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Abstract. A graph is weakly triangulated if neither the graph nor its complement contains a
chordless cycle with five or more vertices as an induced subg"Faph. We use a new characterization
of weakly triangulated graphs to solve certain optimization problems for these graphs. Specifically,
an algorithm which runs in O((n + e)n?) time is presented which solves the maximum clique and
minimum colouring problems for weakly triangulated graphs; performing the algorithm on the
complement gives a solution to the maximum stable set and minimum clique covering problems.
Also, an O((n + ¢)n*) time algorithm is presented which solves the weighted versions of these
problems.

1. Introduction

Let C; represent the chordless cycle with k vertices and P, the chordless path with
k vertices. Let G represent the complement of the graph G. A graph is weakly
triangulated if it does not contain C, or C; as an induced subgraph, for any k = 5.
See [5] for an introduction to weakly triangulated graphs.

A clique of a graph is a subset K of the vertices, such that every two vertices in
K are adjacent. An independent set of a graph, also called a stable set, is a subset S
of the vertices, such that no two vertices in S are adjacent. A colouring of the vertices
of a graph is a mapping of colours to the vertices of a graph, such that every two
adjacent vertices receive different colours. Note that in a colouring of a graph, every
set of vertices with the same colour is a stable set; thus a colouring can be thought
of as a partition of the vertices of a graph into stable sets. A clique covering is
a partition of the vertices of a graph into cliques.

In this paper we present polynomial time algorithms which solve the following
problems: find a largest clique, a largest stable set, a minimum colouring, and
a minimum clique covering of a weakly triangulated graph. We also present algo-
rithms which solve the weighted versions of these problems (see Sect. 3).

*  The author acknowledges the support of an N.S.E.R.C. Canada postgraduate scholarship.
** The author acknowledges the support of the U.S. Air Force Office of Scientific Research
under grant number AFOSR 0271 to Rutgers University.
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Claude Berge [1] defined a graph G to be perfect if, for every induced subgraph
H of G, the chromatic number of H is equal to the size of a largest clique of H.
(Weakly triangulated graphs are perfect; see [5].) For arbitrary graphs, the above
optimization problems are NP-complete; see [3] and [7]. However, Grotschel,
Lovasz and Schrijver [4] have presented polynomial time algorithms, based on the
ellipsoid method, which solve these problems for perfect graphs. The algorithms of
Grotschel, Lovasz and Schrijver are complex, and rely on deep properties of linear
programming (see the last section of [4]). On the other hand, the algorithms
presented in this paper are easily analyzed, and rely only on certain properties of
weakly triangulated graphs, which we now describe.

2. Weakly Triangulated Graphs and Two-Pairs

A two-pair is a pair of (non-adjdcent) vertices in a graph, such that every chordless
path between the two vertices has exactly two edges.

The WT Two-Pair Theorem. Every weakly triangulated graph which is not a clique
has a two-pair.

Proof. We prove a slightly stronger statement, namely, that all weakly triangulated
graphs G other than cliques satisfy the following two properties:

(1) if G has no clique cutset then each cutset of G contains a two-pair,

(2) G contains a two-pair.

Arguing by induction on the number of vertices, we may assume that both (1)
and (2) hold for all weakly triangulated graphs with fewer vertices than G. To prove
(1) for G, consider any minimal cutset C of G. By assumption, C is not a clique.
Define G as the subgraph of G induced by C. We shall distinguish between two
cases.

Case 1. Suppose that G is disconnected. Let D be the set of vertices of some
component G with at least two vertices (since C is not a clique, there must be such
a set D). Note that every vertex of C — D sees (is adjacent to) every vertex of D,
and that D is a minimal cutset, not a clique, of G — (C - D). Thus by inductive
assumption, D contains a two-pair of G — (C — D); obviously, this two-pair is
a two-pair of G.

Case 2. Suppose that G, is connected. Let B,, ..., B, be the vertex sets of the
components of G — C. Now (from Theorem 1 in [5]) it follows that in each
component B;, there is some vertex that sees every vertex of C.

Case 2.1. Suppose that |B;| = 1 for all j. Then, by inductive assumption the graph
Gc contains some two-pair {x, y}. Clearly {x, y} is a two-pair of G.

Case 2.2. Suppose that |B| = 2 for some j. Let z be any vertex of B, that sees all of
C; let E be the set of vertices of C that see some vertex of B; — z. Observe that E is
a cutset of G — z; let A be a subset of E so that 4 is a minimal cutset of G — z. We
may assume that A4 is not empty, and not a clique (otherwise A U{z} is a clique cutset
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of G, contradiction). Thus, by inductive assumption 4 contains a two-pair of G — z
which is clearly a two-pair of G.

To prove (2) for G, we may assume that G has a clique cutset C (otherwise
the desired conclusion follows from (1)). Let B,, B,, ..., B, be the vertex sets of
the components of G — C. If some G — B; is not a clique then by the induction
hypothesis G — B; contains a two-pair; since every chordless path in G with both
endpoints in G — B; is fully contained in G — B;, this two-pair is also a two-pair in
G. Hence we may assume that each G — B; is a clique. This implies that t = 2 and
that {x, y} is a two-pair whenever x € B, y € B,. O

Note that for k > 5, neither C, nor C, has a two-pair. Thus the above theorem
implies this characterization: a graph is weakly triangulated if and only if every
induced subgraph either is a clique or else has a two-pair.

An even pair is a pair of (non-adjacent) vertices of a graph, such that every
chordless path which joins the two vertices has an even number of edges. Meyniel
[8] defined a graph G to be strict quasi-parity if every induced subgraph H of G is
a clique or has an even pair; a graph is quasi-parity if for every induced subgraph
H of G, at least one of H or H is a clique or has an even pair. An immediate corollary
of the WT Two-Pair Theorem is that weakly triangulated graphs are strict quasi-
parity. However, weakly triangulated graphs can be recognized in polynomial time
(e.g. see [6]), whereas it is not known whether this is true of quasi-parity graphs or
strict quasi-parity graphs.

Similarly, the existence of a two-pair in a graph is a stronger condition than the
existence of an even pair, and it is easy to check in polynomial time whether or not
a pair of vertices is a two-pair (remove any common neighbours, and check whether
there is a path between the original two vertices), whereas it is not known if
determining the existence of an even pair can be done in polynomial time. In the
next section we build upon the “find a two-pair” algorithm and construct polynomial
time algorithms for solving the aforementioned optimization problems for weakly
triangulated graphs.

3. The Algorithms

In this section algorithms are presented which solve the following problems for
weakly triangulated graphs in polynomial time.

The Maximum Clique Problem. Find a largest clique in a graph.

The Maximum Stable Set Problem. Find a largest stable set in a graph.

The Minimum Colouring Problem. Find a partition of the vertices into the smallest
number of stable sets.

The Minimum Clique Covering Problem. Find a partition of the vertices into the
smallest number of cliques.

Algorithms are also presented which solve the weighted versions of these prob-
lems. In each of the following problems, assume that a graph G with vertices
vy,..., U, and positive integers w(v, ), ..., w(v,) are given. These integers are referred
to as weights.
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The Maximum Weighted Clique Problem. Find a clique K of G, such that the sum of
the weights of the vertices of K is maximum, over all cliques of G.

The Maximum Weighted Stable Set Problem. Find a stable set S of G, such that the
sum of the weights of the vertices of S is maximum, over all stable sets of G.

The Minimum Weighted Colouring Problem. Find stable sets S, ..., S, and integers
X(S), ..., X(S,), such that

(1) for every vertex vj, the sum of the integers X (S:) of all sets S; such that v; € S, is at
least w(v;), and such that

(2) the sum of all integers X(S,) + -+ + X(S,) is minimum, over all sets of integers -
that satisfy (1).

The Minimum Weighted Clique Covering Problem. Find cliques K,, ..., K, and
integers X(K,), ..., X(K,), such that

(1) for every vertex vj, the sum of the integers X(K,) of all sets K, such that v; € K, is
at least w(v;), and such that

(2) the sum of all integers X(K,) + - + X(K,) is minimum, over all sets of integers
that satisfy (1).

An algorithm which solves any of the weighted problems can be used to solve
the unweighted version of the problem by assigning the weight “1” to all vertices.
However, since our algorithms for the unweighted problems are more transparent
and more efficient (in the sense of worst time complexity) than the algorithms for
the weighted problems, we include both sets of algorithms.

Actually, we present only two algorithms. Algorithm OPT solves the maximum
clique and minimum colouring problem for weakly triangulated graphs; Algorithm
W-OPT solves the weighted versions of these problems. Since the complement of
a weakly triangulated graph is weakly triangulated, Algorithms OPT and W-OPT
can also be used to solve the unweighted and weighted versions respectively of the
maximum stable set and minimum clique covering problems: to find a largest stable
set of a graph G, find a largest clique of G; to find a minimum clique covering of
a graph G, find a minimum colouring of G.

Our algorithms rely on the fact that every weakly triangulated graph is either
a clique or else has a two-pair (see the previous section). The aforementioned
optimization problems are easily solved for graphs which are cliques. Given a
weakly triangulated graph other than a clique, our algorithms repeatedly find
a two-pair, each time transforming the graph in question into a smaller weakly
triangulated graph by “identifying” the two-pair. (We will define this term shortly.)
Eventually the original graph is transformed into a clique; the optimization problem
is solved for the clique, and the two-pair identification process is reversed, trans-
forming the solution of the optimization problem for the clique to the solution of
the optimization problem for the original graph.

3.1. The Unweighted Case

Let G(xy — z) be the graph obtained by replacing vertices x and y of G with a
vertex z, such that z sees exactly those vertices of G — {x, y} that see at least one
of {x,y}. The identification of x and y in G is the process of replacing G with
G(xy - 2).
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In the following algorithm, we specify a colouring by a function f; that assigns
some integer from 1 to ¢t to each vertex, such that adjacent vertices are assigned
different integers. Assume that V(G) = {v,,v,,...,v,} is the set of vertices of G.

Algorithm OPT(G)
Input:  a weakly triangulated graph G.
Output: a largest clique K; and a minimum colouring f;.
Step 1.  Look for a two-pair {x, y} of G.
If G has no two-pair, then
(8) Ko + V(G),
(b) fori = 1 to ndo fg(v;) < i, and
(c) STOP.
Step2.  J« G(x,y—2).
Step 3. K, f; « OPT(J).
Step4a. Ifz ¢ K, then K K, else(ze K, and ...)
if x sees all of K; — {z} then K¢ « K; — {z} + {x},
else Kg — K; — {z} + {y}
Step 4b.  fo(x) « fo(y) « f5(2);
for each v; € J — {x,y} do
fo(v:) < f3(v). J

To prove the correctness of Algorithm OPT, we need to establish several
properties concerning the identification of a two-pair in a weakly triangulated
graph. One such property is described in the following lemma.

The Identification Lemma. Let G be a weakly triangulated graph with a two-pair
{x,y}. Then G(xy — z) is weakly triangulated.

Proof. Let H = G(xy — z). We prove that if H is not weakly triangulated, then
neither is G. Assume that H is not weakly triangulated. Then there is some subset
C of the vertices of H, such that the subgraph H¢ of H induced by C is either C, or
Cy, with k = 5. If z ¢ C, then clearly G is not weakly triangulated. Thus we may
assume that z e C.

Case 1. H is a chordless cycle ¢, ...c, with k = 5.

Assume without loss of generality that z = ¢,. Then c,, ..., ¢, is a chordless path
in G. Since z sees c,, ¢, and none of c,, ..., ¢;_,, at least one of {x, y} sees c,, and
similarly c,, and neither x nor y sees any of {c3,...,¢x—1 }. Now observe that at least
one of {x, y} must see both of {c,,c,}. (Suppose not; assume w.Lo.g. that x sees €3
but not Ci and that y sees ¢, but not c,. Then (x, ¢, ..., ¢, y) is a chordless path with
at least six vertices, contradicting the assumption that {x,y}is a two-pair.) Thus
assume w.lo.g. that x sees both of {c,,¢,}. Then {x,c,,...,c,} induces a C, in G,
G is not weakly triangulated, and the theorem holds in th1s case.

Case 2. H is a chordless cycle c, ...c, with k = 5.

Assume without loss of generality that z = ¢,. Thus c,...¢,isa P,_, in G, and
(i) c, sees neither x nor y and c, sees neither x nor ¥, and
(i) every vertex in {c,,...,c,} sees at least one of {x, y}.
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Now observe that
(iii) x or y sees both c3 and c,.
(Assume the contrary. By (ii) either x or y sees c;; assume w.l.o.g. that x sees c5.
Since (iii) does not hold, x does not see c4; thus by (ii) y sees c,, and since (iii) does
not hold, y does not see c3. But then (x,¢3, ¢y, ¢4, ¥) is @ Ps, contradicting the fact
that {x, y} is a two-pair in G.)

Assume w.Lo.g. that x sees both c; and c,; let m be the smallest index greater
than four such that x does not see ¢,,. Then xc,...c, is a C,, with k = 5. G is not
weakly triangulated, and the theorem holds in this case. O

Another result that will be used in proving the correctness of Algorithm OPT
is that two-pair identification does not change the clique size. This follows from
a lemma due to Meyniel.

The Clique Size Lemma (Meyniel [8]). If vertices x and y of a graph G are not joined
by any chordless path with three edges, then w(G(xy - z)) = ®(G).

The Clique Size Corollary. If {x,y} is a two-pair of the weakly triangulated graph G,
then »(G(xy - z)) = o(G).

The Correctness Theorem. Algorithm OPT finds a largest clique and a minimum
colouring of G.

Proof. Throughout the proof we let | f5| and | f;| denote the number of colours of
fo and f, respectively. Since the clique size of a graph is never greater than the
chromatic number, to prove the theorem it suffices to show that K is a clique, that
f, is a colouring, and that |K¢| = | fg|. The proof is by induction on the number of
calls of OPT. (Since identification decreases the number of vertices by one, OPT is
called at most n times; thus the algorithm terminates.) If OPT is called only once,
then the algorithm terminates at Step 1. By the WT Two-Pair Theorem, K = V(G)
is a clique, f; is a colouring with n = | K | colours, and the theorem holds.

Suppose then that OPT is called more than once; thus the algorithm terminates
with Step 4b. Since (by the Identification Lemma) J is weakly triangulated, by the
inductive hypothesis we may assume that K, and f; are respectively a clique and
a colouring of J, such that |K,| = | f;]. If z ¢ K, then K¢ = K,,and |Kg| = |K,|. If
z € K, then either x or y must see all vertices of K; — z. (Suppose not. Then x misses
some v; € K;; however, y sees v;, else z would miss v;. Similarly, y misses some v; € K
that sees x. But then xv;v;y is a chordless path, contradicting the assumption that
{x,y} is a two-pair.) Thus |Kg| = |K,l. Since K, is a largest clique of J, the
Identification Lemma implies that |Kg| = |K,|.

Since no pair of adjacent vertices a, b of J satisfy f;(a) = £,(b), no pair of adjacent
vertices a, b of G — {x, y} satisfy fg(a) = fo(b). Finally, let c be a vertex of G that sees
at least one of {x, y}; then c sees z in J, and so

fole) = f3(e) # fi(2) = falx) = fa(y)

Thus no pair of adjacent vertices u, v of G satisfy fg(4) = f6(v) and fgis a colouring.
Note that | f5| = | f;|. Thus |K¢| = |K;| = | f;] = 1fel, and the theorem is proved.
O

S
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A corollary of the Correctness Theorem is that o(G) = 2(G) if G is weakly
triangulated. Thus (since every induced subgraph of a weakly triangulated graph is
weakly triangulated) the Correctness Theorem yields another proof that weakly
triangulated graphs are perfect.

We now analyze the complexity of Algorithm OPT(G). Let e be the number of
edges of G, and n the number of vertices, Note that a pair of non-adjacent vertices
x and yin a graph G is a two-pair if and only if there is no path from x to yinG — N,
where N is the set of all vertices of G that see both x and y. Determining whether
or mot two vertices are in the same component of a graph can be done in time
O(n + ). Thus determining whether or not a pair of vertices is a two-pair can be
done in time O(n + e), and Step 1 can be done in time O((n + e)n?). Step 2 can be
done in time O(n), as can Steps 4a and 4b. Since Step 3 is executed at most n — 1
times, the worst-case complexity of Algorithm OPT is O((n + e)n).

Note that Algorithm OPT can be used to solve the Maximum Stable Set and
Minimum Clique Covering problems of a graph G by taking as input the comple-
ment G; in this case, the complexity will be O((n + €)n®), where € is the number of
edges of G.

3.2. The Weighted Case

In this section we present polynomial time algorithms that solve the weighted
versions of the maximum clique, maximum stable set, minimum colouring and
minimum clique covering problems for weakly triangulated graphs.

One way to solve the weighted clique problem for a graph G is to replace every
vertex u with vertices v and w, such that v sees w, and such that u, v, w see exactly
on the resulting graph. However, this transformation is inefficient if the weights are
large. Our solution is more direct.

Define G(u — vw) to be the graph obtained from the graph G by replacing the
Vertex u with vertices v and w, such that v sees w, and such that u, v, w see exactly
the same vertices of G — u. This process is referred to as duplication.

We now define an operation that combines identification and duplication.
Define G(xy — za) to be the graph H (xb — z), where H = G(y - ab). We refer to
the process of replacing G with G(xy — za) as quasi-identification.

Quasi-identification is represented in Fig. 1. Note that G(xy - za) is the graph
obtained from G by replacing x, y with z, q respectively, such that z sees g, z sees
exactly those vertices of G — {x, y} that see at least one of {x,y}, and a sees exactly
those vertices of G — {x, y} that see A

In the following algorithm, the weighted colouring f; consists of stable sets
S6,» S6,» - --» Sg, and associated positive integers X (S; ), X (Sg,),---» X (S6,)-

Algorithm W-OPT(G).
Input:  a weakly triangulated graph G.
Output:  a max. weighted clique K; and a min. weighted colouring f;.

Step 1. Look for a two-pair {x, y} of G.
If G has no two-pair then
(a) Kq« V(G),
(b) fori« 1tondo
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S y
G
X b a
H-=
G(y — ab)
z
Hxxb—» z)= a
G(xy —» za)
Fig. 1. Quasi-identification
Sg, — {vi},
X(Se) = wlv)

(c) STOP.

Step 2.  Assume that w(x) < w(y).
If w(x) = w(y) then
J « G(xy > 2),
w(z) < w(x);
else {...thus w(x) < w(y)...}
J « G(xy - za),
w(z) — w(x),
w(a) « w(y) — w(x).
Step3. K, f; « W-OPT(J).

Step4a. 1fz¢ K, then Kg+ K, else (ze K, and...)
if y sees all of K, — {a,z} then K¢ « K, — {a,z} +
else (... x sees all of K, — {a,2}...) Kg ~ K; — {a, 2} + x.
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Step 4b. For each set S; of f; do
(i) if z € S;, then S5, « S, — z + {x, }, else
ifae S, then S, « S; —a + y, else
SGt = S-’i’
(i) X(Sa,) < X(S,). 0

The proof of correctness of Algorithm W-OPT parallels the proof of correctness
of Algorithm OPT. We first show that quasi-identification of a two-pair of a weakly
triangulated graph yields a weakly triangulated graph.

The Quasi-Identification Lemma. Let G be a weakly triangulated graph with a
two-pair {x, y}. Then G(xy — za) is weakly triangulated.

Proof. G(xy — za) = H(xb — z), where H = G(y — ab). It is easy to check that H is
weakly triangulated and that {x, b} is a two-pair of H. Now the result follows from
the Identification Lemma. 0O

Next we prove that the process of quasi-identification, together with the re-
weighting of the new vertices as described in Algorithm W-OPT, does not change
the weighted clique number of G. Let 2(G) represent the weighted clique number
of G (i.e. the weight of a maximum weighted clique of G).

The Weighted Clique Number Lemma. Let G be a weighted weakl ytriangulated graph
with a two-pair {x, y} such that w(x) < w(y). Let F = G(xy — za), and let w(z) = w(x)
and w(a) = w(y) — w(x). Then 2(G) = Q(F).

Proof. F = G(xy — za) = H(xb — z), where H = G(y — ab). Let w(b) = w(x); clearly
2(H) = Q(G). To prove the lemma we need only show that Q(F) = Q(H).

Let K be a clique of H of maximum weight. Since x, b are non-adjacent, K,
contains at most one of these two vertices. If K g contains neither x nor b, then K H
is a clique of F. If K contains x, then K, — x + zis a clique of F with the same
weight as K ; if K contains b, then K; — b + zisa clique of F with the same weight
as Ky. Thus Q(F) = Q(H).

Now let K be a clique of F of maximum weight. If z ¢ K then K is a clique of
H;if z € K then either Ky —z + x or Ky — z + bisa clique of H, and both have
the same weight as K. Thus Q(H) = Q(F). 0

Essentially, the proof of the correctness of W-OPT can be derived from the proof
of the correctness of OPT, observing that each step of W-OPT is equivalent to
a polynomial number of steps of OPT. For those who prefer a more detailed
argument, we include the following theorem and proof.

The Weighted Correctness Theorem. Algorithm W-OPT solves the Maximum
Weighted Clique Problem and the Minimum Weighted Colouring Problem for a
weakly triangulated graph G.

Proof. Let K and f;; be as described in Algorithm W-OPT. It is easy to check that
K; is a clique, and that Sg, is a stable set, for all i. Let |K,| = Y. w(v) and let

UEKG
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Ifsl = Xg,- We wish to show that f; satisfies property (1) of the definition of

the Minimum Weight Colouring Problem, and that |K¢| = | fs|- Note that if K is
any clique of a weighted graph, and if f is any colouring that satisfies (1), then
|K| £ |f]; thus the equality |Ks| = | fg| implies that both K; and f; are optimal.

We first show that (1) holds for fg. Argue by induction on the number of times
Step 1 is executed in W-OPT(G). If Step 1 is executed only once, then X(Sg,) = v;
foralli=1,...,n, and (1) holds.

Suppose then that Step 1 is executed at least twice. Thus the algorithm terminates
with Step 4. Assume by induction that (1) holds for the colouring f; of J. Recall that
in Step 4b,

the vertex z is replaced (in every set S, of f; that contains z) with the pair of
vertices x, y, and, if w(x) < w(y),

the vertex a is replaced (in every set S,, of f; that contains a) with the vertex y.
In the case where w(x) = w(y), we have w(z) = w(x) = w(y), and so

W) =wl)= % X(5)= % X(Sa)
522 x

6,2

w(y) = w(z) = séz X(8,) = SZ X(S,)

G;=2Y

In the case where w(x) < w(y), we have w(x) = w(z) and w(y) = w(a) + w(z), and so
o) =we) = T X(5)= 3 X(Sa)

S¢,2

W)= w) +wla) = T X&)+ T X(S)= 3 X(Sa)
e 5,24 G =

Thus property (1) holds for f.

Now we wish to show that |K4| = | f5]. Argue by induction on the number of
executions of Step 1; the result clearly holds if Step 1 is executed exactly once.
Assume then that Step 1 is executed more than once; thus the algorithm terminates
with Step 4. By the induction hypothesis, |K;| = | f;I.

Now an argument similar to that used in the Correctness Theorem establishes
that | K| = |K,|; thus to finish the proof, we need only show that | fg| = |f;|. But
this is obviously the case, because there is a one-to-one correspondence between the
stable sets of f; and f;, namely Sg, corresponds to S;, and X(Sg,) = X(S ;) for
all i.

We now analyze the complexity of Algorithm W-OPT(G). Let e be the number
of edges of G, and n the number of vertices. As in Algorithm OPT(G), Step 1 can be
done in time O((n + e)n?), and Steps 2, 4a and 4b can be done in time O(n). Now
consider Step 3. The graph J is either G(xy — z) or G(xy — za). In the former case
J has one vertex fewer than G; in the latter case, J has at least one edge more than
G (z sees every vertex of G — {x, y} that x sees, a sees every vertex of G — {x,y}
that y sees, and z sees a whereas x misses y). Thus Step 3 is executed at most

n—1+ (;) — e times, and the worst-case complexity of Algorithm W-OPT is

O((n + €)n*) arithmetic operations. Since the number of arithmetic operations is
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bounded by a polynomial in n and e, Algorithm W-OPT is (as is Algorithm OPT)
strongly polynomial.
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Due to an oversight on the part of the authors, the proof given in [1] for The WT
Two-Pair Theorem is incomplete, and should be replaced with the following proof.

Recall that a two-pair is a pair of non-adjacent vertices in a graph, such that
every chordless path between the two vertices has exactly two edges.

The WT Two-Pair Theorem Let G be any weakly triangulated graph. Then either G
is a clique or it contains a two-pair. Moreover, if C is any minimal cutset of G, then
either C is a clique or C contains a two-pair of G.

Proof. We first make two observations.

Observation 1. Let X be a set of vertices of G and let {y, z} be a two-pair of G — X
such that every vertex of X is adjacent to both y and z. Then {y.z} is a two-pair of
G.

Observation 2. Let F be a clique of a graph G, and let B* be the union of some
connected components of G — F. Then any two-pair {x,y} of G — B*is a two-pair
of G.

We prove the Theorem by induction on the number of vertices of G. We may
assume that G is not a clique. If G is disconnected, then we obtain a two-pair by
taking two vertices lying in two distinct components of G. (A graph is disconnected
if and only if the only minimal cutset is the empty set; we consider the empty set as
a clique-cutset.) We may thus assume that G is connected. Let C be a minimal cutset
of G, and let By, ..., B, be the components of G — C. Define G[C] as the subgraph
of G induced by C. We shall distinguish between two cases.

Case 1. C is a clique of G.

If there is a component B; of G — C such that G — B; is not a clique, then by the
induction hypothesis the graph G — B; has a two-pair, which is also a two-pair of
G by Observation 2 (where F = C and B* = B)). Else, we must have that p=2and
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C U B, induces a clique for j = 1 and 2. Then {x,,x,} is a two-pair for any x, € B,
and x, € B,.

Case 2. G[C] is disconnected.

Let C* be the set of vertices of some component of G[ C] with at least two vertices
(since C is not a clique, there must be such a set C*). Note that every vertex of
C — C* is a neighbor of every vertex of C*, and that C* is a minimal cutset, and
not a clique, of G — (C — C*). Thus by inductive assumption, C* contains a two-
pair of G — (C — C*); this two-pair is also two-pair of G by Observation 1 (where
X =C-C*)

Case 3. G[C] is connected.

From Hayward’s Theorem [2] it follows that in each component B; of G — C,
there is some vertex that is a neighbor of every vertex of C. If each B; consists of a
single vertex, then by the induction hypothesis the subgraph G[C] contains a
two-pair, which is also a two-pair of G by Observation 1 (where X = B, U---U B,).
We may then assume without loss of generality that B, has at least two vertices.
Let x be any vertex of B, that is a neighbor of all of C. We shall distinguish among
three subcases.

Subcase 3.1. G — x is disconnected.

Remarking that CU B, U+ U B, is contained in one single component of G — x,
we define B* to be the union of all the other components of G — x (thus B* # ¢
and B* c B, — x), and B, = B; — B*. Clearly G[B,] is connected, for otherwise
any component of G[B,] not containing x would be a connected component of
G — C, contradicting the definition of B;. Note that C is a minimal cutset of the
graph G — B*, whose components are By, B,, ..., B,. By the inductive hypothesis
C contains a two-pair of G — B*, which is also a two-pair of G by Observation 2
(where B* is as defined above and F = {x}).

Subcase 3.2. G — x is connected and C is a minimal cutset of G — x.
By the induction hypothesis, C contains a two-pair of G — x, which is a two-pair
of G by Observation 1 (where X = {x}).

Subcase 3.3. G — x is connected and C is not a minimal cutset of G — x.

Let C’' be a minimal cutset, contained in C, of G — x. Note that C’ is not empty
because G — x is connected, and that C”" = C — (' is not empty because C is not a
minimal cutset of G — x. If C’ is not a clique then, by the induction hypothesis, C’
contain a two-pair of G — x, which is also a two-pair of G by Observation 1 (where
X = {x}). Now we may assume that C’ induces a clique.

Since C is a minimal cutset of G, each vertex of C” must have at least one
neighbor in each B;. Therefore B, U---U B, U C” is included in one single component
of (G — x) — C'. Let B* be another component of (G— x) — C'. Then we have
B* = B, — x. Furthermore, a vertex a of B* cannot be adjacent to any vertex b of
C"U(B, — x — B*), because a and b are in different components of (G— x) — C'. It
follows that G[ B, — B*] is connected, for otherwise any component of G[ B, — B*]
not containing x would form a connected component of G — C, contradicting the
definition of B, . Thus C is a minimal cutset of G — B*, the components of (G — x) —
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C being B, — B*, B,, ..., B,, since each vertex of C is a neighbor of the vertex x of
B, — B*. By the induction hypothesis, C contains a two-pair of G — B*, which is
also a two-pair of G by Observation 2 (where F = C'U {x} and B* is as defined
above). This completes the proof. O

The above proof is essentially that of [3], with all instances of “even pair”
replaced with “two-pair”.
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