# Hex, braids, the crossing rule, and XH-search

Philip Henderson, Broderick Arneson, and Ryan B. Hayward\*

Dept. of Computing Science, University of Alberta

**Abstract.** We present XH-search, a Hex connection finding algorithm. XH-search extends Anshelevich's H-search by incorporating a new crossing rule to find braids, connections built from overlapping subconnections.

#### 1 Introduction

Hex is the connection game invented by Piet Hein [9] and John Nash [15]. The board is a rhombus of hexagonal cells. On alternating turns, each player places a stone of her colour on any vacant cell. The winner is the player who connects her two opposing edges with a path of her stones. Hex has many nice properties: additional stones of a player's colour are never disadvantageous, the game cannot end in a draw, and the first player has a winning strategy [15]. However, determining the winner of arbitrary positions is PSPACE-complete [18].

For a Hex position, a *point* is either a vacant cell or a maximal connected set of same-coloured stones; the latter is a *chain*. We assume that board edges are represented by stones, so a chain can include a board edge. In Hex, a common tactical question is whether a specified pair of points can be connected. For a Hex position, a subgame with a second-player strategy (respectively first-player strategy) to connect two points is a *virtual connection* or VC (resp. *virtual semi connection* or SC). For a VC/SC, the two points connected are its *endpoints*, while the set of vacant cells used in the connecting strategy is its *carrier*. For an SC, the initial move of the strategy is its *key*. See Fig. 1.

Anshelevich presented H-search [2,4], a hierarchical VC/SC composition algorithm. H-search is the foundation of Hexy, Six, and Wolve, the only gold medal Hex programs of the Computer Games Olympiad [3,5,7,14,20]. H-search uses three rules, respectively base/AND/OR:

- (1) Each player has an empty carrier VC between each pair of adjacent points.
- (2) If a player has VCs  $\alpha_1, \alpha_2$  with endpoint pairs  $\{p_0, p_1\}, \{p_0, p_2\}$  and carriers  $C_1, C_2$  such that  $C_1 \cup \{p_1\}$  and  $C_2 \cup \{p_2\}$  do not intersect, then
- (i) if the midpoint  $p_0$  is vacant, then combining  $\alpha_1, \alpha_2$  forms an SC with endpoints  $p_1, p_2$ , carrier  $C_1 \cup C_2 \cup \{p_0\}$ , and key  $p_0$ ,
- (ii) if the midpoint  $p_0$  is a chain for the player, then combining  $\alpha_1, \alpha_2$  forms a VC with endpoints  $p_1, p_2$  and carrier  $C_1 \cup C_2$ .

<sup>\*</sup> The authors gratefully acknowledge the financial support of NSERC and iCORE.





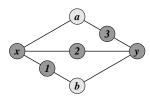
**Fig. 1.** Diagrams of a Black VC (left) and a Black SC (right). Carriers are shaded, endpoints are dotted, and the SC key is +. In Black's VC strategy, which connects the top dotted cell to the bottom dotted group, if White plays 1 then Black plays 2; then, if White plays 3 then Black plays 4 and then one of  $\{5,6\}$ . In Black's SC strategy, which connects the dotted cells, after playing at the key, Black plays to get one of each of  $\{1,2\}$ ,  $\{3,4\}$ ,  $\{5,6\}$ .

(3) If between endpoints  $p_1, p_2$  a player has SCs  $\alpha_1, \ldots, \alpha_k$  with carriers  $C_1, \ldots, C_k$  such that  $C_1 \cap \ldots \cap C_k$  is empty, then combining the SCs forms a VC with endpoints  $p_1, p_2$  and carrier  $C_1 \cup \ldots \cup C_k$ .

When used in automated Hex players, H-search is usually restricted by limiting the number of SCs used in the OR rule, for otherwise it takes too long. However, as Anshelevich observed, even unrestricted H-search misses some connections [2, 4], including the SC shown in Fig. 2. We call this SC the *braid*, as its substrategies are tangled together. It is of interest to extend H-search in a way that allows for efficient discovery of new connections.

Melis extended Anshelevich's implementation of H-search by allowing board edges as AND rule midpoints [13, 14]. Rasmussen et al. extended H-search by triggering a VC search if the OR rule finds an SC set with small carrier intersection [17]; this finds more connections but the search time grows exponentially in the number of cells in the search. Yang described a decomposition notation for Hex connections, including his hand-crafted centre-opening  $9 \times 9$  SC [21, 22], and Noshita introduced union-connections, which are useful in connection verification but not found by H-search [11,12]; neither of these techniques has been used in an automated connection discovery algorithm.

In this paper we present XH-search, an easily implemented extension of H-search. XH-search finds all connections found by H-search, as well as connections



**Fig. 2.** The braid, an SC not found by H-search. Endpoints are a, b; the key is x or y. To connect, say after playing at key x, if the opponent blocks at 1 then respond at y and then claim one of  $\{2, 3\}$ . Notice that within the braid there are VCs between each of  $\{a, x\}, \{b, y\}$ , and SCs between each of  $\{x, y\}, \{x, b\}, \{a, y\}$ .

built up from braids. The Crossing Rule, a new Hex connection deduction rule, allows for an efficient implementation of XH-search.

## 2 Stepping Stones

In order to describe the Crossing Rule we first need to define stepping stones. Although defined as points that are internal to a connection, we will use them later as braid endpoints.

**Stepping Stone.** For a chain X and VC or SC C, X is a *stepping stone* of C if following C's strategy guarantees that C's endpoints will be connected by a chain containing X.

For a VC/SC C, SS(C) denotes the set of C's stepping stones. See Fig. 3.



Fig. 3. A VC (left) and SC (middle) with stepping stone. A VC (right) with none.

**Lemma 1.** Let C be a base rule VC. Then C has no stepping stone:  $SS(C) = \emptyset$ .

*Proof.* In a base rule VC the two endpoints are neighbours and so already connected.  $\Box$ 

**Lemma 2.** Let C be a VC computed via the OR rule from SCs  $C_1, \ldots, C_k$ . Then each chain which is a stepping stone for every  $C_j$  is a stepping stone of  $C: \cap_{j=1}^k SS(C_j) \subseteq SS(C)$ .

*Proof.* If a chain X is a stepping stone for every SC  $C_j$  then, regardless of which SC is maintained, there will be a chain connecting C's endpoints, equal to  $C_j$ 's endpoints, that contains X.

**Lemma 3.** Let C be an SC with key k computed via the AND rule from VCs  $C_1, C_2$  with vacant midpoint k. Then any chain which is a stepping stone of  $C_1$  or  $C_2$  is a stepping stone of  $C: SS(C_1) \cup SS(C_2) \subseteq SS(C)$ .

*Proof.* The strategy that maintains C first plays at k and then maintains both  $C_1$  and  $C_2$ .  $C_1$  connects k to one endpoint, say  $p_1$ , of C and  $C_2$  connects k to the other endpoint, say  $p_2$ . Each chain created by C also follows  $C_1$  and so connects  $p_1$  to k and contains each stepping stone  $s_1$  of  $C_1$ ; similarly, it follows  $C_2$  and so connects  $p_2$  to k and contains each stepping stone  $s_2$  of  $c_2$ .

Notice in Lemma 3 that k is vacant, so not in a chain, so not in SS(C).

**Lemma 4.** Let C be a VC or SC computed via the AND rule from connections  $C_1, C_2$  with chain midpoint X. Then  $SS(C_1) \cup SS(C_2) \cup \{X\} \subseteq SS(C)$ .

*Proof.* Following the strategies for  $C_1$  and  $C_2$  ensures that the union of X with connecting chains for  $C_1$  and  $C_2$ , each of which connects X to an endpoint of C, forms a connecting chain for C containing X. Thus X is in SS(C). The inclusion of  $SS(C_1)$  and  $SS(C_2)$  in SS(C) follows as in the proof of Lemma 3.

For each connection C discovered in XH-search we compute a subset  $SS^*(C)$  of SS(C).  $SS^*(C)$  is defined by applying the preceding lemmas, with this exception: for each VC C computed via the OR rule,  $SS^*(C)$  is the empty set. We refer to this as the SS algorithm.

**Lemma 5.** Let C be a connection with endpoints  $p_1, p_2$ . Then for any stepping stone s in  $SS^*(C)$  there is a partition  $S_1, S_2$  of the carrier of C such that  $S_1$  is the carrier of a VC from s to  $p_1$ , and if C is a VC (resp. SC) then  $S_2$  is the carrier of a VC (resp. SC) from s to  $p_2$ .

Proof. Argue by induction. If C is a base rule VC then  $SS^*(C)$  is empty and the lemma holds vacuously. Assume next that C is a VC built from connections whose stepping stones satisfy the lemma. If C is built by the OR rule, then  $SS^*(C)$  is empty and again the lemma holds vacuously. Suppose then that C is built by the AND rule, say from VCs  $C_1, C_2$  with midpoint chain  $p_0$  and endpoint pairs  $\{p_0, p_1\}, \{p_0, p_2\}$ . Then  $SS^*(C) = SS^*(C_1) \cup SS^*(C_2) \cup \{p_0\}$ . If  $s = p_0$ , then partitioning C into  $C_1, C_2$  satisfies the lemma. Assume next that s is in  $SS^*(C_1)$ . Then by the induction hypothesis, the carrier of  $C_1$  can be partitioned into A, B with A a VC from s to  $p_1$  and B a VC from s to  $p_0$ . By the AND rule, taking the union of B and  $C_2$  with midpoint  $p_0$  yields a VC from s to  $p_2$  that is disjoint from A, and the lemma holds. Similarly, the same holds if s is in  $SS^*(C_2)$ . Thus, by induction, the lemma holds for VCs. The proof is similar for SCs.

It is of interest to know whether Lemma 5 holds if one replaces  $SS^*(C)$  with SS(C). This is the case if the OR rule is restricted to combining two SCs.





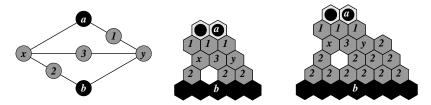
**Fig. 4.** Illustrating Lemma 5. The VC carrier (left) partitions into  $S_1, S_2$ , where each  $S_j$  is the carrier of a VC to the stepping stone. The SC carrier (right) partitions into  $S_1, S_2$ , where  $S_1$  (resp.  $S_2$ ) is the carrier of a VC (resp. SC) to the stepping stone.

### 3 The Crossing Rule

Observe in Fig. 2 that if the endpoints a, b of a braid are same-coloured chains then the braid "untangles" into three disjoint SCs between the internal vacant cells x, y such that two of these SCs have stepping stones. The following rule shows that finding two vacant cells with three such SCs is sufficient to conclude the existence of an SC between particular pairs of the SC's stepping stones.

**Crossing Rule.** Consider a Hex position with pairwise disjoint SCs  $C_1, C_2, C_3$ , each with vacant cell endpoints x, y, and with both  $S_1 = SS^*(C_1) \setminus SS^*(C_2)$  and  $S_2 = SS^*(C_2) \setminus SS^*(C_1)$  nonempty. Then for any endpoints  $s_1, s_2$  in  $S_1, S_2$  there is an SC C whose carrier is the union of  $\{x, y\}$  with the carriers of  $C_1, C_2, C_3$ , and with key x or y.

SCs found by the Crossing Rule are shown in Fig. 5.



**Fig. 5.** Crossing Rule SCs. For j = 1, 2, 3, cells labelled j form carrier  $C_j$  of SC between x, y.  $SS^*(C_1)$  contains a and not b.  $SS^*(C_2)$  contains b and not a. Combining these SCs yields SC between a, b with carrier  $\{x, y\} \cup C_1 \cup C_2 \cup C_3$  and key x or y.

Proof. By Lemma 5 we can partition  $C_1$ 's carrier into VC  $V_1$  and SC  $W_1$ , and partition  $C_2$ 's carrier into VC  $V_2$  and SC  $W_2$ . Assume first that VCs  $V_1, V_2$  have a common endpoint: each connects their respective stepping stone endpoint  $s_1, s_2$  to the same vacant cell, say x. Then by the AND rule, there exists an SC  $C^-$  connecting  $s_1$  to  $s_2$  with key x and whose carrier is the union of  $\{x\}$  and the carriers of  $V_1, V_2$ . C is the same as  $C^-$ , except with an (unnecessarily) larger carrier, so C can follow the same strategy as  $C^-$  and we are done.

Assume next that  $V_1$  and  $V_2$  have no common endpoint. By relabelling cells if necessary, assume  $V_1$  connects  $s_1$  to x and  $V_2$  connects  $s_2$  to y. Thus  $W_1$  connects  $s_1$  to y and  $W_2$  connects  $s_2$  to x. Notice that the carriers of  $V_1, W_1, V_2, W_2, C_3$  are pairwise disjoint by construction. The strategy to maintain SC C is as follows: play the key x as the first move, and then maintain VCs  $V_1, V_2$  against any probes into their carriers. If the opponent's first probe outside  $V_1, V_2$  is in  $W_1$  or  $C_3$ , then playing the key of  $W_2$  completes the connection from  $s_1$  to  $s_2$  via  $v_1, v_2$ . If instead the opponent's first probe is in  $v_2$ , then play  $v_1$  next, noting that  $v_2$  has a VC to  $v_3$  via application of the OR rule to two disjoint SCs whose

carriers are  $W_1$  and the series combination of  $C_3$ ,  $V_1$  through x. Since y also has a disjoint VC to  $s_2$  ( $V_2$ ), we are done.

Notice that if the second case of the Crossing Rule's proof applies then either x or y can be key. Also, if the first case of the proof applies, then key selection matters but C is a connection whose carrier properly contains the carrier of a connection that can be deduced via H-search. We assume that H-search is implemented so that a connection is deleted whenever a second connection is discovered with the same endpoints but with a carrier that is a proper subset of the first connection's carrier. Thus the first case is not relevant, and we can assume that any SC discovered by the Crossing Rule can have either x or y as its key. Also, the Crossing Rule deduces an SC joining any such  $s_1, s_2$ . Thus we can compute a single carrier and key, and then add the "same" SC to various different pair-connection lists. This also holds if  $C_3$  has stepping stones. The Crossing Rule building block SCs do not share any endpoints with the deduced SC: in some sense, connections deduced by the Crossing Rule are orthogonal to their subconnections, whereas the connections deduced by the AND/OR rules are parallel to their subconnections.

The Crossing Rule can be strengthened. A cell is dead if it is not on any minimal path connecting either player's two edges. A set of vacant cells is captured by a player if she has a second player strategy on that set that leaves every opponent stone in that set dead. For example, the carrier of an  $edge\ bridge$ , shown in Fig 6, is captured. Filling in a player's captured set with her stones does not change the winner of a postion [6, 8].





Fig. 6. A black edge bridge (left). Black fill-in does not alter the winner (right).

Strong Crossing Rule. Consider a Hex position with pairwise disjoint SCs  $C_1, C_2, C_3$ , each with vacant cell endpoints x, y, and with both  $S_1 = SS^*(C_1) \setminus SS^*(C_2)$  and  $S_2 = SS^*(C_2) \setminus SS^*(C_1)$  nonempty. Further, assume that the player with these SCs captures a set B by playing at y, and that  $C_1 \cap C_2$ ,  $C_1 \cap C_3$ ,  $C_2 \cap C_3$  are each a subset of B. Then for any endpoints  $s_1, s_2$  in  $S_1, S_2$  there is an SC C whose carrier is the union of  $\{x, y\}$  and B with the carriers of  $C_1, C_2, C_3$ , and with key y.

*Proof.* (sketch) The result follows from the Crossing Rule and the fact that filling in captured sets does not change the winner of a game.  $\Box$ 

<sup>&</sup>lt;sup>1</sup> Such connections are provably useless and are pruned by Hex programs such as Six and Wolve [13].

An SC found by the Strong Crossing Rule is shown in Fig. 7. XH-search applies the Strong Crossing Rule by checking whether either of the potential keys x or y forms a bridge with the edge; the carrier of the edge bridge is the captured set B. When XH-search finds such an SC C, it updates  $SS^*(C)$  by applying the next lemma.

**Lemma 6.** Let C be an SC computed via the (Strong) Crossing Rule on SCs  $C_1, C_2, C_3$ . Then SS(C) is empty.

*Proof.* Recalling the proof of the Crossing Rule, there is no common substrategy among the potential outcomes: any portion of  $C_1, C_2, C_3$  could be omitted from a winning path. Indeed, even the intersection of any of these SCs cannot be valid as their strategies were partitioned into disjoint carriers. Thus, in general we cannot conclude the existence of any stepping stones for an SC deduced from the (Strong) Crossing Rule.

Using this lemma in the SS algorithm does not change the validity of Lemma 5, which holds vacuously for any empty set of stepping stones. Thus the (Strong) Crossing Rule still holds.



**Fig. 7.** An SC found by the Strong Crossing Rule. For j=1,2,3, cells labelled j form carrier  $C_j$  of SC between x,y. Cells labelled both 2,3 form set B and are captured if Black plays y.  $SS^*(C_1)$  contains a and not b.  $SS^*(C_2)$  contains b and not a. Combining these SCs yields an SC between a,b with carrier  $\{x,y\} \cup B \cup C_1 \cup C_2 \cup C_3$  and key y.

#### 4 Crossing Rule connections

We now show some Hex connections found by XH-search but not H-search. Our implementation of XH-search computes stepping stones via the SS algorithm, with each connection storing all of their stepping stones, and applies the Strong Crossing Rule with edge bridges as the only captured sets considered. The three VCs in Fig. 8 are common edge VCs, also known as templates (see King's webpage for more templates [10]). In each of these examples H-search fails to find an SC which does not use the marked cell. These respective three "missing SCs", found by XH-search, are those shown in Figs. 5 and 7.



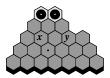
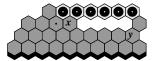




Fig. 8. Edge VCs found by XH-search but not H-search. Each SC found by H-search uses the marked cell. The "missing SCs", which do not use this cell, are in Fig. 5 or 7.

If the Crossing Rule could only find common edge VCs, then adding a library of VC patterns to check would be an effective alternative. Thus, in Fig. 9 we show more connections from games played by our Hex programs in which XH-search proved advantageous.

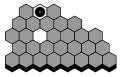




 ${f Fig.\,9.}$  More edge VCs found by XH-search but not H-search. Each SC found by H-search uses the marked cell. The two "missing SCs" are each similar to that of Fig. 7.

The Crossing Rule requires both endpoints of the deduced SC to be chains, and most connections found by XH-search but not H-search are near an edge. Thus, when using XH-search we ensure that the AND Rule allows edges as midpoint; this allows edges to be stepping stones.

XH-search is not complete: there are connections, some easily recognizable by humans, that it cannot find. See Fig. 10. It is of interest to find some efficient connection recognition algorithm which can find all connections recognizable by human players.



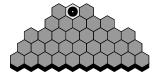


Fig. 10. XH-search finds neither the SC (left) nor the VC (right).

## 5 Implementation and Complexity

It is straightforward to implement XH-search by starting with H-search, adding stepping stone deductions to the AND/OR rules, and adding the (Strong) Crossing Rule. In the following pseudocode, the queue holds endpoint pairs, each of which has a VC carrier list and an SC carrier list; omitting the crossing rule computation leaves H-search.

```
Algorithm XH-search.
   initialize VC/SC carrier lists:
       for each pair E of endpoints
           E.VCList.makeEmpty(); E.SCList.makeEmpty();
   initialize queue Q with base VCs:
       Q.makeEmpty()
       for each pair E of adjacent endpoints
            Q.add(E); E.VCList.add(baseVC(E))
   while (not Q.isEmpty())
       E <- Q.remove()
       compute crossing rule on E's SCs:
           for each new SC Z with endpoint pair F found,
               Q.add(F); F.SCList.add(Z)
       compute OR rule on E's SCs:
           for each new VC Z found
               E.VCList.add(Z)
       compute AND rule on E's VCs with both of E's endpoints:
           for each new VC/SC Z with endpoint pair G found,
               Q.add(G); G.(VC/SC)List.add(Z)
   end while
end XH-search
```

Extending H-search by adding stepping stone deductions does not increase the runtime complexity:

**Lemma 7.** Let f(n) be the worst-case running time of H-search on a board with n cells. Then the worst-case running time of H-search with stepping stone deductions is in O(f(n)).

Regarding memory requirements, our H-search implementation stores the two endpoints and carrier for each connection. In order to store stepping stones, two options are possible: store all stepping stones in the same manner as the carrier, or store only a single stepping stone per connection. The second solution is appealing, since a complete set of stepping stones is not required in order to find new connections, and since many connections have few stepping stones; however, it forces us to choose which stepping stone to keep if there are several available. The first solution provides more information, but nearly doubles the memory per connection; the second increases the memory per connection only marginally. Since memory is not a bottleneck for our Hex program, we opted for the first solution.

The running time of XH-search depends not only on the number of points and the sizes of connection lists, but also on the number of discovered connections as well as their type (VC or SC). Nonetheless, we can at least analyze the relative computational efficiency of the different deduction rules in terms of the known factors.

Aside from the AND rule, OR rule, and Crossing Rule, we also include naive deduction of missing SCs of the form shown in Fig. 2. This naive deduction would involve finding four distinct points a, b, x, y such that x, y are vacant, and such that there exists five pairwise disjoint connections with two VCs joining pairs a, x and b, y and three SCs joining pairs a, y and b, x and x, y. Since the OR rule's complexity is parameterized by the maximum number of SCs it may combine in parallel, we have included entries for parameter values of both three and four, which are the common selections for Hex programs. Table 1 summarizes our analysis, with n representing the number of points and  $l_V, l_S$  representing the list sizes for VCs and SCs, respectively. We distinguish between these two list lengths, as the number of SCs usually far exceeds the number of VCs.

| Deduction rule | running time      |
|----------------|-------------------|
| AND rule       | $n^3 l_V^2$       |
| OR-3 rule      | $n^2 l_S^3$       |
| OR-4 rule      | $n^2 l_S^4$       |
| crossing rule  | $n^2 l_S^3$       |
| naive rule     | $n^4 l_V^2 l_S^3$ |

Table 1. Worst-case runtime (within constant factor) of connection deducing rules.

We can now clearly see the benefit of using stepping stones: the complexity of the Crossing Rule is roughly the square root of a naive implementation, and roughly the same order of complexity as the regular deduction rules in H-search.

#### 6 Experiments

To test the effectiveness of the crossing rule, we played an  $11\times11$  tournament between Monte Carlo players H (using H-search) and XH (using XH-search). Each player is a version of MoHex, the UCT Hex player that won silver at the 2008 Computer Games Olympiad in Beijing [5]. Each player uses 100K rollouts to analyze UCT tree nodes and computes connections with our normal tournament settings: the AND rule is computed over the edge (so the edge of the board can be the midpoint of an AND connection) and the OR-rule combines up to 4 SCs. Neither player uses an opening book or endgame solver. The tournament comprises 4-rounds, with each player opening at each position once as Black and once as White (with no swap move allowed), for a total of  $4\times121\times2=968$  games.

XH defeated H 501 games to 467, 17 games above a breakeven score of 484, taking on average 1.099 times as long as H per move. The time increase

is roughly in line with the analysis in Table 1: an  $11 \times 11$  board has roughly  $n = 100, l_V = 10, l_S = 25$ , and finding more connections with the Crossing Rule increases the number of iterations for all rules.

The crossing rule thus added roughly 12 ELO in strength in exchange for 9.9% more computation time on average. While this gain might seem negligible, strength gains measured via all-opening no-swap tournaments are muted due to the forced inclusion of many very strong and very weak opening moves. By comparison, each doubling of MoHex's number of rollouts results in an average ELO gain of 31.8 (averaged over 7 rollout doublings, from 1s to 128s, when competing against a 1s version). Thus, per unit time invested, the crossing rule represents a more significant strength gain than simply increasing the number of rollouts.

#### 7 Conclusions

XH-search is efficient and easily implemented. Furthermore, it identifies important Hex connections that cannot be found with H-search.

In future work we hope to identify further efficient deduction rules, particularly those that identify the most common connection omissions. The captured sets of the Strong Crossing Rule need not be restricted to edge bridges; it would be interesting to find other efficient methods that allow for carrier overlap within connection deduction rules.

#### Acknowledgements

We thank the University of Alberta's Hex and GAMES group members for their feedback on this work.

### References

- Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA, Menlo Park, 2000. AAAI Press / The MIT Press.
- 2. Vadim V. Anshelevich. The game of Hex: An automatic theorem proving approach to game programming. In AAAI [1], pages 189–194.
- Vadim V. Anshelevich. Hexy wins Hex tournament. ICGA Journal, 23(3):181–184, 2000
- 4. Vadim V. Anshelevich. A hierarchical approach to computer Hex. Artificial Intelligence,  $134(1-2):101-120,\ 2002.$
- Broderick Arneson, Philip Henderson, and Ryan B. Hayward. Wolve Wins Hex Tournament. ICGA, 31(4), 2008.
- Ryan B. Hayward. A note on domination in Hex. Technical report, University of Alberta, 2003.
- 7. Ryan B. Hayward. Six wins Hex tournament. ICGA Journal, 29(3):163-165, 2006.

- 8. Ryan B. Hayward, Yngvi Björnsson, Michael Johanson, Morgan Kan, Nathan Po, and Jack van Rijswijck. Solving 7 × 7 Hex: Virtual connections and game-state reduction. In H. Jaap van den Herik, Hiroyuki Iida, and Ernst A. Heinz, editors, Advances in Computer Games, volume 263 of International Federation for Information Processing, pages 261–278. Kluwer Academic Publishers, Boston, 2003.
- 9. Piet Hein. Vil de laere Polygon? Series of articles in *Politiken* newspaper, December 1942.
- David King. Hall of hexagons the game of Hex. http://www.drking.plus.com/hexagons/hex/index.html, 2007.
- 11. Noshita Kohei. Union-connections and a simple readable winning way in  $7 \times 7$  Hex. Proceedings of 11th Game Programming Workshop, pages 72–79, 2004.
- 12. Noshita Kohei. Union-connections and straightforward winning strategies in Hex. *ICGA Journal*, 28(1):3–12, 2005.
- 13. Gábor Melis. Six. http://six.retes.hu/, 2006.
- 14. Gábor Melis and Ryan Hayward. Six wins Hex tournament. *ICGA Journal*, 26(4):277–280, 2003.
- John Nash. Some games and machines for playing them. Technical Report D-1164, RAND, 1952.
- 16. Cyril Tse Ning, editor. 1st International Conference on Application and Development of Computer Games in the 21st Century (ADCOG 2003) held on 22-23 November 2001 in City University of Hong Kong, HKSAR, China. City University of Hong Kong, 2001.
- 17. Rune Rasmussen and Frédéric Maire. An extension of the H-search algorithm for artificial Hex players. In Webb and Yu [19], pages 646–657.
- 18. Stefan Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15:167-191, 1981.
- 19. Geoffrey I. Webb and Xinghuo Yu, editors. AI 2004: Advances in Artificial Intelligence, 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004, Proceedings, volume 3339 of Lecture Notes in Computer Science. Springer, 2004.
- Jan Willemson and Yngvi Björnsson. Six wins Hex tournament. ICGA Journal, 27(3):180, 2004.
- 21. Jing Yang. Jing Yang's web site. www.ee.umanitoba.ca/~jingyang/, 2003.
- 22. Jing Yang, Simon Liao, and Mirek Pawlak. A decomposition method for finding solution in game Hex 7x7. In Ning [16], pages 96–111.