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Abstract. DeepMind’s recent spectacular success in using deep con-
volutional neural nets and machine learning to build superhuman level
agents — e.g. for Atari games via deep Q-learning and for the game
of Go via other deep Reinforcement Learning methods — raises many
questions, including to what extent these methods will succeed in other
domains. In this paper we consider DQL for the game of Hex: after
supervised initializing, we use self-play to train NeuroHex, an 11-layer
CNN that plays Hex on the 13×13 board. Hex is the classic two-player
alternate-turn stone placement game played on a rhombus of hexagonal
cells in which the winner is whomever connects their two opposing sides.
Despite the large action and state space, our system trains a Q-network
capable of strong play with no search. After two weeks of Q-learning,
NeuroHex achieves respective win-rates of 20.4% as first player and 2.1%
as second player against a 1-second/move version of MoHex, the current
ICGA Olympiad Hex champion. Our data suggests further improvement
might be possible with more training time.

1 Motivation, Introduction, Background

1.1 Motivation

DeepMind’s recent spectacular success in using deep convolutional neural nets
and machine learning to build superhuman level agents — e.g. for Atari games via
deep Q-learning and for the game of Go via other deep Reinforcement Learning
methods — raises many questions, including to what extent these methods will
succeed in other domains. Motivated by this success, we explore whether DQL
can work to build a strong network for the game of Hex.

1.2 The Game of Hex

Hex is the classic two-player connection game played on an n×n rhombus of
hexagonal cells. Each player is assigned two opposite sides of the board and a
set of colored stones; in alternating turns, each player puts one of their stones
on an empty cell; the winner is whomever joins their two sides with a contiguous
chain of their stones. Draws are not possible (at most one player can have a
winning chain, and if the game ends with the board full, then exactly one player
will have such a chain), and for each n×n board there exists a winning strategy
for the 1st player [7]. Solving — finding the win/loss value — arbitrary Hex
positions is P-Space complete [11].



Despite its simple rules, Hex has deep tactics and strategy. Hex has served as
a test bed for algorithms in artificial intelligence since Shannon and E.F. Moore
built a resistance network to play the game [12]. Computers have solved all 9×9
1-move openings and two 10×10 1-move openings, and 11×11 and 13×13 Hex
are games of the International Computer Games Association’s annual Computer
Olympiad [8].

In this paper we consider Hex on the 13×13 board.

(a) A Hex game in progress. Black
wants to join top and bottom, White
wants to join left and right.

(b) A finished Hex game. Black wins.

Fig. 1: The game of Hex.

1.3 Related Work

The two works that inspire this paper are [10] and [13], both from Google Deep-
Mind.

[10] introduces Deep Q-learning with Experience Replay. Q-learning is a re-
inforcement learning (RL) algorithm that learns a mapping from states to action
values by backing up action value estimates from subsequent states to improve
those in previous states. In Deep Q-learning the mapping from states to action
values is learned by a Deep Neural network. Experience replay extends standard
Q-learning by storing agent experiences in a memory buffer and sampling from
these experiences every time-step to perform updates. This algorithm achieved
superhuman performance on several classic Atari games using only raw visual
input.

[13] introduces AlphaGo, a Go playing program that combines Monte Carlo
tree search with convolutional neural networks: one guides the search (policy
network), another evaluates position quality (value network). Deep reinforce-
ment learning (RL) is used to train both the value and policy networks, which
each take a representation of the gamestate as input. The policy network out-
puts a probability distribution over available moves indicating the likelihood of
choosing each move. The value network outputs a single scalar value estimating
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V (S) = P (win|S)−P (loss|S), the expected win probability minus the expected
loss probability for the current boardstate S. Before applying RL, AlphaGo’s net-
work training begins with supervised mentoring: the policy network is trained
to replicate moves from a database of human games. Then the policy network
is trained by playing full games against past versions of their network, followed
by increasing the probability of moves played by the winner and decreasing the
probability of moves played by the loser. Finally the value network is trained
by playing full games from various positions using the trained policy network,
and performing a gradient descent update based on the observed game outcome.
Temporal difference (TD) methods — which update value estimates for previ-
ous states based on the systems own evaluation of subsequent states, rather than
waiting for the true outcome — are not used.

An early example of applying RL with a neural network to games is TD-
gammon [15]. There a network trained with TD methods to approximate state
values achieved superhuman play. Recent advances in deep learning have opened
the doors to apply such methods to more games.

1.4 Overview of This Work

In this work we explore the application of Deep Q-learning with Experience Re-
play, introduced in [10], to Hex. There are several challenges involved in applying
this method, so successful with Atari, to Hex. One challenge is that there are
fewer available actions in Atari than in Hex (e.g. there are 169 possible initial
moves in 13×13 Hex). Since Q-learning performs a maximization over all avail-
able actions, this large number might cause the noise in estimation to overwhelm
the useful signal, resulting in catastrophic maximization bias. However in our
work we found the use of a convolutional neural network — which by design
learns features that generalize over spatial location — yielded good results.

Another challenge is that the reward signal in Hex occurs only at the end of a
game, so (with respect to move actions) is infrequent, meaning that most updates
are based only on network evaluations without immediate win/loss feedback.
The question is whether the learning process will allow this end-of-game reward
information to propagate back to the middle and early game. To address this
challenge, we use supervised mentoring, training the network first to replicate
the action values produced by a heuristic over a database of positions. Such
training is faster than RL, and allows the middle and early game updates to be
meaningful at the start of Q-learning, without having to rely on end-of-game
reward propagating back from the endgame. As with AlphaGo [13], we apply
this heuristic only to initialize the network: the reward in our Q-learning is based
only on the outcome of the game being played.

The main advantage of using a TD method such as Q-learning over training
based only on final game outcomes, as was done with AlphaGo, is data efficiency.
Making use of subsequent evaluations by our network allows the system to deter-
mine which specific actions are better or worse than expected based on previous
training by observing where there is a sudden rise or fall in evaluation. A system
that uses only the final outcome can only know that the set of moves made by
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the winner should be encouraged and those made by the loser discouraged, even
though many of the individual moves made by the winner may be bad and many
of the individual moves made by the loser may be good. We believe this differ-
ence is part of what allows us to obtain promising results using less computing
power than AlphaGo.

1.5 Reinforcement Learning

Reinforcement learning is a process that learns from actions that lead to a goal.
An agent learns from the environment and makes decisions. Everything that the
agent can interact with is called the environment. The agent and environment
interact continually: the agent selecting actions and the environment responding
to those actions and presenting new situations to the agent. The environment
also reports rewards: numerical/scalar values that the agent tries to maximize
over time. A complete specification of an environment defines a task, which is
one instance of the reinforcement learning problem.

Fig. 2: The agent-environment interaction in reinforcement learning.

The agent and environment interact at each discrete time step (t = 0,1,2,3...).
At each time step the agent receives some representation of the environment’s
state, st ε S, where S is the set of possible states, and on that basis selects an
action, at ε At , where At is the set of actions available in state st. One time
step later, in part as a consequence of its action, the agent receives a numerical
reward, rt+1 ε R , and finds itself in a new state st+1.

The purpose or goal of the agent is formalized in terms of a special reward
signal passing from the environment to the agent. At each time step, the reward
is a scalar, rt εR . Informally, the agent’s goal is to maximize the total amount of
reward it receives. This means maximizing not immediate reward, but cumulative
reward in the long run. The field of reinforcement learning is primarily the study
of methods for tackling this challenge.
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A RL agent chooses actions according to a policy π(a|s) which is a probability
distribution over all possible actions for the current state. The policy may be
deterministic or stochastic. For a given policy we define the value of a state vπ(S)
as the expectation value of cumulative reward from state S if we follow π.

vπ(S) = Eπ(

∞∑
t=1

γt−1rt|s0 = S)

where γ is a discount factor indicating how much more to credit immediate
reward than long term reward; this is generally necessary to ensure reward is
finite if the agent-environment interaction continues indefinitely, however it may
be omitted if the interaction ends in bounded time, for example in a game of Hex.
For a given problem we define the optimal policy π∗ (not necessarily unique)
as that which produces the highest value in every state. We then denote this
highest achievable value as v∗(S). Note that neither vπ(S) or v∗(S) are tractable
to compute in general, however it is the task of a wide variety of RL algorithms
to estimate them from the agent’s experience.

Similarly we can define for any policy the action value of each state action
pair qπ(S,A) which, analogous to vπ(S), is defined as the expectation value of
cumulative reward from state S if we take action A and follow π after that.
Similarly we can define q∗(S,A) as qπ∗(S,A). Notice that choosing the action
with the highest q∗(S,A) in each state is equivalent to following the optimal
policy π∗.

See [14] for excellent coverage of these topics and many others pertaining to
RL.

1.6 Deep Q-learning

Q-learning is based on the following recursive expression, called a Bellman equa-
tion for q∗(S,A).

q∗(st, at) = E(rt+1 + γmax
a

q∗(st+1, a)|st, at)

Note that this expression can be derived from the definition of q∗(st, at).
From this expression we formulate an update rule which allows us to iteratively
update an estimate of q∗(S,A), typically written Q∗(S,A) or simply Q(S,A)
from the agents stream of experience as follows:

Q(st, at)
α← rt+1 + γmax

a
Q(st+1, a)

Where in the tabular case (all state action pairs estimated independently)

“
α←” would represent moving the left-hand-side value toward the right-hand-

side value by some step size α fraction of the total difference, in the function
approximation case (for example using a neural network) we use it to represent
a gradient descent step on the left value decreasing (for example) the squared
difference between them. Since a maximization is required, if the network for

5



Q were formulated as a map directly from state-action pairs to values, it would
be necessary to perform one pass through the network for each action in each
timestep. Because this would be terribly inefficient (particularly in the case of
Hex which has up to 169 possible actions) and also because action values for a
given state are highly correlated, we instead follow [10] and use a network that
outputs values for all actions in one pass.

Note that since we take the maximum over the actions in each state, it is
not necessary to actually follow the optimal policy to learn the optimal action
values, though we do need to have some probability to take each action in the
optimal policy. If the overlap with the policy followed and the optimal policy is
greater we will generally learn faster. Usually the policy used is called epsilon-
greedy which takes the action with the highest current Q(st, at) estimate most
of the time but chooses an action at random some fraction of the time. This
method of exploration is far from ideal and improving on it is an interesting
area of research in modern RL.

Having learned an approximation of the optimal action values, at test time we
can simply pick the highest estimated action value in each state, and hopefully
in doing so follow a policy that is in some sense close to optimal.

2 Method

2.1 Problem Structure

We use the convention that a win is worth a reward of +1 and a loss is worth
-1. All moves that do not end the game are worth 0. We are in the episodic case,
meaning that we wish to maximize our total reward over an episode (i.e. we want
to win and not lose), hence we use no discounting (γ = 1). Note that the ground
truth q∗(S,A) value is either 1 or -1 for every possible state-action pair (the
game is deterministic and no draws are possible, hence assuming perfect play one
player is certain to lose and the other is certain to win). The network’s estimated
q∗(S,A) value Q(S)[A] then has the interpretation of subjective probability that
a particular move is a win, minus the subjective probability that it is a loss
(roughly speaking Q(S)[A] = P (win|S,A) − P (loss|S,A)). We seek to predict
the true value of q∗(S,A) as accurately as possible over the states encountered
in ordinary play, and in doing so we hope to achieve strong play at test time
by following the policy which takes action argmax

a
Q(s)[a], i.e. the move with

highest estimated win probability, in each state.

2.2 State Representation

The state of the Hex board is encoded as a 3 dimensional array with 2 spatial
dimensions and 6 channels as follows: white stone present; black stone present;
white stone group connected to left edge; white stone group connected to right
edge; black stone group connected to top edge; black stone group connected
to bottom edge.
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In addition to the 13×13 Hex board, the input includes 2 cells of padding on
each side which are connected to the corresponding edge by default and belong
to the player who is trying to connect to that edge. This padding serves a dual
purpose of telling the network where the edges are located and allowing both
3×3 and 5×5 filters to be placed directly on the board edge without going out
of bounds. We note that AlphaGo used a far more feature rich input represen-
tation including a good deal of tactical information specific to the game of Go.
Augmenting our input representation with additional information of this kind
for Hex could be an interesting area of future investigation. Our input format is
visualized in figure 3.

Fig. 3: A visualization of the board representation fed to NeuroHex. O is white,
@ is black, red is north or east edge connected depending on the color of the
associated stone, similarly green is south or west edge connected. Note that
though the board is actually 13×13 the input size is 17×17 to include 2 layers of
padding to represent the board edge and allow placement of 5×5 filters along it.
Cells in the corners marked with # are uniquely colored both white and black
from the perspective of the network.

2.3 Model

We use the Theano library [6][4] to build and train our network. Our network
architecture is inspired by that used by Google DeepMind for AlphaGo’s policy
network [13]. Our network consists of 10 convolutional layers followed by one
fully connected output layer. The AlphaGo architecture was fully convolutional,
with no fully connected layers at all in their policy network, although the final
layer uses a 1x1 convolution. We however decided to employ one fully connected
layer, as we suspect that this architecture will work better for a game in which a
global property (i.e., in Hex, have you connected your two sides?) matters more
than the sum of many local properties (i.e., in Go, which local battles have you
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won?). For future work, it would of interest to explore the effect of the final fully
connected layer in our architecture.

Fig. 4: Diagram showing our our network layout: D3 indicates number of diam-
eter 3 filters, D5 indicates number of diameter 5 filters in the layers shown.

Filters used are hexagonal rather than square to better capture the different
notion of locality in the game of Hex. Hexagonal filters were produced sim-
ply by zeroing out appropriate elements of standard square filters and applying
Theano’s standard convolution operation (see figure 5). Each convolutional layer
has a total of 128 filters which consist of a mixture of diameter 3 and diameter 5
hexagons, all outputs use stride 1 and are 0 padded up to the size of the original
input. The output of each convolutional layer is simply the concatenation of the
padded diameter 5 and diameter 3 outputs. All activation function are Rectified
Linear Units (ReLU) with the exception of the output which uses 1 − 2σ(x) (a
sigmoid function) in order to obtain the correct range of possible action values.
The output of the network is a vector of action values corresponding to each of
the board locations. Unplayable moves (occupied cells) are still evaluated by the
network but simply ignored where relevant since they are trivially pruned.

Fig. 5: Creating hexagonal filters from square filters: smaller dots are effectively
ignored by fixing their weight to zero.
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2.4 Position Database

While it would be possible to train the network purely by Q-learning from self
play starting from the empty board every game, we instead generated a database
of starting positions from 10,000 games played by a noisy version of a strong
Hex playing program based on alpha-beta search called Wolve [2]. To generate
this database each game was started with a random move and each subsequent
move was chosen by a softmax over Wolve’s move evaluations to add additional
variability. These positions were used for two separate purposes. First they were
used in mentoring (supervised learning to provide a reasonable initialization of
the network before Q-learning) which is described in the section below. Second to
randomly draw a starting position for each episode of self play by the network.
This second usage was meant to ensure that the network experiences a wide
variety of plausible game positions during training, without going through the
potentially arduous process of finding this variety by random exploration. In the
future it could be interesting to see how important these two things are to the
success of the algorithm.

2.5 Mentoring

Before beginning Q-learning, the network was trained to replicate (by stochastic
gradient descent on the mean squared error) the action values produced by a
variant of a common Hex heuristic based on electrical resistance[1], over the
position database discussed in the previous section. The idea of the heuristic
is to place a voltage drop across the two edges a player is trying to connect,
then take the players own cells to be perfect conductors, opponent cells to be
perfect insulators, and empty cells to be finite resistors. The usual version of
the heuristic then computes a score (an arbitrary positive real number with no
statistical interpretation) of the position as the ratio of current traveling across
the board for each player. Because we wanted instead to generate heuristic action
values between -1 and 1 for each move, it was necessary to modify this heuristic.
We did this by computing estimates of the current across the board C ′1(a) and
C ′2(a) for the player to move and their opponent respectively following the player
to move playing into cell a (the true value could have been used by playing each
move and recomputing the current, but we use a simple estimate based on the
current through each cell to save time). The action value of a cell was then taken
to be:

Q(a) =

{
1− C ′2(a)/C ′1(a), if C ′1(a) > C ′2(a)

C ′1(a)/C ′2(a)− 1, if C ′2(a) > C ′1(a)

In any case the details here are not terrible important and similar results could
have likely been obtained with a simpler heuristic. The important thing is that
the heuristic supervised pre-training gives the network some rough initial notion
that the goal of the game is to connect the two sides. This serves the primary
purpose of skipping the potentially very long period of training time where most
updates are meaningless since the reward signal is only available at the end of an
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episode and every other update is mostly just backing up randomly initialized
weights. It also presumably gives the network an initial set of filters which have
some value in reasoning about the game. Note that the final trained network is
much stronger than this initialization heuristic.

2.6 Q-learning Algorithm

We use Deep Q-learning with experience replay in a manner similar to Google
DeepMind’s Atari learning program [10]. Experience replay means that instead
of simply performing one update at a time based on the last experience, we save
a large set of the most recent experiences (in our case 100,000), and perform a
random batch update (batch size 64) drawn from that set. This has a number
of benefits including better data efficiency, since each experience is sampled
many times and each update uses many experiences; and less correlation among
sequential updates. We use RMSProp [16] as our gradient descent method.

One notable difference between our method and [10] is in the computation of
the target value for each Q-update. Since in the Atari environment they have an
agent interacting with an environment (an Atari game) rather than an adversary

they use the update rule Q(st, at)
α← rt+1+γmax

a
Q(st+1, a), where again we use

α← to indicate the network output on the left is moved toward the target on the
right by a gradient descent update to reduce the squared difference. Here γ is a
discount factor between 0 and 1 indicating how much we care about immediate
reward v.s. long-term reward.

In our case the agent interacts with an adversary who chooses the action
taken in every second state, we use the following gradient descent update rule:
Q(st, at)

α← rt+1 − max
a

Q(st+1, a). Note that we take the value to always be

given from the perspective of the player to move. Thus the given update rule
corresponds to stepping the value of the chosen move toward the negation of the
value of the opponents next state (plus a reward, nonzero in this case only if the
action ends the game). This update rule works because with the way our reward
is defined the game is zero-sum, thus the value of a state to our opponent must
be precisely the negation of the value of that state to us. Also in our case we
are not concerned with how many moves it takes to win and we suspect using a
discount factor would only serve to muddy the reward signal so we set γ = 1.

Our network is trained only to play as white, to play as black we simply
transform the state into an equivalent one with white to play by transposing
the board and swapping the role of the colors. We did it this way so that the
network would have less to learn and could make better use of its capacity.
An alternative scheme like outputting moves for both white and black in each
state seems wasteful as playing as either color is functionally the same (ignoring
conventional choices of who plays first). It is however an interesting question
whether training the network to pick moves for each color could provide some
useful regularization.

Our Q-learning algorithm is shown in algorithm 1. Note that we include
some forms of data augmentation in the form of randomly flipping initial states
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to ones that are game theoretically equivalent by symmetry, as well as randomly
choosing who is to move first for the initial state (irrespective of the true player
to move for a given position). The latter augmentation will result in some sig-
nificantly imbalanced positions since each move can be crucial in Hex and losing
a move will generally be devastating. However since our player is starting off
with very little knowledge of the game, having these imbalanced positions where
one player has the opportunity to exploit serious weakness presumably allows
the network to make early progress in identifying simple strategies. A form of
curriculum learning where these easier positions are trained on first followed by
more balanced positions later could be useful, but we did not investigate this
here. We also flip the state resulting from each move to an equivalent state with
50% probability, a form of game specific regularization to capture a symmetry
of the game and help smooth out any orientation specific noise generated in
training.

initialize replay memory M , Q-network Q, and state set D
for desired number of games do

s = position drawn from D
randomly choose who moves first
randomly flip s with 50% probability
while game is not over do

a = epsilon greedy policy(s, Q)
snext = s.play(a)
if game is over then

r=1
else

r=0
end
randomly flip snext with 50% probability
M .add entry((s,a,r,snext))
(st,at,rt+1,st+1) = M .sample batch()
targett = rt+1 −max

a
Q(st+1)[a]

Perform gradient descent step on Q to reduce (Q(st)[at] − targett)
2

s = s.play(a)
end

end
Algorithm 1: Our Deep Q-learning algorithm for Hex. ep-
silon greedy policy(s, Q) picks the action with the highest Q value in s
90% of the time and 10% of the time takes a random action to facilitate
exploration. M .sample batch() randomly draws a mini-batch from the replay
memory. Note that in two places we flip states (rotate the board 180◦) at
random to capture the symmetry of the game and mitigate any orientation
bias in the starting positions.
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3 Results

To measure the effectiveness of our approach, we measure NeuroHex’s playing
strength, rate of learning, and stability of learning. Our results are summarized
in figures 6, 9, and 10 respectively.

first move MoHex sec/move NeuroHex black NeuroHex white

unrestricted 1 .20 .02

all 169 openings 1 .11 .05

all 169 openings 3 .09 .02

all 169 openings 9 .07 .01

all 169 openings 30 .00 .00

Fig. 6: NeuroHex v MoHex win rates. Black is 1st-player. The unrestricted win-
rates are over 1000 games, the others are over 169 games.

Figure 9 shows the average magnitude of maximal action value output by the
network. Figure 10 shows the average cost for each Q-update performed during
training as a function of episode number. Both of these are internal measures,
indicating the reasonable convergence and stability of the training procedure;
they do not however say anything about the success of the process in terms of
actually producing a strong player. After an initial period of rapid improvement,
visible in each plot, learning appears to become slower. Interestingly the cost plot
seems to show a step-wise pattern, with repeated plateaus followed by sudden
drops. This is likely indicative of the effect of random exploration, the network
converges to a set of evaluations that are locally stable, until it manages to
stumble upon, through random moves or simple the right sequence of random
batch updates, some key feature that allows it to make further improvement.
Training of the final network discussed here proceeded for around 60,000 episodes
on a GTX 970 requiring a wall clock time of roughly 2 weeks. Note that there is
no clear indication in the included plots that further improvement is not possible,
it is simply a matter of limited time and diminishing returns.

We evaluate NeuroHex by testing against the Monte-Carlo tree search player
MoHex[9][3], currently the world’s strongest hexbot. See figure 6. Four sample
games are shown in figures 7 and 8. On board sizes up to at least 13×13 there
is a significant first-player advantage. To mitigate this, games are commonly
played with a “swap rule” whereby after the first player moves the second player
can elect either to swap places with the first player by taking that move and
color or to continue play normally. Here, we mitigate this first-player advantage
by running two kinds of tournaments: in one, in each game the first move is
unrestricted; in the other, we have rounds of 169 games, where the 169 first
moves cover all the moves of the board. As expected, the all-openings win-
rates lie between the unrestricted 1st-player and 2nd-player win-rates. To test
how win-rate varies with MoHex move search time, we ran the all-openings
experiment with 1s, 3s, 9s, 30s times.
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MoHex is a highly optimized C++ program. Also, in addition to Monte Carlo
tree search, it uses many theorems for move pruning and early win detection. So
the fact that NeuroHex, with no search, achieves a non-zero success rate against
MoHex, even when MoHex plays first, is remarkable.

By comparison, AlphaGo tested their policy network against the strong Go
program Pachi[5] and achieved an 85% win-rate. In this test Pachi was allowed
100,000 simulations, which is comparable to Mohex given 30s, against which we
won no games. This comparison holds limited meaning since the smaller board —
and aggressive move pruning which is possible in Hex, unlike in Go — enhances
the utility of each simulation. Nonetheless it is fair to say Neurohex has not yet
reached a comparable level to the AlphaGo policy network. It remains to be seen
how much improvement is possible with further training, and to what extend
our learned Q-value network can be used to improve a search based player.
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Fig. 7: Example wins for NeuroHex over MoHex.
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Fig. 8: Example wins for MoHex over NeuroHex.
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Fig. 9: Running mean (over 200 episodes) of the magnitude (absolute value) of
the value (max over all action values from that position) for positions encoun-
tered in training. For each position, its ground truth value is either -1 or 1, so
this graph indicates the network’s confidence in its evaluation of positions that
it encounters in training.

4 Discussion and Conclusion

The DeepMind authors showed that Deep RL based on final outcomes can be
used to build a superhuman Gobot; we have shown that Q-learning can be used
to build a strong Hexbot. Go and Hex have many similarities — two-player
alternate turn game on a planar board in which connectivity is a key feature —
and we expect that our methods will apply to Go and many other similar games.

Before our work we wondered whether the large action spaces that arise in
Hex would result in the temporal difference updates of Q-learning being over-
whelmed by noise. We also wondered whether the assignment of correct credit
for actions would be feasible in light of the paucity of rewards among the large
number of states. But the win-rate of NeuroHex against the expert-level player
MoHex after training only two weeks suggests that the generalization ability of
convolutional neural networks together with the use of supervised mentoring is
sufficient to overcome these challenges. One property of Hex that might have
contributed to the success of our methods is that — unlike Go — it is an all-
or-nothing game. In particular, Hex has a “sudden death” property: in many
positions, for most moves, it is easy to learn that those moves lose. In such po-
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Fig. 10: Running mean (over 200 episodes) of average cost of updates in algo-
rithm 1: squared difference between current Q-value and target (max Q-value of
next position). So this graph indicates the rate at which the network is learning.

sitions it is comparatively easy task for the network to learn to distinguish the
few good moves from the many bad ones.

In light of supervised mentoring one could ask to what extent our training
is using the reward signal at all, versus simply back-propagating the heuristic
initialization values. We would like to address this question in the future, for
example by testing the procedure without supervised mentoring, although this
might not be important from the perspective of building a working system. If
the heuristic is good then many of the values should already be close to the true
value they would eventually converge to in Q-learning. Assuming, as is often the
case, that heuristic values near the endgame are better than those near the start,
we will be able to perform meaningful backups without directly using the reward
signal. To the extent the heuristic is incorrect it will eventually be washed out
by the reward signal — the true outcome of the game — although this may take
a long time.

We suspect that our network would show further improvement with further
training, although we have no idea to what extent. We also suspect that incorpo-
rating our network into a player such as MoHex, for example to bias the initial
tree search, would strengthen the player.
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5 Future Work

Throughout the paper we have touched on possible directions for further re-
search. Here are some possibilities: augment the input space with tactical or
strategic features (e.g. in Hex, virtual connections, dead cells and capture pat-
terns); build a search based player using the trained network, or incorporate it
into an existing search player (e.g. MoHex); determine the effectiveness of using
an actor-critic method to train a policy network along side the Q network to test
the limits of the learning process; find the limits of our approach by training for
a longer period of time; determine whether it is necessary to draw initial posi-
tions from a state database, or to initialize with supervised learning; investigate
how using a fully convolutional neural network compares to the network with
one fully connected layer we used.
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