schemes de>ned
in terms of P4’s. If we distinguish the starting graphs by giving the two vertex sets
di1erent colours, the colour patterns on the composed graph’s P4’s might determine
whether perfect orderability is preserved.

By a bichromatic graph, we mean a graph together with a two-colouring of the
vertices (namely, a partition of the vertex set into two colour classes); in this paper,
the two colours used will always be black • and white ◦. The pattern of a bichromatic
P4 is the sequence of vertex colours along the path. For example, the pattern of a
bichromatic P4 (wxyz) in which w; x; z are coloured black and y is coloured white is
• • ◦•. The pattern set of a bichromatic graph is the set of patterns of the P4’s of the
bichromatic graph. Since the reversal of a P4 is a P4, pattern sets are closed under the
property of reversing patterns. We append ‘∗’ to a pattern to indicate either the pattern
or its reverse; for example, {• • ◦•∗} is the same as {• • ◦•; • ◦ ••}. A bichromatic
P4 composition scheme (or simply a P4 composition scheme) is a two colour (one for
each starting graph) composition scheme in which the pattern set of each composed
graph is a subset of a speci>ed pattern set. P4 composition schemes are identi>ed
by the corresponding pattern set. An example of P4 composition is shown in Fig. 1.
These notions were introduced by Chv5atal, who asked “which P4 composition schemes
preserve perfect orderability?” and who gave the following partial answer [2]: the P4

composition scheme with pattern set {• • ••; • • ◦•∗; • ◦ •◦∗; • ◦ ◦•; • ◦ ◦◦∗; ◦ ◦ ◦◦}
preserves perfect orderability.

2 This di1ers slightly from the usual de>nition of a P4 as a set of four vertices inducing a path in a graph.
In this paper, we want to know not only which vertices are in the path, but also which edges.
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Fig. 1. An example of P4 composition. With scheme {• • ••; ◦ ◦ ◦◦; • ◦ ◦•; ◦ • •◦}, the bichromatic graph
on the right can be composed from the two monochromatic starting graphs on the left.

Fig. 2. The >ve maximal P4 composition schemes which preserve perfect orderability.

The main result of this paper is a complete answer to Chv5atal’s question, namely
Theorem 1; the >ve schemes are illustrated in Fig. 2.

Theorem 1. A P4 composition scheme preserves perfect orderability if and only if its
associated pattern set or its colour exchange equivalent is a subset of one of the
following:

(I) {• • ••; • • ◦•∗; • ◦ •◦∗; • ◦ ◦•; • ◦ ◦◦∗; ◦ ◦ ◦◦},
(II) {• • ••; • ◦ ◦•; ◦ • •◦; ◦ ◦ ◦◦},
(III) {• • ••; • • ◦•∗; ◦ • ◦◦∗; ◦ ◦ ◦◦},
(IV) {• • ••; • • •◦∗; • ◦ ◦◦∗; ◦ ◦ ◦◦},
(V) {• • ••; • • •◦∗; • ◦ •◦∗; • ◦ ◦◦∗}.

An idea which is useful in proving the above theorem is the natural correspondence
between a pattern set and two associated graph classes. For each pattern set K=I; : : : ;V,
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let GK be the class of graphs with some non-monochromatic two-colouring, such that
the pattern set of the resulting bichromatic graph is a subset of K , and let HK be those
graphs of GK for which every non-trivial (namely with at least two vertices) induced
subgraph is also in GK . For example, the rightmost graph in Fig. 1 is in GII but not
HII, since the induced cycle with >ve vertices is not in GII. In the process of proving
our main theorem, we will characterize some of GI; : : : ;GV and HI; : : : ;HV.

The rest of the paper is divided into four sections. In Section 2, we present back-
ground material on compositions related to perfectly orderable graphs. In Section 3,
we establish one direction of the theorem, namely that each of the described schemes
preserves perfect orderability. In Section 4, we establish the other direction of the the-
orem, namely that no other scheme preserves perfect orderability. In Section 5, we
present some concluding remarks.

2. Basic results

In this section, we present several well-known results on perfect orderability and
introduce a class of graphs fundamental to our later results.

One result is a modi>cation of Chv5atal’s characterization in which the notion of linear
vertex order is replaced with the notion of edge orientation, namely an ordering ¡ of
the vertices of the edges, in which each edge (u; v) is oriented either u¡v or v¡u.
Every linear vertex order implies an edge orientation, and every edge orientation which
is acyclic, namely with no directed cycle, can be extended (via topological sorting) to
a linear vertex order. An oriented P4 (abcd) is bad if a¡b and d¡c. Thus Chv5atal’s
characterization implies that

a graph is perfectly orderable if and only if the graph has an acyclic edge orien-
tation with no bad P4.

This holds even for acyclic orientations which leave some edges unoriented, as long
as at least one edge of each P4 is oriented so that the P4 cannot be bad.

Another result concerns properties which imply perfect orderability. A vertex in a
graph is no-mid (respectively no-end) if it is not a middle (respectively end) vertex of
any P4. HoIang and Khouzam [8] observed that

a graph with every proper subgraph perfectly orderable and with a no-mid or
no-end vertex is perfectly orderable.

This result also follows from Chv5atal’s result that scheme I preserves perfect order-
ability: colouring any no-mid vertex black and all other vertices white, or any no-end
vertex white and all other vertices black, yields a pattern set which is a subset of
{◦ ◦ ◦◦; • ◦ ◦◦∗} or {• • ••; • • ◦•∗}. A graph is split if its vertex set can be partitioned
into two sets which induce respectively a clique and an independent set. A vertex in
a split graph is no-mid if in the independent set and no-end if in the clique, so

split graphs are perfectly orderable.
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Fig. 3. Substitution.

Yet another result concerns a graph composition scheme. Substitution is the following
composition process: given a vertex v in a graph G and a graph H , form a new graph
by replacing v with H , making every neighbour of v in G adjacent to every vertex
of H . This composition process is illustrated in Fig. 3. A corresponding notion is that
of a homogeneous set of a graph, namely a proper non-trivial 3 vertex subset, such
that every vertex which is not in the set is adjacent to all or none of the vertices
in the set. For example, in the rightmost graph in Fig. 3, the black vertices form a
homogeneous set. A graph has a homogeneous set if and only the graph can be obtained
by substituting a non-trivial graph into a non-trivial graph. For any graph formed by
the substitution of one perfectly orderable graph into another, the vertex order which
is consistent with the two perfect orders is a perfect order of the new graph, so

substitution preserves perfect orderability.

Equivalently, if every proper induced subgraph of a graph with a homogeneous set
is perfectly orderable, then the graph is perfectly orderable. For example, a graph is
split-substitute (respectively recursively split-substitute) if it can be created from a split
graph by repeatedly substituting any graph (respectively any recursively split-substitute
graph) for any vertex, so

recursively split-substitute graphs are perfectly orderable.

On the other hand, split-substitute graphs are not necessarily perfectly orderable, since
these graphs may have homogeneous sets which do not induce perfectly orderable
graphs. A graph is prime if it has no homogeneous set. The prime graph obtained by
replacing every maximal homogeneous set with a single vertex is the characteristic
graph of a graph. It is easy to see that a graph is split-substitute if and only if its
characteristic graph is split, and recursively split-substitute if and only if every prime
induced subgraph is split.

We conclude this section by establishing a forbidden induced subgraph characteri-
zation of recursively split-substitute graphs. The characterization will be used later to
show that this class of graphs is exactly HII. Ck and Pk denote the induced cycle and
path, respectively, with k vertices and SX denotes the complement of X . D6, also known
as the domino, is any graph isomorphic to the graph with vertex set {1; : : : ; 6} and
edge set {12; 16; 23; 25; 34; 45; 56}. H6, also known as the hat, is any graph isomorphic
to the graph with vertex set {1; : : : ; 6} and edge set {12; 23; 25; 34; 45; 56}.

3 A set is non-trivial if it has at least two elements. A graph is non-trivial if its vertex set is non-trivial.
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Fig. 4. The forbidden recursively split-substitute graphs: C5, P5, SP5, H6, SH 6.

A graph is called chordal if it contains no Ck¿4, and recursively chordal-substitute
if it can be created from a chordal graph by repeatedly substituting a recursively
chordal-substitute graph for any vertex. (Equivalently, a graph is recursively chordal-
substitute if and only if every prime induced subgraph is chordal.) FToldes and Hammer
[4] showed that

a graph is split if and only if it contains no C4, SC4, C5.

It follows that a graph is split if and only if both the graph and its complement are
chordal, and similarly

a graph is recursively split-substitute if and only if both the graph and its com-
plement are recursively chordal-substitute.

HoIang and Reed [9] showed that (in our terminology)

a graph is recursively chordal-substitute if and only if it contains no Ck¿5, no SP5,
no H6, and no D6.

Since Ck¿6 and D6 contain P5, the previous two results imply our desired characteri-
zation, illustrated in Fig. 4.

Theorem 2. A graph is recursively split-substitute if and only if it contains no C5,
P5, SP5, H6, or SH 6.

3. The schemes preserve perfect orderability

The proof of Theorem 1 consists of two parts, namely showing that schemes I; : : : ;V
preserve perfect orderability, and showing that there are no other schemes. We present
the former part in this section and the latter part in the next section. Several di1erent
proof forms will be employed here, including explicit construction of perfect orders,
reduction, and structural analysis of some of the graph classes GI; : : : ;GV;HI; : : : ;HV.
The rest of this section is broken into >ve subsections, namely one for each scheme.

3.1. Scheme I: {• • ••; • • ◦•∗; • ◦ •◦∗; • ◦ ◦•; • ◦ ◦◦∗; ◦ ◦ ◦◦}

In initiating the study of P4 composition schemes, Chv5atal was motivated by a desire
to study schemes whose rules of composition are suggested by the structure of certain
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graph classes. For example, by colouring adjacent vertices di1erent colours, a bipartite
graph can be two coloured so that its pattern set is a subset of {•◦•◦∗}. The associated
scheme B generalizes the process of creating bipartite graphs (since the set of non-trivial
graphs which can be two-coloured to have exactly this pattern set strictly includes all
non-trivial bipartite graphs). Thus, it is not surprising that the proof that bipartite graphs
are perfectly orderable (order all vertices of one colour before all vertices of the other
colour) easily extends to a proof that B preserves perfect orderability (consistent with
perfect orders of the starting graphs, order all vertices of one graph before all vertices
of the other graph). This proof also works for schemes whose pattern set is a superset
of B; Chv5atal observed that scheme I is the largest scheme for which this particular
proof works.

Theorem 3 (Chv5atal [2]). Scheme I preserves perfect orderability.

Proof. Combine perfect orders of the monochromatic starting graphs into a vertex
order of the composed graph by ordering all white vertices before all black vertices.
This order is a perfect order, since every bichromatic P4 (abcd) has either ◦b and •a
or ◦c and •d and so b¡a or c¡d.

Recall that GI is the class of bichromatic graphs whose pattern set is I, and HI is all
graphs of GI all of whose non-trivial induced subgraphs are also in GI. The preceding
comments imply that GI contains all bipartite-substitute graphs and HI contains all
recursively bipartite-substitute graphs. We shall see later that these containments are
strict.

3.2. Scheme II: {• • ••; • ◦ ◦•; ◦ • •◦; ◦ ◦ ◦◦}

Chv5atal’s proof that scheme I preserves perfect orderability explicitly constructs a
perfect order of the composed graph from the perfect orders of the starting graphs. We
use a di1erent proof technique to show that scheme II preserves perfect orderability,
namely we characterize the graph class GII.

Theorem 4. For any non-trivial graph G, the following are equivalent:

(1) G is in GII, namely has a two-colouring with pattern set a subset of {• • ••; • ◦
◦•; ◦ • •◦; ◦ ◦ ◦◦},

(2) G is in GII− , namely has a two-colouring with pattern set a subset of {• • ••; • ◦
◦•; ◦ ◦ ◦◦},

(3) G is split-substitute.

In proving structural theorems based on P4 composition, results on the connectedness
of P4’s are useful. Our starting point is the observation (due to Seinsche [14]) that

for each non-trivial graph with no P4, the graph or its complement is disconnected.
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Theorem 4 follows from Lemma 5. F is the set of minimal forbidden graphs of
Theorem 2, namely F= {C5; P5; SP5; H6; SH 6}.

Lemma 5. Every graph G which is prime and not split-substitute has some graph F
of F as an induced subgraph, and for any such F , the vertices of the graph can be
labelled v1; : : : ; vn so that

(1) F is induced by {v1; : : : ; vt} (so t = 5 or 6),
(2) for each k ¿ t, some set {va; vb; vc; vk} with a¡b¡c¡k induces a P4.

Throughout, this paper sees and misses indicate adjacency and non-adjacency, respec-
tively. A vertex is universal, partial, or null on a set of vertices if it sees, respectively,
all, some but not all, or none of the vertices in the set; these properties are extended
from a vertex to a set if all vertices in the set have the same property. For example,
if the vertices of the rightmost graph in Fig. 3 are labelled left to right as {abb′cd},
then {bb′} is {ac}-universal and {d}-null.

Proof of Lemma 5. (1) holds by Theorem 2, so we need only show that (2) holds.
If n = t, we are done, so suppose n¿ t. Argue by induction. Suppose that for some
t6 u¡n, the vertices of Vu={v1; : : : ; vu} have been labelled so that (2) holds restricted
to Vu. Since Vu is not homogeneous in G, some vertex z not in Vu is Vu-partial. Let j
be the smallest index such that z is Vj = {v1; : : : ; vj}-partial. Thus 26 j, and z is not
(Vj −vj)-partial. If j6 t then z is F-partial, and a routine case analysis shows that z is
in a P4 with three vertices of F and so can be labelled vt+1. If j¿ t then by inductive
assumption there are indices a¡b¡c¡j such that Q = {va; vb; vc; vj} induces a P4.
Since z is Vj-partial but not (Vj − vj)-partial, z is Q-partial but not (Q− vj)-partial, so
z sees either exactly one or exactly three vertices of Q, and in each case z is in a P4

with three vertices of Q and again can be labelled vt+1. Thus, the labelling can always
be extended, so the lemma holds.

Proof of Theorem 4. Any split-substitute graph can be two-coloured so that its pat-
tern set is a subset of II− = {• • ••; • ◦ ◦•; ◦ ◦ ◦◦}: in the original split graph,
colour the clique white and the independent set black; for each substitution, colour
the vertices being added with the colour of the vertex being replaced. Thus (3) im-
plies (2). Since II− is a subset of II, (2) implies (1). It remains to show that (1)
implies (3).

Argue the contrapositive: assuming that a graph is not split-substitute, show that is
has no two-colouring with pattern set a subset of II. Consider a bichromatic graph G
which is a smallest counterexample.

First observe that G has no homogeneous set H . Assume the contrary: then for every
h in H , G−H +h is not split-substitute, and there is at least one h in H whose colour
is di1erent from the colour of some vertex in G − H (otherwise is monochromatic),
and G − H + h is a smaller counterexample than G, contradiction.
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Next, by Theorem 2, G contains some graph from F, so we can label vertices
v1; : : : ; vn as in Lemma 5. A case analysis shows that no graph in F can be two-coloured
with patterns only from II, so v1; : : : ; vt are all the same colour, say black. Assume that
v1; : : : ; vr are all black, for some t6 r ¡n. Since there are indices a¡b¡c¡r + 1
which induce a P4, and since II does not contain any pattern with exactly three black
vertices, vr+1 is black. Thus, all vertices of G are black, so G is monochromatic,
contradiction. Thus, there is no counterexample, so (1) implies (3) and the proof is
complete.

Corollary 6. Scheme II preserves perfect orderability.

Corollary 7. HII is the class of recursively split-substitute graphs.

The >rst corollary follows from Theorem 4 because split graphs are perfectly order-
able and substitution preserves perfect orderability. The second follows from Theorem
4 because HII consists of those graphs of GII which have all non-trivial proper induced
subgraphs also in GII.

3.3. Scheme III: {• • ••; • • ◦•∗; ◦ • ◦◦∗; ◦ ◦ ◦◦}

A P4 in a bichromatic graph has pattern set {abcd∗} if and only if the complement
of the P4 has pattern set {bdac∗}, so a bichromatic graph has pattern set III if and
only if the complement of the graph with the same two-colouring has pattern set IV.
Also, a vertex set is homogeneous in a graph if and only if it is homogeneous in
the graph’s complement. Furthermore, a vertex is no-end in a graph if and only if it
is no-mid in the graph’s complement. It follows from these three statements that the
lemma and theorem below are equivalent to the corresponding results in Section 3.4.
Since we will prove in Section 3.4 all results stated in Section 3.4, we do not need to
prove any of the results stated below.

A graph is no-end-substitute (respectively no-mid-substitute) if it can be created by
substitution, starting from a graph with some no-end (no-mid) vertex; an equivalent
de>nition is that a graph is no-end-substitute (no-mid-substitute) if and only if its
characteristic graph has a no-end (no-mid) vertex.

We use to indicate an unspeci>ed colour, namely either colour • or colour
◦. We represent a coloured P4 by listing the pattern and the path together in the
same relative order; furthermore, whenever we list a four vertex path followed by
its colour sequence, the path is understood to be a P4 unless otherwise
stated.

Lemma 8. If a bichromatic graph (Fig. 5) whose pattern set is a subset of III contains
(• ◦ • • bxac) and (◦ ◦ xzwy), then

(1) at least one of w; z is white and {xzwy} is {c}-null and {ab}-universal and
(2) the graph has a homogeneous set.
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Fig. 5. An illustration of Lemma 8.

Fig. 6. An illustration of Lemma 11.

Theorem 9. For any non-trivial graph G, the following are equivalent:

(1) G is in GIII, namely has a two-colouring with pattern set a subset of {• • ••; • •
◦•∗; ◦ • ◦◦∗; ◦ ◦ ◦◦}

(2) G is in GIII− , namely has a two-colouring with pattern set a subset of {••••; ••
◦•∗; ◦ ◦ ◦◦}

(3) G is no-end-substitute.

Corollary 10. Scheme III preserves perfect orderability.

3.4. Scheme IV: {• • ••; • • •◦∗; • ◦ ◦◦∗; ◦ ◦ ◦◦}

As in Section 3.2, the results here will be obtained by characterizing the associated
bichromatic graphs, in this case the graphs of GIV. The (long and straightforward)
proof of the following lemma (Fig. 6) is postponed to the end of this subsection.

Lemma 11. If a bichromatic graph with pattern set a subset of IV contains (• • • ◦
abcx) and ( ◦ ◦ wxyz), then

(1) at least one of w; z is white and {wxyz} is {c}-universal and {ab}-null and
(2) the graph has a homogeneous set.

Theorem 12. For any non-trivial graph G, the following are equivalent:

(1) G is in GIV, namely has a two-colouring with pattern set a subset of {• • ••; • •
•◦∗; • ◦ ◦◦∗; ◦ ◦ ◦◦}

(2) G is in GIV− , namely has a two-colouring with pattern set a subset of {••••; •◦
◦◦∗; ◦ ◦ ◦◦}

(3) G is no-mid-substitute.
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Proof of Theorem 12. Any no-mid-substitute graph can be two-coloured so that its
pattern set is a subset of IV− = {• • ••; • ◦ ◦◦∗; ◦ ◦ ◦◦}: in the original graph, colour
some no-mid vertex black and all other vertices white; for each substitution, colour the
vertices being added with the colour of the vertex being replaced. Thus (3) implies
(2). Since IV− is a subset of IV, (2) implies (1). It remains to show that (1) implies
(3).

For any graph G in GIV, let G′ be any induced bichromatic subgraph obtained by
replacing every maximal homogeneous set with any one vertex from that set. Thus,
G′ is prime and isomorphic to the characteristic graph of G. If the pattern set of G′

is a subset of II, then by Theorem 2 G′ is a split graph, so G is split-substitute and
therefore no-mid-substitute and we are done; if not, then by exchanging colours if
necessary, we may assume that G′ has some (• • • ◦ abcd), so d is no-mid by Lemma
11, so G is no-mid-substitute, and we are done.

Corollary 13. Scheme IV preserves perfect orderability.

Corollary 13 follows from Theorem 12 and the observation of HoIang and Khouzam
mentioned in Section 2.

Proof of Lemma 11. The proof of (1) is a case analysis of all possible bichromatic
graphs induced by the two P4’s. The pattern set implies that at least one of z; w is
white, so there are three cases to consider.
Case 1: ◦z and ◦w. In this case the seven vertices are distinct, so

a misses z (otherwise c misses z [else (◦•◦• xcza)] so b misses z [else (◦••◦ xcbz)]
so a misses w [else (◦ ◦ • ◦ xwaz)] so b misses w [else (◦ ◦ • • xwba)]
so c sees w [else (◦ ◦ • • wxcb)] so c misses y [else (◦ ◦ • ◦ zycw)] so y
misses b [else (• • ◦ ◦ cbyz)] so (◦ ◦ • • yxcb), contradiction). Also

a misses w (otherwise a misses y [else (◦◦•◦ zyaw)] so b misses y [else (••◦◦ abyx)]
so y sees c [else (• • ◦ ◦ bcxy)] so w misses c [else (◦ • ◦ • ycwa)] so
(• ◦ ◦ • cxwa), contradiction). Thus

b misses w [else (• • ◦ ◦ abwx)] and
w sees c [else (• • ◦ ◦ bcxw)] so
y sees c (otherwise y misses b [else (◦••◦ wcby)], so (••◦◦ bcxy), contradiction).

Thus
y misses a [else (◦ • ◦ • wcya)] so
y misses b [else (◦ ◦ • • xyba)] so
b misses z [else (• • ◦ ◦ abzy)] so

z sees c [else (• • ◦ ◦ bcyz)]

so (1) holds in this case.

Case 2: •z and ◦w. This colouring and the P4 adjacencies imply that the seven
vertices are distinct (otherwise, z = b or z = a: in the former case, w misses a [else
(• • ◦ ◦ zawx)], so w sees c [else (• • ◦ ◦ zcxw)], so a sees y [else (◦ ◦ • • xyza)],
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so c sees y [else (◦ • • ◦ wczy)], so (• ◦ • ◦ aycw), contradiction; in the latter case,
w misses b [else (• • ◦ ◦ zbwx)], so w sees c [else (• • ◦ ◦ bcxw)], so y sees c [else
(• ◦ ◦ • zyxc)], so (• ◦ • ◦ zycw), contradiction). Thus

y sees c (otherwise y misses a [else (•◦◦• ayxc)] so b misses y [else (◦◦•• xyba)]
so (• • ◦ ◦ bcxy), contradiction); similarly

w sees c so
z sees c [else (◦ • ◦ • wcyz)] so

y misses a (otherwise w sees a [else (◦•◦• wcya)], so z misses a [else (••◦◦ zawx)],
so (◦ • ◦ • wayz), contradiction) so

w misses a [else (◦ • ◦ • ycwa)] so
z misses a [else (◦ ◦ • • xyza)] so
b misses y [else (◦ ◦ • • xyba)] so similarly
b misses w so
b misses z [else (◦ ◦ • • xyzb)]

so (1) holds in this case.

Case 3: ◦ z and • w. This colouring and the P4 adjacencies imply that the seven
vertices are distinct (otherwise w = c, so y sees b [else (◦ ◦ • • yxwb)], so y sees a
[else (• • ◦ ◦ abyx)], so (• ◦ ◦ • wxya), contradiction). Now

b misses w (otherwise b misses z [else (◦••◦ xwbz)], so b misses y [else (◦◦•• zybw)],
so (◦ ◦ • • yxwb), contradiction) and similarly

a misses w so
b misses y [else (• ◦ ◦ • byxw)] and similarly
a misses y so

y sees c [else (• • ◦ ◦ bcxy)] so
w sees c [else (• • ◦ • bcxw)] so
z sees c [else (• • ◦ ◦ wcyz)] so

z misses a [else (◦ • ◦ • xcza)] so
z misses b [else (• • ◦ ◦ abzy)]

so (1) holds in this case, and so in all cases.

It remains to show that (2) holds. Let G be a graph as described in the lemma, let
D be the set of vertices d such that (abcd) is a P4, and let D∗ be any subset of D
which contains {wxyz} and which is minimal with respect to the following property:
every vertex in D − D∗ is D∗-universal or D∗-null. Thus, either D∗ = D or D∗ is a
minimal homogeneous set of G[D] which contains {wxyz}. We shall show that D∗ is
a homogeneous set of G.

Argue by contradiction. Let q be a D∗-partial vertex of G − D∗. Then q is in
G − {abc} − D, since q is not in {abc} by the de>nition of D and not in D − D∗ by
the de>nition of D∗.

We >rst claim that q misses all white vertices of D∗. Again, argue by contradic-
tion. Since G[D∗] contains at least one white vertex and (by the de>nition of D∗) is
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connected, G[D∗] contains adjacent vertices dd′ such that d is white and q sees d but
not d′. First suppose that d′ is white. Then q sees c [otherwise, either (• • ◦ bcdq)
or both ( • • ◦ qbcd′) and ( • ◦ ◦ bqdd′), and the latter implies (◦ • • ◦ qbcd′) or
(••◦◦ bqdd′), contradiction] q misses a [else (•◦•◦ aqcd′) or (••◦◦ aqdd′)], q misses
b [else (••◦◦ abqd) or (••◦◦ bqdd′)], and q is in D, contradiction. Next suppose that
d′ is black. Then q misses a [else (• ◦ • aqdd′)], q misses b [else (• ◦ • bqdd′)], q
sees c [else (••◦ bcdq)], and again q is in D, contradiction. Thus the >rst claim holds.

We next claim that q is partial on some P4 (◦◦◦ o) of D∗. Argue as follows. By the
minimality property of D∗ and the fact that D∗ contains {wxyz}, there is a labelling
{v1 : : :} of the vertices of D∗ so that (◦◦◦ v1v2v3v4) is a P4, and for each k¿ 3, vk is
({v1 : : : vk−1})-partial. Call a vertex extreme with respect to a vertex subset S if it is
S-universal or S-null. Since q is D∗-partial, for any such labelling there is a smallest
index t with 16 t6 |D∗| such that q is {v1 : : : vt}-partial but {v1 : : : vt−1}-extreme.
Consider a labelling which minimizes t.

Observe that for 66 k6 t, vk is {v1 : : : vk−2-extreme [otherwise, for the largest such
k∗ such that vk∗ is {v1 : : : vk∗}-partial and the smallest j∗ such that vk∗ is {v1 : : : vj∗}-
partial, the vertex sequence obtained from (v1 : : : vt) by omitting vertices vr with j∗ +1
6 r6 k∗ − 1 contradicts the minimality of t].

Now it follows that t6 4. Argue by contradiction: suppose that t¿ 5. Then v5 is
not in a P4 with any three vertices of {v1v2v3v4} [otherwise, since no P4 in scheme
IV has exactly two white vertices, this P4 would have at least three white vertices and
omitting v4 from (v1 : : : vt) contradicts the minimality of t]. Since v5 is {v1 : : : v4}-partial,
it follows by a simple case analysis that v5 sees v2v3 and misses v1v4. It follows that
t = 5 [otherwise v6 sees v5 and misses v1 : : : v4 or misses v5 and sees v1 : : : v4, and
(v1v2v5v6) or (v1v6v3v5) can replace (v1v2v3v4), contradicting the minimality of t]. But
then, since q is {v1 : : : vt−1}-extreme, either q sees v5 and misses v1 : : : v4 or q misses
v5 and sees v1 : : : v4. By the previous claim, q misses all white vertices of D∗, so the
latter case doe not occur (v2 is white), and in the former case v5 is black, but then
(◦ ◦ • v1v2v5q), contradiction.

Thus t6 4, so the second claim holds and q is partial on some (◦ ◦ ◦ v1v2v3v4) of
D∗. This and the >rst claim implies that q misses v1 : : : v3, so q sees v4, so v4 is black,
so (◦ ◦ • v2v3v4q). This contradiction completes the proof of (2), which completes the
proof of Lemma 11.

3.5. Scheme V: {• • ••; • • •◦∗; • ◦ •◦∗; • ◦ ◦◦∗}

As in Section 3.1, the desired result will be obtained by explicitly constructing a
perfect order of the composed graph. We begin with a structural lemma.

Lemma 14. Let G be a bichromatic graph with pattern set a subset of set V.
Then, if (• • • ◦ abcd) then

(1) if ◦e sees d, then e sees c and is not {ab}-partial,
(2) there is no (• ◦ ◦ ◦ cdef),
(3) if (• ◦ • ◦ cdef) then (• • • ◦ cbef),
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(4) if (◦ ◦ ◦ • fedg) then
(a) G[{a; b; : : : ; g}] has edge set {ab; bc; cd; ce; cf; cg; de; ef; dg},
(b) if •x sees g but not c, then x sees bdefg and misses ac (and so x and c

have the same neighbourhood in G[{a : : : g}]), and
(c) there is no • • • • cgxy.

Similarly, if (◦ ◦ ◦ • abcd) then

(5) if •e sees d, then e sees c and is not {ab}-partial,
(6) there is no (◦ • • • cdef),
(7) if (◦ • ◦ • cdef) then (◦ ◦ ◦ • cbef),
(8) there is no (• • • ◦ fedg).

Proof. Consider the >rst statement: suppose (• • • ◦ abcd). If e sees a then e sees b
[else (• • ◦ ◦ baed)] and e sees c [else (• ◦ ◦ • aedc)]; if e misses a then e misses b
[else (• • ◦ ◦ abed)] and e sees c [else (• • ◦ ◦ bcde)]. Thus (1) holds. If ◦e sees d,
then e sees c by (1), so cdef is not a P4, so (2) holds. If (• ◦ • ◦ cdef) then e sees
b [else (• • ◦ • bcde)] and f misses b [else (◦ • • ◦ fbcd)], so (3) holds.

Consider (4): suppose (◦ ◦ ◦ • fedg). By (1), e sees c and either both or neither of
ab. In fact, the latter holds (otherwise, g sees a [else (•◦◦• gdea)]; and (◦••◦ fagd)
if f sees a whereas (◦ ◦ • • feag) if f misses a, contradiction). Now g misses a
[else (◦ ◦ • • edga)], g misses b [else (◦ ◦ • • edgb)], g sees c [else (• ◦ • • gdcb)],
f sees c [else (◦ ◦ • • fecg)], f misses a [else (• ◦ • • afcg)], and f misses b [else
(• • ◦ ◦ abfe)], so (4.a) holds. If • x sees g and not c then x sees d (by (1) of the
second statement with (◦ ◦ ◦ • fedg) in place of (◦ ◦ ◦ • abcd)), so x sees b [else
(• ◦ • • xdcb)], x sees e [else (• • ◦ ◦ bxde)], x sees f [else (◦ ◦ • • fexg)], x misses
a [else (• • ◦ • axdc)], so (4.b) holds. If (• • • • cgxy) then either (• ◦ • • yecg) (if y
sees e) or (• • ◦ • yxec) (if y misses e), contradiction. Thus (4.c) holds, so the >rst
statement of the lemma holds.

For the second statement, the proofs of (5)–(7) are the same as the proofs of (1)–
(3) with the colours exchanged. The proof of (8) is the same as the proof of (4) with
the colours exchanged, together with the observation that the colour exchange of the
graph described in (4a) cannot occur, as such a graph has (◦ ◦ ◦ ◦ abcg).

Theorem 15. Scheme V preserves perfect orderability.

Proof. It su=ces to show that the following algorithm is correct.

Algorithm V. Input: a bichromatic graph G whose pattern set is a subset of V , together
with perfect orders of G[B] and G[W ] (where B and W are the black and white
vertices). Output: a perfect order of G.

(1) For every (• • • ◦ abcd), orient c¡d.
(2) For every (◦ ◦ ◦ • abcd), orient c¡d.
(3) For every (• ◦ • ◦ abcd) with neither ab nor cd oriented by (1) or (2), orient

c¡d.
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(4) For every pair (• • • ◦ abce) (◦ ◦ ◦ • gfed), orient c¡d.
(5) For every (• • • • abcd) with no edge oriented by (4), orient c¡d if and only

if c¡d in the given perfect order of G[B].
(6) Extend the edge orientation to any total vertex order, and return this order.

With respect to an orientation of some of the edges of a graph, call a P4 (abcd) good
if at least one of b¡a, c¡d holds (namely, if at least one end edge is oriented “in”).
Since a good P4 cannot be bad (even if additional edges are oriented), the correctness
of Algorithm V follows from these claims:

• no edge receives two opposite orientations
• at the end of Step 5, every P4 is good
• at the end of Step 5, the orientation is acyclic.

Consider the >rst claim. The only steps which orient bichromatic edges are 1,2,3;
of these, only 2 orients ◦x¡y•, in which case neither 1 (by Lemma 14.2) nor 3 (by
its de>nition) orients •y¡x◦. Thus the claim holds for bichromatic edges. The only
steps which orient monochromatic (black) edges are 4,5. If •x¡ • y by 4, then there
is no (• • • • vwyx) (by Lemma 14), so it cannot be that y¡x by 4 or 5; if •x¡ •y
by 5, then it cannot be that y¡x by 5, since all orientations from 5 are from one
perfect order. Thus the >rst claim holds.

Consider the second claim. Consider all P4’s after Steps 1–5 have been applied. By
1 and 2 every P4 • • • ◦ or ◦ ◦ ◦• is good. Also, for any (• • • • uvwx), if u¡v then
(by Lemma 14) neither u¡v nor x¡w is oriented by 4, so u¡v is oriented by 5,
so neither 4 nor 5 orients x¡w, so uvwx is good. Finally, consider any (•◦•◦ uvwx).
If u¡v by 1 then (by Lemma 14) w¡x by 1 as well; similarly, if x¡w by 2 then
v¡u by 2; in each case, the P4 is good. If v¡u by 2 or w¡x by 1, the P4 is good.
If neither wx nor uv is oriented by 1 or 2, then w¡x by 3; thus in all of these cases
the P4 is good. Thus the second claim holds.

In justifying the third claim, we use the following lemma.

Lemma 16. Let G be a bichromatic graph in GV whose edges have been oriented
according to Steps 1–5 of Algorithm V.

(1) If •x • y ◦ z, x¡y, y¡z, x � z, then (• • • • vwxy) for some v; w and z is
{vwx}-null.

(2) There are no ◦x • y ◦ z with x¡y and y¡z,
(3) If (•••◦ abce) and (◦◦◦• gfed) and (d=v1; v2; : : : ; vk) is a sequence of • vertices,

such that for 1¡j6 k vj−1 ¡vj, vj � v1, and c� vj, then for 1¡j6 k
(•) vj sees e and c *
(•) vj � c. **

Proof. First prove (1). Let x; y; z be as stated. Since •x¡ • y there is some (• • • •
vwxy). It su=ces to show that z misses x, since then z misses v (else (• ◦ • • vzyx))
and z misses w (else (• • ◦ • vwzy)). Argue by contradiction: suppose z sees x.
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Then z sees both of vw (if z sees exactly one then (••◦• vwzy) or (••◦• wvzy); if z
sees neither then (•••◦ vwxz) and x¡ z). Since y¡z, for some st either (•••◦ styz)
or (• ◦ • ◦ styz); in each case s is {vw}-null (else (• • ◦ • sv=wzy)) and s misses x
(else (• • ◦ • sxzv)).

Now suppose • t. Then t is {vw}-universal (else (• • ◦ • tyzv=w)), t sees x (else
(• • ◦ • tvzx)), and (• • • ◦ stxz) implies x¡ z, contradiction. Thus ◦ t and there is no
(•••◦ abyz). In particular, this implies that y¡z is a consequence of Step 3, so st is
not oriented by Step 1 or 2. Since t sees x (else •◦•• styx), there is no (◦◦◦• pqzx)
(else (◦ ◦ ◦ • zqts) by Lemma 14 and t ¡ s by Step 2). Now either (• • • ◦ abxz) for
some ab and x¡ z by Step 1, or neither st nor xz are oriented by Step 1 or 2, so
x¡ z by Step 3 because of (• ◦ • ◦ stxz), contradiction. Thus (1) holds.

Next consider (2). Argue by contradiction: let x; y; z be as stated. Since x¡y,
(◦ ◦ ◦ • vwxy) for some vw, so by Lemma 14 there is no (• • • ◦ pqyz), so y¡z
by Step 3, so (• ◦ • ◦ styz) with st not oriented by Step 1 or 2. Now z sees x (else
z misses v [(◦ ◦ • ◦ vzyx)], z sees w [(◦ ◦ • ◦ wxyz)], so (◦ ◦ ◦ • vwzy), so z¡y,
contradiction). Thus x �= t, so the vertices vwxystz are distinct. Now v misses t (else
v sees z [(◦ ◦ • ◦ vtyz)], v misses s [(• ◦ ◦ • svzy)], so (◦ ◦ ◦ • zvts), so ts is oriented
by Step 2, contradiction). Similarly, w misses t. Now x misses t (else (◦ ◦ ◦ ◦ vwxt)),
but then (◦ ◦ • ◦ wxyt), contradiction. Thus (2) holds.

Finally consider (3). By Lemma 14, each of gfed sees c but neither of ab. To prove
∗, we >rst show that vj sees e. Consider a smallest counterexample: suppose that vj
misses e, but that vi sees e for all i¡ j.

Then vj misses d = v1 (by Lemma 14 with (◦ ◦ ◦ • gfed) and •vj), and vj sees
vj−1 (since vj−1 ¡vj by the hypothesis of (3)). Thus there is a smallest index p with
1¡p¡j such that vj sees vp. Notice that vj misses f (else (• ◦ ◦ • vjfed)), so vj
misses g (else c¡vj by Step 4 because of (• • • ◦ abcg) and (◦ ◦ ◦ • efgvj)). Also,
vp sees d [else (• • ◦ • vjvped)] and vp sees f [else (• • ◦ ◦ vjvpef)], so vp sees g
[else (• • ◦ ◦ vjvpfg)]. Since vp−1 ¡vp, (• • • • wxvp−1vp) for some wx, and e sees
both wx (if e sees exactly one, then (••◦• wxevp) or (••◦• xwevp); if e sees neither
and p = 2 then (• • • ◦ wxde) and ◦f contradicts Lemma 14; if e sees neither and
p¿ 3 then (• • • ◦ wxvp−1e) and (◦ ◦ ◦ • gfed) implies vp−1 ¡d = v1 by Step 4,
contradiction). So vj sees w [else (• • ◦ • vjvpew)], and, since vj misses vp−1 by the
choice of p, (• • ◦ • vjwevp−1), contradiction. Thus vj sees e as claimed.

Hence, vj sees c (otherwise vj sees b [else (• ◦ • • vjecb)], vj misses a [else (• • ◦ •
avjec)], and vj ¡d by Step 4 with (• • • ◦ abvje) and (◦ ◦ ◦ • gfed), contradiction),
so * holds.

Prove ** by contradiction: suppose vj ¡c. Then (• • • • wxvjc) for some wx. Thus,
x sees e (otherwise, w misses e [else (• • ◦ • xwec)] and vj ¡d by Step 4 with
(• • • ◦ wxvje) and (◦ ◦ ◦ • gfed), contradiction). So w sees e [else (• ◦ • • cexw)], so
w sees b [else (••◦• bcew)], so w misses a [else (••◦• awec)], so (•••◦ abwe) and
(◦◦◦• gfed), so w sees all of defg by Lemma 14. Thus vj misses a [else (••◦• avjew)]
and vj sees b [else (••◦• bwevj)], so (•••◦ abvje) and (◦◦◦• gfed), so vj ¡d= v1

by Step 4. This contradiction completes the proof of ** and (3), which concludes the
proof of the Lemma 16.
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We now prove the last claim, namely that the orientation produced by Steps 1–5 is
acyclic. There are no white di-cycles, since no ◦◦ edges are oriented. To show that
there are no black di-cycles, it is su=cient to show that no black di-cycle contains at
least one edge oriented by Step 4, since black edges oriented by Step 5 are oriented
consistent with one perfect order and so are acyclic. So it is su=cient to show that
for any sequence of black vertices v0; : : : ; vk such that v0 ¡v1 by Step 4 and vj−1 ¡vj
for 16 j¡k we have vk � v0. But if there is a counterexample, then in a smallest
counterexample v0 � vj for 1¡j6 k and vj � v1 for 1¡j6 k, so c = v0 � vk by
Lemma 16 (with c = v0), contradiction. Thus there are no monochromatic di-cycles.

To show there are no bichromatic di-cycles, argue by contradiction. Consider any
shortest such di-cycle D=(v0; : : : ; vk), where vj ¡vj+1 for 06 j¡k and vk ¡v0. Since
no white edges are oriented, there are no consecutive white vertices in this cycle. Since
there is at least one vertex of each colour, the sequence • ◦ • must occur. Label three
such vertices yza respectively. By Lemma 16 the predecessor x of y in D must be black.
(It is possible that x= a; this does not a1ect the following argument.) Thus •x •y ◦ z,
x¡y, y¡z, and (since D is shortest) x � z, so by Lemma 16 (• • • • vwxy) for
some vw, where z sees y but none of vwx. Now z¡a implies that (◦ ◦ ◦ • stza) for
some st, and (• • • ◦ wxyz) and (◦ ◦ ◦ • stza) implies y¡a by Step 4, contradicting
the assumption that D is a shortest di-cycle. Thus the last claim holds, so Algorithm
V is correct, and the proof of Theorem 15 is complete.

4. Necessity: no other schemes

In this section, we show that the list of schemes of Theorem 1 is complete, namely
we show that any P4 composition scheme whose pattern set or its colour exchange
equivalent is not a reversal-closed subset of the >ve sets listed in the theorem does
not preserve perfect orderability. This is established by the following two lemmas. The
composition schemes of Lemma 17 and the graphs which establish that they do not
preserve perfect orderability are illustrated in Figs. 7 and 8.

Lemma 17. The pattern set of a P4 composition scheme which preserves perfect or-
derability is not a superset of any of the following:

(VI) {• • ◦◦∗}
(VII) {• • •◦∗; • • ◦•∗}
(VIII) {• • •◦∗; • ◦ ◦•}
(IX) {• • ◦•∗; ◦ • •◦}
(X) {• • ◦•∗; • ◦ •◦∗; ◦ • ◦◦∗}
(XI) {• ◦ •◦∗; • ◦ ◦•; ◦ • •◦}
(XII) {• • ••; • • •◦∗; • ◦ •◦∗; • ◦ ◦◦∗; ◦ ◦ ◦◦}

Lemma 18. Every reversal-closed subset, or its colour exchange equivalent, of the set
of all patterns is either a subset of (at least) one of sets I; : : : ;V, or a superset of
(at least) one of sets VI; : : : ;XII.
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Fig. 7. Composition schemes which destroy perfect orderability.

Fig. 8. Composition counterexamples.

Proof of Lemma 17. To prove that a pattern set is not a subset of any pattern set
which preserves perfect orderability, it is su=cient to present a bichromatic graph with
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that pattern set, such that the graph is not perfectly orderable but the monochromatic
induced subgraphs are.

Consider the top left graph in Fig. 8. This graph is the complement of an induced
cycle with six vertices, and so has six vertex sets which induce P4. Checking each
set reveals that the graph’s pattern set is {• • ◦◦∗}, namely set VI. Using Chv5atal’s
characterization, it is routine to verify that the graph is not perfectly orderable: ori-
enting any white triangle edge forces an orientation of a black triangle edge, in turn
forcing an orientation of a white triangle edge, and so on, eventually forcing a cyclic
orientation of each triangle. On the other hand, the graph’s monochromatic subgraphs
are perfectly orderable: each such subgraph is P4-free, so any vertex order is a perfect
order. Thus, set VI is not a subset of any P4 composition scheme which preserves
perfect orderability.

Considering in similar fashion the remaining graphs of the top row of Fig. 8, it is
routine to verify that none of sets VII; : : : ;XI is a subset of a P4 composition scheme
which preserves perfect orderability.

Finally, consider the bottom graph in Fig. 8. Let G, B, W represent respectively
the graph and its black and white vertex sets. Observe that G[W ] is isomorphic to
G[B]. Let B = {b1; b2; : : : ; b7} and W = {w1; w2; : : : ; w7} so that for each j, bj and wj

correspond to the vertex with label j in Fig. 8. In G, the P4’s which include neither b7

nor w7 have pattern • • •• or ◦ ◦ ◦◦, the P4’s which include exactly one of b7 and w7

have pattern •••◦∗ or •◦◦◦∗, and the P4’s which include both b7 and w7 have pattern
• ◦ •◦∗. Thus G’s pattern set is {• • ••; • • •◦∗; • ◦ •◦∗; • ◦ ◦◦∗; ◦ ◦ ◦◦}, namely set XII.
It is routine to verify that b1 ¡b2 ¡b3 ¡ · · ·¡b7 is a perfect order of G[B] and so
that both monochromatic subgraphs are perfectly orderable. Thus to show that set XII
is not a subset of any P4 composition scheme which preserves perfect orderability, it
remains only to show G is not perfectly orderable.

Argue by contradiction: consider any perfect order ¡ of G. Suppose that b7 ¡b1:
this forces b3 ¡b2 by Chv5atal’s characterization, since (b7b1b3b2) is a P4, which in
turn forces b6 ¡b7. On the other hand, suppose that b7 ¡b6: this forces b2 ¡b3 which
in turn forces b1 ¡b7. Thus in all cases, b1 ¡b7 or b6 ¡b7 (or both), and similarly
w1 ¡w7 or w6 ¡w7 (or both). Pick x in {1; 6} so that bx ¡b7 and pick y in {1; 6} so
that wy ¡w7. For any bj �=7 in B, w7 ¡bj [since bj ¡w7 would force w6 ¡w2 in turn
forcing w3 ¡w4 in turn forcing w5 ¡w6 in turn forcing w7 ¡bj, contradiction]. Simi-
larly, for any wk �=7 in W , b7 ¡wk . But now w7 ¡bx ¡b7 ¡wy ¡w7, a contradiction
since ¡ is a linear order and therefore acyclic. Thus, G is not perfectly orderable and
the proof of the theorem is complete.

Proof of Lemma 18. Let S denote the set {I; I′; II; III; IV;V;V′} and let T denote the
set {VI;VII;VII′;VIII;VIII′; IX; IX′;X;XI;XII}. We wish to show that every pattern
set is either a subset of some element of S or a superset of some element of T. To
simplify notation, we represent patterns with numbers as follows:

0 1 2 3 4 5 6 7 8 9

• • •• ◦ ◦ ◦◦ • • •◦∗ • ◦ ◦◦∗ • • ◦•∗ ◦ • ◦◦∗ • ◦ ◦• ◦ • •◦ • ◦ •◦∗ • • ◦◦∗
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0 1 2 3 4 5 6 7 8 9

I= {013468} VII VII′ VIII′ VI

I′= {012578} VII′ VII VIII VI

II= {0167} VIII VIII′ IX IX′ XI VI

III= {0145} VII VII′ IX′ IX X VI

IV=

=

{0123} VII VII′ VIII VIII′ XII VI

V= {0238} XII VII VII′ VIII VIII′ VI

V′ {1238} XII VII VII′ VIII VIII′ VI

Fig. 9. Maximality of I; : : : ;V′. For example, the row IV column 5 entry indicates that adding pattern set
5 = ◦ • ◦◦∗ to IV yields a superset of VII′.

0 1 2 3 4 5 6 7 8 9

VI ={9} I

VII= {24} III V

VII′= {35} III V

VIII ={26} II V

VIII′ = {37} II V

IX ={47} II III

IX′ ={56} II III

X= {458} I′ I III

XI ={678} I′ I II

XII= {01238} V′ V I I′ IV

Fig. 10. Minimality of VI; : : : ;XII. For example, the row VIII column 6 entry indicates that removing pattern
set 6 = • ◦ ◦• from VIII yields a subset of IV.

Fig. 9 establishes that any proper superset of an element of S is a superset of some
element of T. 4 Similarly, Fig. 10 establishes that any proper subset of an element
of T is a subset of some element of S. Thus to complete the proof, it su=ces to
consider any pattern set Z which is not a superset of any element of T, and show
that Z is a subset of some element of S. Begin by observing that Z does not contain
9 (otherwise Z is a superset of XII in T).

4 At this point in the proof we have established that the pattern sets I; : : : ;V and their colour exchange
equivalents are maximal with respect to preserving perfect orderability. The rest of the proof establishes that
there are no other maximal sets.
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First suppose that 4 is in Z . Then 2 is not in Z (otherwise Z contains VII) and 7
is not in Z (otherwise Z contains IX). If 5 is not in Z then Z is a subset of I and we
are done; if 5 is in Z then 3 is not in Z (otherwise Z contains VII′), 6 is not in Z
(otherwise Z contains IX′), 8 is not in Z (otherwise Z contains X), and Z is a subset
of III. So we are done if 4 is in Z . Since 5 is the colour exchange of 4, we are also
done if 5 is in Z .

Suppose then that neither 4 nor 5 is in Z . If 2 is in Z then 6 is not in Z (otherwise Z
contains VIII); now if 3 is not in Z then Z is a subset of I′, whereas if 3 is in Z then 7 is
not in Z (otherwise Z contains VIII′) and Z is a subset of XII. Since Z does not contain
XII, Z is a proper subset of XII, and so by the earlier argument using Fig. 10, Z is a
subset of some element of S. So we are done unless 2 is not in Z , and by a symmetric
argument (since 3 is the colour exchange of 2) 3 also is not in Z . Then at least one
of 6,7,8 is not in Z (otherwise Z contains XI), and Z is a subset of one of I,I′,II.

5. Conclusions

We have shown that schemes I–V are the only maximal P4 composition schemes
which preserve perfect orderability. For the most part, our method has been to describe
the structure of graphs which admit two-colourings with various pattern sets. Recall
that GI; : : : ;GV are the classes of non-trivial graphs which can be two-coloured (with
at least one vertex of each colour) using pattern sets of sets I; : : : ;V. In Theorems 4,
9 and 12 we have shown that

• GII consists of all non-trivial split-substitute graphs,
• GIII consists of all non-trivial no-end-substitute graphs,
• GIV consists of all non-trivial no-mid-substitute graphs;

these theorems also imply that

• GII ⊂ GIII;GII ⊂ GIV, and (GIII ∪ GIV) ⊂ GI. 5

It would be interesting to >nd similar structural characterizations for GI;GV and to
establish whether GV ⊂ GI. Fig. 11 shows that no other inclusions among the >ve
classes are possible, and that not all perfectly orderable graphs are in GI (since Q8

is perfectly orderable). The graphs D6 (the domino), SD6, 2C5, and Q8 are shown in
Fig. 12, which also shows the set containment hierarchy among the classes GI; : : : ;GV.

Recall that HI : : :HV are the subsets of GI : : :GV which satisfy the hereditary prop-
erty (namely, every non-trivial induced subgraph of a graph in HK is also in HK).
Thus

• HII consists of all non-trivial recursively split-substitute graphs,
• HIII consists of all non-trivial recursively no-end-substitute graphs,
• HIV consists of all non-trivial recursively no-mid-substitute graphs.

5 The >rst two inclusions follow from the fact that each vertex in a split graph is no-end or no-mid. The
last inclusion follows from GIII = GIII− ;GIV = GIV− ; III− ⊂ I , and IV− ⊂ I.
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Fig. 11. Some separating examples for inclusions among GI ; : : : ;GV. For example, the >rst row indicates
that D6 is in GI ;GIV ;GV but not GII ;GIII.

Fig. 12. Inclusions among graph classes GI ; : : : ;GV.

Ho5ang and Reed [9] called a graph strongly brittle if every induced subgraph has
some no-end vertex. Since substituting a graph with a no-end vertex into a graph with
a no-end vertex yields a graph with a no-end vertex, every graph in HIII is strongly
brittle. On the other hand, it follows easily from the de>nition of HIII that every
strongly brittle graph is in HIII. Thus HIII is exactly the set of all non-trivial strongly
brittle graphs; similarly, HIV is the set of all complements of strongly brittle graphs.

It would be interesting to >nd similar characterizations for HI, HV and to >nd
forbidden induced subgraph characterizations for HI, HIII, HIV, HV.

The characterizations we have established have algorithmic consequences, as we
now explain. The tasks of computing a graph’s characteristic graph, checking whether a
graph is split, and checking whether a vertex is no-mid (or no-end) can all be performed
in polynomial time. Also, a graph is strongly brittle if and only if the vertices can be
linearly ordered so that each vertex is no-end in the subgraph induced by that and
all previous vertices [9]. It follows that recognizing whether a graph is in GII, GIII,
GV, HIII, or HIV takes polynomial time. Also, it follows from our forbidden induced
subgraph characterization of HII that these graphs can be recognized in polynomial
time. It would be interesting to determine whether graphs in classes GI, GV, HI, HV

can be recognized in polynomial time.
It would also be interesting to consider P4 composition schemes which preserve other

properties. For example, Chv5atal et al. [3] >nd all maximal P4 composition schemes
which preserve perfection. (A graph is perfect if for every induced subgraph, the
chromatic number is the same as the size of a largest clique.)
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For any of these open problems, general results on the P4-structure of graphs may
be useful; for a recent survey, see the chapter by Hougardy in [13].
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