
2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

1

Move Prediction using Deep Convolutional Neural Networks in Hex
Chao Gao, Ryan Hayward and Martin Müller

Abstract— Using deep convolutional neural networks for
move prediction has led to massive progress in Computer Go.
Like Go, Hex has a large branching factor that limits the
success of shallow and selective search. We show that deep
convolutional neural networks can be used to produce reliable
move evaluation in the game of Hex. We begin by collecting
self-play games of MoHex 2.0. We then train the neural
networks by canonical maximum likelihood. The trained model
was evaluated by playing against top programs Wolve and
MoHex 2.0. Without any search, the resulting neural network
produces similar playing strength as the highly optimized
Resistance evaluation function used in Wolve. Finally, using the
neural networks as prior knowledge, the reigning Monte Carlo
tree search based world champion player MoHex 2.0 can be
enhanced.

I. INTRODUCTION

The game of Hex is a two-player zero sum game that is
invented independently by Piet Hein [1] and by John Nash
in 1948 [2]. It was presented to the general public by Martin
Gardner in 1959 [3]. Since the seminal work by Shannon
in 1950s [4], it has been an active domain of Artificial
Intelligence research.

Hex is a perfect information game where two players could
play alternatively. Typically, black starts first. There is no
draw in Hex — this can be proven using the Brouwer fixed-
point theorem in two dimensions [5]. It has also been shown
by “strategy stealing” [6] that a winning strategy exists
for the first player. However, an explicit winning strategy
remains obscure. Indeed, solving arbitrary Hex positions has
been proven to be PSPACE-complete [7, 8]. In practical
playing, to reduce the paramount advantage of the first player,
a swap rule can be applied, which means the second player
can either steal the first player’s opening move or play a
norm move.

Like Go before ago, Hex has a large branching factor,
which makes fixed-depth exhaustive search difficult. Unlike
Go, Hex has a reasonably strong evaluation function that
is based on electric resistance [9, 10, 11]. Hence, alpha-
beta search programs that utilize knowledge and connection
strategy computation have achieved modest success [12, 13].
Nevertheless, it is known that the resistance evaluation func-
tion is often pathological [11]. Following the trend in com-
puter Go, Monte Carlo Tree Search [14, 15, 16] was applied
to Hex, leading to MoHex [17], which has better playing
performance than alpha-beta search [18]. Further develop-
ments by Huang et al. [19] added learnt prior preferences

Chao Gao, Ryan Hayward and Martin Mueller are with the Department
of Computing Science, University of Alberta, Edmonton, Canada (email:
{cgao3, hayward, mmueller}@ualberta.ca).

to MoHex. The result program MoHex 2.0 is better than
MoHex. Indeed, MoHex 2.0 has been the reigning champion
in the Computer Olympiad since 2013. The improvement in
performance of MoHex 2.0 is mainly due to its successful
grasp of prior knowledge, which is expressed by a linear
function trained on expert game records [20].

The recent breakthrough [21, 22, 23, 24] in computer Go
has shown that using deep Convolutional Neural Networks
(CNN) [25] for representation and learning game knowledge
is far superior to earlier approaches. Motivated by the success
in computer Go, we investigate how to use deep convolu-
tional neural nets to represent and learn knowledge in Hex.
The goal of this paper is to pave the road towards an AlphaGo
style playing system for computer Hex – a task that poses
the following challenges:

• Representation. Compact representation is essential to
any learning model. Typically, feeding more input fea-
tures to the neural nets yields better prediction accuracy.
However, since trained neural nets will eventually be
used in search, it needs to be sufficient fast to evalu-
ate. The common wisdom in deep learning is “deeper
models will produce better results”, but the development
of a successful architecture often requires many trials,
and again, the cost of forward inference should also be
considered.

• Sophistication. Training data obtained from either hu-
man or computer game records is essentially imperfect.
Appropriate dealing with the imperfectness of the train-
ing data should be beneficial.

• Search. Correct and effective combination of the neural
net and search is non-trivial. The major challenge is that
the speed of neural nets on regular hardware is too slow
to be intensively used in the search.

The above challenges ought to be solved one by one. In
this paper, we show that with a compact representation that
utilizes the most commonly seen bridge pattern, reasonable
move predication accuracy can be achieved. Also, results
from several other architectures are presented. We com-
pare our trained model with a highly optimized evaluation
function Resistance. Similar playing strength is observed.
We integrate our policy net with MoHex 2.0, enhanced
performance is observed when using neural net as a prior
probability for node expansion.

The rest of this paper is organized as follows: In Section
II, we give a brief description of the rules and tactics of Hex.
In Section III we discuss previous work on Computer Hex.
Section IV presents our move prediction neural network.
Evaluation results are presented in Section V. Finally, we

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

2

summarize this paper and point out future work in Section
VI.

II. RULES OF HEX

Hex is played on an n⇥n hexagonal board, where players
black and white take turns to place a stone in an empty
hexagonal cell. The goal of Hex is to form a chain that
connects the player’s two sides of the board. The swap rule is
usually applied to mitigate the first player’s advantage. 11x11
and 13x13 board sizes are most popular and are adopted in
computer tournaments. 19x19 board size is also played by
human players. Hex cannot end in a draw, i.e., no chain
can be completely blocked except a winning chain of the
opposite. Figure 1 shows a Hex game on a 11x11 board.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1S

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

2728

29

30

31

323334

35

3637

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Fig. 1. A Hex game played on 11x11 board. White wins by forming a
path connecting its two sides.

Playing Hex well requires complex tactics. The ability to
see and form virtually connected components on the board is
most critical. The bridge pattern is the most commonly seen
virtual connection in Hex. Figure 2 shows a board position
where black and white each have a bridge. For the black
bridge in Figure 2, D1 and C3 are called bridge endpoints,
C2 and D2 are bridge carriers. It is obvious that if black
plays at D4, a new bridge can be formed, so D4 can be
called as a black form bridge cell. If black plays at B2 to
threaten white’s bridge, white can respond at A3, to save
bridge.

a

a

b

b

c

c

d

d

11

22

33

44

Fig. 2. An example that illustrates the bridge virtual connection pattern.
Black and white each have a bridge.

III. PREVIOUS WORK ON COMPUTER HEX

Deep selective minimax search directed by an evaluation
function has led to grandmaster play in chess [26]. However,

due to the lack of a reliable evaluation function, such search
techniques turned out to be less useful in Hex. Inspired by
the seminal work of Shannon [4], using electronic circuit
resistance as an evaluation function was proposed by An-
shelevich [9, 10], which leads to the first modern Hex playing
programs Hexy [27], and later Six [12]. Due to the character-
istics of the electric model, in both programs, the information
provided by Virtual Connection (VC) computation is vital to
the quality of the evaluation. Virtual connection is a point
to point connection strategy, where each point could be an
empty cell, a group of connected stones or a board side.
For a given board state, usually there is an exponentially
large number of VCs. Anshelevich [10] proposed a hier-
archical algebra that is able to compute a subset of them.
The algorithm is named as H-Search. It starts with trivial
VC patterns, and then works by repeatedly applying two
combination rules to form larger VCs. H-Search was shown
to be incomplete [10]. A number of improvements of H-
Search are described in [11]. Most recently, Pawlewicz et
al. [28] presented many heuristic techniques to improve H-
Search, making it is able to compute a critical subset of VCs.

Inferior Cell Analysis (ICA) [29, 11] uses identified dead
(or dominated, inferior) local patterns to automatically derive
cells that can be removed from consideration. Combining
some ICA and VC computation, Hayward et al. [29] devel-
oped an algorithm that is strong enough to solve arbitrary
7x7 Hex states in reasonable time. Later, after extending
the inferior cell analysis and enhancing VC computation
by adding inferior cell patterns, all 8x8 openings were
solved by Henderson et al. [30]. Based on ICA and VC
augmented Resistance, the alpha-beta search player Wolve
was developed, which won the golden medal in 2008 Com-
puter Olympiad [13]. Other strong computer players that use
those VC and ICA computation include DeepHex [31] and
Ezo [32].

However, the Resistance evaluation, though, has been im-
proved by adding VC and ICA information, is still frequently
pathological, as it tends to favour fillin, dominated cells [11].
Such a problem is then sidestepped by the development
of Monte-carlo search, which evaluates a game position
by simulating random playouts. Convergence properties of
Monte-carlo tree search are discussed in [14, 33].

The success of Monte Carlo tree search (MCTS) [14, 15,
16] is largely due to its superior ability to bias the search to
promising nodes in the tree, by dynamically backing up the
evaluations from random sequences of self-play. Therefore
a major effort for enhancements of MCTS is to increase
the quality of such biases by incorporating learnt off-line
prior knowledge [34]. In this spirit, MoHex 2.0 by Huang et
al. [19] biases preferences learnt from expert game records.
MoHex 2.0 is 300 Elo stronger than MoHex [19] on the
13x13 board size.

Recently, the breakthrough in Image Classification [25]
has demonstrated the superior representation ability of deep
convolutional networks over other learning models. This
success has spread to the domain of computer Go [21, 22,

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

3

23, 24], leading to super human strength Go playing system
AlphaGo [24]. Inspired by this progress, we study how to
bring the advantage of deep convolutional networks into the
domain of Hex. As the first step, we focus on supervised
learning in this paper.

IV. MOVE PREDICTION WITH CNN

The availability of big data is essential for any deep
learning models. In this section, we first introduce our
training data, then design input planes for CNN that utilize
the bridge pattern. After that our architecture and training
method will be presented.

A. Data

According to [19], pattern weights in MoHex 2.0 were
trained on a dataset consisting of 19760 13x13 games from
Little Golem 1 and 15116 games by MoHex played against
Wolve. Since those data are no longer available, we generated
a new dataset from MoHex 2.0 self-play by setting a time
limit per move varying from 28s to 40s, iterating over all
opening moves, with the parallel solver turned off. In this
way, we collected 15520 games in total. All those self-
play games were produced on Cybera2 cloud instances with
Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz and 4GB RAM.

We extract 1098952 distinct state-action pairs (s, a) from
those games. The data was split into 90% as training and 10%

as test set. To show detailed characteristics of our data, we
plot the distribution state-action pairs with different move
numbers in Figure 3. As expected, the majority of those
positions is from the middle game.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160

nu
m

be
r o

f s
ta

te
s

move number

Fig. 3. Distribution of (s, a) with different move numbers.

We did not include human games from Little Golem in our
data, primarily because we found that most human players
at this site are much weaker than MoHex 2.0.

1
http://www.littlegolem.net

2
http://www.cybera.ca

Fig. 4. Hexagonal board mapped as a square grid with moves played at
intersections (left). Two extra rows of padding at each side used as input to
neural net (right).

TABLE I
INPUT FEATURES

Feature plane index description
black/white/empty 0/1/2 black/white/empty points

black bridge 3 black bridge endpoints
white bridge 4 white bridge endpoints

to play 5/6 black/white to play
to play bridge 7 to play save bridge
to play bridge 8 to play form bridge

B. Input Planes

Each position s was preprocessed into feature planes
before feeding to the neural net. Since the goal of Hex is to
connect two sides of the board, to represent such an objective,
we use extra borders to pad the Hex board. Figure 4 shows
our padding for 13x13 Hex. In addition to the basic board
state representation (black, white, empty points), we utilize
the most commonly seen bridge pattern to enrich our input
features. Table I lists feature representation in each plane.
The input features consist of 9 planes with only binary
values. We tried to add history information as [23], but
experimental results show that it does not seem to help
in Hex. This input feature extends the bridge pattern used
in [35].

C. Architecture and Training

Inspired by the previous work on Go [21, 22, 23], the
neural network we designed for Hex stacks multiple convo-
lution and non-linearity layers. It contains d (d > 1) 5⇥5 or
3⇥3 convolution layers. Each convolution layer has w filters.
Input to the first convolution layer is of dimension 17⇥17⇥9.
The first convolution layer convolves using filter size 5 ⇥ 5

with stride of 1, and then applies rectifier function ReLU to
its output. Convolution layers 2 to d� 1 zero pad the input
to an image of 15⇥ 15, then convolves with filter size 3⇥ 3

and stride of 1, followed by ReLU.
As previous work in Go [21, 22, 23], to avoid losing

information, no down-sampling layers such as pooling are
applied. The final convolution layer convolves using 1 filter
of kernel size 1 ⇥ 1 with stride 1. A position bias is added
before applying the final softmax function. The output of this
neural net is a probability distribution over each move on the
board. The architecture is shown as Figure 5.

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

4

input , shape 17 ⇥ 17 ⇥ 9

(5⇥5, w) Convolution with

bias, followed by ReLU

...

(1 ⇥ 1, 1) Convolu-

tion with position bias

softmax

d � 1 repetition of

(3⇥ 3, w) Convolution

with bias, followed by

ReLU

Fig. 5. Architecture, d repetition of 5 ⇥ 5 or 3 ⇥ 3 convolution layers,
each with w filters.

The Hex board is symmetric under 180 degree rotation.
Therefore, for each training example, with probability 0.5, a
rotated symmetric position is randomly selected to train. The
target is to maximize the likelihood of parameterized neural
net prediction with moves in the training examples. Let D
be the training set, the loss function can be expressed as:

L(✓;D) = �
X

(s,a)2D

log p✓(a|s) (1)

For the training, we use adaptive stochastic gradient de-
scent Adam optimizer [36]. Default parameters were used,
as it has been shown that Adam optimizer’s default hyper-
parameters values are widely applicable [36]. We found
that, compared to vanilla stochastic gradient descent, faster
convergence rate is observed with Adam. We train the neural
net with batch size 128. Every 500 steps, accuracy on test
data is evaluated. We stop the training after 150,000 steps, the
model that achieves best test accuracy is saved. This takes
less than 48 hours for a network with d = 8, w = 128.
The neural net was implemented with Tensorflow [37], and
trained on an Intel i7-6700 CPU machine with 32GB RAM
and a NVIDIA GTX 1080 GPU.

V. RESULTS

In this section, we report detailed evaluation results of
our neural networks. We first present the prediction accuracy
of several architectures. Playing strength evaluations are
presented subsequently.

A. Prediction Accuracy

It is not very clear which choices of d and w is the best for
Hex. We experimentally investigate different architectures by
varying d and w. Table II presents the top 1 move prediction
for 5 different architectures.

TABLE II
PREDICTION ACCURACY OF CNN MODELS WITH VARYING d AND w

d, w Best accuracy on test data
5, 64 filters 49.5%
5, 128 filers 53.4%
7, 128 filters 54.7%
8, 128 filters 54.8%
9, 128 filters 54.5%

0 2 4 6 8 10 12 14 16 18 20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Epoch

A
c
c
u
r
a
c
y

#input=9, d=8, w=128, train

#input=3, d=8, w=128, train

#input=9, d=8, w=128, test

#input=3, d=8, w=128, test

Fig. 6. Comparison of 3 input planes and 9 input planes on training and
testing. The training accuracies is the average over an epoch, after each
epoch, performance of the model is measured on the test data.

As shown in Table II, neural nets with depth 7�9 generally
produces better results than shallow ones. We obtain the
best accuracy with d = 8, w = 128. For comparison, the
prediction accuracy of d = 8, w = 128 architecture on
training data is 57.6%.

To show the advantage of utilizing the bridge pattern in
the input layer, fixing the architecture as d = 8, w = 128, we
plot the training accuracy over epochs for 3 input planes (i.e.,
black, white, and empty points) vs 9 input planes in Figure 6.
The neural net with 9 input planes performs consistently
better.

It is also of interest to know the top k > 1 accuracy, since
if k is small, the accuracy is high, this confidence might be
used to effectively reduce search space. Figure 7 illustrates
the top k accuracy for d = 8, w = 128 with 9 input planes.
The prediction accuracy is above 90% for k = 8, a very small
number compared to the average branching factor of the
13x13 Hex. When k = 12, the predication accuracy exceeds
95%. In the next section, we report the playing strength of
the d = 8, w = 128 policy neural network.

B. Playing Strength of CNN without Search

We first investigate the quality of the neural net
CNNd=8 ,w=128 by testing its playing strength without any
search. The highly optimized Resistance evaluation function
of Wolve is used as a benchmark to measure the relative

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

5

0 2 4 6 8 10 12 14 16

50

55

60

65

70

75

80

85

90

95

100

k

A
c
c
u
r
a
c
y
(
%
)

Fig. 7. Top k prediction accuracies of the d = 8, w = 128 neural network.

playing strength. In experiments, this is emulated by Wolve’s
1-ply search. It should be noted that, in computer tournament,
2-ply Wolve was already pretty strong and 4-ply is usually
adopted since 2009 [13, 17].

Table III shows the winrate of CNNd=8 ,w=128 against the
1-ply Wolve, 6000 games were played from opening board
position, in which 3000 neural net plays as black, 3000 as
white. No swap rule was used. Summing the winrate in Ta-
ble III as black and as white, we obtain 97.8%, which implies
that the policy neural net model p✓ by CNNd=8 ,w=128 has
similar playing strength as the heavy VC and ICA augmented
resistance evaluation 3, even though with VC computation,
Wolve tends to play perfectly when the game is very close
to the end. For speed, we note that the pure policy net player
is orders of magnitudes faster than 1-ply Wolve.

TABLE III
WINRATE OF CNNd=8 ,w=128 AGAINST OPTIMIZED RESISTANCE.

Opponent CNNd=8 ,w=128 as black CNNd=8 ,w=128 as white
1-ply wolve 64.8% 33.0%

Figure 8 demonstrates a typical game played by the neural
net against resistance evaluation. The first move of Wolve is
l2, presumably because there is a easily computable virtual
connection to the top, which greatly influences the resistance
evaluation. Move 11 of Wolve is really bad, as it is rendered
inferior by White’s move k8. There is no way Black can
connect to the bottom by m7 unless White misses l9. The
game reflects that due to the limit of the virtual connection
computation, Resistance tends to favor fill-in dominated cells
as they often greatly increase the resistance in the circuit
network.

The result is remarkable in the sense that, without any
search, the neural network can still answer most black moves
accurately, implying that the neural net has already grasped
some sophisticated aspects of the game.

3Self-play of 1-ply Wolve always ends with a first player win, since the
program is deterministic.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m

m

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

1

23

4

5

6

7

8

9

10

11

1213

1415

1617

18

19

20

21

2223

2425

2627

28

29

3031

3233

3435

3637

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

5556

57

5859

6061

62

63

64

65

66

67

68 69

70

71 72

7374

75

76

77

78

79

80

Fig. 8. A game played by 1-ply Wolve (Black) against policy net (White)
CNNd=8 ,w=128 ; neural network won as white.

It is also interesting to see how well the neural net
plays against tournament 4-ply tournament Wolve. Since this
version of Wolve is slow, we only played 800 games in total.
Table IV shows the result. We also include the result against
1000 simulation limited MoHex 2.0 in Table IV. Even against
strong Hex bots, the neural net could achieve about 10% and
20% winrates respectively.

As a comparison, we note that in [38], the authors trained
a neural net with deep Q learning. After two weeks of
training, their model achieved a playing strength of about
20.4% winrate against 1 second limited MoHex 2.0 as black,
and 2.1% as white. While it is not exactly clear how many
simulations were achieved within 1 second, in our Intel
i7-6700 CPU machine, MoHex 2.0 with 1000 simulations
almost always takes a time around 1 second. We suspect
the strength difference is due to the following reasons: 1)
The training data are different: in [38], the neural net is first
trained on a set of games generated from noised Wolve, and
then trained on games of neural net self-play. We believe
those games are inferior to the games accumulated from
MoHex 2.0 self-play. 2) The training method is different.
While Q-learning has seen a grand success in single agent
Atari games [39], two-player games are more challenging by
the fact that the simulated “environment” is non-stationary.
3) The input planes in [38] contain only black/white/empty
points plus black/white group information. Perhaps our sim-
ple connection pattern augmented representation is better at
representing the key tactics of playing Hex.

Our neural net model and training data are publicly
available 4.

TABLE IV
WINS OF CNNd=8 ,w=128 AGAINST 4PLY-WOLVE, AND 1000

SIMULATIONS MOHEX 2.0.

Opponent CNNd=8,w=128 as black CNNd=8,w=128 as white
4-ply Wolve 17% 3.25%
MoHex2.0 with
103 simulations

33% 8.5%

4
http://webdocs.cs.ualberta.ca/

˜

cgao3/TCIAIG

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

6

While this comparison shows that the direct playing
strength of our neural network is similar to Resistance, it
has some advantages over Resistance: it does not have the
pathological behavior as Resistance, also it does not require
heavy computation of inferior cells and virtual connections.

C. Combined with Search

The ultimate goal of this work is to develop a stronger
Hex player by combining the neural net with search. Unlike a
global pattern matching using a neural network, what search
tries to build is a local non-parametric model that has the
advantage of being flexible and precise. Such is particular
important when exact responses are required.

Combining neural net with search is challenging [22,
23, 24], primarily because move evaluation by deep neural
networks is much slower than traditional methods. Previous
work in computer Go either employ non-blocking asyn-
chronous batch evaluation [24], or simple synchronous eval-
uation [23]. In both approaches, neural network evaluation
is used as prior knowledge before expanding a node, giving
preferred nodes higher prior probability.

We combine our neural network with MoHex 2.0, the
reigning world champion player since 2013. MoHex 2.0 is
an enhanced version of MoHex 2011 [17]. It is built upon
benzene 5, adopting the smartgame and gtpengine libraries
from Fuego [40]. The major improvement of MoHex 2.0 is
its prior-knowledge-augmented probabilistic playout.

More precisely, the MCTS phases in MoHex 2.0 work as
follows:

• In tree phase: In this phase, starting from the root node,
a child node is selected from its parent until a leaf is
reached. At tree node s, a move is selected according
to this formula:

score(s, a) =(1� w)⇥ (Q(s, a) + cb ⇥

s
lnN(s)

N(s, a)

)+

w ⇥R(s, a) + cpb ⇥
⇢(s, a)p

N(s, a) + 1

where N(s) is the visit count of s, N(s, a) is the visit
count of move a at s, Q(s, a) is the Q-value of (s, a),
R(s, a) is the RAVE value [41], ⇢(s, a) is the prior
probability calculated from move pattern weights. w is
dynamically adjusted during the search, cb and cpb are
turned constants.

• Expansion: A leaf node is expanded only when its visit
count exceeds a expansion threshold, which is set to 10
in MoHex 2.0.

• Pattern based playout: Pattern weights have been
trained offline. In each playout, a softmax policy selects
moves according to move pattern weights.

• Back-propagation update. After the playout, game result
is recorded, then MCTS updates values in visited nodes
according to the playout result.

5
http://benzene.sourceforge.net/

The best performance of MoHex 2.0 is achieved after
tuning its parameters by CLOP [19, 20]. Other optimizations
implemented in MoHex 2.0 include: 1) A pre-search: Inferior
cells and connection strategies are computed from the root
node before MCTS. If a winning connection is discovered,
a winning move will be selected, search withdraws. 2)
Knowledge computation: Whenever the visit count of a node
exceeds a knowledge threshold, H-search to compute virtual
connection and inferior cell analysis are applied. This often
leads to effective move pruning. 3) Time management. A
search is said to be unstable if by the end, the move with
the largest visit count disagrees with the move with highest
Q-value. MoHex 2.0 extends the search by half of its original
time in this case.

After the search terminates, MoHex 2.0 finally selects the
move with the largest visit count.

In MoHex 2.0, the prior knowledge ⇢(s, a) is computed
by a rough estimate from relative move pattern weights.
To see the effectiveness of our policy neural network, the
straightforward modification is to replace ⇢(s, a) by p✓(s, a)

— the move probability computed by our policy neural
network. All other tuning parameters are left unchanged.

The new program after adding neural net CNNd=8 ,w=128

is named as MoHex-CNN. It is modified directly upon
MoHex 2.0 code in benzene, and then compiled with the
Tensorflow C++ libraries. On the same i7-6700 CPU, 32GB
RAM, GTX-1080 GPU machine 6, we run several tourna-
ments to compare MoHex 2.0 and MoHex-CNN. Similar to
AlphaGo [24], we also prepare another program MoHex-
CNNpuct that uses a variant of PUCT [42]. It selects moves
according to score(s, a) = Q(s, a) + cpb ⇥ p✓(s, a) ⇥p

N(s)

N(s,a)+1 .
The first tournament uses the same number of simulations

for each program. From empty board, 400 games were played
by MoHex-CNN and MoHex-CNNpuct against MoHex 2.0,
in which MoHex 2.0 plays 200 games as black and 200 as
white.

Table V contains the playing results. It is clear that,
under those settings, the new programs MoHex-CNN and
MoHex-CNNpuct are stronger than MoHex 2.0, since they
consistently won more than 62% over all played games.
Since the difference between MoHex-CNN and MoHex 2.0
lies only in the prior probability initialization, the results
indicate that the more accurate prior knowledge due to CNN
can indeed improve MoHex, given the same number of
simulations.

In practice, evaluation speed of the neural network is a
concern. In MoHex, we find that whenever expanding a node,
prior pruning (use ICA and VC to remove proven inferior
cells) is applied. Since those computations are costly and are
independent from neural net evaluation, we implement an
asynchronous evaluation that runs in parallel with this prior
pruning. As a result of this implementation, the computation

6For single thread tasks, this computer is about 3.5 times faster than those
used for producing the training data.

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

7

TABLE V
WINRATES AGAINST MOHEX 2.0 OF MOHEX-CNN AND

MOHEX-CNNpuct WITH SAME NUMBER OF SIMULATIONS.

Opponent #Simulations MoHex2.0
as white

MoHex2.0
as black

Overall
winrate

MoHex-CNN 103 94.5% 44.5% 69.5%
104 90% 56% 73%

MoHex-CNNpuct
103 86% 39% 62.5%
104 83.5% 53% 68.3%

overhead becomes very small: in our experiments on the i7-
6700 CPU machine with a GTX 1080 GPU, MoHex with
CNNs took about 0.19 ms per simulation, while MoHex 2.0
took about 0.17 ms.

The next experiment compares MoHex-CNN and MoHex-
CNNpuct to MoHex 2.0 with equal time budget: 10 seconds
per move. Since when the swap rule is applied, the second
player has the option to steal the opening move, we run the
tournament by iterating over all opening cells in the board.
For 13x13 Hex, there are 85 distinct openings after removing
symmetries. For each opening, we run 5 independent games
for each color between MoHex-CNNpuct or MoHex-CNN
against MoHex 2.0.

Table VI summarizes the result of those 850 games played
by MoHex with CNNs and MoHex 2.0. It is clear that,
both MoHex-CNNpuct and MoHex-CNN have better perfor-
mance against MoHex 2.0 even with same computation time.
Consistent with the results in Table V, MoHex-CNN plays
better than MoHex-CNNpuct, presumably because MoHex-
CNNpuct is too aggressive on nodes suggested by the neural
net while MoHex-CNN retains the good exploration due to
RAVE.

MoHex-CNN won the 2017 computer Hex Olympiad
against Ezo-CNN [43], an updated version of Ezo using
neural networks as its move ordering function.

TABLE VI
WINRATES AGAINST MOHEX 2.0 OF MOHEX-CNNpuct AND

MOHEX-CNN WITH SAME TIME LIMIT PER MOVE, 95% CONFIDENCE.

Opponent MoHex2.0 as white (%) MoHex2.0 as black (%)
MoHex-CNNpuct 71.7 ± 0.1 53.2 ± 0.1

MoHex-CNN 78.6 ± 0.4 61.2 ± 0.4

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have presented neural network that
predicts the next move played by expert computer player.
We achieved a prediction accuracy near 55%, and showed
that such a high prediction accuracy can be used in a strong
Hex player. Like the previous work in computer Go, we find
that even without any search, the neural network plays Hex
reasonably well: it has a similar playing strength as a highly
optimized Resistance evaluation function. Furthermore, by
using a neural net as a learnt prior in MCTS, we were able
to improve the state-of-the-art MCTS player MoHex 2.0.

There is still a great deal to be explored for the game of
Hex. We believe that future work can be conducted in the
following directions:

• For the neural network design, we have only explored
a relatively simple architecture. Perhaps better neu-
ral nets exist, such as Residual neural nets [44, 45,
46]. Introducing more regularization techniques like
dropout [47, 48], batch normalization [49], stochastic
depth [50], swapout [51] might further improve the
prediction accuracy.

• For the training, the neural nets were trained to max-
imize the likelihood of a single next move, i.e., to
minimize the KL divergence between p✓ and a Dirac
delta distribution. Recent studies have shown that pre-
dicting a more smoothed distribution helps to reduce
over-fitting [52, 53], and using task reward to define
such a distribution establishes a link between maximum
likelihood and goal-driven reinforcement learning [54].
Since the data we have trained upon is inherently
imperfect, incorporating rewards to the training target
may be beneficial.

• Since evaluation of CNN is typically slow, more so-
phisticated asynchronous evaluation is worth further
studying. However, with AI accelerators such as
TPU [55] and better neural net designs, perhaps simple
synchronous evaluation will become adequate.

• Training a value estimation network [24] could also be
useful in search.

VII. ACKNOWLEDGMENTS

We appreciate the anonymous reviewers’ valuable com-
ments, which have been helpful in improving the quality of
this paper. We gratefully acknowledge NSERC for funding
this research. We thank Cybera for providing computing
resources to produce the training data.

REFERENCES

[1] P. Hein, “Vil de laere polygon,” Article in Politiken
newspaper, vol. 26, 1942.

[2] J. F. Nash, “Some games and machines for playing
them,” 1952.

[3] M. Gardner, “The Scientific American book of mathe-
matical puzzles and diversions,” 1959.

[4] C. E. Shannon, “Computers and automata,” Proceedings
of the IRE, vol. 41, no. 10, pp. 1234–1241, 1953.

[5] D. Gale, “The game of Hex and the Brouwer fixed-
point theorem,” The American Mathematical Monthly,
vol. 86, no. 10, pp. 818–827, 1979.

[6] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning
ways for your mathematical plays, vol. 3. AK Peters
Natick, 2003.

[7] S. Reisch, “Hex ist PSPACE-vollständig,” Acta Infor-
matica, vol. 15, no. 2, pp. 167–191, 1981.

[8] Édouard Bonnet, F. Jamain, and A. Saffidine, “On the
complexity of connection games,” Theoretical Com-
puter Science, vol. 644, pp. 2 – 28, 2016. Recent
Advances in Computer Games.

[9] V. V. Anshelevich, “The game of Hex: An automatic
theorem proving approach to game programming,” in
AAAI/IAAI, pp. 189–194, 2000.

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

8

[10] V. V. Anshelevich, “A hierarchical approach to com-
puter Hex,” Artificial Intelligence, vol. 134, no. 1,
pp. 101–120, 2002.

[11] P. T. Henderson, Playing and solving the game of Hex.
PhD thesis, University of Alberta, 2010.

[12] R. Hayward, “Six wins hex tournament,” ICGA Journal,
vol. 29, no. 3, pp. 163–165, 2006.

[13] B. Arneson, R. Hayward, and P. Henderson, “Wolve
wins Hex tournament,” ICGA Journal, vol. 32, no. 1,
pp. 49–53, 2008.

[14] L. Kocsis and C. Szepesvári, “Bandit based Monte-
Carlo planning,” in European conference on machine
learning, pp. 282–293, Springer, 2006.

[15] R. Coulom, “Efficient selectivity and backup operators
in Monte-Carlo tree search,” in International Confer-
ence on Computers and Games, pp. 72–83, Springer,
2006.

[16] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A survey of Monte
Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4,
no. 1, pp. 1–43, 2012.

[17] B. Arneson, R. B. Hayward, and P. Henderson, “Monte
Carlo tree search in Hex,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 2, no. 4,
pp. 251–258, 2010.

[18] B. Arneson, R. Hayward, and P. Henderson, “Mohex
wins Hex tournament,” ICGA journal, vol. 32, no. 2,
p. 114, 2009.

[19] S.-C. Huang, B. Arneson, R. B. Hayward, M. Müller,
and J. Pawlewicz, “Mohex 2.0: a pattern-based MCTS
hex player,” in International Conference on Computers
and Games, pp. 60–71, Springer, 2013.

[20] R. Coulom, “Computing Elo ratings of move patterns in
the game of Go,” in Computer Games Workshop, 2007.

[21] C. Clark and A. Storkey, “Training deep convolutional
neural networks to play Go,” in International Confer-
ence on Machine Learning, pp. 1766–1774, 2015.

[22] C. J. Maddison, A. Huang, I. Sutskever, and D. Silver,
“Move evaluation in Go using deep convolutional neu-
ral networks,” in International Conference on Learning
Representations, 2015.

[23] Y. Tian and Y. Zhu, “Better computer Go player with
neural network and long-term prediction,” in Interna-
tional Conference on Learning Representations, 2015.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, pp. 1097–1105, 2012.

[26] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,”

Artificial intelligence, vol. 134, no. 1-2, pp. 57–83,
2002.

[27] V. V. Anshelevich, “Hexy wins hex tournament,” ICGA
Journal, vol. 23, no. 3, pp. 181–184, 2000.

[28] J. Pawlewicz, R. Hayward, P. Henderson, and B. Ar-
neson, “Stronger Virtual Connections in Hex,” IEEE
Transactions on Computational Intelligence and AI in
Games, vol. 7, no. 2, pp. 156–166, 2015.

[29] R. Hayward, Y. Björnsson, M. Johanson, M. Kan,
N. Po, and J. van Rijswijck, “Solving 7⇥7 hex: Virtual
connections and game-state reduction,” in Advances in
Computer Games, pp. 261–278, Springer, 2004.

[30] P. Henderson, B. Arneson, and R. B. Hayward, “Solving
8⇥8 Hex,” in Proc. IJCAI, vol. 9, pp. 505–510, Citeseer,
2009.

[31] J. Pawlewicz and R. B. Hayward, “Sibling conspiracy
number search,” in Eighth Annual Symposium on Com-
binatorial Search, 2015.

[32] K. Takada, M. Honjo, H. Iizuka, and M. Yamamoto,
“Developing evaluation function of Hex using board
network characteristics and SVM,” Transactions of the
Japanese Society for Artificial Intelligence, vol. 30,
pp. 729–736, 2015.

[33] R. Munos et al., “From bandits to Monte-Carlo Tree
Search: The optimistic principle applied to optimization
and planning,” Foundations and Trends R� in Machine
Learning, vol. 7, no. 1, pp. 1–129, 2014.

[34] S. Gelly and D. Silver, “Combining online and offline
knowledge in UCT,” in Proceedings of the 24th inter-
national conference on Machine learning, pp. 273–280,
ACM, 2007.

[35] C. Gao, M. Müller, and R. Hayward, “Focused depth-
first proof number search using convolutional neural
networks for the game of hex,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI-17, pp. 3668–3674, 2017.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning
Representations, 2014.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
2015. Software available from tensorflow.org.

[38] K. Young, G. Vasan, and R. Hayward, “Neurohex: A
deep q-learning hex agent,” in Computer Games, pp. 3–
18, Springer, 2016.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2785042, IEEE
Transactions on Games

9

control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[40] M. Enzenberger, M. Müller, B. Arneson, and R. Segal,
“Fuego—an open-source framework for board games
and go engine based on monte carlo tree search,” IEEE
Transactions on Computational Intelligence and AI in
Games, vol. 2, no. 4, pp. 259–270, 2010.

[41] S. Gelly and D. Silver, “Monte-Carlo tree search and
rapid action value estimation in computer Go,” Artificial
Intelligence, vol. 175, no. 11, pp. 1856–1875, 2011.

[42] C. D. Rosin, “Multi-armed bandits with episode con-
text,” Annals of Mathematics and Artificial Intelligence,
vol. 61, no. 3, pp. 203–230, 2011.

[43] K. Takata, H. Iizuka, and M. Yamaoto, “Computer Hex
using move evaluation method based on convolutional
neural network,” in IJCAI 2017 Computer Games Work-
shop, 2017, in-press.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp. 770–778, 2016.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Identity map-
pings in deep residual networks,” in European Confer-
ence on Computer Vision, pp. 630–645, Springer, 2016.

[46] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” arXiv preprint arXiv:1605.07146, 2016.

[47] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[48] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and
C. Bregler, “Efficient object localization using convo-
lutional networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 648–656, 2015.

[49] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” in International Conference on Machine
Learning, pp. 448–456, 2015.

[50] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q.

Weinberger, “Deep networks with stochastic depth,” in
European Conference on Computer Vision, pp. 646–
661, Springer, 2016.

[51] S. Singh, D. Hoiem, and D. Forsyth, “Swapout: Learn-
ing an ensemble of deep architectures,” in Advances
in Neural Information Processing Systems, pp. 28–36,
2016.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for
computer vision,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 2818–2826, 2016.

[53] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and
G. Hinton, “Regularizing neural networks by penalizing
confident output distributions,” ICLR 2017 workshop,
2017.

[54] M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu,
D. Schuurmans, et al., “Reward augmented maximum
likelihood for neural structured prediction,” in Advances
In Neural Information Processing Systems, pp. 1723–
1731, 2016.

[55] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Sev-
ern, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the
44th Annual International Symposium on Computer
Architecture, ISCA ’17, pp. 1–12, ACM, 2017.

